
Computers & Geosciences 75 (2015) 57–65
Contents lists available at ScienceDirect
Computers & Geosciences
http://d
0098-30

* Corr
E-m
journal homepage: www.elsevier.com/locate/cageo
A parallel algorithm for viewshed analysis in three-dimensional
Digital Earth

Wang Feng a, Wang Gang a,n, Pan Deji a, Liu Yuan a, Yang Liuzhong b, Wang Hongbo c

a State Key Laboratory of Remote Sensing Science, The Institute of Remote Sensing and Digital Earth, Chinese Academy of Science, Beijing 100101, China
b Urban-Rural Planning Management Center, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing 100835, China
c Managers Training Institute, China National Petroleum Group, Beijing 100096, China
a r t i c l e i n f o

Article history:
Received 17 April 2014
Received in revised form
16 October 2014
Accepted 29 October 2014
Available online 6 November 2014

Keywords:
Viewshed analysis
Digital Earth
GPU
Visualization
Vertex shader
Pixel shader
x.doi.org/10.1016/j.cageo.2014.10.012
04/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: luoying_gis@126.com (W. Feng)
a b s t r a c t

Viewshed analysis, often supported by geographic information systems, is widely used in the three-
dimensional (3D) Digital Earth system. Many of the analyzes involve the siting of features and real-
timedecision-making. Viewshed analysis is usually performed at a large scale, which poses substantial
computational challenges, as geographic datasets continue to become increasingly large. Previous re-
search on viewshed analysis has been generally limited to a single data structure (i.e., DEM), which
cannot be used to analyze viewsheds in complicated scenes. In this paper, a real-time algorithm for
viewshed analysis in Digital Earth is presented using the parallel computing of graphics processing units
(GPUs). An occlusion for each geometric entity in the neighbor space of the viewshed point is generated
according to line-of-sight. The region within the occlusion is marked by a stencil buffer within the
programmable 3D visualization pipeline. The marked region is drawn with red color concurrently. In
contrast to traditional algorithms based on line-of-sight, the new algorithm, in which the viewshed
calculation is integrated with the rendering module, is more efficient and stable. This proposed method
of viewshed generation is closer to the reality of the virtual geographic environment. No DEM inter-
polation, which is seen as a computational burden, is needed. The algorithm was implemented in a 3D
Digital Earth system (GeoBeans3D) with the DirectX application programming interface (API) and has
been widely used in a range of applications.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Digital Earth, as a multi-resolution, three-dimensional (3D)
representation of the planet, allows users to locate, visualize, and
interpret vast amounts of geo-referenced information. In addition
to its primary functions of displaying the world's terrain and re-
mote sensing imagery, one of the most valuable functions of Di-
gital Earth is spatial analysis, which is the primary function of 3D
Geographic Information Systems (GIS) (Shi and Liu, 2005). View-
shed analysis is one type of these spatial analyzes. This process
involves predicting the total area that is visible from a single point
or multiple points (Zhou and Liu, 2006). Viewshed analysis has
been used in a wide range of applications, including locating tel-
ecommunication relay towers (De Floriani et al., 1994), locating
wind turbines (Kidner et al., 1999), protecting endangered species
(Camp et al., 1997), and searching for archeological locations (Lake
et al., 1998).
, wg638@126.com (W. Gang).
A viewshed, in the virtual terrain environment, is a collection of
points that are visible from a specific point. Viewshed calculations
are potentially time consuming, mainly because extensive inter-
polation is necessary when using a gridded digital elevation model
(DEM) due to the complex terrain model and the complicated
geometric features. In addition to the time complexity, multi-point
viewshed analyzes and the integration of viewshed calculations
with Digital Earth to speed up the calculation of dynamic view-
shed analyses are also major challenges to researchers. Therefore,
much work has been conducted to develop an efficient viewshed
algorithm. Section 2 provides a brief overview and discussion of
previous work on viewshed analysis. These previous studies are
valuable and can help improve the efficiency of viewshed analysis.

Graphics processing units (GPUs) have been recently used in a
large number of applications because they can provide substantial
computational power at an affordable cost, and their program-
mability has also improved (Owens et al., 2007). The parallel
property of GPUs has been increasingly utilized to improve com-
putational performance. However, traditional viewshed analysis
algorithms, which interpret the viewshed as a series of

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.10.012
http://dx.doi.org/10.1016/j.cageo.2014.10.012
http://dx.doi.org/10.1016/j.cageo.2014.10.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.10.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.10.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.10.012&domain=pdf
mailto:luoying_gis@126.com
mailto:wg638@126.com
http://dx.doi.org/10.1016/j.cageo.2014.10.012

W. Feng et al. / Computers & Geosciences 75 (2015) 57–6558
intervisibility calculations to all vertices of the DEM based on line-
of-sight (LOS), are mainly executed on a computer's central pro-
cessing unit (CPU) without making full use of high-end GPUs. With
the development of GPUs, some GPU-based viewshed algorithms
have been proposed in recent three years.

