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Abstract. We present a new method for solving stochastic differential equations based on
Galerkin projections and extensions of Wiener’s polynomial chaos. Specifically, we represent the
stochastic processes with an optimum trial basis from the Askey family of orthogonal polynomials
that reduces the dimensionality of the system and leads to exponential convergence of the error.
Several continuous and discrete processes are treated, and numerical examples show substantial
speed-up compared to Monte Carlo simulations for low dimensional stochastic inputs.
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1. Introduction. Wiener first defined “homogeneous chaos” as the span of Her-
mite polynomial functionals of a Gaussian process [19]; polynomial chaos is defined as
the member of that set. According to the Cameron–Martin theorem [3], the Fourier–
Hermite series converge to any L2 functional in the L2 sense. In the context of
stochastic processes, this implies that the homogeneous chaos expansion converges
to any processes with finite second-order moments. Therefore, such an expansion
provides a means of representing a stochastic process with Hermite orthogonal poly-
nomials. Other names such as “Wiener chaos,” “Wiener–Hermite chaos,” etc., have
also been used in the literature. In this paper, we will use the term Hermite-chaos.

While Hermite-chaos is useful in the analysis of stochastic processes, efforts have
also been made to apply it to model uncertainty in physical applications. In this case,
the continuous integral form of the Hermite-chaos is written in the discrete form of
infinite summation, which is further truncated. Ghanem and Spanos [9] combined
the Hermite-chaos expansion with a finite element method to model uncertainty en-
countered in various problems of solid mechanics, e.g., [7], [8], [9], etc. In [20], the
polynomial chaos was applied to modeling uncertainty in fluid dynamics applications.
The algorithm was implemented in the context of the spectral/hp element method,
and various benchmark tests were conducted to demonstrate convergence in prototype
flows.

Although for any arbitrary random process with finite second-order moments the
Hermite-chaos expansion converges in accord with the Cameron–Martin theorem [3],
it has been demonstrated that the convergence rate is optimal for Gaussian processes;
in fact the rate is exponential [15]. This can be understood from the fact that the
weighting function of Hermite polynomials is the same as the probability density func-
tion of the Gaussian random variables. For other types of processes the convergence
rate may be substantially slower. In this case, other types of orthogonal polynomials,
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instead of Hermite polynomials, could be used to construct the chaos expansion. In
an early work by Ogura [16], a chaos expansion based on Charlier polynomials was
proposed to represent the Poisson processes, following the theory of “discrete chaos”
by Wiener [19].

An important class of orthogonal polynomials are the members of the so-called
Askey scheme of polynomials [1]. This scheme classifies the hypergeometric orthogonal
polynomials that satisfy some type of differential or difference equation and indicates
the limit relations between them. Hermite polynomials are a subset of the Askey
scheme. Each subset of the orthogonal polynomials in the Askey scheme has a different
weighting function in its orthogonality relationship. It has been realized that some of
these weighting functions are identical to the probability function of certain random
distributions. For example:

• Hermite polynomials are associated with the Gaussian distribution,
• Laguerre polynomials with the gamma distribution,
• Jacobi polynomials with the beta distribution,
• Charlier polynomials with the Poisson distribution,
• Meixner polynomials with the negative binomial distribution,
• Krawtchouk polynomials with the binomial distribution, and
• Hahn polynomials with the hypergeometric distribution.

This finding opens the possibility of representing stochastic processes with different
orthogonal polynomials according to the property of the processes.

The close connection between stochastic processes and orthogonal polynomials
has long been recognized. Despite the role of Hermite polynomials in the integra-
tion theory of Brownian motion (see [19] and [11]), many birth-and-death models
were related to specific orthogonal polynomials. The so-called Karlin–McGregor rep-
resentation of the transition probabilities of a birth-and-death process is in terms of
orthogonal polynomials [12]. In [16] and [5], the integral relation between the Poisson
process and the Charlier polynomials was found. In [17], the role of the orthogonal
polynomials from the Askey scheme in the theory of Markov processes was studied,
and the connection between the Krawtchouk polynomials and the binomial process
was established.

In this paper, we extend the work by Ghanem and Spanos for Hermite-chaos
expansion [9] and Ogura for Charlier-chaos expansion [16]. We propose an Askey
scheme-based polynomial chaos expansion for stochastic processes, which includes all
the orthogonal polynomials in the above list. We numerically demonstrate the optimal
(exponential) convergence rate of each Wiener–Askey polynomial chaos expansion for
its corresponding stochastic processes by solving a stochastic ordinary differential
equation, for which the exact solutions can be obtained. It is also shown that if
for a certain process the optimal Wiener–Askey polynomial chaos expansion is not
employed, the solution also converges but the rate is clearly slower. This approach
will provide a guideline for representing stochastic processes in physical applications
properly.

In practical applications, one often does not know the analytical form of the dis-
tribution of the process, or, if known, it may not be one of the basic distributions,
e.g., Gaussian, Poisson, etc. In this case, one can choose a set of Wiener–Askey poly-
nomial chaos expansions and conduct a numerical projection procedure to represent
the process. This issue will be addressed in the present paper as well.

This paper is organized as follows: In the next section we review the theory of
the Askey scheme of hypergeometric orthogonal polynomials, and in section 3 we re-
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view the theory of the original Wiener polynomial chaos. In section 4 we present the
framework of Wiener–Askey polynomial chaos expansion for stochastic processes. In
section 5 we present numerical solutions of a stochastic ordinary differential equation
with different Wiener–Askey chaos expansions. The choice of the particular Wiener–
Askey chaos is based on the distribution of the random input, and we demonstrate the
exponential convergence rate with the appropriately chosen Wiener–Askey basis. In
section 6 we address the issue of representing an arbitrary random distribution, and
we show that, although the Wiener–Askey polynomial chaos converges in general, the
exponential convergence is not realized if the optimal type of Wiener–Askey chaos is
not chosen. We conclude the paper with a discussion on possible extensions and appli-
cations to more complicated problems. An appendix of the definitions and properties
of the orthogonal polynomials discussed in this paper is included for completeness.

2. The Askey scheme of hypergeometric orthogonal polynomials. The
theory of orthogonal polynomials is relatively mature and several books have been de-
voted to its study (e.g., [18], [2], [4]). However, more recent work has shown that an
important class of orthogonal polynomials belong to the Askey scheme of hypergeo-
metric polynomials [1]. In this section, we briefly review the theory of hypergeometric
orthogonal polynomials. We adopt the notation of [14] and [17].

