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Abstract. We propose a new methodology for Linear Minimum Mean
Square Error (LMMSE) filtering of Diffusion Weighted Imaging (DWI).
We consider each voxel as an N-dimensional vector that comprises all the
DWI volumes, and then compute the LMMSE estimator for the whole
DWI data set jointly, taking into account the underlying tensor model.
Our experiments, both with phantom and real data, show that this is a
more convenient approach compared to the separate processing of each
DWI, that translates to better removal of noise and preservation of struc-
tural information. Besides, our model has a simple algebraic formulation
which makes the overall computational complexity very close to that of
the scalar case, and it does not need multiple samples per DWI.
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1 Introduction

DWI allows the study of the diffusion direction of water molecules in the brain,
which is associated in turn to the direction of fibre tracts in the white matter.
It is well-known that DWI magnitude is lower for gradient directions near the
diffusion direction due to the attenuation [1]. Unlike structural Magnetic Res-
onance Imaging (MRI), where the signal to noise ratio (SNR) in usually large
and the Rician nature of noise may be closely approximated with a Gaussian
behaviour, the attenuation in DWI yields lower SNR’s, so a Gaussian treatment
of the signal introduces an important bias [2]. Typical approaches to DWI filter-
ing include the conventional approach [3], based on the properties of the second
order moment of Rician noise, Maximum Likelihood (ML) [4] and Expectation
Maximisation (EM) [5] approaches, wavelets [6], or Wiener filtering [7]. Almost
all of them take into account the bias that local averages introduce in the re-
sults due to the Rician nature of noise. In [8] the authors introduce the use of
LMMSE estimation for the DWI squared magnitude, based on multiple samples:
for each voxel and DWI volume, there is a vector of noisy samples, whose mean
and covariance matrix are estimated to compute the LMMSE estimator. The
simplicity and analytical tractability of this method make it very convenient.
Its main limitation is that it requires multiple samples, which in general are not
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available. A different approach is proposed in [9] which no longer requires multi-
ple samples; instead of a covariance matrix, the variance of each noisy magnitude
is estimated, and therefore it is enough to have one single sample per DWI. The
results shown in [9] demonstrate that the LMMSE performs better than a num-
ber of state of the art approaches. However, both methods process each DWI
separately, dropping the important information related to the DWI formation
mechanism. In this work our aim is to jointly process all DWI data: we have one
single vector of samples at each image location that comprise all the DWI vol-
umes, and compute the LMMSE estimator as a whole. The information given by
the joint set of data is therefore more than the addition of the information given
by each isolated DWI, since it includes information of the underlying physical
model, so that the filtering results are more accurate than those of [8] and [9].

2 Joint LMMSE for DWI Data

The model for the magnitude of each DWI signal is:

Mi =
√

(Ai + nc,i)
2 + n2

s,i (1)

where Mi is the i-th noisy DWI component given by the MRI scanner, nc,i

and ns,i are two independent zero-mean, white Gaussian processes, and Ai is
the ideal DWI magnitude in the absence of noise, given by the Stejskal-Tanner
equation [1]:

Ai = A0 · exp
(−b · gT

i Dgi

)
, i = 1 . . .N (2)

where gi is the unitary gradient direction, D is the diffusion tensor (DT), A0

is the baseline image value, and b is a parameter of the scanner. Under the
LMMSE suppositions, {Ai}N

i=0 are considered as samples of random variables
whose parameters are related to that of the observed values {Mi}N

i=0. The odd-
order moments of Rician distributed data like eq. (1) have no simple expressions,
so it is common to work with the squared magnitude of the DWI values, since
even-order moments have more tractable expressions. The LMMSE of A2 ≡
[A2

0, A
2
1, . . . , A

2
N ]T , Â2, is therefore given for each voxel by [8]:

Â2 = E
{
A2

}
+ CA2M2C−1

M2M2

(
M2 − E

{
M2

})
(3)

where CA2M2 and CM2M2 are the cross-covariance and auto-covariance matrices.
Meanwhile in [8] the components of M2 correspond to each consecutive sample
of one single DWI (one vector per DWI), here each component corresponds
instead to a DWI (one single vector for the whole DWI data set). Like in [8],
the expected value E{M2} is estimated as a local average in a neighbourhood
of the voxel, 〈M2〉. It only remains to estimate the expected value E{A2} and
the covariance matrices CA2M2 and CM2M2 ; for the former, it is trivial to show
from eq. (1) that assuming a noise variance σ2

n the following expression holds1:

