
Visualization in Radiation Oncology:
Towards Replacing the Laboratory Notebook

Erik W. Anderson 1 Steven P. Callahan 2 George T. Y. Chen 3,4 Juliana Freire 1

Emanuele Santos 2 Carlos E. Scheidegger 2 Cláudio T. Silva 2 Huy T. Vo 2

1 School of Computing, University of Utah
2 Scientific Computing and Imaging Institute, University of Utah

3 Harvard Medical School
4 Department of Radiation Oncology, Massachusetts General Hospital

Figure 1: Importance of advanced visualization techniques in radiation oncology. The figure on the left is representative of the type of slice-based
visualization used currently in radiation oncology. Because this technique is not able to clearly distinguish different kinds of tissues and structures
or represent three-dimensional motion, it makes diagnosis and treatment harder. In contrast, the image on the right was generated using volume
rendering with a transfer function that clearly differentiates between pathological and normal tissues.

ABSTRACT

Data exploration in radiation oncology requires the creation of a
large number of visualizations. For treatment planning, detailed
information about the processes used to manipulate data collected
and to create visualizations is needed for assessing the quality of
the results. Current visualization systems allow the interactive cre-
ation and manipulation of complex visualizations. However, they
lack the ability to manage the data involved in the visualization pro-
cess, and in particular, they lack mechanisms to capture the prove-
nance of both the visualization process and associated data. Con-
sequently, they do not provide adequate support for the creation
and exploration of a large number of visualizations. VisTrails is
a visualization management system that manages both the process
and meta-data associated with visualizations. A novel feature of
VisTrails is an action-based mechanism which uniformly captures
the provenance of data as well as of the visualization process. The
detailed information about the history of visualization process, to-
gether with an intuitive interface for comparative visualization, en-
ables a number of features that streamline the task of exploration
through visualization and greatly simplify the scientific discovery
process. In this paper, we explore the benefits of using VisTrails for
large-scale data exploration in radiation oncology.

CR Categories: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management—Life Cycle;
K.7.m [The Computing Profession]: Miscellaneous—Ethics

Keywords: Visualization systems

1 INTRODUCTION

Visualization has been used by oncologists for many years to aid
in the process of cancer diagnosis as well as treatment planning.
Among other uses, modern medical imaging devices such as Com-
puted Tomography (CT) scanners have facilitated the diagnosis pro-
cess by providing the means to distinguish between pathological
tissue (such as a tumor) from normal tissue. Typically, a clini-
cian navigates through a series of cross-sections of the resulting 3D
scan data to find the problematic areas. More advanced tools have
been developed by the visualization community for extracting fea-
tures and facilitating 3D exploration (e.g. direct volume rendering
with transfer function manipulation [7]). Although these advanced
tools have yet to be approved for clinical use, they are often used
in research hospitals to quickly explore the data and act as a guide
for interventional procedures [12, 9]. The usefulness of advanced
visualization techniques can be seen in Figure 1—volume render-
ing derives a much more detailed image in which it is much easier
to identify pathological tissues and their three-dimensional (3-D)
movement than traditional techniques. The Radiation Physics Divi-
sion of the Department of Radiation Oncology at the Massachusetts
General Hospital (MGH) is an example of a group using advanced
visualization tools. Radiation oncologists at MGH have been using
recent volume rendering techniques to locate tumors in preparation
for radiation therapy treatment. However, the visualization pro-
cess as currently deployed is very complex and time-consuming.
Whereas a scanner can create a new dataset in minutes, using these
advanced tools, it takes from several hours to days to create appro-
priate visualizations.

Visualization systems such as SCIRun [11] and ParaView [4] al-
low the interactive creation and manipulation of complex visual-
izations. These systems are based on the notion of dataflows [8],
and they provide a visual interface to produce visualizations by as-



sembling pipelines out of modules connected in a network. These
systems provide easy-to-use visual interfaces for creating and mod-
ifying visualization pipelines. However, these systems have im-
portant limitations that greatly hamper their usability in large-scale
data exploration tasks. Notably, they lack the infrastructure to man-
age the visualization process and the associated data—input data,
meta-data, as well as derived data products. In particular, they pro-
vide no mechanism for systematically capturing information about
visualization provenance. In addition, they lack mechanisms for
scalable exploration of the parameter-space of visualizations and
for interactively comparing the different results.