The present research focuses on solving the performance issues
described above and providing users with an effective, real-time,
parallel, and GPU-based viewshed analysis algorithm. This algo-
rithm has been applied in our 3D Digital Earth application (Geo-
Beans) with good results.
2. An overview of previous work

Viewshed analysis, as an important branch of 3D spatial ana-
lysis, has received increasing attention among researchers. Related
academic, conference, and research monographs regarding this
approach are gradually increasing (Han, 2011). Current research
mainly focuses on viewshed analyzes in terrain models whose
data structure is a DEM or triangulated irregular network (TIN).
Other previous studies have investigated building-blocks analysis
and sunlight analysis (Ying, 2005).

The basic algorithm for generating a viewshed from raster
elevation data, known as intervisibility, is based on the estimation
of the elevation difference of intermediate pixels between the
viewpoint and target pixels. A line segment between a viewpoint
O and a target point A, which makes up the LOS, is created to
determine the visibility of target point A. Moving along the line
segment OA and testing all of the points along this line, target
point A is visible only if all of the points on OA have an elevation
higher than the elevation of the corresponding point on the ter-
rain. Otherwise, target point A is invisible from the viewpoint (see
Fig. 1). The LOS computation is repeated for all target points within
the viewshed range of the viewpoint during viewshed analysis.
This process is extremely time consuming, and its time complexity
is expressed as O(n2).

The brute-force algorithm described above is simple but com-
putationally intense. A variety of algorithms have been developed
to speed up these calculations. De Floriani et al. (1994) proposed
an algorithm, named the key slope method that is a huge im-
provement over LOS. This method continually computes the slope
along the sightline and updates the maximum slope. The slope of
the current point is compared with the max slope to determine
the visibility. Unnecessary computations are greatly reduced, re-
sulting in a time complexity of O(n) using this method. A new,
double increment method is presented by Yin shen to speed up
the calculation. The accuracy, indeterminacy, and invariance of
viewsheds are also discussed (Ying, 2005). Liu et al. (2010)
proposed an improved algorithm by using the slope and elevation
between the target pixel and viewshed point to reduce the
required computation.

Yanlan (2001) introduced a new algorithm to determine
viewshed without using sightline, named the reference plane
Fig. 1. Overview of the traditional LOS algorithm showing a comparison of the
height of the target point with other points along the sight line to determine the
visibility. This process is computationally intense. Point B is visible from the
viewpoint while point A is invisible.
method, and this algorithm is considered more effective than the
LOS algorithm because no DEM interpolation is needed. A re-
ference plane, based on the spatial topological relation of the
viewpoint and the target point, is generated to calculate the visi-
bility. Unlike the LOS algorithm, this method generates viewshed
without redundant computation. However, this technique is lim-
ited to DEMs and not suited to calculating a viewshed from varying
resolutions.

Generally, GPUs are designed to exploit data parallelism. It has
been reported that GPUs can achieve 10 times more floating-point
operations per second (FLOPS) than CPUs (Govindaraju et al.,
2006). With the rapid development of modern GPUs, transferring
traditional algorithms that were previously executed on CPUs to
GPUs is becoming increasingly popular. This technique enables
GPUs to process repeated computing tasks to speed up the com-
putation. Chen et al. (2010) implemented a rapid contour-line-
extraction algorithm by using traditional methods on GPUs. Par-
allel processing techniques have also been applied to improve
computational performance in viewshed analyzes (Mills et al.,
1992, Gao et al., 2011, Zhao et al., 2013). All these methods pro-
posed strategies for implementing traditional LOS-based inter-
polation viewshed algorithm with NVIDIA CUDA. Although made a
progress in efficiency, those methods are limited to regular square
grids (RSGs) and not suitable for triangulated irregular networks
(TINs), neither for complicated scene with geometry features. Fang
et al. (2011) introd Fang uced a real-time parallel algorithm for
viewshed analysis known as shadow map-based algorithm. This
algorithm is executed on GPUs and uses a depth buffer to store the
pixel's minimum depth. Comparing the depth of the current pixel
with the depth of a corresponding pixel recorded on the depth
buffer, one pixel is visible only if its depth is lower than the
minimum depth. This method has an advantage of avoiding most
of the computation on a CPU and without consideration of the
data-structure and DEM resolution. Nevertheless, one of the dis-
advantages of this method is its low accuracy. In Fang's method,
the size and depth of the shadowmap determine the quality of the
final results, and low-accuracy areas are usually visible as aliasing
or shadow continuity glitches.
3. GPU-based parallel algorithm for viewshed analysis

