
ZSWEEP: An Efficient and Exact Projection Algorithm for
Unstructured Volume Rendering

Ricardo Farias1;� Joseph S. B. Mitchell1;† Cláudio T. Silva2;‡

1University at Stony Brook 2AT&T Labs-Research

Abstract

We present a simple new algorithm that performs fast and
memory-efficient cell projection for (exact) rendering of un-
structured datasets. The main idea of the “ZSweep” algorithm
is very simple; it is based on sweeping the data with a plane
parallel to the viewing plane, in order of increasing z, project-
ing the faces of cells that are incident to vertices as they are
encountered by the sweep plane. The efficiency arises from
the fact that the algorithm exploits the implicit (approximate)
global ordering that the z-ordering of the vertices induces on
the cells that are incident on them. The algorithm projects cells
by projecting each of their faces, with special care taken to
avoid double projection of internal faces and to assure correct-
ness in the projection order. The contribution for each pixel
is computed in stages, during the sweep, using a short list of
ordered face intersections, which is known to be correct and
complete at the instant that each stage of the computation is
completed.

The ZSweep algorithm is simple enough to be readily
adaptable to general (non-tetrahedral) cell formats. It is mem-
ory efficient, since its auxiliary data structures have only to
store partial information taken from a small number of “slices”
of the dataset. We also introduce a simple technique of data
sparsification, which may be of interest in its own right.

Our implementation is hardware-independent and handles
datasets containing tetrahedral and/or hexahedral cells. We
give experimental evidence that our method is competitive, up
to 5 times faster than the best previously-known exact algo-
rithms that use comparable amounts of memory, while using
much less memory than ray-casting.

1 Introduction

We study the problem of rendering unstructured volumetric
data. In this paper, our focus is on direct volume render-
ing, a term used to define a particular set of rendering tech-
niques which avoids generating intermediary (surface) repre-
sentations of the volume data. Instead, the scalar field is gen-
erally modeled as a cloud-like material, and rendered by com-
puting a set of lighting equations. In general, while evaluating
the volume rendering equations [12], it is necessary to have,

�Department of Applied Mathematics and Statistics, State Uni-
versity of New York at Stony Brook, Stony Brook, NY 11794-3600;
rfarias@ams.sunysb.edu.

†Department of Applied Mathematics and Statistics, State Uni-
versity of New York at Stony Brook, Stony Brook, NY 11794-3600;
jsbm@ams.sunysb.edu.

‡AT&T Labs-Research, 180 Park Ave., PO Box 971, Florham
Park, NJ 07932; csilva@research.att.com.

for each line of sight (ray) through an image pixel, the sorted
order of the cells intersected by the ray, so that the overall in-
tegral in the rendering equation can be evaluated.

Our main contribution in this paper is a very fast and
memory-efficient algorithm for rendering unstructured grids.
In particular, we propose a novel solution to the computation
of the sorted order of the cells intersected by all the rays in
a given image. The algorithm is simple and is based on the
sweep paradigm. The algorithm has been fully implemented;
our experiments show that we obtain significant improvements
in speed, by up to a factor of 5 over the prior state-of-the-
art. Further, with some new optimizations we introduce, based
on an idea of “data sparsification” in storing the main dataset,
we improve on the memory usage of prior sweep-based algo-
rithms.

Related Work

Early work in adapting ray tracing techniques for rendering
unstructured grids is described in Garrity [8] and Uselton [19].
These techniques are “exact”, in the sense that in principle
(i.e., without accounting for degeneracies), for each pixel, a
correct cell stabbing order is computed. Unfortunately, these
techniques tend to be relatively slow, despite the optimizations
proposed in the respective articles.

Shirley and Tuchman [15] show how to exploit polygon-
based graphics hardware for computing the volume rendering
equations for one tetrahedron. By using the MPVO technique
of Williams [20] to visibility sort the cells in back-to-front
order, they propose a “projective” method for rendering un-
structured grids. This particular projective technique had sev-
eral limitations, including the fact that the MPVO technique
of Williams is only able to generate “correct” visibility or-
der for certain types of datasets, and the actual approximation
proposed in [15] generates visual artifacts. Improving on the
Shirley and Tuchman technique, Stein et al. [18] propose tech-
niques to explore texture mapping to improve the visual qual-
ity, and an O(n2) sorting algorithm which is able to compute
correct visibility order for general acyclic unstructured grids.
Their work is further improved by Williams et al [21], Silva et
al [17], and Comba et al [7], leading to almost linear-time (in
practice) “exact” visibility sorting techniques. Max et al [13]
proposed a different sorting technique based on “power” sort-
ing. This technique is more restricted than the MPVO-sorted
grids, in fact, it is only guaranteed to produce correct sorting
results for Delaunay triangulations. Despite its shortcomings,
this technique is quite useful, and has been used extensively
in practice, leading to excellent rendering times (see Cignoni
et al [6, 5, 4], and Wittenbrink [22]). Recently, Cignoni and
De Floriani [3] have proposed a more general extension of
power sorting, but provide little experimental results.



Since “projective” methods work by projecting, in visibil-
ity order, the polyhedral cells of a mesh onto the image plane,
and incrementally compositing the cell’s color and opacity into
the final image, it is crucial to these methods to compute a
correct visibility ordering of the cells. Strictly speaking, the
projective methods that do not use a provably correct visibil-
ity order algorithm are not exact, since incorrect projection
leads to wrong images. Because these techniques render each
tetrahedron one at a time, it is not possible to correctly handle
grids that contain cycles. (Note that this is not a problem for
ZSweep, and in general for ray casting based techniques.)

