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Abstract

We propose a new approach to the automatic gener-
ation of triangular irregular networks from dense ter-
rain models. We have developed and implemented an
algorithm based on the greedy principle used to com-
pute minimum-link paths in polygons. Our algorithm
works by taking greedy cuts (\bites") out of a sim-
ple closed polygon that bounds the yet-to-be triangu-
lated region. The algorithm starts with a large poly-
gon, bounding the whole extent of the terrain to be
triangulated, and works its way inward, performing at
each step one of three basic operations: ear cutting,
greedy biting, and edge splitting. We give experimen-
tal evidence that our method is competitive with cur-
rent algorithms and has the potential to be faster and
to generate many fewer triangles. Also, it is able to
keep the structural terrain �delity at almost no extra
cost in running time and it requires very little memory
beyond that for the input height array.

1 Introduction

A terrain is the graph of a function of two variables.
The function gives the elevation of each point in the
domain. Terrain models are widely used in visualiza-
tion and computer graphics applications; such as ight
simulators, �nancial visualization tools, strategic mil-
itary analyzers, geographic information systems, and
video games. Thus, it is of the utmost importance
that primitive operations can be performed in real-
time. Several factors may a�ect the e�ciency of al-
gorithms that operate on terrain; the most important
are probably the size of the input and its underlying
data structure.

The most common source of digital terrain eleva-
tion data is the DEM (Digital Elevation Model), sup-
plied by the U.S. Geological Survey. A DEM is basi-
cally a two-dimensional oating point height array. It
contains an extremely high level of redundancy, which
in turn usually forbids real-time applications from us-

ing it. Several alternative data structures have been
proposed, including contour lines, quad-trees, and
TINs (Triangular Irregular Networks). TINs stand out
as being one of the most convenient to use for render-
ing and other geometric manipulation operations. A
TIN is a set of contiguous non-overlapping triangles
whose vertices are placed adaptively over the DEM
domain [8]. The automatic generation of TIN models
from DEM models is an important area of research
and is the main topic of this article. Several factors
are important in judging the quality of the TIN repre-
sentation of a given DEM (list partially adapted from
[19, 20]):

� Numerical accuracy { measured as maximum,
mean, or standard deviation error;

� Visual accuracy { usually assessed by inspection
and by number of \slivery" triangles;

� Size of the model { measured as the number of
output triangles;

� Algorithm complexity { measured in terms of the
time to generate the TIN and the memory re-
quirement.

Fowler and Little [8] have introduced one of the
�rst (and still very popular) methods to address the
problem of automatic generation of TINs directly from
DEMs. Their method is very simple. First, they clas-
sify the points by automatically choosing some \im-
portant" features of the terrain, such as ridges and
peaks. They describe this phase of the algorithm as
constructing the \structural �delity" of the model;
i.e., the TIN representation should have the same geo-
graphical features as the DEM. Then, they incremen-
tally compute a triangulation of the points; in their
case, they chose to use the Delaunay triangulation.
At each step, a new point is added to the triangula-
tion until no points are farther from the original sur-
face than a certain prede�ned threshold. This phase



is designed to preserve the \statistical �delity" (i.e, to
make it �t the speci�ed error bound).

Franklin [9] has proposed a similar approach back
in 1973. It appears that his method had no notion of
structural �delity, and he did not use the Delaunay
triangulation as the basis for his method. A new ver-
sion of his code is publically available, and we used
it for comparison with our method. A detailed de-
scription of his algorithm and code is given in Sec-
tion 4. Recently, substantial research has been con-
ducted on creating hierarchical structures on top of
TINs [7, 21], and on techniques to improve the quality
of TIN meshes [22]. Scarlatos' dissertation [19] is a
good survey of terrain modeling and representation.
A very recent approach to building hierarchical mod-
els of terrains is given by de Berg and Dobrindt [6],
who apply a hierarchical re�nement of the Delaunay
triangulation to represent terrain TINs at many lev-
els of detail. See also [13, 14] for an approach called
the \drop heuristic" and its comparison with other
methods. Common to all these previous methods is
the necessity to have a complete starting triangulation
that is either re�ned by adding new points, or deci-
mated [23] by removing redundant points. These ap-
proaches require that the algorithm maintain in mem-
ory a complete triangulation representation of the in-
put, extended with various pieces of global informa-
tion (e.g., most deviant point per triangle). The need
for global information impacts the running time and
memory requirements of these algorithms.