To generate visualizations that are useful for the oncologists, of-
ten, a visualization expert needs to go through a lengthy, trial-and-
error process in which she creates a large number of images. Due
to the high sensitivity of the visualization process for radiation on-
cology, many pages of hand-written notes are required that describe
the visualization history in detail (i.e. all modifications to the data
and/or pipeline). And in order to allow reproducibility, besides the
hand-written notes, a very large number of files needs to be saved,
including datasets, derived images, animations, and visualization
pipelines. Furthermore, the notes, pipelines, and file-name conven-
tions, are usually only understood by their creator. This greatly
hinders collaboration and also hampers the useful lifetime of data.
For example, a post-doctoral researcher working on visualizations
may keep detailed laboratory notebooks and large file structures of
saved data—when she leaves, it is hard and sometimes impossible
for other team members to continue (or re-use) her work.

VisTrails [1, 2] is a visualization management system that
streamlines the process of data exploration through visualization.
An important feature of VisTrails is a history management mecha-
nism that keeps detailed provenance of both visualization pipelines
and associated data. The provenance information not only enables
reproducibility, but also, when combined with a multi-view inter-
face for comparative visualization, it allows users to efficiently and
effectively explore data through visualization: they can return to
previous versions of a visualization pipeline (aka dataflow); apply a
pipeline to different data sets; systematically explore the parameter
space of the pipeline; query the visualization history; and compara-
tively visualize different results. Note that VisTrails is not intended
as a replacement for systems such as SCIRun [11], VTK [5], or Par-
aView [4], instead, it provides infrastructure that can be combined
with and enhance these systems.

In this paper, we explore an application of visualization in radi-
ation oncology and demonstrate the benefit of using a system that
provides a data exploration infrastructure for generating and inter-
acting with large-scale visualizations. Because VisTrails unobtru-
sively captures detailed provenance information and also manages
visualization data, it removes the need for manually creating and
maintaining large directory structures of resulting datasets and im-
ages as well as the need for a detailed, hand-written laboratory
notebook. In addition, the provenance information enables many
features that simplify the generation and analysis of a large number
of visualizations, including support for collaboration and a mecha-
nism for creating visualizations in bulk.

The paper is organized as follows. Section 2 describes the cur-
rent process of visualization in radiation oncology. In Section 3,
we give a brief overview of VisTrails and some of its key features.
We revisit the visualization of radiation oncology in Section 4 and
show how VisTrails simplifies the process. In Section 5 we discuss
the merits of a visualization management system and the impact it
can have in radiation oncology.

2 VISUALIZATION IN RADIATION ONCOLOGY

Visualization in Radiation Oncology is used not only for diagno-
sis and data exploration, but for treatment planning and analysis as

well. In order to provide researchers and clinicians with visualiza-
tions used for treatment planning and research, a detailed log of the
exact process used to create a visualization is necessary. This helps
the specialists understand the resulting image and ascertain its ac-
curacy. For this reason, a record must be maintained both of all
changes to the visualization process and of the parameters control-
ling the various sub-processes.

Often, the visualization produced by a pipeline is only the re-
sult of the visualization process applied to a single dataset out of
a potentially large ensemble of related data. For example, a set
of CT scans over several timesteps during radiation treatment. As
we describe below, each dataset in an ensemble may require a
re-parameterization of modules in the dataflows that produce the
visualizations. Not only do these parameter changes need to be
recorded, but the re-parameterized visualization pipelines must be
saved to capture the changes made to them.

2.1 The Visualization Process in Radiation Oncology

Creating adequate visualizations for researchers and clinicians is
a lengthy process requiring many iterations of visualization for-
mation, feedback, and refinement per dataset. This iterative pro-
cess begins with data collection and distribution. After receiving
a dataset from a radiologist, the data must be pre-processed in or-
der to be readable by the visualization tool being used. Fortunately,
this process is often transparent as many visualization packages are
capable of reading the industry-standard DICOM [10] format. An
initial visualization is then created, which is subsequently refined
until a suitable visualization is derived. Below, we illustrate this
process through a concrete example.