3.1. Principle

Our parallel algorithm takes a new approach to simulating
viewshed analysis by creating occlusive volumes to shield the
geometric features in the neighborhood of the viewpoint. In con-
trast to the proposed GPU-based algorithm (Yanli Zhao et al.,
2013), this method avoid the interpolation operation which is time
consuming. The surface of the geometry features is used to display
the analysis result, called the receiver. Occlusive volumes, known
as caster, are generated according to the position of the viewpoint
and geometric feature outlines by casting the feature's outline
along the sightline to infinity. Although this process still utilizes a
sightline to generate occlusive volumes, it differs from the LOS
method because DEM interpolation is not required and calculation
redundancy is extremely reduced. All of the geometric features,
including terrain, models, and trees, in the specific space of the
required viewpoint can be used for both the caster and receiver.
Therefore, our proposed algorithm performs well in complicated
three-dimensional scenes, whereas traditional methods do not.
Users only have to add the updated feature as a new caster when
the scene is updated, and no changes to the code logic are re-
quired. With this prerequisite, our algorithm can conveniently and
efficiently simulate viewshed calculations by transforming this
process to identify and label the pixels that are within the

Fig. 2. Mathematic illustration of the viewshed analysis. A stencil buffer is used to
label the areas that are in and out of the viewshed. Regions A, B and C are in the
viewshed because their stencil buffer values are larger than 0.

Fig. 3. Concrete process of our algorithm showing the steps executed on GPUs
performed in parallel.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–65 59
occlusive volume. Changing the colors of the labeled and un-
labeled pixels enables the viewshed to be displayed immediately
and clearly.

Suppose that there is a collection of geometry features in the
neighborhood of the viewpoint named O¼{O1, O2…On}. In the
stage of vertex shader, we can calculate the occlusive volumes of
those features according to the viewpoint and name them V¼{V1,
V2 … Vn}. Every point can then be rendered on the receiver, and its
stencil value can be changed to a label. The function F(P) is used to
calculate the stencil value, and the initial stencil value of P is 0.
After calculating the stencil value, we can distinguish the visible
point and invisible point with function G(P).

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎧
⎨
⎩=

+ ∈
=

=
>

F P
F P P V

F P

F P

F P
()

() 1,

(), Otherwise
G(P)

visible, () 0

invisible, () 0

Fig. 2 illustrates an example of this process. There are two
geometry features, O1 and O2, and we can calculate two occlusive
volumes, V1 and V2. All of the points in region A are in V1(PA∈V1),
so F(PA) is 1. In region B, PB is in V1 and V2 (PB∈V1 and PB∈V2) and
F(PB) is 2. In region C, PC is in volume 2 and F(PC) is 1. With these
results, we can conclude that the points in regions A, B and C are
invisible. Other points in the terrain are visible.

In accordance with the perception of viewsheds in the real
world, our algorithm can determine the viewshed based on vector
data and avoid reducing accuracy by rasterizing the depth, in
contrast to the shadow map-based viewshed algorithm (Fang
et al., 2011).

By taking advantage of GPU programming, our algorithm per-
forms the sub process of two-point intervisibility in the specific
field in parallel, and this optimization process will reduce the time
consumption significantly. The proposed algorithm integrates the
calculation with a rendering model that can calculate and label the
pixel in parallel. The GPU programming is implemented using a
vertex and pixel shader, which is a set of software instructions that
works on a graphics card to calculate the rendering effect with a
high degree of flexibility. The process is known as single instruc-
tion and multiple data (SIMD), or data parallelism. Data paralle-
lism emphasizes the distributed (parallelized) nature of the data
and not that of the processing (task parallelism). In this paper, we
accelerate the analysis process by calculating the stencil value of
the point in parallel and simplify the process of two-point inter-
visibility with the determination of points are in and out of oc-
clusive volumes. Each point on the receiver acts as a data seg-
mentation and be sent to the stream processors to calculate
F(P) which is the specified data-parallel functions called kernels.
The kernels are invoked to run on GPU devices across a large
amount of parallel threads, each executing an instance of the
kernels. In this paper, a simplified function utilizing occlusive vo-
lumes acts as kernels rather than the time-consuming two-point
intervisibility used in Yanli Zhao's method (2013). With stencil
buffer and stencil detection, a point can be easily identified if it is
within or out of an occlusive volume. More details and concrete
steps are demonstrated in Section 3.2.3.

Our algorithm can be efficiently and easily implemented with
vertex and pixel shaders. Below is a brief introduction to our al-
gorithm, and the entire process is shown in Fig. 3. Section 3.2
presents a detailed introduction of the concrete steps.