The plane sweep paradigm, which is based on processing
geometric entities in an order determined by passing a line or
a plane over the data, has been used widely in computational
geometry for the design of efficient algorithms; see [14]. It
has also been used in devising efficient volume rendering al-
gorithms.

Giersten [9] pioneered the use of sweep algorithms in vol-
ume rendering. His sweep algorithm is based on a sweep-
plane that is orthogonal to the viewing plane (in particular,
orthogonal to the y-axis). Events in the sweep are determined
by vertices in the dataset and by values of y that correspond
to the pixel rows. When the sweep plane passes over a vertex,
an “Active Cell List” (ACL) is updated accordingly, so that
it stores the set of cells currently intersected by the sweep-
plane. When the sweep plane reaches a y-value that defines
the next row of pixels, the current ACL is used to process that
row, casting rays, corresponding to the values of x that deter-
mine the pixels in the row, through a regular grid (hash table)
that stores the elements of the ACL. This method has three
major advantages: It is not necessary to store explicitly the
connectivity between the cells; it replaces the relatively ex-
pensive operation of 3D ray-casting with a simpler 2D regular
grid ray-casting, and it exploits coherence of the data between
scanlines. The main disadvantage of the method is that the
regular grid utilized in the 2D ray-casting may cause a loss of
resolution in the rendering, while leading to possible aliasing
effects (both spatial and temporal).

Following the same basic idea of sweeping the data, Yagel
presented a different approach to rendering unstructured grid
data, which also allowed some further speed-up using hard-
ware support, as he shows in [23]. His sweep algorithm is
based (as is ours) on a sweep with a plane parallel to the view-
ing plane. Just like Giertsen’s algorithm, Yagel’s does not need
to compute and keep explicit cell adjacency information, al-
lowing it to be memory-efficient in its basic data structures.
Graphics hardware can be used to accumulate the contribu-
tions of each slice to the final image. The main drawback of
this algorithm is its memory consumption, which can be sub-
stantial, since it must store the polygons resulting from each
slice. Also, its accelerated version requires graphics hardware
support.

The Lazy Sweep algorithm [16] is the most recent algorithm
based on the sweeping paradigm. It was shown to be faster
and more memory efficient than its predecessors. Besides the
array of vertices and the array of cells, the only other adjacency
information used is a list (the “vertex use set”), for each vertex,
that keeps the indices of all cells that are incident on the vertex.

We also briefly discuss the ray-casting algorithm of Bunyk
et al. [1], which we use in our experimental comparisons. This
is a very fast algorithm, but it requires a lot memory. It’s basic
idea is as follows:

� In preprocessing, identify all cells and faces that touch

each vertex and identify all boundary faces.

� For the given new rotation angle, rotate all vertices.

– By projecting all boundary faces on the screen,
create for each pixel an ordered list of the bound-
ary faces that a ray cast through the pixel crosses
as it enters and exits the volume.

– For each pixel, starting from the first boundary
face intersected, use the cell adjacency information
to find the next face intersected by the ray. (Each
interior face points to its two neighboring cells,
allowing one to go easily from cell to cell while
computing the contribution of each cell.) Use the
ordered list of boundary faces to determine the en-
try and exit points of the ray as it passes into and
out of the volume.

One difficulty with the implementation of the algorithm is that
when a ray exactly hits a vertex or an edge of the dataset, it
may have difficulty resolving which the next cell is, potentially
leaving the corresponding pixel unrendered. However, in most
cases the implementation produces high-quality images and
does so very quickly, making it a reasonable choice for our
experimental comparisons.

Recently, Hong and Kaufman [11, 10] proposed a very fast
ray casting technique for curvilinear grids. Their work is sim-
ilar in some ways to [1], but optimized for curvilinear grids,
which makes it faster and use far less memory than [1]. Their
implementation has not been shown to work on unstructured
datasets.

Finally, we mention that the new algorithm presented in this
paper, is also related in some ways with the A-buffer [2] ap-
proach, optimized with the use of the order of the vertices to
assure a quasi-order projection of the faces. The work the A-
buffer has to perform to order the intersections between the ray
cast and the faces projected is very small.

2 The ZSweep Algorithm

Our ZSweep algorithm is designed with the intent of combin-
ing accuracy and simplicity with speed and memory efficiency,
building on the success of prior sweep approaches.

The algorithm is a simple sweep with a plane, Π, parallel to
the viewing plane, in order of increasing z-coordinate. (This
is the only similarity with Yagel et al’s algorithm.) Events
occur when Π encounters a vertex v, at which point we project
the faces of cells that are incident to v and lie beyond v (in
z-coordinate).

In order to facilitate our further discussion of the algorithm,
we introduce some notation:

� The vertex use set, U(v), associated with vertex v is a list
of all cells that are incident on v.

� We say that vertex v is a swept vertex if it has already
been swept over by Π (its z-coordinate, vz, is less that
the current sweep value, z.

� A face f is a swept face if at least one vertex of f is a
swept vertex.



v
i

v
i1

v
i2

v
i3

Sweep Direction

v
i4 Z

A

B

C

Figure 1: When the sweep plane Π encounters vertex vi, the
cells A, B, and C are first encountered, so the (highlighted)
faces (vi;vi1), (vi;vi2), (vi;vi3 ), and (vi;vi4) are projected.