2.1. The generalized hypergeometric series. We first introduce the Poch-
hammer symbol (a)n defined by

(a)n =

{
1 if n = 0,
a(a + 1) · · · (a + n− 1) if n = 1, 2, 3, . . . .

(2.1)

In terms of gamma function, we have

(a)n =
Γ(a + n)

Γ(a)
, n > 0.(2.2)

The generalized hypergeometric series rFs is defined by

rFs(a1, . . . , ar; b1, . . . , bs; z) =

∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,(2.3)

where bi �= 0,−1,−2, . . . for i = {1, . . . , s} to ensure that the denominator factors in
the terms of the series are never zero. Clearly, the ordering of the numerator param-
eters and of the denominator parameters is immaterial. The radius of convergence ρ
of the hypergeometric series is

ρ =




∞ if r < s + 1,
1 if r = s + 1,
0 if r > s + 1.

(2.4)

Some elementary cases of the hypergeometric series are the following:
• exponential series 0F0,
• binomial series 1F0,
• Gauss hypergeometric series 2F1.

If one of the numerator parameters ai, i = 1, . . . , r, is a negative integer, say
a1 = −n, the hypergeometric series (2.3) terminates at the nth term and becomes a
polynomial in z,

rFs(−n, . . . , ar; b1, . . . , bs; z) =

n∑
k=0

(−n)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
.(2.5)
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2.2. Properties of the orthogonal polynomials. A system of polynomials
{Qn(x), n ∈ N}, where Qn(x) is a polynomial of exact degree n and N = {0, 1, 2, . . . }
or N = {0, 1, . . . , N} for a finite nonnegative integer N , is an orthogonal system of
polynomials with respect to some real positive measure φ if the following orthogonality
relations are satisfied:∫

S

Qn(x)Qm(x)dφ(x) = h2
nδnm, n,m ∈ N ,(2.6)

where S is the support of the measure φ and the hn are nonzero constants. The
system is called orthonormal if hn = 1.

The measure φ often has a density w(x) or weights w(i) at points xi in the discrete
case. The relations (2.6) then become∫

S

Qn(x)Qm(x)w(x)dx = h2
nδnm, n,m ∈ N ,(2.7)

in the continuous case, or

M∑
i=0

Qn(xi)Qm(xi)w(xi) = h2
nδnm, n,m ∈ N ,(2.8)

in the discrete case, where it is possible that M = ∞.
The density w(x) or weights w(i) in the discrete case are also commonly referred

to as the weighting function in the theory of orthogonal polynomials. It will be shown
later that the weighting functions for some orthogonal polynomials are identical to
certain probability functions. For example, the weighting function for the Hermite
polynomials is the same as the probability density function (PDF) of the Gaussian
random variables. This fact plays an important role in representing stochastic pro-
cesses with orthogonal polynomials.

All orthogonal polynomials {Qn(x)} satisfy a three-term recurrence relation

−xQn(x) = AnQn+1(x) − (An + Cn)Qn(x) + CnQn−1(x), n ≥ 1,(2.9)

where An, Cn �= 0 and Cn/An−1 > 0. Together with Q−1(x) = 0 and Q0(x) = 1, all
Qn(x) can be determined by the recurrence relation.

It is well known that continuous orthogonal polynomials satisfy the second-order
differential equation

s(x)y′′ + τ(x)y′ + λy = 0,(2.10)

where s(x) and τ(x) are polynomials of at most second and first degree, respectively,
and

λ = λn = −nτ ′ − 1

2
n(n− 1)s′′(2.11)

are the eigenvalues of the differential equation; the orthogonal polynomials y(x) =
yn(x) are the eigenfunctions.

In the discrete case, we introduce the forward and backward difference operator,
respectively

∆f(x) = f(x + 1) − f(x) and ∇f(x) = f(x) − f(x− 1).(2.12)
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Fig. 2.1. The Askey scheme of orthogonal polynomials.

The difference equation corresponding to the differential equation (2.10) is

s(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0.(2.13)

Again s(x) and τ(x) are polynomials of at most second and first degree, respectively;
λ = λn are eigenvalues of the difference equation; and the orthogonal polynomials
y(x) = yn(x) are the eigenfunctions.

All orthogonal polynomials can be obtained by repeatedly applying the differential
operator as follows:

Qn(x) =
1

w(x)

dn

dxn
[w(x)sn(x)] .(2.14)

In the discrete case, the differential operator (d/dx) is replaced by the backward
difference operator ∇. A constant factor can be introduced for normalization. Equa-
tion (2.14) is referred to as the generalized Rodriguez formula, named after J. Ro-
driguez who first discovered the specific formula for Legendre polynomials (see [2]).

2.3. The Askey scheme. The Askey scheme, which can be represented as a tree
structure as shown in Figure 2.1, classifies the hypergeometric orthogonal polynomials
and indicates the limit relations between them. The “tree” starts with the Wilson
polynomials and the Racah polynomials on the top. They both belong to the class 4F3

of the hypergeometric orthogonal polynomials (2.5). The Wilson polynomials are
continuous polynomials, and the Racah polynomials are discrete. The lines connecting
different polynomials denote the limit transition relationships between them, which
imply that polynomials at the lower end of the lines can be obtained by taking the limit
of one parameter from their counterparts on the upper end. For example, the limit

relation between Jacobi polynomials P
(α,β)
n (x) and Hermite polynomials Hn(x) is

lim
α→∞α− 1

2nP (α,α)
n

(
x√
α

)
=

Hn(x)

2nn!
,



624 DONGBIN XIU AND GEORGE EM KARNIADAKIS

and between Meixner polynomials Mn(x;β, c) and Charlier polynomials Cn(x; a) is

lim
β→∞

Mn

(
x;β,

a

a + β

)
= Cn(x; a).

For a detailed account of the limit relations of the Askey scheme, the interested reader
should consult [14] and [17].

The orthogonal polynomials associated with the Wiener–Askey polynomials chaos
include Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, and Hahn poly-
nomials. A survey with their definitions and properties can be found in the appendix
of this paper.