There are three steps involved in the algorithm.
step 1.
 Extract and pre-process the data; obtain all of the geo-
metric features in the scene from Digital Earth after the
viewpoint and view range are specified. This process is
independent of the data structure, and only the mesh data
of the geometry features are required. DEM data analysis
is the traditional algorithm and more general and useful.
For DEM data, a triangle mesh can be easily generated and
used in the visualization and viewshed analysis of the
original DEM data in the pre-processing stage. In this pa-
per, terrain data that are extracted from the Geobeans3D
platform with different LOD can act as DEM data. Essen-
tially, the extracted data should be pre-processed to en-
sure that all of the features are totally enclosed.
step 2.
 Generate the occlusive volumes; an occlusive volume
consists of three parts: a front cap, a back cap, and the side
(see Fig. 4). The occlusive volume is generated at the
vertex shader stage by translating the faces facing away
from the light a large distance along the direction of the
light. By transplanting this process onto GPUs, the occlu-
sive volume can be generated in parallel and more
efficiently.
step 3.
 Label and generate the viewshed; in this step, the stencil
buffer is used as a mask for rendering additional geometry
and to label and distinguish the pixels that are within and
outside of viewshed. By rendering all of the occlusive vo-
lumes with a vertex extruding shader and setting up the

Fig. 4. Introduction of occlusive volume generation extends the back cap of mesh by a large distance along the line of sight. The red line indicates the back cap and the green
line indicates the front cap. The occlusive volume must be enclosed. The orange line indicates the broadside. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–6560
stencil buffer according to whether the pixels are within
the occlusive volume, the viewshed is finally, successfully
labeled. Eventually, the viewshed can be displayed in the
complicated scene by flushing the screen and changing
the color according to the value of the stencil buffer.
3.2. Algorithm implementation

3.2.1. Data extraction and preprocessing
Three-dimensional Digital Earth is a complex system for si-

mulating real-world geospatial data using terrain, images, and all
types of geometric features such as buildings and forest models.
The methods of terrain construction can be divided into regular-
grid, TIN, and mixed grid-TIN. The regular-grid, which is easier for
spatial analyzes and calculations and has a small storage capacity,
is more suitable for flat areas. However, precision is poor when the
regular-grid is used to stimulate mountainous areas. In contrast,
TIN expresses the surface morphology more precisely, especially in
complicated areas. Although it easily expresses topological re-
lationships, TIN has the disadvantages of large storage capacity
and complicated computation. There are various methods for
viewshed calculation according to different data structures, which
differ in their output and cost.

The 3D Digital Earth platform GeoBeans3D contains global and
multi-resolution terrain data. Level of detail (LOD) is used to
render terrain in real time to improve efficiency. To process the
viewshed analysis in complicated scenes, the first step is to collect
geometric features and terrain in the neighborhood of the view-
point. In our algorithm, the terrain data, whose data structures
correspond to the rendering model, are extracted in three different
resolutions. This process allows the original mesh data of com-
plicated features, such as building models, to be used in our al-
gorithm directly. To reduce computation, we can simplify certain
tree models using the bounding box for a given tree model.

3.2.2. Generation of occlusive volume
The traditional approaches to generating occlusive volume are

usually two-step processes that determine the silhouette edges of
the geometric features according to the viewpoint and extend the
Detailed illustration of mesh pre-processing, duplicating the mesh vertex, and
silhouette for a long distance along the direction from which the
light originates. These methods are typically conducted using CPUs
and have proven inefficient and time consuming. Therefore, in-
stead of determining the silhouette and generating the occlusive
volume geometry on the CPU, our algorithm first generates a mesh
that represents the occlusive volume regardless of light direction
and uses a vertex shader to preform vertex extrusion.

The underlying concept is that triangles that face the light can
be used as-is for the front cap of the occlusive volume. The vertices
of triangles that face away from the light are translated a large
distance, usually to the far plane of the frustum, along the light
direction at each vertex; they can then be used as the back cap.
However, a problem occurs at silhouette edges where one triangle
faces the light and its neighbor faces away from the light. In this
situation, the geometry mesh will split when performing vertex
extrusion.

An effective way of solving this issue is duplicating the shared
vertices for the two triangles that share an edge, so that each
triangle has its own unique three vertices, and attaching a de-
generated quad to each shared edge. When the common edge
between the triangles becomes the silhouette edge, one triangle
stays where it is and the other moves along the light direction.
This process, however, creates a gap between the two triangles,
whereas a closed occlusive volume cannot have any gap or hole.
This problem can be fixed by adding a degenerated quad to the
occlusive volume between the original two triangles, thereby
creating two new triangles. Fig. 5 illustrates this process.