Initial Visualization. After the raw data is read, a visualization
dataflow must be formed and executed to create a visualization of
this data. Initially, a simple dataflow is created to ascertain whether
substantial modifications are required. Typically, modifications are
required to rectify discrepancies in the raw data. Some of these
are dependent on the hardware profiles of the data collection device
used to generate the dataset being inspected. For example, to ac-
commodate scanners with different resolutions in different dimen-
sions, the initial pipeline may need to be modified to rescale the grid
or voxel sizes in a single axis. It is not uncommon for this scaling
parameters to change based on the scanning device used to generate
the dataset being visualized. Since a patient may be scanned with
different equipment over the course of a treatment, different scaling
may be needed for each of the patient’s scans. Each change must be
recorded in a laboratory notebook on a per dataset basis, and each
pipeline derived in this process must also be saved in a file.

After the parameter changes required to capture differences in
data collection mechanisms are recorded and taken into account,
the data itself must further manipulated to form a meaningful visu-
alization. Operations may be needed to transform the dataset into a
format that is required by the visualization system. Some systems
require volumes of data to be of a certain size or have a specific
range of scalar values associated with each sample requiring resam-
pling and requantizing of the data. After this resampling and quan-
tization, the data is substantially changed and this change can lead
to misleading visualizations. Therefore, similar to the parameter
changes described above, any manipulation must be documented.
This ensures that not only re-parameterizations can be associated
with a specific subset of visualizations, but that also that specialists
are aware of these changes and the potential alterations they may
have caused to the images.

Finally, the visualization is refined by re-parameterizing the
transfer function portions of the visualization pipeline. This re-
parameterization represents the exploratory aspect of visualization
in radiation oncology. Each change in the transfer function yields
a new visualization that may help identifying a particular type of



tissue or structure. When a meaningful visualization is found, the
parameters defining the transfer function is recorded in a laboratory
notebook and the pipeline saved in order to ensure the reproducibil-
ity of the visualization.

Because radiation oncologists are interested in the irradiation of
small regions of moving tissues, it is important to be able to gener-
ate meaningful visualizations of not only the structure surrounding
an area of interest, but also of the movement in three dimensions
of these structures. The most intuitive way of forming such a vi-
sualization is to create an animation of these data as they vary in
time. An example of this visualization process as it applies to a
time-varying dataset representing a breathing cycle is discussed in
detail below.

Example 2.1 (Re-parameterization of Lung CT Scans)
When data is received from a radiologist, it typically consists of

a set of volumes representing a breathing cycle for an individual
patient. After an initial pipeline is constructed that derives some
meaningful representation of the data, we need to discover the voxel
scaling as it applies to the corresponding hardware collector. In or-
der to begin a parameter space exploration, an initial visualization
of the unmodified parameter is generated. This first visualization
represents a voxel scaling of 1.0 in all axes. The pipeline for this
visualization is saved and connected to the data set being explored.
This connection of the pipeline to the corresponding dataset can
be made in several ways: assigning a representative name to the
pipeline file; copying the file to a different directory; or recording
the change in the laboratory notebook modification. In this sce-
nario, a file was created by concatenating the unique identifier of
the dataset, the value of the time-slice being analyzed, and a short
description of the visualization created. This file was then placed in
a directory named by the globally unique data set identifier, based
on the anonymized patient identifier, and notes were entered into
a laboratory notebook section specific to that dataset regarding the
time, date, and filenames producing a visualization.

After a visualization of the unscaled data is generated, an inspec-
tion of the image can produce the next guess for the proper param-
eter value required for the data set in question. At this point, the
parameter value is set and a new visualization is created. This pro-
cess is repeated until an acceptable visualization is found. In each
iteration, files are created in the directory mentioned above with the
filenames being containing the name of the parameter being mod-
ified followed by the parameter value for that file. In the case of
a large parameter space being explored, this single exploration can
create literally hundreds of individual files and many pages of hand-
written notes documenting the procedure and files associated with
the formation of the visualizations. Once an appropriate value is
found, the change is promoted to the original visualization and an-
other note is made in the laboratory notebook detailing the param-
eter and the value selected.