3. The original Wiener polynomial chaos. The homogeneous chaos expan-
sion was first proposed by Wiener [19]; it employs the Hermite polynomials in terms
of Gaussian random variables. According to the theorem of Cameron and Martin [3],
it can approximate any functionals in L2(C) and converges in the L2(C) sense. There-
fore, Hermite-chaos provides a means for expanding second-order random processes in
terms of orthogonal polynomials. Second-order random processes are processes with
finite variance, and this applies to most physical processes. Thus, a general second-
order random process X(θ), viewed as a function of θ as the random event, can be
represented in the form

X(θ) = a0H0

+

∞∑
i1=1

ai1H1(ξi1(θ))

+

∞∑
i1=1

i1∑
i2=1

ai1i2H2(ξi1(θ), ξi2(θ))

+

∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

+ · · · ,(3.1)

where Hn(ξi1 , . . . , ξin) denotes the Hermite-chaos of order n in the variables (ξi1 , . . . ,
ξin), where the Hn are Hermite polynomials in terms of the standard Gaussian vari-
ables ξ with zero mean and unit variance. Here ξ denotes the vector consisting of
n independent Gaussian variables (ξi1 , . . . , ξin). The above equation is the discrete
version of the original Wiener polynomial chaos expansion, where the continuous inte-
grals are replaced by summations. The general expression of the polynomials is given
by

Hn(ξi1 , . . . , ξin) = e
1
2 ξT ξ(−1)n

∂n

∂ξi1 · · · ∂ξin
e−

1
2 ξT ξ.(3.2)

For notational convenience, (3.1) can be rewritten as

X(θ) =
∞∑
j=0

âjΨj(ξ),(3.3)

where there is a one-to-one correspondence between the functions Hn(ξi1 , . . . , ξin)
and Ψj(ξ). The polynomial basis {Ψj} of Hermite-chaos forms a complete orthogonal
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basis, i.e.,

〈ΨiΨj〉 = 〈Ψ2
i 〉δij ,(3.4)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. This is
the inner product in the Hilbert space determined by the support of the Gaussian
variables

〈f(ξ)g(ξ)〉 =

∫
f(ξ)g(ξ)W (ξ)dξ,(3.5)

with weighting function

W (ξ) =
1√

(2π)n
e−

1
2 ξT ξ.(3.6)

What distinguishes the Hermite-chaos expansion from other possible expansions is
that the basis polynomials are Hermite polynomials in terms of Gaussian variables
and are orthogonal with respect to the weighting function W (ξ), which has the form
of an n-dimensional independent Gaussian probability density function.

4. The Wiener–Askey polynomial chaos. The Hermite-chaos expansion has
been proved to be effective in solving stochastic differential equations with Gaussian
inputs as well as certain types of non-Gaussian inputs [9], [8], [7], [20]; this can be
justified by the Cameron–Martin theorem [3]. However, for general non-Gaussian
random inputs, the optimal exponential convergence rate will not be realized. In
some cases the convergence rate is in fact severely deteriorated.

In order to deal with more general random inputs, we introduce the Wiener–
Askey polynomial chaos expansion as a generalization of the original Wiener-chaos
expansion. The expansion basis is the complete polynomial basis from the Askey
scheme (see section 2.3). As in section 3, we represent the general second-order
random process X(θ) as

X(θ) = a0I0

+

∞∑
i1=1

ci1I1(ζi1(θ))

+

∞∑
i1=1

i1∑
i2=1

ci1i2I2(ζi1(θ), ζi2(θ))

+

∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ))

+ · · · ,(4.1)

where In(ζi1 , . . . , ζin) denotes the Wiener–Askey polynomial chaos of order n in terms
of the random vector ζ = (ζi1 , . . . , ζin). In the Wiener–Askey chaos expansion, the
polynomials In are not restricted to Hermite polynomials but rather can be all types
of orthogonal polynomials from the Askey scheme in Figure 2.1. Again for notational
convenience, we rewrite (4.1) as

X(θ) =

∞∑
j=0

ĉjΦj(ζ),(4.2)
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Table 4.1
The correspondence of the types of Wiener–Askey polynomial chaos and their underlying ran-

dom variables (N ≥ 0 is a finite integer).

Random variables ζ Wiener–Askey chaos {Φ(ζ)} Support

Continuous Gaussian Hermite-chaos (−∞,∞)
gamma Laguerre-chaos [0,∞)
beta Jacobi-chaos [a, b]

uniform Legendre-chaos [a, b]
Discrete Poisson Charlier-chaos {0, 1, 2, . . . }

binomial Krawtchouk-chaos {0, 1, . . . , N}
negative binomial Meixner-chaos {0, 1, 2, . . . }
hypergeometric Hahn-chaos {0, 1, . . . , N}

where there is a one-to-one correspondence between the functions In(ζi1 , . . . , ζin)
and Φj(ζ). Since each type of polynomial from the Askey scheme forms a complete
basis in the Hilbert space determined by its corresponding support, we can expect
each type of Wiener–Askey expansion to converge to any L2 functional in the L2 sense
in the corresponding Hilbert functional space as a generalized result of the Cameron–
Martin theorem (see [3] and [16]). The orthogonality relation of the Wiener–Askey
polynomial chaos takes the form

〈ΦiΦj〉 = 〈Φ2
i 〉δij ,(4.3)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average, which is the
inner product in the Hilbert space of the variables ζ,

〈f(ζ)g(ζ)〉 =

∫
f(ζ)g(ζ)W (ζ)dζ(4.4)

or

〈f(ζ)g(ζ)〉 =
∑

ζ

f(ζ)g(ζ)W (ζ),(4.5)

in the discrete case. Here W (ζ) is the weighting function corresponding to the Wiener–
Askey polynomial chaos basis {Φi}; see the appendix for detailed formulas.

As pointed out in the appendix, some types of orthogonal polynomials from the
Askey scheme have weighting functions the same as the probability function of certain
types of random distributions. In practice, we then choose the type of independent
variables ζ in the polynomials {Φi(ζ)} according to the type of random distribution,
as shown in Table 4.1. It is clear that the original Wiener polynomial chaos corre-
sponds to the Hermite-chaos and is a subset of the Wiener–Askey polynomial chaos.
The Hermite-, Laguerre-, and Jacobi-chaos are continuous chaos, while Charlier-,
Meixner-, Krawtchouk-, and Hahn-chaos are discrete chaos. It is worthy mentioning
that the Legendre polynomials, which are a special case of the Jacobi polynomials with
parameters α = β = 0 (section A.1.3), correspond to an important distribution—the
uniform distribution. Due to the importance of the uniform distribution, we list it
separately in the table and term the corresponding chaos expansion as the Legendre-
chaos.

5. Applications of Wiener–Askey polynomial chaos. In this section we ap-
ply the Wiener–Askey polynomial chaos to solution of stochastic differential equations.
We first introduce the general procedure of applying the Wiener–Askey polynomial
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chaos, and then we solve a specific stochastic ordinary differential equation with differ-
ent types of random inputs. We demonstrate the convergence rates of Wiener–Askey
expansion by comparing the numerical results with the corresponding exact solution.