There are concrete steps:
�

fill
Duplicate the vertices of the original mesh and make sure every
triangle has its own unique three vertices and edges for vertex
extrusion.
�
 The normals of the new vertices are computed to be the normal
of the new face. This step is necessary because the normal of
the vertex is used to determine whether the vertices should be
extruded. We refer to the vector of the current vertex to
viewpoint as L. If the dot value of vertex normal and L is less
than 0, the vertex must be extruded.
�
 The three edges of a triangle are added to an edge-mapping
table. An edge-mapping entry contains the vertex information
ing in the gap by regenerating new triangles with the original four vertices.

Fig. 6. Initial steps in fixing the hole of the original mesh.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–65 61
of an edge. For each edge of the added face, the algorithm looks
through the edge mapping table to find the entry of the source
edge. If the target is hit, four vertices are elicited to generate
two triangles by connecting the vertices with a specific se-
quence (clockwise in DirectX 9.0). The new triangles will be
added to the original mesh as new elements. Finally, the edge-
mapping entry should be removed from the table.
�

Fig. 7. The process of labeling the pixel using the stencil buffer. After the process,
pixel O is visible because its stencil value is equal to 0, whereas P is invisible be-
cause its value is not equal to 0. This process is executed on GPUs in parallel.
After step 3, if there are edges in the mapping table, which
means the edges are not shared in the original mesh, we must
patch the volume because it should be closed. The existence of
these edges implies the original mesh has holes in it. The
patching algorithm examines the mapping table and identifies
two edges that share a vertex in the original mesh. Then, the
algorithm patches the hole by generating three new vertices
and a new triangle using the two neighboring edges' vertices.
To connect the patched face with the mesh, two degenerated
quads should be generated. This process is illustrated in Fig. 6.

3.2.3. Labeling and generation of the viewshed
The stencil buffer can store an unsigned integral value for each

pixel on the screen, which is frequently used as a mask to render
more dynamic effects, such as shadow and swipe. In the process of
rendering, a specific reference value can be compared with this
stencil value. The result of the comparison can indicate whether to
update the color of the corresponding pixel. This process is called
stencil testing. The stencil value resets according to whether the
pixels are in the occlusive volume in the first render pass. Then,
the stencil test is conducted in the second render pass. If the test
passes, the value of the corresponding pixel will be updated dy-
namically; otherwise, the value will not be updated.

After being created, all of the occlusive volumes are rendered in
the rendering pipeline, and the pixels that are within any occlusive
volume are labeled in the stencil buffer. Without any extra com-
putation, this process can be performed within the programmable,
3D visualization pipeline by setting and updating the corre-
sponding render state. The implementation of this process is
performed in the pixel shader. The following is a detailed in-
troduction to this process:
�
 Clear the stencil buffer and set the value as default. Disable
depth-buffer and frame-buffer writing and enable depth test-
ing and stencil testing. Prepare the stencil buffer render states
for rendering the occlusive volume.
�
 Look through all the occlusive volumes. First, use front-face
culling and set the stencil operation to increment on depth fail;
then, render the back face of the occlusive volume.
�
 Use back-face culling and set the stencil operation to decre-
ment on depth fail; then, render the occlusive volumes.
�
 Recover the render states and render the whole screen. Overlay
the region whose stencil value equals 0 with red, otherwise
with green.

Fig. 7 illustrates an instance of labeling with a stencil buffer.
After all the occlusive volumes are rendered, the stencil buffer of
the neighboring space of the viewpoint is reassigned. The area in
which the stencil value is not equal to 0 is the region that is
shielded by the occlusive volume; this is the area that is invisible
from the viewpoint.
4. Results and discussion

This algorithm, implemented with DirectX 9.0c and C#, was
applied in a 3D Digital Earth application (GeoBeans3D). Geo-
Beans3D is constructed from a multi-stage global DEM using
massive satellite data. This interactive program is the largest 3D
GIS on the network in China and has been used in many important
government departments. The DEM data used in GeoBeans3D
have a spatial resolution of 30 m globally and a local resolution of
6 m. The resolution of the image data is 2.5 m nationwide and
0.6 m in some specific areas. The scale of the fundamental geo-
graphic data is 1:1,000,000 globally, 1:250,000 nationwide, and
1:2000 in some specific areas. As a dynamic, real-time process, the
generation of viewsheds is integrated with the visualization of
geometric features in GeoBeans3D. Fig. 8 provides screenshots of
the application. The viewshed is efficiently generated after the
viewpoint is identified. Note that the area marked with green color
can be seen from the viewpoint, and the area marked with red
color cannot.

