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Maximum-Likelihood Estimation
of Rician Distribution Parameters

Jan Sijbers,* Arnold J. den Dekker, Paul Scheunders, and Dirk Van Dyck

Abstract—The problem of parameter estimation from Rician
distributed data (e.g., magnitude magnetic resonance images) is
addressed. The properties of conventional estimation methods
are discussed and compared to maximum-likelihood (ML) esti-
mation which is known to yield optimal results asymptotically.
In contrast to previously proposed methods, ML estimation is
demonstrated to be unbiased for high signal-to-noise ratio (SNR)
and to yield physical relevant results for low SNR.

Index Terms—Maximum likelihood (ML), magnetic resonance
(MR) images, parameter estimation, Rician distribution.

I. INTRODUCTION

I N magnetic resonance (MR) imaging, the acquired complex
valued data are corrupted by noise that is typically well

described by a Gaussian probability density function (PDF)
[1]. In case the MR data are acquired on a uniform Cartesian
grid in K-space, after Fourier reconstruction, the real and
imaginary data are still polluted by Gaussian noise. Although
all information is contained in the real and imaginary images, it
is common practice to work with magnitude and phase images
instead as they have more physical meaning (proton density,
flow, etc.). However, computation of a magnitude image is a
nonlinear operation in which the Gaussian PDF of the pixels
is transformed into a Rician PDF [2], [3]. In addition, Rician
distributed data do not solely occur in conventional magnitude
reconstructed images, they are also found in MR angiography
imaging [4].

Knowledge of the data PDF is vital for image processing
techniques based on parameter estimation such as, e.g., image
restoration. These techniques usually assume the most general
type of data PDF, which is Gaussian. Whenever other PDF’s
come into play, e.g., in magnitude MR images, one still
tends to use parameter estimation techniques that are based
on Gaussian distributed data [5]–[7]. The justification for this
is that, when the signal-to-noise ratio (SNR) is high, the actual
data PDF is very similar to a Gaussian one.

With magnitude MR images, the Rician data PDF deviates
significantly from a Gaussian PDF when the SNR is low,
leading to biased results. To reduce this bias, parameter es-
timation methods were proposed which exploit the knowledge
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of the Rician PDF [8]–[11]. However, although the proposed
estimators do reduce the bias, they are not able to remove it.

In this paper it is shown where the bias appears in the
conventional estimation. In addition, a maximum likelihood
(ML) estimator for Rician distributed data is constructed. The
performance of the conventional estimator is compared to that
of the ML estimator. The motivation for this is that, it is known
that, if there exists an unbiased estimator of which the variance
attains the lowest possible value, it is obtained by the ML
method.

II. THE RICIAN DISTRIBUTION

If the real and imaginary data, with mean values and ,
respectively, are corrupted by Gaussian, zero mean, stationary
noise with standard deviation, it is easy to show that the
magnitude data will be Rician distributed [12], with PDF

(1)

is the modified zeroth-order Bessel function of the first
kind, denotes theth data point of the magnitude image.
The unit step function is used to indicate that the expression
for the PDF of is valid for nonnegative values of only.
Furthermore, is given by

(2)

For further discussion, the moments of the Rician PDF are
required. The th moment of the Rician density function is
given by

(3)

where is the expectation operator. The previous equation
can be analytically expressed as a function of the confluent
hypergeometric function

(4)

The even moments of the Rician distribution (i.e., whenis
even) are simple polynomials. For example

(5)

(6)
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III. PARAMETER ESTIMATION

Given the Rician distribution and its moments, both the
conventional approach (Section III-A) and the ML approach
(Section III-B) to estimate a locally constant signal from
magnitude data points are discussed.

A. Conventional Approach

1) Conventional Estimator:Commonly, (5) is exploited
for estimation of the underlying signal Thereby,
is estimated from a simple local spatial average [9], [10],
[13], [14]

(7)

Note that this estimator is unbiased since
Consequently, an unbiased estimator of is given by

(8)

Taking the square root of (8) gives the conventional estimator
of [9], [10], [13], [14]

(9)

2) Discussion: The parameter to be estimated is the sig-
nal Obviously, is a priori known to be real valued
and nonnegative. However, thisa priori knowledge has not
been incorporated into the conventional estimation procedure.
Consequently, the conventional estimator, given in (9),
may reveal estimates that violate thea priori knowledge and
are therefore physically meaningless. This is the case when

becomes negative. Therefore, cannot be considered a
useful estimator of if the probability that is negative
differs from zero significantly. It can be shown that the PDF
of is a noncentral distribution [4], given by

(10)

In Fig. 1, is drawn as a function of the local SNR
for several values of where the local SNR is defined as

SNR (11)

From Fig. 1 one can conclude that for low SNR cannot
be a valid estimator of unless a large amount of data points
is used for the estimation. Therefore, in practicewill only
be a useful estimator if the local SNR is high.