Our work is based on an entirely di�erent approach
for the triangulation and simpli�cation of the data.
It is based on an idea in the method developed by
Mitchell and Suri [17], where a greedy set cover ap-
proach has been developed for approximating convex
surfaces, and used recently by Varshney [25] in heuris-
tics for simplifying CAD models. We can consider the
input DEM to be an instance of a TIN with very high
resolution. In particular, each pixel of the DEM corre-
sponds to four elevation data points, and we consider
these to de�ne two adjacent triangles of a surface. (A
square pixel can be triangulated in one of two ways.
We triangulate all pixels uniformly, with diagonals at
45-degrees.) Our goal is to simplify this input TIN
surface to create a new TIN that has far fewer trian-
gles, but is still within a speci�ed error bound of the
original surface. From an algorithmic point of view,
terrain simpli�cation is hard (NP-hard) [5, 4], but
some polynomial-time algorithms are known for com-
puting a nearly-optimal (i.e., nearly minimum-facet)
approximating surface, guaranteed to be within a fac-
tor O(logn) of optimal (see [1, 3, 15, 17]), or within a
constant factor of optimal, if the surface is convex (see
[2]). Unfortunately, the polynomial-time bounds for
these theoretically good approaches is rather high (at
least cubic). In contrast, from the practical point of
view, most of the previous computer graphics and ge-
ography research in the area is based on heuristics for
generating triangulations that \�t" the original data,

but have no guarantees, either in terms of the close-
ness to optimal or in terms of the worst-case running
time.

The principle that drives our method (and is re-
lated to that of [3, 17, 25]) is the same greedy prin-
ciple that is used to compute minimum-link paths in
simple polygons. This problem is well studied in com-
putational geometry [12, 16, 24] and can be used to
�nd an optimal piecewise-linear approximation to a
function of a single variable (see [10]). Our problem
is of one higher dimension. We use a greedy-facet ap-
proach, selecting large triangles (bites) by which to
extend an approximating surface, based on their fea-
sibility (i.e., they must lie within an �-fattening of the
original surface) and on their size (e.g., area of projec-
tion in the x-y plane). The use of greedy algorithms
is known to give provably good approximation results
in many combinatorial optimization problems, for ex-
ample, the set cover problem is approximated within
a log factor of optimal by a natural greedy algorithm,
and this fact leads [17] to a provably good approxi-
mation algorithm for the convex case of our problem.
We have not yet been able to prove that our algo-
rithm has a guaranteed e�ectiveness with respect to
optimal, but we are hopeful that interesting proper-
ties can be proved about its performance. Currently,
our code only handles inputs in the form of elevation
arrays, but in principle, there is no reason why it can-
not be extended to arbitrary polyhedral terrains, or,
for that matter, polyhedral surfaces in general. Ex-
tensions to higher dimensions also seem possible, that
is, for simplifying piecewise-linear functions of three
variables de�ned over tetrahedralizations of 3-space.

Instead of a top-down approach that starts with
a feasible Delaunay triangulation and tries to gener-
ate �ner and �ner Delaunay triangulations by adding
points to the already created triangulations, our al-
gorithm works bottom-up. At each step a greedy cut
is taken from an untriangulated polygon. The greedy
cuts are an attempt to sample the data at the low-
est possible resolution, thus minimizing the number
of triangles in the output. A full description of our
algorithm is given in the next section.

2 The Algorithm

This section gives a high-level description of our
algorithm. The problem de�nition is as follows:

Given an input array, H , of heights H(x; y), 0 �
x < m and 0 � y < n, whose data points are sampled
from a regular grid on a rectangle R, and some � >
0 specifying an error tolerance. Find a triangulated
surface (TIN) that represents a terrain on R, such
that the TIN has a small number of triangles (Ti),
and each data point given by the array H(x; y) lies
within vertical distance � of the TIN.