� A cell c is a swept cell if all of its faces are swept. Since
our algorithm maintains the swept status explicitly only
for vertices, we use the following observations to de-
termine the swept status of a cell: A tetrahedral cell is
swept if and only if (at least) two of its vertices have
been swept; a hexahedral cell is swept if and only if (at
least) five of its vertices have been swept.

We now describe the steps of the algorithm in greater detail.
The first step is to sort the vertices by z-coordinate into an

event list; this determines the order of the events. We use a
heap to efficiently sort the vertices. The heap keeps only in-
dices to the vertex array. Using a heap, we can save some
memory over quicksort, and, more importantly, it will allow
us to adapt our algorithm to dynamic situations in which new
vertices may be inserted.

Optionally, one can choose to sort and store in the event list
only the boundary vertices (on the boundary of the dataset),
and then to insert interior vertices into the event list only as
they are discovered during the sweep algorithm. This opti-
mization has the potential to save some memory; however, we
have reported our results based on not using this option, as we
have found that the event list is responsible for only about 4%
of the total memory required for the vertices and cells (includ-
ing the use sets).

The main loop of the algorithm is the sweep in the z-
direction, which is performed simply by stepping through the
event list. When the ith vertex, vi, of the event list is encoun-
tered, we project � each face f that is incident on vi for which
vi is the vertex having minimal z-coordinate. (Necessarily,
such faces f have not been swept.) The faces to project are
readily determined by examining the use set of vi. Refer to
Figure 1 for an illustration in two dimensions.

In order to perform face projection, we use a very fast scan
conversion for triangles, which not only determines which pix-
els lie in the projection, but also determines the z-coordinate

�Our face projection is different from the ones used in projective
methods, such as the Shirley and Tuchman approach. During face pro-
jection, we simply compute the intersection of the ray emanating from
each pixel, and store their z-value (and other auxiliary information).
The actual lighting calculations are deferred to a later phase.

(depth) of each point of the (unprojected) triangle and com-
putes the interpolated value (via bi-linear interpolation) for the
scalar field data.

To guarantee accuracy in the rendering algorithm, it is im-
portant to make certain that the projection of the faces is done
in a correct order for each pixel. The order in which faces
are projected in our ZSweep is according to the z-coordinate
of the first vertex encountered of the face. This order is not,
however, sufficient to guarantee that faces are projected auto-
matically in correct depth order for every pixel. For example,
in Figure 1, faces (vi;vi1 ) and (vi;vi2) are each projected when
we encounter vi. While a local analysis of the faces at vi would
permit us to project (vi;vi1) before (vi;vi2 ), we would have to
project also face (vi1 ;vi2 ) before (vi;vi2) in order to have those
pixels in the projection of (vi1 ;vi2) have the correct ordering
of projected faces. We do not, however, project face (vi1 ;vi2)
until Π reaches the vertex vi1 . While in two dimensions it is
possible to project faces (edges of triangles) in an order that
is consistent in z, in three dimensions it is well known that
the precedence relation induced by depth ordering can have
cycles. (Even three triangles in space can form a cycle.)

Thus, our ZSweep algorithm keeps for each pixel a z-order
list of intersections, projected on that pixel. Each time that
a face is projected on the screen, we insert into the list, for
each pixel under the projection, an element (with the z value
of the intersection as well as the interpolated scalar value) into
the corresponding pixel list. The insertions must preserve the
correct z-ordering of each pixel list. If insertions were being
made in “random” order, it would be important to store each
pixel list in an efficient data structure (e.g., heap or balanced
binary tree) to permit efficient insertion. However, the order
in which we project faces in our ZSweep is such that the face
we are projecting will most likely lie at the end of the list, or
be “very close” to it. Thus, we have implemented a doubly-
linked list structure for the pixel lists, and we perform inser-
tion from the end (larger z-coordinate) towards the beginning
of the list. Some experiments showed us that 70% of the in-
sertions are performed at the end of the list. Also, about 12%
of the insertions occur in the next-to-last position, 17% in the
position before that, with less than 1% of insertions occuring
more than two positions before the end. Thus, doing a simple
insertion, starting at the end of the list, results in a significant
time savings, since the ordering determined by the ZSweep
face projection order is already so close to the depth order in
most cases.

While the pixel lists allow us to ensure that each pixel gets
the correct ordering of all projected faces, it comes at the
cost of potentially increasing the memory requirement sub-
stantially. In order to avoid this, we use a technique we call
delayed compositing to flush the pixel lists on a regular ba-
sis. In particular, at any given stage of the sweep we have a
z-target, which represents the value of z at which we will next
stop the sweep momentarily and compose the values that are
in the pixel lists; the sweep continues beyond the z-target, after
setting a new z-target appropriately.

Initially, we define the z-target to be the maximum z-
coordinate among the vertices adjacent to the first vertex, v0,
encountered by Π. When the sweep reaches the z-target (say,
corresponding to vertex v), we compose, in order, the entries of
the pixel lists into the accumulated value being kept for each
pixel, starting from the last z-coordinate where composition
left off for that pixel, and ending when we reach the depth of
the z-target. (Thus, we may not compose all entries of the
pixel list; those corresponding to z-coordinates beyond the z-



target are not composed yet, as there is a chance that there
are faces not yet projected whose z-coordinates will precede
them.) This incremental composition is done for each pixel
whose pixel list has more than one entry. We remove from the
pixel lists all of the entries that we compose, except for the last
one (since it will be needed in order to continue the composi-
tion later). After composing the values at all of the relevant
pixels, we reset the z-target to be the maximum z-coordinate
of the vertices adjacent to v, and continue the sweep. In the ex-
ample of Figure 1, if vi was the previous z-target, then, when
it is encountered, the new z-target is set to the z-coordinate of
vi3 .