5.1. General procedure. Let us consider the stochastic differential equation

L(x, t, θ;u) = f(x, t; θ),(5.1)

where u := u(x, t; θ) is the solution and f(x, t; θ) is the source term. Operator L gen-
erally involves differentiations in space/time and can be nonlinear. Appropriate initial
and boundary conditions are assumed. The existence of the random parameter θ is
due to the introduction of uncertainty into the system via boundary conditions, initial
conditions, material properties, etc. The solution u, which is regarded as a random
process, can be expanded by the Wiener–Askey polynomial chaos as

u(x, t; θ) =

P∑
i=0

ui(x, t)Φi(ζ(θ)).(5.2)

Note that here the infinite summation has been truncated at the finite term P . The
above representation can be considered as a spectral expansion in the random di-
mension θ, and the random trial basis {Φi} is the Askey scheme-based orthogonal
polynomials discussed in section 4. The total number of expansion terms is (P + 1)
and is determined by the dimension (n) of random variable ζ and the highest order (p)
of the polynomials {Φi}:

(P + 1) =
(n + p)!

n!p!
.(5.3)

Upon substituting (5.2) into the governing equation (5.1), we obtain

L
(
x, t, θ;

P∑
i=0

uiΦi

)
= f(x, t; θ).(5.4)

A Galerkin projection of the above equation onto each polynomial basis {Φi} is then
conducted in order to ensure that the error is orthogonal to the functional space
spanned by the finite dimensional basis {Φi},

〈
L
(
x, t, θ;

P∑
i=0

uiΦi

)
,Φk

〉
= 〈f,Φk〉 , k = 0, 1, . . . , P.(5.5)

By using the orthogonality of the polynomial basis, we can obtain a set of (P +1) cou-
pled equations for each random mode ui(x, t), where i = {0, 1, . . . , P}. It should be
noted that by utilizing the Wiener–Askey polynomial chaos expansion (5.2), the ran-
domness is effectively transferred into the basis polynomials. Thus, the governing
equations for the expansion coefficients ui resulting from (5.5) are deterministic. Dis-
cretizations in space x and time t can be carried out by any conventional deterministic
techniques, e.g., Runge–Kutta solvers in time and the spectral/hp element method in
space for highly accurate solution in complex geometry [13].
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5.2. Stochastic ordinary differential equation. We consider the ordinary
differential equation

dy(t)

dt
= −ky, y(0) = ŷ,(5.6)

where the decay rate coefficient k is considered to be a random variable k(θ) with
certain distribution and mean value k̄. The probability function is f(k) for the con-
tinuous case or f(ki) for the discrete case. The deterministic solution is

y(t) = y0e
−k̄t,(5.7)

and the mean of the stochastic solution is

ȳ(t) = ŷ

∫
S

e−ktf(k)dk or ȳ(t) = ŷ
∑
i

e−kitf(ki),(5.8)

corresponding to the continuous and discrete distributions, respectively. The inte-
gration and summation are taken within the support defined by the corresponding
distribution.

By applying the Wiener–Askey polynomial chaos expansion (4.2) to the solution y
and random input k

y(t) =

P∑
i=0

yi(t)Φi, k =

P∑
i=0

kiΦi(5.9)

and substituting the expansions into the governing equation, we obtain

P∑
i=0

dyi(t)

dt
Φi = −

P∑
i=0

P∑
j=0

ΦiΦjkiyj(t).(5.10)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis. By
taking 〈.,Φl〉 and utilizing the orthogonality condition (4.3), we obtain the following
set of equations:

dyl(t)

dt
= − 1

〈Φ2
l 〉

P∑
i=0

P∑
j=0

eijlkiyj(t), l = 0, 1, . . . , P,(5.11)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any standard
ordinary differential equation solver can be employed here. In the following, the
standard second-order Runge–Kutta scheme is used.

5.3. Numerical results. In this section we present numerical results of the
stochastic ordinary differential equation by the Wiener–Askey polynomial chaos ex-
pansion. For the purpose of benchmarking, we will arbitrarily assume the type of
distributions of the decay parameter k and employ the corresponding Wiener–Askey
chaos expansion, although in practice there are certainly more favorable assumptions
about k depending on the specific physical background. We define the two error
measures for the mean and variance of the solution,

εmean(t) =

∣∣∣∣ ȳ(t) − ȳexact(t)

ȳexact(t)

∣∣∣∣ , εvar(t) =

∣∣∣∣σ(t) − σexact(t)

σexact(t)

∣∣∣∣ ,(5.12)
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Fig. 5.1. Solution with Gaussian random input by fourth-order Hermite-chaos. Left: Solution
of each random mode; Right: Error convergence of the mean and the variance.

where ȳ(t) = E[y(t)] is the mean value of y(t), and σ(t) = E[(y(t) − ȳ(t))
2
] is the

variance of the solution. The initial condition is fixed to be ŷ = 1, and the integration
is performed up to t = 1 (nondimensional time units).

5.3.1. Gaussian distribution and Hermite-chaos. In this section k is as-
sumed to be a Gaussian random variable with PDF

f(k) =
1√
2π

e−x2/2,(5.13)

which has zero mean value (k̄ = 0) and unit variance (σ2
k = 1). The exact stochastic

mean solution is

ȳ(t) = ŷet
2/2.(5.14)

The Hermite-chaos from the Wiener–Askey polynomial chaos family is employed as a
natural choice due to the fact that the random input is Gaussian. Figure 5.1 shows
the solution by the Hermite-chaos expansion. The convergence of errors of the mean
and variance as the number of expansion terms increases is shown on a semilog plot,
and it is seen that the exponential convergence rate is achieved. It is also noticed that
the deterministic solution remains constant as the mean value of k is zero; however,
the mean of the stochastic solution (random mode with index 0, y0) is nonzero and
grows with time.

5.3.2. Gamma distribution and Laguerre-chaos. In this section we assume
that the distribution of the decay parameter k is the gamma distribution with PDF
of the form

f(k) =
e−kkα

Γ(α + 1)
, 0 ≤ k < ∞, α > −1.(5.15)

The mean and variance of k are µk = k̄ = α + 1 and σ2
k = α + 1, respectively. The

mean of the stochastic solution is

ȳ(t) = ŷ
1

(1 + t)α+1
.(5.16)
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Fig. 5.2. Solution with gamma random input by fourth-order Laguerre-chaos. Left: Solution of
each mode (α = 0: exponential distribution); Right: Error convergence of the mean and the variance
with different α.