The algorithm maintains a list of untriangulated
simple polygons, P , which represents the portion of



R over which no triangulated surface has yet been
constructed. At each step, our goal is to select a
maximum area triangle T within one of the polygons
P 2 P , such that (1) the vertices v1 = (x1; y1),
v2 = (x2; y2), and v3 = (x3; y3) of T are grid
points (points (x; y) for which we have the altitude
H(x; y)); (2) at least two of these vertices are ver-
tices of P (i.e., T shares at least one edge with
P ); and (3) the triangle T corresponds to a trian-
gle T 0 in space (with coordinates (x1; y1; H(x1; y1)),
(x2; y2; H(x2; y2)), (x3; y3; H(x3; y3))) such that T 0 is
\feasible" with respect to � (see below for a precise def-
inition). Because input data is sampled using a regular
grid, the area of T is a good estimation of its combina-
torial coverage (how many data points it covers). The
ideal version of our algorithm searches all candidate
triangles T and picks the best at each stage. However,
for the sake of e�ciency, the implemented version of
our algorithm does not search all possible triangles T ;
instead, we do an approximate (limited) search for the
best T , based on three basic operations, which will be
described below.

Since each polygon P 2 P corresponds to an inde-
pendent subproblem, we can work on each separately.
(There is no particular ordering in how we store the
polygons P 2 P .) Thus, at each step of the algo-
rithm, a bite (triangle) T is taken out of the polygon
P at the head of the list P , until P is reduced to a
single feasible triangle, or it is divided into two new
simple polygons, each of which is inserted into the list.
The �nal result of our algorithm is the list of all trian-
gles (bites), T . There is no need to store in memory
the list T of triangles as it is generated. Each trian-
gle can be written out directly to a �le. No triangle
connectivity information is saved at this point. Each
polygon P 2 P is saved as a simple list of vertices,
in counter-clockwise order. Thus, only very small and
simple data structures are required.

We ought to de�ne precisely what we mean by a
triangle (in space) being \feasible" for input terrain
H , with respect to a given �. As already mentioned,
we can consider the input DEM H to be an instance
of a TIN (a polyhedral surface, S), even though no tri-
angulation is explicitly given. Speci�cally, to �x that
one of the many triangulations we consider to be the
input surface, we consider point (x; y;H(x; y)) to have
six neighbors, namely, those data points correspond-
ing to (x�1; y�1) (the standard four grid neighbors)
and the diagonal points (x+1; y+1) and (x�1; y�1).

We say that a triangle T 0 (in space) satis�es weak
feasibility with respect to � if, for every grid point
(x; y) that lies within the projection T of T 0 onto the
(x; y)-plane, T 0 intersects the vertical segment join-
ing (x; y;H(x; y)� �) and (x; y;H(x; y) + �). In other
words, T 0 �ts the function at the relevant internal grid
points. Note that if T 0 has a very \skinny" or \small"
projection (e.g., so that T contains no grid points at
all), then it will certainly satisfy weak feasibility.

We say that triangle T 0 (in space) satis�es strong
feasibility with respect to � if T 0 lies completely above
the surface S�� and completely below the surface S+�,
where S�� (resp., S+�) is the polyhedral surface (TIN)
obtained by shifting S downwards (resp., upwards) by
�. Note that if T 0 satis�es strong feasibility, then it
certainly satis�es weak feasibility (but the converse
is clearly false). The notion of strong feasibility ap-
plies directly to approximating arbitrary input ter-
rains (e.g., given by a TIN rather than a DEM).

In order to test weak feasibility of T 0, we only have
to examine the elevations at grid points internal to
the projected triangle T . Such internal grid points
are identi�ed using a standard scan conversion of T .
In Figure 1, we indicate these grid points with small
squares. Strong feasibility, however, requires that we
also check the altitudes corresponding to those points
(indicated with circles in Figure 1) that lie at the in-
tersections of an edge of T with a grid edge.

Weak-feasibility

Strong-feasibility

Figure 1: Weak and strong feasibility.

The algorithm works by performing three basic op-
erations, one at a time: ear cutting, greedy biting,
and edge splitting. Each operation is applied to a cur-
rent active polygon. The next sections describe each
of these operations in more detail.

Ear Cutting

This operation traverses a polygon P 2 P looking for
possible \ears" to cut. An ear of a simple polygon P
is a triangle contained within P that shares two of its
edges with P . We simply traverse the boundary of
the polygon, \cutting o�" any ear which we discover
that corresponds to a feasible triangle (i.e., one that
meets the feasibility criterion for �). Given a vertex
vi, we check if the edge (vi; vi+2) is an internal diag-
onal to the polygon, that is, it is to the inside of the
polygon and it does not intersect any other edge. This
operation can easily be done in linear time by a simple
traversal of the boundary of P . Using a dynamic trian-
gulation of P , and performing \ray shooting queries",
one can actually check in time O(log k) if (vi; vi+2) is



an ear of a simple k-gon [11], but the simple linear-
time method is likely to be more practical (since k is
typically small) and is what we currently have imple-
mented.