The shadowmap-based algorithm and our algorithm have been
tested on three personal computers with different configurations
(Table 1). The capability of the CPU of the testing computers does
not make a substantial difference, but the graphics card varies
markedly. With regard to GPU performance, the graphic card in
No. 1 is best and that in No. 3 is the worst. In the experiment, we
use the interactive frame-rate of the application as the evaluation
parameter. The rate is measured with Fraps3.1.0. Tested at the
same region with the same viewpoint and range, the two algo-
rithms both have the best performance using No. 1 and the worst
performance using No. 3 (Table 2), which means that the cap-
ability of the GPU is an important issue influencing efficiency, as

Fig. 8. Screenshots of the viewshed analysis in GeoBeans3D. The red area is invisible, and the green area is visible from the viewpoint. (a and b) The viewpoint is identified
on the plateau with rich topography; (c) the viewshed with complicated features from a viewpoint over a flat plain. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Table 1
The detailed configuration of our testing platform.

No. 1 No. 2 No. 3

CPU Intel Core2 Q6600 Intel Core2 Quad Intel Core2 Duo
CPU frequency (GHz) 2.4 2.5 2.4
RAM (GB) 3.25 3.25 2
GPU NVIDIA GTX280 NVIDIA GF9800 NVIDIA GF8600
GPU memory 1 GB 1 GB 256 MB

Table 2
Testing two viewshed algorithms on our platforms.

PC No. 1 No. 2 No. 3

Shadow map-based algorithm (ms) 8.4 16 36.3
Our algorithm (ms) 5.2 12 20.5

Table 3
Testing five viewshed algorithms in GeoBeans3D in the same platform (No. 1).

Algorithms A1 (ms) A2 (ms) A3 (ms) A4 (ms) A5 (ms)

LOD 1 0.97 0.64 0.74 0.69 0.42
LOD 2 1.84 1.41 0.89 0.76 0.48
LOD 3 4.56 3.24 1.06 0.83 0.55

Fig. 9. Average time consumption of the viewshed analysis using five algorithms.
A3, A4 and A5 are executed on GPUs and their time consumption grows more
smoothly with the increase of terrain data. A5 showed the best performance in
time complexity.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–6562
they are both mainly composed of processes involving vertex and
pixel shaders on GPUs. Therefore, we believe that a high-perfor-
mance graphic card will accelerate the viewshed analysis algo-
rithms (including our algorithm) when performed on GPUs.
Comparing the performance of the two algorithms run on the
same PC, we observed that our algorithm can improve the per-
formance by an average of 35.3%.

Additionally, we conducted other experiments to further ana-
lyze the performance of viewshed analysis algorithms. Five dif-
ferent viewshed analysis algorithms, including an LOS algorithm
referred to as the double increment algorithm, a reference plane
algorithm, a GPU-based parallel algorithm (Yanli Zhao et al., 2013),
the shadow map-based algorithm, and our algorithm, were tested
on computer No. 1 with the same configuration. A1 through A5
represent the five algorithms accordingly. The sample data in our
experiment were extracted from GeoBeans3D at three levels of
LOD. The terrain resolution is 6 m in LOD1, 2.5 m in LOD2, and
0.6 m in LOD3. For each level, twenty groups of viewpoints and

Fig. 10. Frame-rate with different viewpoint altitudes and ranges: (a) viewpoint altitude¼215 m, range¼5000 m, frame-rate¼60 fps; and (b) viewpoint altitude¼123 m,
range¼2500 m, frame-rate¼59 fps.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–65 63
view ranges are randomly chosen as the experimental data, which
are tested using the five algorithms. After the computation time is
calculated, we calculate the average (Table 3). As shown in Table 3
and Fig. 9, the viewshed analysis algorithms executed on GPUs
have a better performance than those processed on CPUs. The time
consumption in the five algorithms increases with the terrain re-
solution. However, algorithms executed on GPUs have much less
slope in Fig. 9. Our viewshed analysis algorithm performed best
among the five algorithms tested.

Generally, the time consumption of viewshed analysis increases
with the view range because the larger range incorporates more
terrain data and geometry features. However, this scenario has
little effect on the shadow map-based algorithm and our
algorithm. In these methods, the process of viewshed generation is
integrated into the render pipeline and DEM interpolation is not
necessary. Thus, the algorithms are able to maintain a consistent
frame-rate when the viewpoint and view range are changed and
additional geometric features are added to the scene. By contrast,
applications using the traditional algorithms usually have a pre-
cision loss in frame-rate because most of the processor cores are
used to interpolate the DEM terrain rather than render the whole
scene. However, in our algorithm, rendering the scene is the main
operation, and the viewshed computation has been combined
with this operation; thus, changing the input parameters does not
affect the efficiency of viewshed generation. The only process re-
quired in our algorithm is to change the position value of the

Fig. 11. Comparison of two-point intervisibility and our proposed method. The two lines under the white line are generated using the method of two-point intervisibility.
The green segment of the line is visible, and the red segment is invisible. The results of two-point intervisibility and our method show a consistent match. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Illustration of future improvements to our method: (a) indicates the original geometry features and their occlusive volumes; (b) using a culling algorithm to exclude
feature O1, O2, O3 whose occlusive volume is totally included by others; and (c) avoid unnecessary rendering by clamping the limits of the occlusive volume.