However, even if the condition of high SNR is met, the use
of as an estimator of should still not be recommended
since the results obtained are biased because of the square

Fig. 1. Pr[A2
c
< 0] as a function of the SNR for variousN:

root operation in (9). This becomes more clear when is
expanded about the unbiased valueyielding

(12)

Equation (12) is valid for high SNR. The bias appears in the
second term of (12). Note that it decreases with increasing
SNR and increasing number of data points

B. ML Estimation

In this section the ML method is introduced into the problem
of the estimation of Rician distribution parameters. The ML
estimator exploits thea priori knowledge of the data statistics
in an optimal way. Concerning the accuracy and precision
of the ML estimator, it is known that, under very general
conditions, the ML estimator is consistent and asymptotically
most precise [15]. In addition, it is known that if the number
of data points increases, the distribution of the ML estimator
approaches the normal distribution with meanand variance
equal to the so-called minimum variance bound (MVB), which
is a lower bound on the variance of any unbiased estimator
[16]. Furthermore, it is known that if there exists an unbiased
estimator having the MVB as variance, it is the ML estimator
[15].

1) ML Estimator: The joint PDF of a sample of inde-
pendent observations is called the likelihood function
of the sample, and is written as

(13)

where is given in (1). The ML estimator can be
constructed directly from the likelihood function Once the
observations have been made and numbers can be substituted
for , is a function of the unknown parameteronly.
The ML estimator of is now defined as the estimator
maximizing or equivalently , as a function of
Hence, using (1) it follows that:

(14)
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or only as a function of

(15)

Since is symmetric about as well as are
also symmetric about The ML estimate is the global
maximum of

(16)

2) Discussion: It is not possible to find the maximum of
the function directly because the parameterenters that
function in a nontrivial way. Therefore, finding the maximum
of the function will in general be an iterative numerical
process.

In order to get some insight into the properties of the ML
estimator, the structure of the function is now studied.
This structure is established by the number and nature of the
stationary points of the function. Stationary points are defined
as points where the gradient vanishes

(17)

Substituting (15) into (17) along with some rearrangements
yields the condition for the stationary points

(18)

It follows from (18) that is a stationary point of
, independent of the particular data set. The nature of a

stationary point is determined by the sign of the second-order
derivative of the function in that point. From this derivative
it follows whether a stationary point is a minimum or a
maximum and whether or not it is degenerate. From (15) the
second-order derivative of the function can be computed
to yield

(19)

It is then easy to verify that is a minimum of
whenever

(20)

If this condition is met, the function will have two
further stationary points, being maxima.

This can be seen by studying the possible structures of
the function using catastrophe theory. Catastrophe

theory is concerned with the structural change of a parametric
function under influence of its parameters [17]. It tells us that
a structural change of the function is always preceded by a
degeneracy of one of its stationary points. In order to analyze
such a structural change, the parametric function can be
replaced by a Taylor expansion in the essential variables about
the latter stationary point. The essential variables correspond
to the directions in which degeneracy may occur. According
to the catastrophe theory the global structure of a parametric
function with only one essential variable is completely set by
its Taylor expansion up to the degree of which the coefficient
cannot vanish under the influence of its parameters. The
function studied in this paper is the function as a
function of Its parameters are the observations. Thus, the
structural change of the function under the influence
of the observations has to be studied. The only essential
variable is the signal parameter The stationary point that
may become degenerate is the point [degeneracy occurs
whenever (19) becomes equal to zero]. If the function
is Taylor expanded about the stationary point , we yield

(21)

with

(22)

(23)

(24)

and is the order symbol of Landau. Notice that since
the function is symmetric about , the odd terms
are absent in (21). In order to investigate if the expansion
up to the quartic term in (21) is sufficient, it has to be
determined if the coefficients may change sign under influence
of the observations. It is clear from (23) that the coefficient

may change sign. The coefficient, however, will always
be negative, independent of the particular set of observations.
This means that the expansion (21) is sufficient to describe the
possible structures of the function. Consequently, the
study of the function as a function of the observations
can be replaced by a study of the following quartic Taylor
polynomial in the essential variable:

(25)

where the term has been omitted since it does not influence
the structure. The polynomial (25) is always stationary at