Our choice of z-target allows us to prove that the composi-
tion is always done in the correct order for each pixel; i.e., we
never compose a face f at a pixel for which there is an unpro-
jected face f 0 preceding f in the depth order at the pixel. For,
if to the contrary such an f 0 existed, then f 0 must have a ver-
tex with z-coordinate less than that of its depth at the pixel, and
therefore less than that of the z-target. However, then the face
f 0 would have been projected prior to reaching the z-target (by
the invariant maintained by our ZSweep), giving us a contra-
diction.

There is another issue in our delayed compositing method:
If the dataset has highly nonuniform cell sizes (and therefore
edge lengths), it could be that the z-target is set to be “very
far” away from the prior z-target, leading to some pixel lists
growing quite large before we reach it. To avoid this, we set
a second criterion for stopping the sweep and performing in-
cremental composition: When any pixel list reaches a user-
specified threshold K (the current default is K = 16) in size,
we stop and do incremental compositing. In some rare cases,
it may be that some of the pixel lists need to grow beyond any
prespecified threshold before compositing can be done while
guaranteeing correctness of the order (as we insist in our ex-
act algorithm). (Such examples are purely contrived, having
cells that are “slivers” or “needles”, and have never been ob-
served to exist in our experiments.) In order to address this
rare (but possible) event, we allow the size of the threshold
K to increase (to 2K, 4K, etc.), as needed, in case the pixel
lists cannot be even partially flushed (as in pathological cases).
(The need to increase the threshold has not arisen in any of our
experiments so far.)

3 Implementation Details

Our implementation of the ZSweep algorithm is in C++, con-
sisting of less then 4500 lines of code, and is available from
the authors.

While our algorithm permits datasets having general cell
formats, our implementation currently handles only tetrahe-
dral and hexahedral cells (as well as datasets having a mixture
of the two), since these are by far the most popular unstruc-
tured cell formats.

3.1 Preprocessing and Basic Structures

There are two main arrays that store the data: the vertex array
and the cell array. Most often, these two arrays are responsible
for 90% of all memory used by our code. To make the con-
nectivity faster and easier we build the use set for each vertex,
which gives a list of all cells that use the vertex. The use set
can be built in linear time by a pass over the data. Another
step in the preprocessing phase is to mark the boundary faces

and vertices. This is currently performed in time quadratic in
the length of the use sets k, or O(nk2) where n is the number
of vertices in the data set; since the value of k is very small for
well behaved data sets (the longest we observed was 32) this
cost can be considered linear in the number of vertices.

3.2 Sweep

The sweep function expects the vertices to be in depth (z) order
in the vertex array. We used a heap to order the vertices by
their z-coordinates. The heap keeps the array indices for the
vertices, instead of pointers, which makes it straightforward
to modify our code to obtain a shared-memory version of our
code that is memory-efficient.

Now we consider how the sweep function identifies which
face must be sent to the projection function. If vertex vi is
the vertex with smallest z-coordinate (there can be many of
them in degenerate cases), we know that this vertex does not
have any cell in its use set that has already been projected.
But this case is a special case of the general case, so we will
only discuss the general case, as depicted in Figure 1. Suppose
vertex vi has just been obtained from the heap. We scan vi’s
use set to visit all of its touching cells. Notice that all cells
represented by dashed lines in the figure are considered swept
cells (by our definition). Suppose that we find the cell B; we
can project both faces, between cells A�B and between cells
B�C. Then suppose we now find cell A. To avoid projecting
twice all the interior faces of the dataset, we make use of a very
small hash table. (Below, we discuss a further optimization
(“sparsification”) that we perform in order to minimize, but not
eliminate, such occurrences.) In practice, we have observed
that the hash table holds at most 15 faces per vertex, for data
sets up to half a million cells.

If the current cell is hexagonal the only extra care that must
be taken is to create two triangular faces and send them to the
hash table. (The projection function will not even know if the
face came from a tetrahedral or hexahedral cell.) We have used
some connection information to avoid generating intersecting
triangular faces; see Figure 2. One problem that will happen
if we have intersecting faces is that once the hash key is built
based on the indices for the vertices, 4 different faces will be
included into the hash table. This will not cause the code to
fail, but it can cause undesirable artifacts in the final image if
the four vertices are not coplanar, which is true in general.

To address this issue, we use the connection between the
global index and relative indices for the points. The point pi in
the global array of points can appear as any of the L vertices of
a given L-vertex cell. Given a point we can easily find out the
faces of the cell that use it. Each internal face will be found
twice by the algorithm. We use the unique global index as the
identification for the vertices. Consider the face shown in Fig-
ure 2. Assume that the cells Ck and Cp are the ones that share
this face. Suppose that for cell Ck, the current vertex appears
as its first local vertex (v0). This will lead us to find the two
triangular faces shown in Figure 2(a). When we find the same
face on another cell, suppose that the current vertex appears
as its second local vertex. To find the same combination for
the three vertices independent of their relative local position
for both neighbor cells, we used a “wrapping” computation to
find the global index of each vertex, starting with the current
vertex. So if the current vertex is the first vertex in the hexahe-
dral face of the cell Ck, the indices for the two triangular faces
are given by:



vk1 vk2

vk3

vk0

(a)

vk3

vk0

vk1

vk2

(b)

Figure 2: Left: The two triangular faces created when the cur-
rent vertex vk1 is the local vertex 0 for this face. Right: A case
in which the current vertex is the second vertex for this same
face, when found for the other cell that shares this face. This
will happen if one always creates the faces starting from the
local vertex 0 for all faces. Remember also that the hash key
is generated based on the indices values, and that in this case
four different faces will be included into the hash table.