W. Feng et al. / Computers & Geosciences 75 (2015) 57–6564
viewpoint transmitted into the vertex shader. In Fig. 10, we can
observe that the frame-rate of the application is consistent and
stable. The frame-rate remains at a value of approximately 60
when we halve the view range and change the altitude of the
viewpoint.

The performance of an algorithm can be measured based on
two aspects: efficiency and accuracy. The experimental results
above indicate that the proposed algorithm can greatly improve
the efficiency, and additional experiments should be performed to
demonstrate the accuracy of our algorithm. In Section 2, we in-
dicated that a flaw of the shadow map-based algorithm is its low
accuracy. The depth buffer used to store the minimum depth has a
maximum resolution of 4096�4096. The shadow map-based al-
gorithm rasterizes the point before identifying its intervisibility.
Consequently, the results are visible as aliasing, and their qualifi-
cation worsens with increasing view range. Our proposed algo-
rithm avoids this flaw by creating an occlusive volume as vector
data to identify the intervisibility. The accuracy of our algorithm is
only limited to the original mesh data or DEM as a traditional DEM
algorithm, and it will not show a reduction in accuracy at any
process stage in our algorithm. For the Geobeans3D platform, two-
point intervisibility is utilized, and DEM interpolation is performed
to verify the accuracy of our experimental results (Fig. 11).

Random points A and B with the same view point in our al-
gorithm are chosen for two-point intervisibility. The height of the
view point is 258 m. By overlapping the results, the visible and
invisible areas of the two experiments are consistently matched in
every perspective. That is to say all the points along the result line
of two-point intervisibility have the same visibility with the result
calculated with this proposed method. The points marked with
flag in Fig. 11 are the specialized case. Their visibility using our
method keeps the same with result using two-point intervisibility.
Thus, the proposed algorithm is shown to have the same accuracy
as the traditional DEM interpolation algorithm, which is only in-
fluenced by the terrain resolution.

Although the experiment proves that our algorithm can greatly
improve the efficiency and accuracy in the generation of view-
sheds, work must still be done to improve its efficiency. Microsoft
DirectX 11 has increased primitive tessellation in the program-
mable rendering pipeline, which enables users to generate new
primitives and vertices according to their needs. Therefore, we can
transplant the duplication of vertices in the original mesh from the
CPU to GPU and process it in parallel with the help of the geo-
metry shader to further improve the efficiency.

Applicable for viewshed analyzes in complicated scenes, our
algorithm is a batch-generating process that calculates the view-
shed for all features in the neighboring space of the viewpoint. It is
easy to handle cases in which the geometric features must be
updated by inserting them into and removing them from the
feature list. However, as geometric features in the complicated
scene increase, it is extremely challenging to simulate viewshed
analysis, which is reflected in two aspects. First, too many features
must be rendered and rasterized. The overlapping areas will pro-
duce redundant computations when there are multiple occlusive
volume objects. Second, because occlusive volumes extend away
from casters toward the far plane of the view frustum, they
sometimes cover much of the screen. Therefore, the rasterization
of occlusive volumes is very expensive. This condition is illustrated
in Fig. 12. However, in the future, we can use a volume-culling
algorithm to eliminate the casters to solve the first issue. To ad-
dress the second issue, we can clamp the extents of the occlusive

W. Feng et al. / Computers & Geosciences 75 (2015) 57–65 65
volume to avoid unnecessary rendering in the large regions of
empty spaces.
5. Conclusions

Large quantities of computing resources are required to
seamlessly render global multi-resolution terrain in virtual 3D
environments and geometric features on the ground. Therefore,
optimizing the efficiency of rendering programs is an important
task for application developers. The introduction of a GPU to the
terrain analysis in Digital Earth can effectively accelerate the tra-
ditional method through parallelization.