Refinement of the Visualization. After an acceptable visualiza-
tion is created, a set of images from various orientations is captured
and sent to the researchers and clinicians to gather feedback. The
feedback received from the specialists is used to modify the visual-
ization pipeline, parameters, and possibly the data, to enhance the
quality of the final visualization. Again, for each and every change
made detailed records must be added to the laboratory notebook
and the corresponding pipelines are saved.

The visualization is refined through a sequence of re-
parameterizations. The most common of these re-parameterizations
are changes to transfer functions. In this case, the parameters reflect
only a mapping of scalar values to color values and do not manip-
ulate the data in any way. Since the data or its underlying repre-
sentation is not being manipulated, a change to these values needs
to be recorded only when a parameterization is found that produces

Figure 2: VisTrails Architecture.

a meaningful visualization. However, since in many systems such
as SCIRun and Paraview, there is no separation between a pipeline
specification and its parameters, a whole pipeline needs to be saved
to a file. Once an appropriate transfer function is discovered that
clearly identifies the structures of interest to the specialists, the cor-
responding visualization pipeline must be saved, in this case, by ap-
pending some textual description of the visualization to the original
filename (e.g. anon4877 axial lesion 20060331.srn highlights a le-
sion in the axial view of patient 4877). Additionally, the parameter
values must be recorded in a laboratory notebook in such a way that
the visualization can be reproduced exactly. Unfortunately, com-
plex transfer functions can have many points defining the opacity
portion of the function and even more tuples representing the red,
green, and blue color channel points. The sheer amount of data
produced as a direct result of these sorts of re-parameterizations
of the visualization pipeline causes not only an immense number
of files to be generated inside a confusing directory structure, but
also results in the writing by hand of many pages of notes in vari-
ous laboratory notebooks associated with the specific dataset being
represented.

2.2 Discussion

The need to manually record changes to a notebooks and to save
a large number of pipeline files is not only time consuming—
requiring logging of seemingly minor parameter changes, but also
leads to an explosion in the volume of visualization metadata—
massive numbers of individual files representing the different visu-
alization pipelines created in the exploration process, which often
differ in a single re-parameterization per file. The sheer number
of files and notes taken often leads to confusion when attempting
to recreate a specific visualization. One reason for this is the fact
that provenance is captured in an incomplete and non-uniform way.
Part of it is encoded in an unstructured form in filenames. In ad-
dition, different people use different naming conventions and thus
the information cannot be easily queried. Consequently, it can be
challenging to locate the correct saved pipeline to reproduce a visu-
alization. Besides, since information about the relationship among
pipelines is not systematically stored (except in the handwritten
notes), identifying the differences in the parameterizations of two
similar visualization pipelines is a laborious and difficult, yet nec-
essary, task.

3 THE VISTRAILS SYSTEM: AN OVERVIEW

VisTrails is a visualization management system that manages both
the process and metadata associated with visualizations. With Vis-
Trails, we aim to give scientists a dramatically improved and sim-
plified process to analyze and visualize large ensembles of simu-
lations and observed phenomena. The high-level architecture of
the system is shown in Figure 2. We only sketch the main fea-
tures of the system here, for further details see [1, 2]. Users create
and edit dataflows using the Vistrail Builder user interface. The



Figure 3: A snapshot of the VisTrails history management interface. Each node in the history is a separate dataflow that differs from its parent
by changes to parameters or modules. This tree represents the trial-and-error process followed to generate the images shown in Figure 4.

dataflow specifications are saved in the Vistrail Repository. Users
may also interact with saved dataflows by invoking them through
the Vistrail Server (e.g. through a Web-based interface) or by im-
porting them into the Visualization Spreadsheet. Each cell in the
spreadsheet represents a view that corresponds to a dataflow in-
stance; users can modify the parameters of a dataflow as well as
synchronize parameters across different cells. Dataflow execution
is controlled by the Vistrail Cache Manager, which keeps track of
operations that are invoked and their respective parameters. Only
new combinations of operations and parameters are requested from
the Vistrail Player, which executes the operations by invoking the
appropriate functions from the Visualization and Script APIs. The
Player also interacts with the Optimizer module, which analyzes
and optimizes the dataflow specifications. A log of the vistrail exe-
cution is kept in the Vistrail Log. The different components of the
system are described below.

