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Maximum-Likelihood Estimation
of Rician Distribution Parameters

Jan Sijbers,* Arnold J. den Dekker, Paul Scheunders, and Dirk Van Dyck

Abstract—The problem of parameter estimation from Rician of the Rician PDF [8]-[11]. However, although the proposed
distributed data (e.g., magnitude magnetic resonance images) is estimators do reduce the bias, they are not able to remove it.
addressed. The properties of conventional estimation methods In this paper it is shown where the bias appears in the
are discussed and compared to maximume-likelihood (ML) esti- - . . o . oo
mation which is known to yield optimal results asymptotically. Conventlpnal estlma_tlc_)n. Ir? aF‘d't'OW a m_aXImum likelihood
In contrast to previously proposed methods, ML estimation is (ML) estimator for Rician distributed data is constructed. The

demonstrated to be unbiased for high signal-to-noise ratio (SNR) performance of the conventional estimator is compared to that

and to yield physical relevant results for low SNR. of the ML estimator. The motivation for this is that, it is known
Index Terms—Maximum likelihood (ML)’ magnetic resonance that, |f there eXiStS an Unbiased eStimator Of Wh|Ch the Variance
(MR) images, parameter estimation, Rician distribution. attains the lowest possible value, it is obtained by the ML
method.
I. INTRODUCTION

N magnetic resonance (MR) imaging, the acquired complex IIl. THE RICIAN DISTRIBUTION

valued data are corrupted by noise that is typically well If the real and imaginary data, with mean valugg and Ay,
described by a Gaussian probability density function (PDIFgspectively, are corrupted by Gaussian, zero mean, stationary
[1]. In case the MR data are acquired on a uniform Cartesianise with standard deviatios, it is easy to show that the
grid in K-space, after Fourier reconstruction, the real antdagnitude data will be Rician distributed [12], with PDF
imaginary data are still polluted by Gaussian noise. Although .
all information is contained in the real and imaginary images, it M; —(M;;A ) AM,;
is common practice to work with magnitude and phase images p(M;|4) = PO 1o < 2 ) w(Mi). (1)
instead as they have more physical meaning (proton density,
flow, etc.). However, computation of a magnitude image is & is the modified zeroth-order Bessel function of the first
nonlinear operation in which the Gaussian PDF of the pixekind, M; denotes theth data point of the magnitude image.
is transformed into a Rician PDF [2], [3]. In addition, RicianThe unit step function is used to indicate that the expression
distributed data do not solely occur in conventional magnituder the PDF ofM; is valid for nonnegative values @f; only.
reconstructed images, they are also found in MR angiographyrthermore,A is given by
imaging [4].
Knowledge of the data PDF is vital for image processing A=, /A%z + A2, (2)
techniques based on parameter estimation such as, e.g., image
restoration. These techniques usually assume the most genergbr further discussion, the moments of the Rician PDF are
type of data PDF, which is Gaussian. Whenever other PDRr&quired. Therth moment of the Rician density function is
come into play, e.g., in magnitude MR images, one stiffiven by
tends to use parameter estimation techniques that are based
on Gaussian distributed data [5]—[7]. The justification for this ! ,(M) AM
is that, when the signal-to-noise ratio (SNR) is high, the actual E[M"] = / e N7 I <7) dM  (3)
data PDF is very similar to a Gaussian one.
With magnitude MR images, the Rician data PDF deviatgghere E[] is the expectation operator. The previous equation

significantly from a Gaussian PDF when the SNR is lowan be analytically expressed as a function of the confluent
leading to biased results. To reduce this bias, parameter ggpergeometric function £}

timation methods were proposed which exploit the knowledge

o

o2

v v A?
N . E[M*] = (2 2”/2r(1 —) A-Z-2) @
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Ill. PARAMETER ESTIMATION 06

Given the Rician distribution and its moments, both the -
conventional approach (Section Ill-A) and the ML approach °5|
(Section 1lI-B) to estimate a locally constant signalfrom
magnitude data point§/; }, are discussed. 04 r

A. Conventional Approach 03t

PrlAr2<0]

1) Conventional EstimatorCommonly, (5) is exploited
for estimation of the underlying signal. Thereby, E[A?] 02 r
is estimated from a simple local spatial average [9], [10],
[13], [14] o1t

B = (M%) = = 3 M2, @ o e e e

=1 SNR

Note that this estimator is unbiased sifgf(M2)] = E[M?]. Fig- L PfAZ < 0] as a function of the SNR for various’.