The special case of α = 0 corresponds to another important distribution: the exponen-
tial distribution. Because the random input has a gamma distribution, we employ the
Laguerre-chaos as the specific Wiener–Askey chaos (see Table 4.1). Figure 5.2 shows
the evolution of each solution mode over time, together with the convergence of the
errors of the mean and the variance with different values of parameter α. The special
case of exponential distribution (α = 0) is included. Again the mean of the stochastic
solution and deterministic solution show significant difference. As α becomes larger,
the spread of the gamma distribution is larger, and this leads to larger errors with
fixed number of Laguerre-chaos expansion. However, the exponential convergence
rate is still realized.

5.3.3. Beta distribution and Jacobi-chaos. We now assume the distribution
of the random variable k to be the beta distribution with PDF of the form

f(k;α, β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1, β + 1)
, −1 < k < 1, α, β > −1,(5.17)

where B(α, β) is the beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). We then
employ the Jacobi-chaos expansion, which has the weighting function in the form
of the beta distribution. An important special case is α = β = 0, in which the
distribution becomes the uniform distribution and the corresponding Jacobi-chaos
becomes the Legendre-chaos.

Figure 5.3 shows the solution by the Jacobi-chaos. On the left is the evolution
of all random modes of the Legendre-chaos (α = β = 0) with uniformly distributed
random input. In this case, k has zero mean value and the deterministic solution
remains constant, but the mean of the stochastic solution grows over time. The
convergence of errors of the mean and the variance of the solution with respect to the
order of Jacobi-chaos expansion is shown on the semilog scale, and the exponential
convergence rate is obtained with different sets of parameter values α and β.
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Fig. 5.3. Solution with beta random input by fourth-order Jacobi-chaos. Left: Solution of each
mode (α = β = 0: Legendre-chaos); Right: Error convergence of the mean and the variance with
different α and β.
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Fig. 5.4. Solution with Poisson random input by fourth-order Charlier-chaos. Left: Solution
of each mode (λ = 1); Right: Error convergence of the mean and the variance with different λ.

5.3.4. Poisson distribution and Charlier-chaos. We now assume the distri-
bution of the decay parameter k to be Poisson of the form

f(k;λ) = e−λλk

k!
, k = 0, 1, 2, . . . , λ > 0.(5.18)

The mean and variance of k are µk = k̄ = λ and σ2
k = λ, respectively. The analytic

solution of the mean stochastic solution is

ȳ(t) = ŷe−λ+λe−t

.(5.19)

The Charlier-chaos expansion is employed to represent the solution process, and the
results with a fourth-order expansion are shown in Figure 5.4. Once again we see the
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Fig. 5.5. Solution with binomial random input by fourth-order Krawtchouk-chaos. Left: Solu-
tion of each mode (p = 0.5, N = 5); Right: Error convergence of the mean and the variance with
different p and N .

noticeable difference between the deterministic solution and the mean of the stochas-
tic solution. An exponential convergence rate is obtained for different values of the
parameter λ.

5.3.5. Binomial distribution and Krawtchouk-chaos. In this section the
distribution of the random input k is assumed to be binomial:

f(k; p,N) =

(
N

k

)
pk(1 − p)N−k, 0 ≤ p ≤ 1, k = 0, 1, . . . , N.(5.20)

The exact mean solution of (5.6) is

ȳ(t) = ŷ
[
1 − (1 − e−t

)
p
]N

.(5.21)

Figure 5.5 shows the solution with fourth-order Krawtchouk-chaos. With different
parameter sets, Krawtchouk-chaos expansion correctly approximates the exact solu-
tion, and the convergence rate with respect to the order of expansion is exponential.

5.3.6. Negative binomial distribution and Meixner-chaos. In this section
we assume that the distribution of the random input of k is the negative binomial
distribution

f(k;β, c) =
(β)k
k!

(1 − c)βck, 0 ≤ c ≤ 1, β > 0, k = 0, 1, . . . .(5.22)

In case of β being integer, this is often called the Pascal distribution. The exact mean
solution of (5.6) is

ȳ(t) = ŷ

(
1 − ce−t

1 − c

)−β

.(5.23)

The Meixner-chaos is chosen since the random input is negative binomial (see Ta-
ble 4.1). Figure 5.6 shows the solution with fourth-order Meixner-chaos. Exponential
convergence rate is observed by the Meixner-chaos approximation with different sets
of parameter values.
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Fig. 5.6. Solution with negative binomial random input by fourth-order Meixner-chaos. Left:
Solution of each mode (β = 1, c = 0.5); Right: Error convergence of the mean and the variance
with different β and c.
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Fig. 5.7. Solution with hypergeometric random input by fourth-order Hahn-chaos. Left: Solu-
tion of each mode (α = β = 5, N = 4); Right: Error convergence of the mean and the variance with
different α, β, and N .

5.3.7. Hypergeometric distribution and Hahn-chaos. We now assume that
the distribution of the random input k is hypergeometric:

f(k;α, β,N) =

(
α
k

)(
β

N−k

)
(
α+β
N

) , k = 0, 1, . . . , N, α, β > N.(5.24)

In this case, the optimal Wiener–Askey polynomial chaos is the Hahn-chaos (Ta-
ble 4.1). Figure 5.7 shows the solution by fourth-order Hahn-chaos. It can be seen
from the semilog plot of the errors of the mean and variance of the solution that
an exponential convergence rate is obtained with respect to the order of Hahn-chaos
expansion for different sets of parameter values.
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Table 5.1
Error convergence of the mean solution by Monte Carlo simulation: N is the number of real-

izations and εmean is the error of mean solution defined in (5.12); random input has exponential
distribution.

N 1× 102 1× 103 1× 104 1× 105

εmean 4.0× 10−2 1.1× 10−2 5.1× 10−3 6.5× 10−4

5.4. Efficiency of Wiener–Askey chaos expansion. We have demonstrated
the exponential convergence of the Wiener–Askey polynomial chaos expansion. From
the results above, we notice that it normally takes an expansion order P = 2 ∼ 4
for the error of the mean solution to reach the order of O(10−3). Equation (5.11)
shows that the Wiener–Askey chaos expansion with highest order of P results in a
set of (P + 1) coupled ordinary differential equations. Thus, the computational cost
is slightly more than (P + 1) times that of a single realization of the deterministic
integration. On the other hand, if the Monte Carlo simulation is used, it normally
requires O(104) ∼ O(105) realizations to reduce the error of the mean solution to
O(10−3). For example, if k is an exponentially distributed random variable, the error
convergence of the mean solution of the Monte Carlo simulation is shown in Table
5.1.