E
{
A2

}
= E

{
M2

} − 2σ2
n � 〈M2〉 − 2σ2

n (4)
1 Note that in an isotropic region, we simply have an average of the measured value

M2
i to which we subtract the bias term 2σ2

n, i.e. we construct an unbiased estimator.
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For the covariance matrix CM2M2 , we simply use eq. (1)

{CM2M2}i,j = E
{(

M2
i − M2

i

) (
M2

j − M2
j

)}

= E
{(

A2
i + n2

c,i + 2Ainc,i + n2
s,i − A2

i − 2σ2
n

)

×
(
A2

j + n2
c,j + 2Ajnc,j + n2

s,j − A2
j − 2σ2

n

)}
(5)

where we have assumed the abbreviated notation E{X} ≡ X. Taking into ac-
count the independence of the noise components with respect to the data and
with respect to each other, we may develop eq. (5) to obtain:

{CM2M2}i,j = E
{(

A2
i − A2

i

) (
A2

j − A2
j

)}
+ E {2Ainc,i · 2Ajnc,j}

+E
{(

n2
c,i + n2

s,i − 2σ2
n

) (
n2

c,j + n2
s,j − 2σ2

n

)}

=

⎧
⎪⎨
⎪⎩

E
{(

A2
i − A2

i

)(
A2

j − A2
j

)}
, i �= j

E

{(
A2

i − A2
i

)2
}

+ 4A2
i σ

2
n + 4σ4

n, i = j
(6)

since all other crossed terms are null. For covariance matrix CA2M2 , a similar
reasoning yields: {CA2M2}i,j = E{(A2

i −A2
i )(A

2
j −A2

j)}. The problem is that we
have to estimate all crossed moments E{(A2

i −A2
i )(A

2
j −A2

j)}, which translates
in a high computational overload. Instead of doing so, we make the assumption
that all expected values A2

i are completely correlated, i.e., the value of each A2
i

univocally determines the values of all remaining A2
j . Since A2

i are based on
sample estimates of M2

i , this is equivalent to assuming that the variance of the
estimate 〈M2〉 is small enough to assume that the inferred value of A2 is close
enough to the real value of E{A2}. With such an assumption, we have2:

E
{(

A2
i − A2

i

) (
A2

j − A2
j

)}
= E

{
A2

i A
2
j

} − A2
i A2

j

=
(
E

{
A4

0

} − A2
0 A2

0

)
exp

(−bgT
i Dgi

)
exp

(−bgT
j Dgj

)

=
A4

0 − A2
0

2

A2
0

2 A2
0

2
exp

(−bgT
i Dgi

)
exp

(−bgT
j Dgj

)
=

A4
0 − A2

0

2

A2
0

2 A2
i A2

j (7)

and therefore, if we call K = (A4
0 −A2

0

2
)/A2

0

2
> 0, we have CA2M2 = KA2 A2

T

and CM2M2 = KA2 A2
T

+ 4σ2
ndiag(A2) + 4σ2

nIN+1, which only requires the
estimation of the second order moments of all DWI components and the fourth
order moment of the baseline image (not for all DWI’s, like in [8]).

2 Although we use here a simple tensor model, this reasoning remains valid for more
general approaches, and it only requires that we assume the relation Ai = A0 ·f(gi).
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3 Inversion of the Covariance Matrix of Measures

The computation of covariance matrix CM2M2 (and respectively CA2M2) in eq.
(6) is simple with the result in eq. (7), since we are able to estimate A2

i from
eq. (4), and an analogous expression is available for the fourth order moment:
A4

0 = M4
0 − 8σ2

nA2
0 − 8σ4

n. To estimate the noise power of nc and ns, σ2
n, several

methods have been proposed (see [10]). The problem is that we need to invert
CM2M2 , which in general requires time-consuming Gaussian reduction. If we
suppose that the noise power σ2

n is small related to the squared magnitude of
the data, σ2

n � A2
i , we may write:

CM2M2 � C̃M2M2 = KA2 A2
T

+4σ2
ndiag

(
A2

)
⇒ C̃−1

M2M2 = δ1+diag (e) (8)

where 1 is an (N + 1) × (N + 1) matrix with all elements equal to 1, {e}i =
(4σ2

n · A2
i )

−1 and δ = −(4σ2
n(4σ2

n/K +
∑

i A2
i ))