Consequently, an unbiased estimator4dfis given by )
root operation in (9). This becomes more clear wiirl.| is

A2 = (M?) — 262, (8) expanded about the unbiased valdgyielding
2
Taking the square root of (8) gives the conventional estimator E[A.]~ A <1 — ﬁ) (12)
of A [9], [10], [13], [14] ?
. Equation (12) is valid for high SNR. The bias appears in the
A =/ (M?) — 202 (9) second term of (12). Note that it decreases with increasing

_ ) ) ) ~SNR and increasing number of data poifs
2) Discussion: The parameter to be estimated is the sig-

nal A. Obviously, A is a priori known to be real valued g L Estimation
and nonnegative. However, thg priori knowledge has not

been incorporated into the conventional estimation procedurt?.lnhthIS section thefMRIT r_netr:jqd |fsb|nt_roduced into the _I?_LObll\eAT
Consequently, the conventional estimatdg, given in (9), ©° the estimation of Rician distribution parameters. The

may reveal estimates that violate theoriori knowledge and gstlmator_expllons th%pnon knowlﬁdge of the datadstatlst!cs
are therefore physically meaningless. This is the case wh'anan optimal way. Concerning the accuracy and precision
-5 . by . of the ML estimator, it is known that, under very general
A? becomes negative. Thereford, cannot be considered a o . . . .

§ _ . o - _ conditions, the ML estimator is consistent and asymptotically
useful estimator of4 if the probability thatA2 is negative

differs f ianifi Vol be sh hat th PDmost precise [15]. In addition, it is known that if the number
lfters from zero significantly. It can be shown that the Ef data points increases, the distribution of the ML estimator

of AZ is a noncentrak? distribution [4], given by approaches the normal distribution with mearand variance
. Nt oty a2 _equal to the so-called minimu_m variance bounc! (MVB), vyhich
— N [A2+4+252\ ° N< oz ) is a lower bound on the variance of any unbiased estimator
Py (A§> =552 <CT> ¢ [16]. Furthermore, it is known that if there exists an unbiased

estimator having the MVB as variance, it is the ML estimator

NAJAZ 4262\ [15].
XIy_1 | —— u(Ag + 202). 1) ML Estimator: The joint PDF of a sample oV inde-

2
o pendent observation§M;} is called the likelihood function
(10) of the sample, and is written as
— N
In Fig. 1,Pr[A2 < 0] is drawn as a function of the local SNR L= H p(M;|A) (13)
for several values oV, where the local SNR is defined as iy

A where p(M;|A) is given in (1). The ML estimator can be
SNR = o (11)  constructed directly from the likelihood functiah Once the
. observations have been made and numbers can be substituted
From Fig. 1 one can conclude that for low SNR cannot for {M;}, L is a function of the unknown parametdronly.
be a valid estimator ofi unless a large amount of data pointThe ML estimator of A is now defined as the estimator
is used for the estimation. Therefore, in practitewill only maximizing L, or equivalentlylog L, as a function ofA.
be a useful estimator if the local SNR is high. Hence, using (1) it follows that:
However, even if the condition of high SNR is met, the use N M2 a2
of A. as an estimator oft should still not be recommended log L = log H M; 6_( e ) Io <AMi) (14)
since the results obtained are biased because of the square T o’ o?
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or only as a function ofd theory is concerned with the structural change of a parametric
N N function under influence of its parameters [17]. It tells us that
AM; A? o
log L ~ Z log I _ Z iy (15) @ structural change of the function is always preceded by a
= o? P} 202 degeneracy of one of its stationary points. In order to analyze

such a structural change, the parametric function can be
replaced by a Taylor expansion in the essential variables about
the latter stationary point. The essential variables correspond
to the directions in which degeneracy may occur. According
Aur, = arg {max (log L)}. (16) to the catastrophe theory the global structure of a parametric
A function with only one essential variable is completely set by
2) Discussion: It is not possible to find the maximum ofits Taylor expansion up to the degree of which the coefficient
thelog L function directly because the parameteenters that cannot vanish under the influence of its parameters. The
function in a nontrivial way. Therefore, finding the maximunfunction studied in this paper is thleg L function as a
of thelog L function will in general be an iterative numericaffunction of A. Its parameters are the observations. Thus, the
process. structural change of thivg L function under the influence
In order to get some insight into the properties of the Mof the observations has to be studied. The only essential
estimator, the structure of tHeg L function is now studied. variable is the signal parameter. The stationary point that
This structure is established by the number and nature of th@y become degenerate is the poin= 0 [degeneracy occurs
stationary points of the function. Stationary points are defina¢henever (19) becomes equal to zero]. If thg L function