Triangle 1 = (vk0%4 ;vk1%4 ;vk2%4)
Triangle 2 = (vk0%4 ;vk2%4 ;vk3%4)

When the cell Cp is found, to assure that the same two trian-
gles will be generated we first find the relative position for the
current vertex of the face for the other cell (it is 1 now). Then,
we start getting the global vertex indices by the same integer
division:

Triangle 1 = (vk1%4 ;vk2%4 ;vk3%4)
Triangle 2 = (vk1%4 ;vk3%4 ;vk4%4)

3.3 Projection

Before projecting, the code calls the composite function if ei-
ther the current z-coordinate of the sweep plane has reached
the target-z or if there is at least one pixel list with a length
greater than a given threshold size.

This phase of the algorithm is simple. It gets the faces
from the hash table, one by one, and projects them onto the
screen. The projection is done by means of optimized inter-
section formulas. One detail is worth a remark: As the projec-
tions take place, the program keeps track of the bounding box
of the screen region that contains pixels whose lists had some
insertion. The composite function does not need to scan the
entire screen looking for pixel lists to compose; it scans only
the current bounding box.

3.4 Delayed Compositing

Now the last phase of the algorithm computes the color and
brightness contribution from all faces projected so far. As the
pixel lists contain the depth (z) and the interpolate scalar value
of all faces that correspond to this pixel, the code must only
go through each list and integrate the color and the opacity
contributions; intersections that are summed to the pixel are
removed from the pixel lists.

Kept Cells
Deleted Cells

Figure 3: This drawing shows the sparse representation of a
2D mesh. Over the mesh, it is shown the equivalent graph with
a edge covering. In the graph the nodes represent the cells and
the edges represent the face between the cells. A ghost node
must be included for each boundary face, to make it possible
their representation in the graph.

3.5 Optimizations

Two other optimizations were included in our implementation
and brought further efficiency in both speed and memory us-
age.

3.5.1 Sparse Data Representation

Since our algorithm ultimately performs face projections, it
will project twice those faces that are shared by two face-
neighboring cells. In order to avoid this as much as possible,
we perform a “sparsification” step in which we keep only a
subset of the cells that is sufficiently large to contain the set
of all faces. In particular, we can “throw away” a large set
of cells, provided that we do not throw away both cells that
contain a given face. In the terminology of graph theory, we
seek to find a maximum independent set in the dual graph of
the cells. (Nodes correspond to cells and two cells are adja-
cent in the graph if the corresponding cells share a common
face.) While finding maximum independent sets in graphs is a
hard problem, we apply a greedy heuristic that works well in
practice to eliminate a substantial fraction of the cells, leading
to a substantial decrease in memory requirements (and some
decrease in running time too).

In particular, we do the following. We keep all cells that
have faces on the boundary, since they are essential for those
boundary faces. We then iteratively mark cells for deletion.
Each time we delete a cell, we mark its neighboring cells as
“essential” (they are not permitted to be deleted. We continue
until all cells are either deleted or marked “essential.”

Our “sparsification” technique is related to the “chess-
boarding” technique of Cignoni et al [4]. In [4], they save
memory by avoiding the duplication of the “edges” of a regu-
lar grid dataset during isosurfacing.



Dataset Information
Boundary Boundary Cells

Dataset Vertices Vertices Faces Faces Cells in Sparse
Blunt Fin 41K 6.7K 382K 13.5K 187K 105K
Comb.Chamber 47K 7.8K 438K 15.6K 215K 121K
Oxygen Post 109K 27.7K 1040K 27.7K 513K 282K
Delta Wing 212K 20.7K 2032K 41.5K 1005K 541K
SPX 3K 1.4K 27K 2.8K 13K 8.6K
Hexahedral 2.7K 1.3K 6.4K 1.3K 1.9K —-

Table 1: This table shows the number of cells (tetrahedra/hexahedra), the total number of vertices and faces, as well as the number
of boundary vertices and faces for all datasets. The rightmost column shows the number of cells for each dataset after sparsification,
which always results in at most 56% of the cells being kept.

ZSweep Preprocessing Time and Memory Usage
Required Memory (MB) Preprocess (sec)

K7-PC SGI
Datasets 1282 2562 5122 Original Sparse
Blunt Fin 13 16 24 2 2 7
Comb.Chamber 15 16 25 3 2 8
Oxygen Post 34 38 52 6 4 19
Delta Wing 64 68 80 13 8 37

Table 2: The first three columns show the total memory required by ZSweep to render each dataset in different resolutions. The
fourth and fifth columns show the preprocessing times, on the K7-PC, for the original data sets and its sparse representation. The
last column shows the preprocessing time on the SGI platform measured for the original data sets.

3.5.2 Use of Previous Heap Result

This optimization is only important if one wants to use the
code to generate a sequence of images. Once the first image
has been rendered, the heap class is able to keep a integral
copy of itself. So supposing that the dataset is rotated by a
small angle, it is usually true that the vertices are likely to have
almost the same order than in the previous order. If instead of
sending the vertices every time from the original global array,
they are inserted into the heap in the order they had in the
previous sweep, then the next ordering will be performed in
linear time (in practice), since the vertices will be almost in
order already. (A similar optimization is used in [22].)