−1. The proof of the right hand
side of eq. (8) is straightforward, but we omit the details here for the sake of
brevity. It is trivial as well to prove that C̃M2M2 is always positive definite.
Moreover, the eigenvalues {λj}N+1

j=1 of C̃M2M2 satisfy:

If A2
i > σ2

n, ∀i ⇒ λj > 4σ4
n, ∀j (9)

Proof: Let us suppose that vj is an eigenvector associated to eigenvalue λj ;
then: C̃M2M2 · vj = KA2 A2

T · vj + 4σ2
ndiag(A2) · vj = λjvj , and for the i-th

component of vj : K〈A2,vj〉A2
i +4σ2

nA2
i v

j
i = λjvj

i . For each non-null component
of vj , we may write: λj = K〈A2,vj〉A2

i /vj
i +4σ2

nA2
i . Now, if the projection of vj

in A2 is positive, 〈A2,vj〉 ≥ 0, since all A2
i > 0 and K > 0, there exists at least

one positive component of vj , vj
p > 0, and therefore: λj = K〈A2,vj〉A2

i /vj
p +

4σ2
nA2

i ≥ 4σ2
nA2

i > 4σ4
n. An analogous reasoning may be done if 〈A2,vj〉 < 0.

��
The property in eq. (9) guarantees the convergence of the power series expansion
of C−1

M2M2 as a function of C̃−1
M2M2 :

C−1
M2M2 =

(
C̃M2M2 + 4σ4

nIN+1

)−1

=
(
C̃M2M2

(
IN+1 + 4σ4

nC̃−1
M2M2

))−1

=
(
IN+1 + 4σ4

nC̃−1
M2M2

)−1

C̃−1
M2M2 = C̃−1

M2M2

∞∑
k=0

(−4σ4
nC̃−1

M2M2)k (10)

where we have exploited the symmetry of covariance matrices to invert the order
of the last two factors. We implement a truncated version of the series expansion∑∞

k=0(−4σ4
nC̃−1

M2M2)k(M2 − 〈M2〉) with the following recursive rule:

wk+1 =
(
M2 − 〈M2〉) − 4σ4

nC̃−1
M2M2wk, with w0 =

(
M2 − 〈M2〉) (11)

It is trivial to show that the k-th element in the recursion of eq. (11) is
the same as the k-th order approximation of the truncated series of eq. (10).
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Fig. 1. SSIM (a, d), QILV (b, e) and MSE (c, f) as a function of the SNR. In the top
row, 6 gradient directions have been used, meanwhile in the bottom row we use 27. We
compare our method to the case in which each DWI is separately filtered, like in [8,9].

We can apply the procedure described in eqs. (8) and (11) for all those image
voxels satisfying eq. (9). If this last condition is not fulfilled, an explicit Gaussian
elimination is required to invert CM2M2 ; fortunately, this happens for a negligible
percentage of image voxels. The products with C̃−1

M2M2 are computationally very
efficient, since we do not need to perform explicit matrix products, but instead
we have: {C̃−1

M2M2 ·w}i = δ
∑

j wj + {e}i ·wi. On the other hand, we have that
CA2M2 · w = K〈A2,w〉A2, so the computation of eq. (3) may be done very
efficiently, and the overall computational complexity remains low.

4 Results

To test our method, we have compared it to that of [9] for two main reasons: first,
the LMMSE approach in [9] has been proved to outperform a number of filtering
techniques in the more recent state of the art, and second the formulation in [9]
is equivalent to that of [8] in case only one sample per DWI is available, these
two being the only LMMSE approaches to DWI filtering in the literature to the
very best of our knowledge.

We have designed a synthetic 256×256×81 (resolution 1×1×256/81) tensor
field as a spherical object of radius R = 120 inserted in a black background.
The baseline image has a decreasing magnitude from the centre to the borders:
A0 = 230/(1 + (r/200)2); a band with constant magnitude A0 = 255 has been
inserted for |x| < 35. Three anisotropic strips have been designed along each
coordinate axis, with diffusion directions following these axis: for |y, z| < 35, we
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a b c

Fig. 2. Log-plots of the 2D histogram of the pairs (FA,MD), for (a) the noisy data, (b)
the data filtered with the approach in [8,9], and (c) our own approach, with SNR=12dB
and 27 gradient directions. Ground truth centroids are represented as black spots,
representing the isotropic zone (0, 0.4 · 10−3), the anisotropic strips (0.77, 0.73 · 10−3),
and the crossing zone (0.23, 0.7 · 10−3).