Since I, is symmetric aboutd = 0, L as well aslog L are
also symmetric aboutt = 0. The ML estimate is the global
maximum oflog L

as points where the gradient vanishes is Taylor expanded about the stationary point 0, we yield
J T — b o2 e 6
1 log L=0. (17) log(L) =a+ 5 A+ 5 AT +0(4%)  (21)
_ . . ith
Substituting (15) into (17) along with some rearrangemen\{\g N ) )
yields the condition for the stationary points o Z Mig, 1ol N (22)
N 04 2 .2\47 02
; <AMi> =
N 1 2 . M? N
i L 7 b= i 23
Aety o — L as) > i 2 (23)
=1 Iy <AM7> " N
2 ' M2
4 c=—§ > (24)
It follows from (18) that A = 0 is a stationary point of i=1

log L, independent of the particular data set. The nature ofid O(-) is the order symbol of Landau. Notice that since
stationary point is determined by the sign of the second-ordBe log L function is symmetric abouti = 0, the odd terms
derivative of the function in that point. From this derivativeare absent in (21). In order to investigate if the expansion
it follows whether a stationary point is a minimum or alp to the quartic term in (21) is sufficient, it has to be
maximum and whether or not it is degenerate. From (15) thketermined if the coefficients may change sign under influence
second-order derivative of theg L function can be computed of the observations. It is clear from (23) that the coefficient
to yield b may change sign. The coefficient however, will always
AM, be negative, independent of the particular set of observations.
o2 I < Z) This means that the expansion (21) is sufficient to describe the

Plog L <a M? o2 : )
T o~ i|q_ possible structures of thieg L function. Consequently, the
= 7 A < Z) study of thelog L function as a function of the observations
can be replaced by a study of the following quartic Taylor
2 <AM7;> polynomial in the essential variablé:
1

N b

2, ¢ 44
- <AMZ> g o A +I A (25)

0\ 42 where the termz has been omitted since it does not influence
the structure. The polynomial (25) is always stationary at
A = 0. This will be a minimum, a degenerate maximum or
a maximum whenb is positive, equal to zero, or negative,

1 X respectively. It follows directly from (25) thdbg L has two

N Z M? > 207 (20)  additional stationary points (being maxima) lifis positive

N yp g p )
=1 that is, if (20) is met. Notice that condition (20) is always

If this condition is met, thdog L function will have two met for noise free data. However, in practice the data will be
further stationary points, being maxima. corrupted by noise and for particular realizations of the noise,

This can be seen by studying the possible structures adndition (20) may not be met. Theh = 0 will be a (possibly
the log L function using catastrophe theory. Catastroph#egenerate) maximum. Moreover, if condition (20) is not met,

It is then easy to verify thatt = 0 is a minimum oflog L
whenever
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b in (25) is negative and thusg L is convex, which means 1001 i T i T
that A = 0 will be the only, and therefore, the global maximum | ) |
of thelog L function. This implies that under the influence of ‘IH Mm MH l I { [ H
noise the two maxima and one minimum have merged into one '® i ISE RS RaA AN

single maximum atd = 0. This maximum then corresponds to s
the ML estimate. Note that, since condition (20) is identical to
(and, therefore, can be replaced by) the condiﬂém 0, the
probability that the ML estimate is found &t = 0 is equal to
the probability thatd2 < 0. This probability can be computed

T

A estimate

ML estimates ———

from the PDF given in (10). COnvem?o"n"a"'i”x‘é"e“;%ﬁi‘n‘”cziﬁ: e
. . rue value
It follows from these considerations that, when the conven- *7f
tional estimator becomes invalid, the ML estimator will still 907 -

yield physically relevant results.