Recall that the heap keeps only the indices for the points and
the memory that it uses is very small compared to the memory
used by the points and the cells. But if the amount of memory
available is very small, this optimization can be omitted.

4 Experimental Results

As a first step in the experimental investigation of the ZSweep
algorithm, we implemented a version that handled only tetra-
hedral grid datasets. Then, the simplicity of the algorithm al-
lowed us, by a very simple modification, to make it handle
also hexahedral grids data and mixed (tetrahedral and hexahe-
dral) data. All of our experiments were conducted with this
enhanced version of the software.

The data input may represent disconnected, concave
datasets, even with “holes,” consisting of tetrahedral and hex-
ahedral cells. The code reads the data from a file similar to
the Geomview’s off format and is able to determine the type of
each cell by its number of indices. The resulting image can be

saved in ppm file format.
We ran our experiments on several popular datasets avail-

able from NASA, including Blunt Fin, Combustion Chamber,
Liquid Oxygen Post, and Delta Wing. We use the tetrahedral-
ized versions of these datasets, since our algorithm is intended
to visualize unstructured grids. (For structured datasets one
should opt for algorithms designed specifically to exploit the
implicit representation of the grid, which allows for fast and
highly memory-efficient algorithms; e.g., see [10].) We also
perform our experiments on two other datasets, selected in or-
der to verify the functionality of our implementation in the
case of holes and hexahedral cells: SPX, which is a small tetra-
hedral dataset having holes, and Hexahedral, which is a small
hexahedral dataset.

Table 1 gives basic information about all six datasets used
in our experiments. In the rightmost column is shown the size
of the data after sparsification, which eliminates, on average,
about 53% of the cells. This savings allows the algorithm not
only to reduce its total memory consumption, but also to re-
duce considerably the reading and preprocessing time.

4.1 ZSweep Performance

In this section we present the performance of ZSweep on two
different platforms: an SGI machine (with a single 300MHZ
MIPS R12000 processor and 512 Mbytes of memory) and a
K7-PC (with a 900MHZ AMD K7 Athlon and 768 Mbytes of
memory).

Table 2 shows ZSweep’s preprocessing times, which include
reading and generating the use set for all vertices and memory
usage required to create different image sizes. When larger
images are required to be generated, more memory is neces-



sary, since for each pixel the algorithm has to keep an ordered
list (the pixel list) of intersected faces. The required memory
grows sublinearly, however, since for an image 16 times larger,
the memory goes up by less than a factor of 2.

Table 3 shows ZSweep rendering times on the SGI platform.
The resolutions were chosen to allow us to compare our results
with previous works. The compilation was performed in 32
bits with highest possible optimization (“-O3”). Table 3 shows
the equivalent tests performed on the K7-PC platform.

The increase in the observed render time as the size of
the image grows, particularly with larger datasets (e.g., delta
wing), is largely due to time spent by the algorithm in keeping
the pixel lists. Further care must be taken to avoid the ren-
der time to grow faster, if it is desired to visualize even larger
datasets.

4.2 Comparison with Other Methods

We compare our results with two fastest and most recent algo-
rithms available for unstructured grids, Lazy Sweep [16] and
the ray-casting algorithm of [1]. (We do not compare here with
hardware-accelerated algorithms, as we are studying the per-
formance here of pure software implementations.) We com-
pare the render costs, both in rendering time and total memory
consumed for each of the three methods, for all four NASA
datasets (those on which the other two methods apply); see
Tables 5–8.

One last note we make is that ZSweep, just like Bunyk et al.,
was implemented using a lighting model that, although simple,
is computationally more expensive than the model used on the
lazy sweep work. So even in the cases where Lazy Sweep com-
pares in speed with ZSweep, keep in mind that the final image
generated by ZSweep will be more accurate in terms of the
lighting. †

†Our lighting model is the same as that used in Bunyk et al., based
on integration of linearly-interpolated color and opacity values along
each ray. Scalar values in the input dataset are shifted and scaled to fit
the [0;255] range. A user-specified piecewise-linear transfer function
is read from a file; it specifies the mapping from this range to the set
of opacity and RGB values. During ray casting, we calculate the z and
interpolated scalar field values of the ray intersection points with the
current and the next triangle and pass these values to the transfer func-
tion calculation module, which updates the RGB values of the current
pixel.

The exact integration formulas follow. The following variables are
used: zc, zn, z coordinates of intersection with the current and next
triangles; ∆z, distance between zc and zn; cc, cn, linearly-interpolated
color component value in zc and zn; oc, on, linearly-interpolated opac-
ity in zc and zn; Cc, Oc, accumulated on the previous steps color and
opacity values, initially 0; Cn, On, updated color and opacity values.

Color and opacity are linearly interpolated between their values in
zc and zn:

o(z) =
oc(zn� z)+on(z� zc)

∆z

c(z) =
cc(zn� z)+ cn(z� zc)

∆z
These linear functions must be integrated from zc to zn to obtain On,
Cn. We also need the opacity value in all intermediate points to use it
in color computation:

O(z) = Oc +
Z z

zc

o(z)dz

C(z) =Cc +
Z z

zc

c(z)(1�O(z))dz:

5 Conclusion

The unstructured grid volume rendering algorithm (ZSweep)
we presented in this paper has proven to be a very competitive
option for both general and specific applications due to its rel-
atively low memory requirements, high speed, accuracy and
simplicity. It is considerably simpler and faster than the previ-
ous sweep-based rendering algorithms (without hardware as-
sistance). As with the previous algorithms of [16] and [1], the
accuracy of the final image does not depend on the character-
istics of the dataset grid.