have eigenvalues λ = [1 · 10−3, 0.2 · 10−3, 0.2 · 10−3], and so on. The rest of the
phantom is assumed to be an isotropic medium with λj = 0.25 · 10−3, ∀j. The
b-value of the scanner has been fixed to 1200. We generate two sets of data using
eq. (2), with 6 and 27 gradient directions (N = 7 and N = 28, respectively)
uniformly distributed in the unit sphere. We add Rician distributed noise with
the model in eq. (1), varying the noise power σ2

n. To compute the SNR, the
signal power is measured as [9]: S = mini,x,y Ai(x, y), which gives us a range of
−5dB ≤ SNR ≤ 25dB, i.e., a noise power 3.5 ≤ σn ≤ 100, much like in [9]. We
have used a window of 5 × 5 × 1 voxels to estimate local averages.

Like in [8], we use the Structural Similarity (SSIM) index [11] and the Quality
Index based on Local Variance (QILV) [12] as performance measures, together
with the Mean Square Error (MSE). We remove the background from the com-
putation to avoid any bias in the results. The results may be seen in Fig. 1. Our
method outperforms the techniques based on the separate filtering of each DWI
for reasonable degrees of noise, which is, SNR below 10dB for 6 gradients or
below 15dB for 27 gradients. It is worth notice that the difference between
our approach and those of [8,9] grows as the number of gradients increase, since
more joint information is available. To test the potential of our method in DTI
processing, we have estimated the DT both from the noisy and the filtered data
by means of a Weighted Least Squares (WLS) fitting [2], and then we have com-
puted the Mean Diffusivity (MD) and the Fractional Anisotropy (FA). Log-plots
of the corresponding histograms for SNR=12dB and 27 gradient directions may
be seen in Fig. 2. Our approach yields more accurate results, showing more com-
pact clusters around the centroids3. As a quality measure, we give the mean
euclidean distance of the pair (FA,MD) to its corresponding ground-truth cen-
troid (we ponder MD with a factor of 1000): for the noisy data we have 0.34,

3 The centroid with FA=0 is not well accounted in any case; this is because FA=0
means that all eigenvalues are identical, which is impossible in practise with noisy
data; however, note that the values of FA are nearly 0 for this group.
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a b c

Fig. 3. An experiment with real data: we have a 184×221×78 volume with 51 gradient
directions; we represent the original axial slice of the first gradient direction (a), and
the results for the approach in [8,9] (b) and our own approach (c).

for the approach in [8,9], 0.10, and for our own approach, 0.08. Regarding com-
putation times, both approaches take roughly 4.5 seconds to execute in our
2GHz., 8-core, 32GB machine, with 27 gradient directions., i.e. our algorithm
needs no extra computation time compared to [9].

Finally, we present in Fig. 3 an experiment with a real SENSE EPI data set4,
scanned in a 3 Tesla GE system, with 51 gradient directions, 8 baselines, and reso-
lution 0.9375×0.9375×1.7mm3. Our algorithm is able to recover structures which
remain hindered in both the original gradient image and in the LMMSE filtered,
due to the combined use of all DWI data for each image location and gradient.
Note especially the high improvement in the surroundings of the ventricles.

5 Conclusion

We have proposed a new methodology for LMMSE estimation of DWI data,
based on the use of the joint information of the whole DWI data set. Compared
to [8,9], the experimental results show that our approach yields a better removal
of noise while better preserving the structural information. Like these previous
works, our filter is unbiased, which is an important property when estimating the
DT [2]. LMMSE has been proved to outperform the most important approaches
in the related literature [9], such as the conventional approach [3], ML [4] or EM
[5] amongst others, with little computational load. Our approach outperforms
that of [9] with no additional computational cost. This is mainly because we do
not need to explicitly estimate covariance matrices, and we may use analytical
expressions to invert them. This makes our algorithm very efficient compared to
[8], and we no longer need multiple samples per DWI. One last advantage is that
4 Courtesy of PNL, Dept. of Psychiatry, and LMI Dept. Radiology, Brigham and

Women’s Hospital, Boston.
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our method requires the computation of the fourth order moment only for the
baseline image, which is always the one with the higher SNR, so the uncertainty
in the computation of this value may be reduced.
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