0.05 0.1 0.15 0.2 0.25 0.3
1/SNR

IV. SIMULATION EXPERIMENTS (@)
In order to compare the conventional estimat&g to 101 T . T " T .
the ML estimatorAy, described above, an experiment was 14 Modifisd conventional estimates ——

L estimates =--x--+

simulated in which the underlying signal was estimated from [ ———
16 Rician distributed data pointeV = 16) as a function

of the noise standard deviatian The true value of4 was ®r
100. The ML estimate was obtained by maximization of o |
the likelihood function using Brent’'s algorithm [18]. Thisé
is an efficient one-dimensional optimization method baséd
on parabolic interpolation which converges rapidly as the
likelihood function is well described by a parabola. The st
same experiment of determinin@c and AML was repeated 0 L
10° times after which the average{sﬁc) and (AML) were
computed. The results are shown in Fig. 2 along with the

96 |

95

92 -

95% confidence intervals. o o o o5 o " v .
From Fig. 2 one can see that at high SNR (SNR) V/SNR
the ML estimator cannot be distinguished from an unbiased (b)

estimator, whereas the conventional estimator is clearly Igig. 2. Comparison between (a) the conventional and (b) the ML estimator
ased [Fig. 2(a)]. As can also be observed, the experimerf?&l“’ = }6. Each point Qenotes the average of 1&stimations. Also the

. . ~ . . . ng% confidence interval is shown.
estimationsA,. are in agreement with the expectation value o

A,, predicted by (12). . . .
At low SNR (SNR<3) the use ofd, is no longer justified §|gnal regions [3]. Thereby, the accuracy of #e estimate

because the probability thaii is negative becomes t00 high_ls oftgn influenced by. systematic errors due to for example
As to still compare the ML estimator with the conventiona9n0sting artefacts. This problem can be tackled by acquiring
one, we modified the conventional estimator in these advef4 realizations of the same image [19], [20]. However, if the
cases to yield the same estimate as the ML estimakor= 0. N0iS€ variance estimate _cannot be _prevented from d_egradatlon
From Fig. 2(b) one can observe that both estimators becofieSyStematic errorsz” will automatically be over-estimated.
biased though the bias of the ML estimator is significant§)" €rroneous noise estimate will in turn influence the signal
smaller compared to the modified conventional estimator. TR&UMates discussed in this paper. Simulation experiments how-
bias of the ML estimator has to do with the increasing protfVer showed that even with a 10% over- or under-estimated
ability of a structural change of the likelihood function. Fofi©iS€ variance value ML estimation still yields significantly
low SNR, simulation experiments have shown the occurrenB&ler results compared to conventional estimation.
of both structures ofog L, described above, i.e., only one
maximum or two maxima and one minimum. Soneg L
functions obtained from simulation experiments are shown inln this paper the problem of signal estimation from Rician
Fig. 3 for high and low SNR. distributed data was discussed. It has been shown that, the
Up to now, no other structures were observed. Remark theinventional estimator may not be used at low SNR unless a
the occurrence of only one maximum at positiievalues large amount of data points is used, which is often not available
makes the computational requirements for the maximizatiam practice. Even at high SNR the use of this estimator is
of thelog L function very low. still not recommended since it is biased. As an alternative,
In this paper the true value of the noise variangg the ML estimator was proposed because it outperforms the
was assumed to be known. In practice howevet,needs conventional one with respect to accuracy. The ML estimator
to be estimated from the background or from homogeneoyiglds physically relevant solutions for the whole range of

V. CONCLUSION
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Fig. 3. Likelihood functions for (a) high and (b) low SNR wii¥i = 16. The
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However, the results of that paper show severe discrepancies
with those presented in the present work. These discrepancies
deserve further study.

(1]

(2]
(3]
(4]
(5]

(6]

(7]

(8]

El

[10]

[11]
[12]

[13]

[14]

[15]

different curves correspond to different realizations of the same experimer#6]

[17]

SNR’s. Moreover, it was shown that, unlike the conventionall8
estimator, the ML estimator cannot be distinguished from i
unbiased estimator at high SNR. yields physically relevant

solutions for the whole range of SNR'’s.

VI. NOTE ADDED IN PROOF

. . : . [20
After completion of this manuscript, the authors discovered

the existence of a paper by Bonrgt al. [21] in which,

[19]

independently, similar results on ML estimation of the signgl]
parameter from magnitude MR data have been presented. Reson. Med.vol. 36, pp. 287-293, 1996.
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