Monte Carlo simulations with other types of random inputs as discussed in this
paper have also been conducted and the results are similar. The actual numerical
values of the errors with a given number of realizations may vary depending on the
property of the random number generators used, but the order of magnitude should
be the same. Techniques such as variance reduction are not used. Although such
techniques, if applicable, can speed up Monte Carlo simulation by an order or more,
depending on the specific problem, the advantage of Wiener–Askey polynomial chaos
expansion is obvious. For the ordinary differential equation discussed in this paper,
speed-up of order O(103) ∼ O(104) compared with straight Monte Carlo simulations
can be expected. However, for more complicated problems where there exist multidi-
mensional random inputs, the multidimensional Wiener–Askey chaos is needed. The
total number of expansion terms increases quickly for large dimensional problems (see
(5.3)). Thus the efficiency of the chaos expansion will be reduced.

6. Representation of arbitrary random inputs. As demonstrated above,
with appropriately chosen Wiener–Askey polynomial chaos expansion according to
the type of the random input, optimal exponential convergence rate of the chaos
expansion can be realized. In practice, we often encounter distributions of random
inputs not belonging to the basic types of distributions listed in Table 4.1, or even
when they do belong to certain basic types, the correspondence may not be explicitly
known. In such cases, we need to project the input process onto the Wiener–Askey
polynomial chaos basis directly in order to solve the differential equation.

Let us assume in the stochastic ordinary differential equation of (5.6) that the
distribution of the decay parameter k is known in the form of probability function
f(k). The representation of k by the Wiener–Askey polynomial chaos expansion takes
the form

k =
P∑
i=0

kiΦi, ki =
〈kΦi〉
〈Φ2

i 〉
,(6.1)

where the operation 〈·, ·〉 denotes the inner product in the Hilbert space spanned by
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the Wiener–Askey chaos basis {Φi}, i.e.,

ki =
1

〈Φ2
i 〉
∫

kΦi(ζ)g(ζ)dζ or ki =
1

〈Φ2
i 〉
∑
j

kΦi(ζj)g(ζj),(6.2)

where g(x) and g(xi) are the probability functions of the random variable ζ in the
Wiener–Askey polynomial chaos for continuous and discrete cases, respectively. The
underlying assumption here is that the random variable ζ is fully dependent on the
target random variable k. We notice that the above equations are mathematically
meaningless due to the fact that the support of k and ζ are likely to be different. In
other words, the random variables k and ζ could belong to two different probability
spaces (Ω,A, P ) with different event space Ω, σ-algebra A and probability measure P .

6.1. Analytical approach. In order to conduct the above projection, we need
to transform the fully correlated random variables k and ζ to the same probability
space. Under the theory of probability, this is always possible. In practice, it is
convenient to transform them to the uniformly distributed probability space u ∈
U(0, 1). In fact, the inverse procedure is an important technique for random number
generation, where one first generates the uniformly distributed numbers as the seeds
and then performs the inverse transformation according to the desired distribution
function. Without loss of generality, we discuss in detail the case in which k and ζ
are continuous random variables.

Let us assume that the random variable u is uniformly distributed in (0, 1) and
the PDFs for k and ζ are f(k) and g(ζ), respectively. A transformation of variables
in probability space shows that

du = f(k)dk = dF (k), du = g(ζ)dζ = dG(ζ),(6.3)

where F and G are the distribution function of k and ζ, respectively,

F (k) =

∫ k

−∞
f(t)dt, G(ζ) =

∫ ζ

−∞
g(t)dt.(6.4)

If we require the random variables k and ζ to be transformed to the same uniformly
distributed random variable u, we obtain

u = F (k) = G(ζ).(6.5)

After inverting the above equations, we obtain

k = F−1(u) ≡ h(u), ζ = G−1(u) ≡ l(u).(6.6)

Now that we have effectively transformed the two different random variables k and ζ
to the same probability space defined by u ∈ U(0, 1), the projection (6.2) can be
performed, i.e.,

ki =
1

〈Φ2
i 〉
∫

kΦi(ζ)g(ζ)dζ

=
1

〈Φ2
i 〉
∫ 1

0

h(u)Φi(l(u))du.(6.7)

In general, the above integral cannot be integrated analytically. However, it can
be efficiently evaluated with the Gauss quadrature in the closed domain [0, 1] with
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sufficient accuracy. The analytical forms of the inversion relations (6.6) are known for
some basic distributions: Gaussian, exponential, beta, etc. (see [6]).

The above procedure works equally well for the discrete distributions, where the
inversion procedure is slightly modified and the integral in (6.7) is replaced by sum-
mation.

6.2. Numerical approach. The procedure described above requires that the
distribution functions F (k) and G(ζ) be known and the inverse functions F−1 and G−1

exist and be known as well. In practice, these conditions are not always satisfied. Of-
ten we know only the probability function f(k) for a specific problem. The probability
function g(ζ) is known from the choice of Wiener–Askey polynomial chaos, but the
inversion is not always known either. In this case, we can perform the projection (6.2)
directly by Monte Carlo integration, where a large ensemble of random numbers k
and ζ are generated. The requirement that k and ζ be transformed to the same prob-
ability space u ∈ U(0, 1) by (6.5) implies that each pair of k and ζ has to be generated
from the same seed of uniformly generated random number u ∈ U(0, 1).

6.3. Results. In this section we present numerical examples of representing an
arbitrarily given random distribution. More specifically, we present results of us-
ing Hermite-chaos expansion for some non-Gaussian random variables. Although in
theory, Hermite-chaos converges and it has been successfully applied to some non-
Gaussian processes [8], [20], we demonstrate numerically that an optimal exponential
convergence rate is not realized.