Vistrail Specification. A dataflow is a sequence of operations used
to generate a visualization. A vistrail captures the notion of an
evolving dataflow—it consists of several versions of a dataflow. The
information in a vistrail serves both as a log of the steps followed
to generate a series of visualizations, a record of the visualization
provenance, and as a recipe to automatically re-generate the visu-
alizations at a later time. The steps can be replayed exactly as they
were first executed, and they can also be used as templates—they
can be parameterized. In order to handle the variability in the struc-
ture of operations, and to easily support the addition of new opera-
tions, we represent vistrails using XML (for more details, see [2]).
An important benefit of using an open, self-describing, specifica-
tion is the ability to query, share, and publish vistrails. This allows
a scientist to locate dataflows suitable for a particular task or data
products generated by a given sequence of operations, as well as to
publish an image along with its associated vistrail so that others can
easily reproduce the results.

History Management. As discussed above, a vistrail captures in-
formation about the evolution of a dataflow or collection of related
dataflows—it behaves as a versioning system for dataflows. A vis-
trail consists of a tree where each node corresponds to a dataflow
(see Figure 3). But instead of storing the dataflows themselves, we
store the operations that take one dataflow to another. An edge be-
tween a parent and child nodes in a vistrail tree represents a set of
change actions applied to the parent to obtain the dataflow for the
child node. The action-based provenance mechanism of VisTrails
is reminiscent of DARCS1. This structure allows scientists to easily
navigate through the space of dataflows created for a given explo-
ration task. In particular, they have the ability to return to previous
versions of a dataflow and compare their results. To simplify the
retrieval of particularly interesting versions, a vistrail node can op-
tionally have a name. At any point in time, the scientist can choose
to view the entire history of changes, or only the dataflows impor-
tant enough to be given a name.

Note that the vistrail tree structure only shows the dependencies
among the versions. To convey the chronological order in which the
versions were created, we use different saturation levels to indicate
the age of the various dataflows: darker nodes are the ones created
more recently. There are other possible visualizations: collabora-
tions can be seen by distinguished users through different colors;
the tree might be selectively pruned to only show results of a query
on the annotations, etc.

Caching, Analysis and Optimization. Having a high-level speci-
fication allows the system to analyze and optimize dataflows. Ex-
ecuting a vistrail can take a long time, especially if large data sets
and complex visualization operations are used. It is thus impor-
tant to be able to analyze the specification and identify optimiza-
tion opportunities. In the current VisTrails prototype, we lever-
age the vistrail specification to identify and avoid redundant op-

1http://abridgegame.org/darcs



Figure 4: Multi-view visualization exploring different viewpoints, cross-sections and transfer functions. These sorts of visualizations allow spe-
cialists to easily track structural motion of both healthy and cancerous tissue in time while maintaining visual separation of the two.

erations. The Vistrail Cache Manager (VCM) is responsible for
scheduling the execution of modules in vistrails by identifying pre-
viously computed subnetworks and performing constant-time cache
lookups [1]. Caching is specially useful while exploring multiple
visualizations. When variations of the same dataflow need to be ex-
ecuted, substantial speedups can be obtained by caching the results
of overlapping subsequences of the dataflows.

Playing a Vistrail. The Vistrail Player (VP) receives as input an
XML file for a vistrail instance and executes it using the underly-
ing Visualization or Script APIs. The semantics of each particular
execution are defined by the underlying API. Currently, the VP is
a very simple interpreter which supports VTK classes and external
scripts. The VP needs the ability to create and execute arbitrary
VTK modules from a dataflow. This requires mapping VTK de-
scriptions, such as class and method names, to the appropriate mod-
ules in the dataflow. The wrapping mechanism is library-specific,
and in our first version [1], we exploited VTK automatic wrapping
mechanism to generate all required bindings directly from the VTK
library headers. Our new implementation uses Python2 to further
simplify the process of wrapping external libraries, and to enable
easy extensions to the system.

Creating and Interacting with Vistrails. The Vistrail Builder
(VB) provides a graphical user interface for creating and editing
dataflows. It writes (and also reads) dataflows in the same XML
format as the other components of the system. It shares the famil-
iar nodes-and-connections paradigm with dataflow systems. The
VB also provides mechanisms to streamline the visualization pro-
cess. As complex visualization pipelines contain many common

2http://www.python.org

tasks, a macro mechanism is provided for the re-use of pipelines
or pipeline fragments. A bulk-update mechanism is also provided
in to simplify the creation of a large number of visualizations of
an n-dimensional slice of the parameter space of a dataflow (see
Section 4 for details).