This paper introduces a rapid and efficient algorithm based on
a GPU to achieve rapid viewshed analysis of scenes with structures
and vegetation. The algorithm has been used in GeoBeans3D and
has potential applications in many projects. Tests have proven that
our algorithm can effectively overcome the bottlenecks that tra-
ditional algorithms face and achieve viewshed rendering from the
perspective of real-life geographic phenomena, which is practi-
cally important. The algorithm presented here improves the ac-
curacy of viewshed rendering while also improving its efficiency.
Moreover, with its extensive potential expandability, this algo-
rithm applies to multi-source and multi-resolution heterogeneous
data and exhibits great practical value for 3D GIS applications.
Acknowledgments

The authors gratefully acknowledge every member in the 3D
Group (GeoBeans Co., Ltd.) for providing useful help. The authors
are also grateful for the helpful comments provided by Dr. Chen
Yun from the Australia Commonwealth Science Industries Re-
search Organization. This work was supported in part by 863
Program Grants 2012AA12A401 and 2013AA12A403.
References

Mills, K., et al., 1992. Implementing an intervisibility analysis model on a parallel
computing system. Comput. Geosci. 18 (8), 1047–1054.

De Floriani, L., et al., 1994. Line-of-sight communication on terrain models. Int. J.
Geogr. Inf. Syst. 8 (4), 329–342.

Camp, R.J., et al., 1997. Viewsheds: a complementary management approach to
buffer zones. Wildl. Soc. Bull. 25 (3), 612–615.

Lake, I.R., et al., 1998. Modelling environmental influences on property prices in an
urban environment. Comput. Environ. Urban Syst. 22 (2), 121–136.

Kidner, D., et al., 1999. GIS and Wind Farm Planning. Geographical Information
and Planning. Springer, Advances in Spatial Science, pp. 203–223. http://link.
springer.com/chapter/10.1007%2F978-3-662-03954-0_11.

Chen, Z., et al., 2010. Parallel algorithm for real-time contouring from grid DEM on
modern GPUs. Sci. China Technol. Sci. 53, 33–37.

Fang, C., et al., 2011. Parallel algorithm for viewshed analysis on a modern GPU. Int.
J. Digit. Earth 4 (6), 471–486. http://dx.doi.org/10.1080/17538947.2011.555565.

Gao, Y., et al. 2011. Optimization for viewshed analysis on GPU. Geoinformatics,
2011, In: Proceedings of the IEEE 19th International Conference.

Govindaraju, N., et al. 2006. GPUTeraSort: high performance graphics co-processor
sorting for large database management. In: Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, pp. 325–336.

Han, J., 2011. Research on space visibility analysis in 3D simulation [D], He nan:
Information Engineering University.

Liu, L., et al., 2010. An improved line-of-sight method for visibility analysis in 3D
complex landscapes. Sci. China Inf. Sci. 53 (11), 2185–2194.

Owens, J.D., et al., 2007. A survey of general-purpose computation on graphics
hardware. Comput. Graph. Forum 26 (1), 80–113.

Shi, J.-S., Liu, J.-Z., 2005. Development of 3 DGIS technology. Cehui Kexue/Sci. Surv.
Mapp. 30 (5), 117–119.

Yanlan, W., 2001. An algorithm computing viewsheds based on reference planes.
Wtusm Bull. Sci. Technol. 1, 006.

Ying, S., 2005. Key techniques and applications of spatial visibility analysis [D], Hu
bei: Wu han University.

Zhao, Y.L., et al., 2013. A parallel computing approach to viewshed analysis of large
terrain data using graphics processing units. Int. J. Geogr. Inf. Sci. 27 (2),
363–384. http://dx.doi.org/10.1080/13658816.2012.692372.

Zhou, Q.M., Liu, X.J., 2006. Digital Terrain Analysis. Science Press, Beijing, BJ, pp.
181–200.

http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref1
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref1
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref1
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref2
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref2
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref2
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref3
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref3
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref3
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref4
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref4
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref4
http://link.springer.com/chapter/10.1007%2F978-3-662-03954-0_11
http://link.springer.com/chapter/10.1007%2F978-3-662-03954-0_11
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref7
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref7
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref7
http://dx.doi.org/10.1080/17538947.2011.555565
http://dx.doi.org/10.1080/17538947.2011.555565
http://dx.doi.org/10.1080/17538947.2011.555565
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref9
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref9
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref9
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref10
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref10
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref10
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref11
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref11
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref11
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref6
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref6
http://dx.doi.org/10.1080/13658816.2012.692372
http://dx.doi.org/10.1080/13658816.2012.692372
http://dx.doi.org/10.1080/13658816.2012.692372
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref13
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref13
http://refhub.elsevier.com/S0098-3004(14)00245-3/sbref13

	A parallel algorithm for viewshed analysis in three-dimensional Digital Earth
	Introduction
	An overview of previous work
	GPU-based parallel algorithm for viewshed analysis
	Principle
	Algorithm implementation
	Data extraction and preprocessing
	Generation of occlusive volume
	Labeling and generation of the viewshed

	Results and discussion
	Conclusions
	Acknowledgments
	References