Also, as with the Lazy Sweep method of [16], ZSweep
is memory efficient, even though a highly anomalous dataset
could cause the pixel lists, maintained for each pixel of the
screen, to become lengthy, making it necessary for further pre-
cautions (e.g., partitioning of the viewing plane into subim-
ages) to be taken to avoid having these lists consume too much
memory. We note, however, that for all tests on all datasets
mentioned on Table 1, we did not notice an unexpected in-
crease of memory usage. We did expect the memory alloca-
tion to increase for larger images, since as the image size in-
creases, each face projected will insert intersection units into
more and more pixel lists. While ZSweep is more than twice
as fast as [16], it uses from 20% to 60% more memory, which
is not enough even to slow down the reading/preprocessing
step compared to the Lazy Sweep method. We have methods
of reducing the memory requirements that we are exploring in
our continuing investigations.

A possible parallelization can be obtained by dividing the
image plane in a grid of rectangles, identifying all points of
the data that lay inside each the parallelogram defined by a
rectangle, as its base, and the depth as its height, and distribute
the parallelograms to each processor to perform the ZSweep
on its points.

On the other hand, even though ZSweep is slower than [1]
in some cases, it uses considerably less memory and ZSweep
does not have the difficulty that arises from having ray casts
that hit degenerate points at vertices or edges of the grid.

We finally note that our current implementation suffers a
small overhead of checking for the type of each cell to decide
how to proceed, since it can handle tetrahedral and hexahedral
cells together in the same dataset. Most other algorithm imple-
mentations do not offer this flexibility (two notable expections
are the implementation of LSRC and HIAC). Due to the ex-
treme simplicity of the ZSweep basic concept, this was easy
to accomplish.

Besides parallelization, we are also exploring other im-
provements on ZSweep, including (1) further reducing the
memory requirements by partitioning the image space and
running the algorithm separately on subimages; (2) adapting
ZSweep for walkthrough applications; currently, we assume

After computing these integrals analytically, we obtain the follow-
ing values for On and Cn:

On = Oc +
1
2
(oc +on)∆z

Cn =Cc�
1
2
(cc+cn)(Oc�1)∆z�

1
24

(3ccoc+5cnoc+ccon+3cnon)∆z2
:

As a comparison, the lighting model used in Lazy Sweep amounts
to a table lookup for each color channel, and multiplication by the
transparency. It is possible to make the lighting model considerably
more accurate and complex. A good example is the one used in the
HIAC system, described in Williams et al [21]. Max [12] gives a good
survey of optical models for volume rendering.



ZSweep Rendering Time on the SGI

Datasets 1282 2562 5122

Blunt Fin 2 4453 6 17858 33 71508
Comb.Chamber 4 5032 7 20234 32 81544
Oxygen Post 7 6254 16 25160 62 101034
Delta Wing 14 4396 23 17684 76 71062

Table 3: This table shows the render time (in seconds) and the number of pixels processed for each dataset and each image size on
the SGI.

ZSweep Rendering Time on the K7-PC

Datasets 1282 2562 5122

Blunt Fin 2 4453 5 17858 20 71508
Comb.Chamber 2 5032 6 20234 21 81544
Oxygen Post 5 6254 11 25160 40 101034
Delta Wing 9 4396 16 17684 43 71062

Table 4: This table shows the render time (in seconds) and the number of pixels processed or each dataset and each image size on
the K7-PC compatible machine.

Blunt Fin dataset comparison
ZSweep Results

Method Image Size Time(s) Memory (MB) Time(s) Memory (MB)
Lazy Sweep 530x230 22 8 5 16
Bunyk et al. 1282 2 76 2 13
Bunyk et al. 2562 8 77 6 16
Bunyk et al. 5122 27 81 33 24

Table 5: While ZSweep uses about twice the memory that Lazy Sweep requires, it is 4:4 times faster. As the image size grows,
Bunyk et al. becomes slightly faster than ZSweep, but at the cost of much higher memory consumption.

Combustion Chamber dataset comparison
ZSweep Results

Method Image Size Time(s) Memory (MB) Time(s) Memory (MB)
Lazy Sweep 300x200 19 9 5 16
Bunyk et al. 1282 4 88 4 15
Bunyk et al. 2562 10 89 7 16
Bunyk et al. 5122 37 93 32 25

Table 6: In this case ZSweep is about 4.75 times faster than Lazy Sweep, while again using about twice the memory. For this
dataset, ZSweep was faster than the Bunyk et al. method for all image sizes considered, while using substantially less memory.

Liquid Oxygen Post dataset comparison
ZSweep Results

Method Image Size Time(s) Memory (MB) Time(s) Memory (MB)
Lazy Sweep 300x300 37 22 22 35
Lazy Sweep 600x600 82 22 87 54
Bunyk et al. 1282 5 208 7 34
Bunyk et al. 2562 19 209 16 38
Bunyk et al. 5122 72 214 62 52

Table 7: To create an image of size 3002 ZSweep requires 60% more memory than Lazy Sweep. But, while Lazy Sweep maintains
its memory requirements essentially the same even for larger images, ZSweep needs to allocate more and more memory, because
of the pixel lists. Again ZSweep is comparable to Bunyk et al. in speed, but much more memory efficient.