To allow users to compare the results of multiple vistrails, we
built a Visualization Spreadsheet (VS). As shown in Figure 4, the
VS provides the user a set of separate visualization windows ar-
ranged in a tabular view. This layout makes efficient use of screen
space, and the row/column groupings can conceptually help the
user explore the visualization parameter space [3]. The cells may
execute different vistrails and they may also use different parame-
ters for the same vistrail specification as a result of a bulk-update
(see Figure 5). To ensure efficient execution, all cells share the same
cache. Users can also create visualizations by analogy using the VS
interface. For example, when finding a favorable set of parameters
for one visualization, a user will likely need to change other related
visualizations in the same way. Instead of having to identify the
relevant operations, he can tell the system to automatically infer,
by way of analogy, which changes are needed (see Figure 6). This
makes it possible for non-experts to derive complex visualizations.

4 USING VISTRAILS: VISUALIZATION IN RADIATION ON-
COLOGY REVISITED

Below, we describe how VisTrails streamlines the visualization pro-
cess presented in Section 2. Although the same manipulations and
tasks are required, by providing an adequate data management and
exploration infrastructure, VisTrails automates and greatly simpli-
fies them.



Figure 5: Results of a bulk update exploration voxel scaling in a single dimension. This exploration corrects for the non-uniform resolution of the
data collection devices generating data.

Bulk Updates and Comparative Visualization. After receiving
a dataset from a radiologist, the data requires some pre-processing
in order to discover any parameters that are dependent on the hard-
ware scanning tools used to capture the data. With VisTrails, a set
of images representing variation of voxel sizes and shapes can be
generated in a single step, using the bulk-update facility. The pro-
cess is as follows: the user selects, from the history tree (see Fig-
ure 3) the node which corresponds to the initial visualization. Then,
the parameters corresponding to voxel size and shape are selected,
and appropriate ranges for their values are defined. The system
then generates a set of re-parameterized pipelines—corresponding
to the different combination of these parameters, executes them,
and displays the resulting visualizations in the spreadsheet. This
is illustrated in Figure 5, which shows four visualizations of one
time step of the lung data set varying the voxel size from 1.25 to
3.5 in four steps. By inspecting the spreadsheet, the visualization
expert or specialist can easily select the most appropriate image.
The sequence of parameter modifications corresponding to the se-
lected image is then applied to initial visualization. This effectively
creates a new branch in the tree which contains the pipeline for the
selected image.

To perform comparative visualization, previously, it was neces-
sary to run multiple instances of the visualization pipeline and do
screen captures to extract the images so that they could be compared
side-by-side. Obviously, using this approach, it was not possible to
interact with the visualizations.

The Provenance Mechanism: An Electronic Lab Notebook. As
illustrated above, the exploratory process is fully and automatically
documented in the history tree—it is not necessary to record in-
dividual operations in a notebook, or save individual pipelines in
separate files—all related pipelines are concisely stored in a single
vistrails structure. The system systematically keeps detailed prove-
nance information for each visualization created. In particular, the
differences and relationships between pipelines is explicitly stored.
Because this information is stored in a structured format (in XML),
it can be easily and efficiently queried—no longer requiring users
to manually inspect individual files and corresponding handwritten
notes.

Another useful feature of VisTrails is the ability to annotate the
nodes in the history tree. These nodes can be given descriptive
names as well as be associated with notes that describe the visual-
ization in more detail. These textual descriptions can be used, for
example, to reflect the user’s motivations for the choices made to
create the visualization. This information is queryable and can help

users to locate a desired visualization in a possibly large vistrail
tree. Also note that, that changes to the history tree are tagged with
the date and time of the change as well as the user who changed
the tree. This allows VisTrails to provide visual cues of about the
recency as well as the authors of a node. For the former, VisTrails
uses use different saturation levels, and for the latter, different col-
ors.