This will be a minimum, a degenerate maximum or
a maximum when is positive, equal to zero, or negative,
respectively. It follows directly from (25) that has two
additional stationary points (being maxima) ifis positive,
that is, if (20) is met. Notice that condition (20) is always
met for noise free data. However, in practice the data will be
corrupted by noise and for particular realizations of the noise,
condition (20) may not be met. Then will be a (possibly
degenerate) maximum. Moreover, if condition (20) is not met,
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in (25) is negative and thus is convex, which means
that will be the only, and therefore, the global maximum
of the function. This implies that under the influence of
noise the two maxima and one minimum have merged into one
single maximum at This maximum then corresponds to
the ML estimate. Note that, since condition (20) is identical to
(and, therefore, can be replaced by) the condition , the
probability that the ML estimate is found at is equal to
the probability that This probability can be computed
from the PDF given in (10).

It follows from these considerations that, when the conven-
tional estimator becomes invalid, the ML estimator will still
yield physically relevant results.

IV. SIMULATION EXPERIMENTS

In order to compare the conventional estimator to
the ML estimator described above, an experiment was
simulated in which the underlying signal was estimated from
16 Rician distributed data points as a function
of the noise standard deviation The true value of was
100. The ML estimate was obtained by maximization of
the likelihood function using Brent’s algorithm [18]. This
is an efficient one-dimensional optimization method based
on parabolic interpolation which converges rapidly as the
likelihood function is well described by a parabola. The
same experiment of determining and was repeated
10 times after which the averages and were
computed. The results are shown in Fig. 2 along with the
95% confidence intervals.

From Fig. 2 one can see that at high SNR (SNR)
the ML estimator cannot be distinguished from an unbiased
estimator, whereas the conventional estimator is clearly bi-
ased [Fig. 2(a)]. As can also be observed, the experimental
estimations are in agreement with the expectation value of

, predicted by (12).
At low SNR (SNR ) the use of is no longer justified

because the probability that is negative becomes too high.
As to still compare the ML estimator with the conventional
one, we modified the conventional estimator in these adverse
cases to yield the same estimate as the ML estimator:
From Fig. 2(b) one can observe that both estimators become
biased though the bias of the ML estimator is significantly
smaller compared to the modified conventional estimator. The
bias of the ML estimator has to do with the increasing prob-
ability of a structural change of the likelihood function. For
low SNR, simulation experiments have shown the occurrence
of both structures of , described above, i.e., only one
maximum or two maxima and one minimum. Some
functions obtained from simulation experiments are shown in
Fig. 3 for high and low SNR.

Up to now, no other structures were observed. Remark that
the occurrence of only one maximum at positive-values
makes the computational requirements for the maximization
of the function very low.

In this paper the true value of the noise variance
was assumed to be known. In practice however,needs
to be estimated from the background or from homogeneous

(a)

(b)

Fig. 2. Comparison between (a) the conventional and (b) the ML estimator
for N = 16: Each point denotes the average of 105 estimations. Also the
95% confidence interval is shown.

signal regions [3]. Thereby, the accuracy of the estimate
is often influenced by systematic errors due to for example
ghosting artefacts. This problem can be tackled by acquiring
two realizations of the same image [19], [20]. However, if the
noise variance estimate cannot be prevented from degradation
by systematic errors, will automatically be over-estimated.
An erroneous noise estimate will in turn influence the signal
estimates discussed in this paper. Simulation experiments how-
ever showed that even with a 10% over- or under-estimated
noise variance value ML estimation still yields significantly
better results compared to conventional estimation.

V. CONCLUSION

In this paper the problem of signal estimation from Rician
distributed data was discussed. It has been shown that, the
conventional estimator may not be used at low SNR unless a
large amount of data points is used, which is often not available
in practice. Even at high SNR the use of this estimator is
still not recommended since it is biased. As an alternative,
the ML estimator was proposed because it outperforms the
conventional one with respect to accuracy. The ML estimator
yields physically relevant solutions for the whole range of
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(a)

(b)

Fig. 3. Likelihood functions for (a) high and (b) low SNR withN = 16: The
different curves correspond to different realizations of the same experiment.

SNR’s. Moreover, it was shown that, unlike the conventional
estimator, the ML estimator cannot be distinguished from an
unbiased estimator at high SNR. yields physically relevant
solutions for the whole range of SNR’s.

VI. NOTE ADDED IN PROOF

After completion of this manuscript, the authors discovered
the existence of a paper by Bonnyet al. [21] in which,
independently, similar results on ML estimation of the signal
parameter from magnitude MR data have been presented.

However, the results of that paper show severe discrepancies
with those presented in the present work. These discrepancies
deserve further study.
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