Wave Equation Based Interpolation

Darrell Swenson, Jeroen Stinstra, Kedar Aras, Brett Burton, Rob MacLeod

Department of Bioengineering, University of Utah Scientific Computing and Imaging Institute (SCI) Cardiovascular Research and Training Institute (CVRTI)

Cardiac Mapping

Discrete Electrical Measurements

Interpolation

Isocontours

Cardiac Mapping

Needle Electrodes

Volumetric Interpolation

Potential Maps

Relative min and max
Activation times
Gradients

- Direction
- Border zones

Interpolation

Interpolation

Interpolation

Interpolation

U.

Interpolation

Interpolation

Interpolation

U.

Interpolation

U.

Interpolation

Interpolation

U.

Interpolation

U.

Interpolation

Interpolation

U.

Interpolation

U.

Interpolation

Interpolation

0

Interpolation

Interpolation

Interpolation

Interpolation

Interpolation

Wave Equation Based

Wave Equation Based

Wave Equation Based

0

Wave Equation Based

0

Wave Equation Based

Wave Equation Based

0

Wave Equation Based

0

Wave Equation Based

Wave Equation Based

Surface WEB Interp.

Implementation

Create test data set
Linear Interpolation
Laplacian Interpolation
WEB Linear and Laplacian Interpolation

- Time align data
- Interpolate potentials
- Interpolate activation times
- Re-align potentials by activation time

Evaluate results

Simulated Data

Dr. Natalia Trayanova

Linear Interpolation

Tetrahedral Mesh
Barycentric coordinate linear interpolation

Laplacian Interpolation

Laplacian interpolation

- Minimize the Laplacian of the mesh
- Electrode data as boundary conditions
- FE solution of the discrete Laplacian operator

Evaluation Criteria

0.

Evaluation Criteria

$$
\begin{aligned}
& \text { Root Mean Squared Error } \\
& R M S E=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(V_{i}^{i n}-V_{i}^{m}\right)^{2}}
\end{aligned}
$$

Evaluation Criteria

Root Mean Squared Error
 $$
R M S E=\sqrt{\left.\frac{1}{n} \sum_{i=1}^{n}\left(\sqrt{V_{i}^{2 n}}\right)-V_{i}^{m}\right)^{2}}
$$
 Interpolated Voltage
 Potential

Evaluation Criteria

Root Mean Squared Error

Interpolated Voltage
Potential
Measured Voltage
Potential

Evaluation Criteria

Root Mean Squared Error

$$
R M S E=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\sqrt{\left(V_{i}^{i n}\right)-\left(V_{i}^{m}\right)^{2}}\right.}
$$

Interpolated Voltage
Potential

Measured Voltage
Potential

Correlation Coefficient

$$
C C=\frac{\sum_{i=1}^{n}\left(V_{i}^{i n}-\bar{V}_{i}^{i n}\right)\left(V_{i}^{m}-\bar{V}_{i}^{m}\right)}{\sqrt{\sum_{i=1}^{n}\left(V_{i}^{i n}-\bar{V}_{i}^{i n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(V_{i}^{m}-\bar{V}_{i}^{m}\right)^{2}}}
$$

Evaluation Criteria

Root Mean Squared Error

$$
R M S E=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\sqrt{\left(V_{i}^{i n}\right)-\left(V_{i}^{m}\right)^{2}}\right.}
$$

Interpolated Voltage
Potential

Measured Voltage
Potential

Correlation Coefficient

$$
C C=\frac{\sum_{i=1}^{n}\left(V_{i}^{i n}-\bar{V}_{i}^{i n}\right)\left(V_{i}^{m}-\bar{V}_{i}^{m}\right)}{\sqrt{\sum_{i=1}^{n}\left(V_{i}^{i n}-\bar{V}_{i}^{i n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(V_{i}^{m}-\bar{V}_{i}^{m}\right)^{2}}}
$$

Max Gradient Relative Error

$$
\text { MaxGradRE }=M A X\left(\frac{\nabla V_{i}^{i n}-\nabla V_{i}^{m}}{\nabla V_{i}^{m}}\right)
$$

Results

RMSE

Mean CC
Max Grad RE

Visual Inspection

Gold Standard
Non-WEB Linear

Discussion

WEB methods do not improve global statistics

- Preserves focal facet of the activation wave
- WEB assumptions not as accurate transmuraly as they are across the epicardium

Discussion

WEB methods preserve gradients

- More than 3 times more accurate gradients
- Wave front delineated better

Conclusion

What are we looking for

- Gradients
- Activation front
- Relative minimum and maximum potentials

Questions