Comparative and Collaborative Visualization. To visualize the
image generated by a pipeline P in a vistrail, a user needs just drag
the node P and drop it into a spreadsheet cell. This allows users
to quickly inspect different, related visualizations and using the
provenance information, they can easily determine the parameteri-
zation that generated it. Furthermore, given two nodes in the tree,
the system automatically derives the differences between them—
including differences in parameter settings as well as changes in
pipeline specification. Besides helping in the understanding of vi-
sualizations, it also enables users to explore data in a collaborative
environment. Recall that in order to accomplish such an analysis
with previous systems, a detailed examination of not only many
pages of handwritten notes contained in a laboratory notebook is
needed, but the myriad of saved visualization pipeline files must be
examined to fully differentiate two visualizations.

Bulk Changes and Instant Animations. Regardless of the
methodology used to generate a set of visualizations, it is often de-
sirable to construct an animation over time in order to more thor-
oughly explore how a dataset evolves—in our example, such an
animation can show how pathological tissues and tumors are af-
fected by radiation treatment. This is particularly useful in terms
of time-based CT scans where the output from the initial scan de-
scribes the motion of soft tissues during a complete breathing cy-
cle. This common example makes effective use of both VisTrail’s
bulk-change capabilities and of the spreadsheet-based visualization
system’s ability to form animations from changes to the input pa-
rameter of the visualization pipeline. By performing a bulk-change
to the dataset reader’s input parameter, a series of visualizations
can be derived that fully describe the breathing cycle of a patient.
VisTrails can quickly composite the still images into an ordered an-
imation that shows the motion during a breathing cycle.

Without this capability, animations are created from a sequence
of screen-captured images which are input to a third-party tool.
This process needs to be repeated for every parameter change from
which an animation would be produced. In contrast, using Vis-
Trail’s analogy-based re-parameterization, actions required to repli-
cate the parameter change can be easily identified and applied to the



Figure 6: Creation of visualizations by analogy. The set of operations applied to the vistrail node base is applied to a different node in the tree
(labeled lesionimage1).

appropriate visualizations. This can be seen most evidently in the
event of a change of transfer function to a visualization that would
form a full animation. The analogy would be applied to all datasets
in the bulk-change parameterization, and the new animation would
be automatically generated for each analogy-based change the user
requires. This operation is illustrated in the video included with this
submission.

Visualization by Analogy. After the initial visualization process
has been completed and the oncologists and clinicians give their
feedback, the refinement process can begin as it did in the case dis-
cussed in Section 2. With VisTrails, however, the refinement pro-
cess of constructing high-quality images is completed in a fraction
of the time. Besides no longer needing to manually record the pro-
cess provenance, visualizations can easily created by analogy. As
illustrated in Figure 6, the action-based structure of the history lends
itself naturally to the incremental refinement of a visualization re-
gardless of the types of parameters being changed or the magnitude
of the changes to them to be performed easily. The figure shows
the process by which a group of visualizations can be generated
by applying a set of actions that had been previously applied to a
different pipeline.

Using Provenance to Explore Different Visualization Strategies.
In the event that a pipeline requires massive change to overcome
some limitation or ambiguity in the visualization, the amount of
work originally required just to document such a modification is
mind-boggling—the visualization process needed to be re-created
from scratch. The history tree in VisTrails system, simply branch-
ing the version tree at the appropriate node, annotating the node
with a complete description of why the change was necessary, and
then reformulating the visualization pipeline properly is all that is
required.

5 SCIENTIFIC IMPLICATIONS

The two processes for creating, manipulating, and finalizing visual-
izations and their respective pipelines discussed above and in Sec-
tion 2 described two distinct approaches for solving visualization
problems in Radiation Oncology. In systems without a robust data
provenance tracking system, detailed handwritten notes and many
files must be created to properly record the parameterizations nec-
essary to produce a visualization. Consequently, the level of con-
fusion involved in differentiating between two visualizations and
their parameterizations is increased as many sources of information
must be analyzed to fully understand the motivations and results
of the re-parameterization. However, using a visualization system
equipped with a robust provenance management tool, the analyza-
tion of unique visualizations stemming from a common ancestor is
immediately apparent. Using VisTrail’s history management tree, a
user can easily select two visualizations and visually compare the