Delta Wing dataset comparison
ZSweep Results

Method Image Size Time(s) Memory (MB) Time(s) Memory (MB)
Lazy Sweep 300x300 64 44 27 67
Bunyk et al. 1282 4 406 14 64
Bunyk et al. 2562 13 407 23 68
Bunyk et al. 5122 43 411 67 80

Table 8: Delta Wing is a medium-size dataset with over a million tetrahedra. For this dataset it becomes clear that the pixel lists are
slowing down the algorithm. But it is still 2:4 times faster than Lazy Sweep. And even though ZSweep became slower than Bunyk
et al. algorithm, the memory this last one needs is still a big problem nowadays.

that views are from outside the datasets, and clipping the out-
side can be performed efficiently within our framework; (3)
exploring the development of a hardware-assisted version of
the ZSweep; (4) add other cell formats (including nonconvex
cells).

Acknowledgements

We thank Brian Wylie (Sandia) for his collaboration on this
research, and Paul Bunyk (Stony Brook) for access to and
help with his code. We thank Peter Williams (LLNL) for the
SPX dataset, and Constantine “Dino” Pavlakos (Sandia) for
the Hexahedral dataset. NASA has gracefully provided the
Blunt Fin, Liquid Oxygen Post, and Delta Wing datasets. The
Combustion Chamber dataset is from the Visualization Toolkit
(Vtk).

This work was made possible with the generous support
of Sandia National Labs and the Dept of Energy Mathemat-
ics, Information and Computer Science Office. R. Farias ac-
knowledges partial support from CNPq-Brazil under a PhD
fellowship. J. Mitchell acknowledges support from HRL Lab-
oratories, the National Science Foundation (CCR-9732221),
NASA Ames Research Center, Northrop-Grumman Corpora-
tion, Sandia National Labs, Seagull Technology, and Sun Mi-
crosystems.

References
[1] P. Bunyk, A. Kaufman, and C. Silva. Simple, fast, and robust ray casting

of irregular grids. In G. Nielson H. Hagen and F. Post, editors, Scientific
Visualization. IEEE Computer Society Press, 1999.

[2] L. Carpenter. The A-buffer, an antialiased hidden surface method. In
SIGGRAPH ’84, pages 103–108, 1984.

[3] P. Cignoni and L. De Floriani. Power diagram depth sorting. In 10th
Canadian Conference on Computational Geometry, 1998.

[4] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the optimization of
projective volume rendering. In Visualization in Scientific Computing ’95,
pages 58–71. Springer Verlag, 1995.

[5] P. Cignoni, C. Montani, and R. Scopigno. Tetrahedra based volume visu-
alization. In Mathematical Visualization – Algorithms, Applications, and
Numerics, pages 3–18. Springer Verlag, 1998.

[6] P. Cignoni, C. Montani, and R. Scopigno. Tetrahedra based volume visu-
alization. Mathematical Visualization, pages 3–18, 1998.

[7] J. Comba, J. Klosowski, N. Max, J. Mitchell, C. Silva, and P Williams.
Fast polyhedral cell sorting for interactive rendering of unstructured grids.
Computer Graphics Forum, 18(3):369–376, September 1999.

[8] M. Garrity. Raytracing irregular volume data. In Computer Graphics,
pages 35–40, November 1990.

[9] C. Giertsen. Volume visualization of sparse irregular meshes. IEEE Com-
puter Graphics and Applications, 12(2):40–48, March 1992.

[10] L. Hong and A. Kaufman. Fast projection-based ray-casting algorithm for
rendering curvilinear volumes. IEEE Transactions on Visualization and
Computer Graphics, 5(4):322–332, October - December 1999.

[11] L. Hong and A. Kaufman. Accelerated ray-casting for curvilinear vol-
umes. IEEE Visualization ’98, pages 247–254, October 1998.

[12] N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, June 1995.

[13] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for ef-
ficient visualization of 3D scalar functions. In Computer Graphics, pages
27–33, November 1990.

[14] F. Preparata and M. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

[15] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. In Computer Graphics, pages 63–70, November 1990.

[16] C. Silva and J. Mitchell. The lazy sweep ray casting algorithm for ren-
dering irregular grids. IEEE Transactions on Visualization and Computer
Graphics, 3(2), April–June 1997.

[17] C. Silva, J. Mitchell, and P. Williams. An exact interactive time visibility
ordering algorithm for polyhedral cell complexes. 1998 Volume Visualiza-
tion Symposium, pages 87–94, October 1998.

[18] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering
for volume visualization. In 1994 Symposium on Volume Visualization,
pages 83–90, October 1994.

[19] S. Uselton. Volume rendering for computational fluid dynamics: Initial
results. In Tech Report RNR-91-026, Nasa Ames Research Center, 1991.

[20] P. Williams. Visibility ordering meshed polyhedra. ACM Transaction on
Graphics, 11(2):103–125, April 1992.

[21] P. Williams, N. Max, and C. Stein. A high accuracy volume renderer
for unstructured data. IEEE Transactions on Visualization and Computer
Graphics, 4(1):37–54, January-March 1998.

[22] C. Wittenbrink. Cellfast: Interactive unstructured volume rendering. In
Proceedings IEEE Visualization’99, Late Breaking Hot Topics, pages 21–
24, 1999. Also available as Technical Report, HPL-1999-81R1.

[23] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef. Hardware assisted
volume rendering of unstructured grids by incremental slicing. In 1996
Volume Visualization Symposium, pages 55–62. IEEE, October 1996.



Figure 4: Image of Blunt Fin created in 512x512.

Figure 5: Image of Combustion Chamber created in 512x512.

Figure 6: Image of Liquid Oxygen Post created in 512x512.

Figure 7: Image of Delta Wing created in 512x512.