6.3.1. Approximation of gamma distribution by Hermite-chaos. Let us
assume that the decay parameter k in the ordinary differential equation (5.6) is a
random variable with gamma distribution (5.15). We consider the specific case of
α = 0. In this case k is a random variable with exponential distribution and with
PDF of the form

f(k) = e−k, k > 0.(6.8)

The inverse of its distribution function F (k) (equation (6.6)) is known as

h(u) ≡ F−1(u) = − ln(1 − u), u ∈ U(0, 1).(6.9)

We then use Hermite-chaos to represent k instead of the optimal Laguerre-chaos.
The random variable ζ in (6.7) is a standard Gaussian variable with PDF g(ζ) =

(1/
√

2π )e−ζ2/2. The inverse of the Gaussian distribution G(ζ) is known as

l(u) ≡ G−1(u) = sign

(
u− 1

2

)(
t− c0 + c1t + c2t

2

1 + d1t + d2t2 + d3t3

)
,(6.10)

where

t =

√
− ln [min(u, 1 − u)]

2

and

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

The formula is from Hastings [10], and the numeric values of the constants have
absolute error less than 4.5 × 10−4 (also see [6]).
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Fig. 6.1. Approximation of exponential distribution with Hermite-chaos. Left: The expansion
coefficients; Right: The PDF of different orders of approximations.

In Figure 6.1 we show the result of the approximation of the exponential distri-
bution by the Hermite-chaos. The expansion coefficients ki are shown on the left, and
we see that the major contributions of the Hermite-chaos approximation are from the
first three terms. The PDFs of different orders of the approximations are shown on
the right, together with the exact PDF of the exponential distribution. We notice that
the third-order approximation gives fairly good results, and fifth-order Hermite-chaos
is very close to the exact distribution. The Hermite-chaos does not approximate the
PDF well at x ∼ 0, where the PDF reaches its peak at 1. In order to capture this
rather sharp region, more Hermite-chaos terms are needed.

The above result is the representation of the random input k for the ordinary
differential equation of (5.6). If the optimal Wiener–Askey chaos is chosen, in this
case the Laguerre-chaos, only one term is needed to represent k exactly. We can
expect that if the Hermite-chaos is used to solve the differential equation in this
case, the solution would not retain the exponential convergence as realized by the
Laguerre-chaos.

In Figure 6.2 the errors of the mean solution defined by (5.12) with Laguerre-
chaos and Hermite-chaos to the ordinary differential equation of (5.6) are shown. The
random input of k has exponential distribution, which implies that the Laguerre-chaos
is the optimal Wiener–Askey polynomial chaos. It is seen from the result that the
exponential convergence rate is not obtained by the Hermite-chaos as opposed to the
Laguerre-chaos.

6.3.2. Approximation of beta distribution by Hermite-chaos. We now
assume that the distribution of k is a beta distribution; see (5.17). We return to the
more conventional definition of beta distribution in the domain [0, 1]:

f(k) =
1

B(α + 1, β + 1)
kα(1 − k)β , α, β > −1, 0 ≤ k ≤ 1.(6.11)

Figure 6.3 shows the PDF of first-, third-, and fifth-order Hermite-chaos approxi-
mations to the beta random variable. The special case of α = β = 0 is the important
uniform distribution. It can be seen that the Hermite-chaos approximation converges
to the exact solution as the number of expansion terms increases. Oscillations are ob-
served near the corners of the square. This is in analogy with the Gibb’s phenomenon,
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which occurs when Fourier expansions are used to approximate functions with sharp
corners. Since all Wiener–Askey polynomial chaos expansions can be considered as
spectral expansions in the random dimension, the oscillations here can be regarded
as stochastic Gibb’s phenomena. For uniform distribution, Hermite-chaos does not
work very well due to the stochastic Gibb’s phenomenon even when more higher-
order terms are added. On the other hand, the first-order Jacobi-chaos expansion is
already exact. In addition to the exponential convergence, the proper Wiener–Askey
basis leads to dramatic lowering of the dimensionality of the problem.

7. Conclusion. We have proposed a Wiener–Askey polynomial chaos expansion
to represent stochastic processes and further model the uncertainty in practical appli-
cations. The Wiener–Askey polynomial chaos can be regarded as the generalization
of the homogeneous chaos first proposed by Wiener in 1938 [19]. The original Wiener
expansion employs the Hermite polynomials in terms of Gaussian random variables.
In the Wiener–Askey chaos expansion, the basis polynomials are those from the Askey
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scheme of hypergeometric orthogonal polynomials, and the underlying variables are
random variables chosen according to the weighting function of the polynomials. We
give a general guideline of choosing the optimal Wiener–Askey polynomial chaos ac-
cording to the random inputs. By solving a stochastic ordinary differential equation,
we demonstrate numerically that the Wiener–Askey polynomial chaos exhibits an ex-
ponential convergence rate. For any given type of random input, the Wiener–Askey
polynomial chaos converges in general, although the exponential rate is not retained
if the optimal chaos is not chosen. The Wiener–Askey polynomial chaos proposed in
the present paper can deal with general random inputs more effectively than the orig-
inal Wiener–Hermite chaos. It can be extended to more complex stochastic systems
governed by partial differential equations without any fundamental difficulties.

Appendix A. Some important orthogonal polynomials in the Askey
scheme. In this section we briefly review the definitions and properties of some
important orthogonal polynomials from the Askey scheme, which are discussed in
this paper for Wiener–Askey polynomial chaos.

A.1. Continuous polynomials.

A.1.1. Hermite polynomial Hn(x) and Gaussian distribution.
Definition:

Hn(x) = (2x)n 2F0

(
−n

2
,−n− 1

2
; ;− 1

x2

)
.(A.1)

Orthogonality :

1√
π

∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = 2nn!δmn.(A.2)

Recurrence relation:

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.(A.3)

Rodriguez formula:

e−x2

Hn(x) = (−1)n
dn

dxn

(
e−x2)

.(A.4)

The weighting function is w(x) = e−x2

from the orthogonality condition (A.2).
After rescaling x by

√
2, the weighting function is the same as the PDF of a standard

Gaussian random variable with zero mean and unit variance.

A.1.2. Laguerre polynomial L(α)
n (x) and gamma distribution.

Definition:

L(α)
n (x) =

(α + 1)n
n!

1F1(−n;α + 1;x).(A.5)

Orthogonality :∫ ∞

0

e−xxαL(α)
m (x)L(α)

n (x)dx =
Γ(n + α + 1)

n!
δmn, α > −1.(A.6)
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Recurrence relation:

(n + 1)L
(α)
n+1(x) − (2n + α + 1 − x)L(α)

n (x) + (n + α)L
(α)
n−1(x) = 0.(A.7)

Rodriguez formula:

e−xxαL(α)
n (x) =

1

n!

dn

dxn

(
e−xxn+α

)
.(A.8)

Recall that the gamma distribution has the PDF

f(x) =
xαe−x/β

βα+1Γ(α + 1)
, α > −1, β > 0.(A.9)

Despite the scale parameter β and a constant factor Γ(α + 1), this is the same as the
weighting function of the Laguerre polynomial.