pipelines and their respective parameterizations to more quickly
and thoroughly analyze the underlying data. Since the entire prove-
nance of the visualizations are kept through out the lifetime of the
vistrail, the confusion relating to multiple filenames and even hand-
written notes in a laboratory notebook is eliminated. The ability
to annotate visualizations at VisTrail’s version level means that any
important annotations, such as motivation and any other records
needed to adequately document a change, can be included in a
visually meaningful and easily queriable way. Furthermore, the
spreadsheet style of VisTrail’s multiple visualization capabilities al-
low any user to quickly and thoroughly explore an entire parameter
space resulting in a much more rapid convergence of the visualiza-
tion to an accurate representation of the data being displayed. Addi-
tionally, through the use of analogy-based transformations, actions
resulting in good visualizations in one branch of the version tree can
easily and quickly be applied to any other branch with a common
ancestral node. This method of refinement of visualizations allows
a non-expert to rapidly develop complex and meaningful visual-
izations of a wide variety of datasets and visualization modalities
while still maintaining a fully descriptive provenance of the actions
performed on the data.

6 CONCLUSION

VisTrails is a new visualization management system that provides
the necessary infrastructure to streamline the process of data ex-
ploration through visualization. In this paper, we discussed how
VisTrails can improve the visualization process in Radiation Oncol-
ogy. By automatically and unobtrusively capturing detailed prove-
nance of visualizations and associated pipelines, users need not
manually maintain a laboratory notebook. Besides, since the his-
tory tree naturally models the relationships amongst pipelines—it
represents their evolution—the differences between two pipelines
are explicitly stored by the system. Last, but not least, VisTrails
greatly simplifies and speeds up the exploration of large parameter
spaces. This is possible due to a unique combination of features
VisTrails provides, notably, the ability to display and interact with
multiple visualizations through the Visualization Spreadsheet[1, 3];
the bulk-update facility; the ability to generate images by analogy
and to quickly produce animations.

The first author (Anderson) used SCIRun extensively in the
course of a 7-month internship at the Massachusetts General Hos-
pital performing the visualization tasks described in this paper. Our
initial study has shown that the same tasks can be accomplished in
a small fraction of the time with the kind of functionality available
in VisTrails. In the near future, we would like to perform a user
study to more precisely quantify the benefit of VisTrails in Radia-
tion Oncology.



Acknowledgments.
This work was partially supported by the National Science Foun-

dation under grants IIS-0513692, CCF-0401498, EIA-0323604,
CNS-0541560, and OISE-0405402, the Department of Energy, an
IBM Faculty Award and a University of Utah Seed Grant.

REFERENCES

[1] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva,
and H. Vo. Vistrails: Enabling interactive multiple-view visualiza-
tions. In IEEE Visualization 2005, pages 135–142, 2005.

[2] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Managing the evolution of dataflows with vistrails (Extended Ab-
stract). In IEEE Workshop on Workflow and Data Flow for Scientific
Applications (SciFlow), 2006. To appear.

[3] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach
to information visualization. In IEEE Information Visualization Sym-
posium, pages 17–24, 1997.

[4] Kitware. Paraview. http://www.paraview.org.
[5] Kitware. The Visualization Toolkit. http://www.vtk.org.
[6] Kitware. The Visualization Toolkit (VTK) and Paraview.

http://www.kitware.com.
[7] J. Kniss, G. Kindlmann, and C. Hansen. Multi-dimensional transfer

functions for interactive volume rendering. IEEE Transactions on Vi-
sualization and Computer Graphics, 8(3):270–285, July 2002.

[8] E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings
of the IEEE, 83(5):773–801, 1995.

[9] M. Levoy, H. Fuchs, S. Pizer, J. Rosenman, E. L. Chaney, G. W. Sh-
erouse, V. Interrante, and J. Kiel. Volume rendering in radiation treat-
ment planning. In Proceedings of the First Conference on Visualiza-
tion in Biomedical Computing, May 1990.

[10] NEMA. The DICOM Standard. http://medical.nema.org.
[11] S. G. Parker and C. R. Johnson. SCIRun: a scientific programming

environment for computational steering. In Supercomputing, 1995.
[12] C. A. Pelizzari and G. T. Y. Chen. Volume visualization in radi-

ation treatment planning. Critical Reviews in Diagnostic Imaging,
41(6):379–364, 2000.