A.1.3. Jacobi polynomial P (α,β)
n (x) and beta distribution.

Definition:

P (α,β)
n (x) =

(α + 1)n
n!

2F1

(
−n, n + α + β + 1;α + 1;

1 − x

2

)
.(A.10)

Orthogonality :∫ 1

−1

(1 − x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x)dx = h2
nδmn, α > −1, β > −1,(A.11)

where

h2
n =

2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

Γ(n + α + β + 1)n!
.

Recurrence relation:

xP (α,β)
n (x) =

2(n + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
P

(α,β)
n+1 (x)

+
β2 − α2

(2n + α + β)(2n + α + β + 2)
P (α,β)
n (x)

+
2(n + α)(n + β)

(2n + α + β)(2n + α + β + 1)
P

(α,β)
n−1 (x).(A.12)

Rodriguez formula:

(1 − x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2nn!

dn

dxn

[
(1 − x)n+α(1 + x)n+β

]
.(A.13)

The beta distribution has the PDF

f(x) =
(x− a)β(b− x)α

(b− a)α+β+1B(α + 1, β + 1)
, a ≤ x ≤ b,(A.14)

where B(p, q) is the beta function defined as

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
.(A.15)

It is clear that despite the constant factor, the weighting function of the Jacobi poly-
nomial w(x) = (1 − x)α(1 + x)β from (A.11) is the same as the PDF of the beta
distribution defined in domain [−1, 1]. When α = β = 0, the Jacobi polynomials
become the Legendre polynomials, and the weighting function is a constant which
corresponds to the important uniform distribution.
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A.2. Discrete polynomials.

A.2.1. Charlier polynomial Cn(x; a) and Poisson distribution.
Definition:

Cn(x; a) = 2F0

(
−n,−x; ;−1

a

)
.(A.16)

Orthogonality :

∞∑
x=0

ax

x!
Cm(x; a)Cn(x; a) = a−nean!δmn, a > 0.(A.17)

Recurrence relation:

−xCn(x; a) = aCn+1(x; a) − (n + a)Cn(x; a) + nCn−1(x; a).(A.18)

Rodriguez formula:

ax

x!
Cn(x; a) = ∇n

(
ax

x!

)
,(A.19)

where ∇ is the backward difference operator (2.12).
The probability function of the Poisson distribution is

f(x; a) = e−a a
x

x!
, k = 0, 1, 2, . . . .(A.20)

Despite the constant factor e−a, this is the same as the weighting function of Charlier
polynomials.

A.2.2. Krawtchouk polynomial Kn(x; p, N) and binomial distribution.
Definition:

Kn(x; p,N) = 2F1

(
−n,−x;−N ;

1

p

)
, n = 0, 1, . . . , N.(A.21)

Orthogonality :

N∑
x=0

(
N

x

)
px(1 − p)N−xKm(x; p,N)Kn(x; p,N) =

(−1)nn!

(−N)n

(
1 − p

p

)n

δmn,(A.22)

0 < p < 1.

Recurrence relation:

−xK(x; p,N) = p(N − n)Kn+1(x; p,N) − [p(N − n) + n(1 − p)]Kn(x; p,N)

+ n(1 − p)Kn−1(x; p,N).(A.23)

Rodriguez formula:(
N

x

)(
p

1 − p

)x

Kn(x; p,N) = ∇n

[(
N − n

x

)(
p

1 − p

)x]
.(A.24)

Clearly, the weighting function from (A.22) is the probability function of the
binomial distribution.



642 DONGBIN XIU AND GEORGE EM KARNIADAKIS

A.2.3. Meixner polynomial Mn(x;β, c) and negative binomial distri-
bution.

Definition:

Mn(x;β, c) = 2F1

(
−n,−x;β; 1 − 1

c

)
.(A.25)

Orthogonality :

∞∑
x=0

(β)x
x!

cxMm(x;β, c)Mn(x;β, c) =
c−nn!

(β)n(1 − c)β
δmn, β > 0, 0 < c < 1.

(A.26)

Recurrence relation:

(c− 1)xMn(x;β, c) = c(n + β)Mn+1(x;β, c) − [n + (n + β)c]Mn(x;β, c)

+ nMn−1(x;β, c).(A.27)

Rodriguez formula:

(β)xc
x

x!
Mn(x;β, c) = ∇n

[
(β + n)xc

x

x!

]
.(A.28)

The weighting function is

f(x) =
(β)x
x!

(1 − c)βcx, 0 < p < 1, β > 0, x = 0, 1, 2, . . . .(A.29)

It can verified that it is the probability function of a negative binomial distribution.
In the case in which β is an integer, it is often called the Pascal distribution.

A.2.4. Hahn polynomial Qn(x;α, β, N) and hypergeometric distribu-
tion.

Definition:

Qn(x;α, β,N) = 3F2(−n, n + α + β + 1,−x;α + 1,−N ; 1), n = 0, 1, . . . , N.
(A.30)

Orthogonality : For α > −1 and β > −1 or for α < −N and β < −N ,

N∑
x=0

(
α + x

x

)(
β + N − x

N − x

)
Qm(x;α, β,N)Qn(x;α, β,N) = h2

nδmn,(A.31)

where

h2
n =

(−1)n(n + α + β + 1)N+1(β + 1)nn!

(2n + α + β + 1)(α + 1)n(−N)nN !
.

Recurrence relation:

−xQn(x) = AnQn+1(x) − (An + Cn)Qn(x) + CnQn−1(x),(A.32)

where

Qn(x) := Qn(x;α, β,N)



THE WIENER–ASKEY POLYNOMIAL CHAOS 643

and 


An =
(n + α + β + 1)(n + α + 1)(N − n)

(2n + α + β + 1)(2n + α + β + 2)
,

Cn =
n(n + α + β + N + 1)(n + β)

(2n + α + β)(2n + α + β + 1)
.

Rodriguez formula:

w(x;α, β,N)Qn(x;α, β,N) =
(−1)n(β + 1)n

(−N)n
∇n[w(x;α + n, β + n,N − n)],(A.33)

where

w(x;α, β,N) =

(
α + x

x

)(
β + N − x

N − x

)
.

If we set α = −α̃− 1 and β = −β̃ − 1, we obtain

w̃(x) =
1(

N−α̃−β̃−1
N

)
(
α̃
x

)(
β̃

N−x

)
(
α̃+β̃
N

) .

Apart from the constant factor 1/(N−α̃−β̃−1
N ), this is the definition of a hypergeometric

distribution.
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