Each cut we perform lowers the complexity (num-
ber of edges) of polygon P by one, thus taking the al-
gorithm closer to completion. Ear cutting is essential
for the algorithm to terminate. In general, it will be
the �nal step in any run of the algorithm. Also, it has a
tendency to turn obtuse angles into acute ones, which
eventually leads to larger edges (hence triangles) in
the triangulation. Ear cutting is the mechanism the
algorithm uses to adapt itself to lower sampling rates
(larger triangles).

Ear cutting fails when no more feasible ears exist.
This happens when the size of the edges of P are too
large, and the ears cover too much area in the poly-
gon. In this case, there must be some way to make
edges smaller, which leads to higher sampling rates.
In order to adapt to more complicated terrains, we in-
troduce two additional basic operations: greedy biting
and edge splitting.

Greedy Biting

In this basic operation, we �nd a point v inside the
polygon P and an edge, (vi; vi+1) of P , such that
(vi; v; vi+1) forms a triangle, T , inside P that meets
the feasibility criterion. We accomplish two things
with this operation: (1) subdividing an edge of P
in two (replacing (vi; vi+1) with (vi; v) and (v; vi+1)),
thereby achieving a higher \sampling rate"; and, (2)
taking a bite out of the polygon P , thus progressing
further in \eating away" all of P . The actual opera-
tion is a bit more complicated, as it needs to handle
choices of v that may be a vertex of P and lead to P
being split into two disjoint new simple polygons.

The greedy biting operation works as follows:

� Bite. For the polygon P , for each edge (vi; vi+1)
search for a point v 2 P such that (vi; v; vi+1)
corresponds to a feasible triangle. For e�ciency,
we search for such a point v in a neighborhood of
(vi; vi+1). Currently, we limit the search to grid
points along (close to) the vector perpendicular to
(vi; vi+1) at the midpoint of (vi; vi+1). We use a
binary search, starting at a point whose distance
from (vi; vi+1) is roughly jvivi+1j, then halving
the distance at each step until a point is found (or
we fail). (By trying other search strategies for v,
we can likely improve the algorithm performance.
This is being investigated.)

� Split. If the \Bite" step succeeds in �nding a
point v for which (vi; v; vi+1) corresponds to a fea-
sible triangle, we will potentially split polygon P .
We search for the closest edge (vj ; vj+1) to v. If
the triangle (vj ; v; vj+1) also corresponds to a fea-
sible triangle, we subdivide (split) the polygon P
into two simple polygons, outputting both trian-
gles ((vi; v; vi+1) and (vj ; v; vj+1)); otherwise, we
simply output (vi; v; vi+1) without splitting P .

Edge Splitting

It may happen that both ear clipping and greedy bit-
ing fail to �nd a feasible triangle. In this case, our al-
gorithm attempts to split some edge of the polygon P .
Checking each edge of P in succession, starting with
the longest, we look for an edge to split (roughly) in
half (or possibly in smaller pieces, if splitting in half
fails). When we split edge (vi; vi+1) at a (grid) point
v, we are actually creating a skinny (feasible) triangle,
(vi; v; vi+1). Since the triangles created in this way are
small or \slivery", we prefer not to perform this oper-
ation very often. Indeed, in practice this phase of the
algorithm is seldomly needed.

Initialization

Each phase of our algorithm works to triangulate the
interior of a simple polygon P , with feasible triangles.
In order to generate the �rst such polygon, bounding
the whole domain R, we apply a one-dimensional ver-
sion of our algorithm in each of the four cross sections
(de�ned by the vertical planes x = 0;m, y = 0; n)
that correspond to the boundary of the region R. The
algorithm can be considered to be a simpli�ed version
of the standard min-link path method of Suri [24],
applied to the discrete data points between the o�-
set curves obtained by shifting the terrain surface
up/down by �. See Figure 2.

Main Algorithm

The algorithm simply applies the above three oper-
ations, one at a time, giving priority (in order) to
ear cutting, greedy biting, and then edge splitting.
A complete description of our algorithm is outlined as
follows:

Greedy Cuts Algorithm

(0) Initialize P to be a list of one element { the single
polygon obtained by the initialization procedure
above.

(1) While P is not empty, do

(a) Let P 2 P .
(b) If P is a single feasible triangle, output this

triangle, and remove P from P .
(c) Else, while P is not fully triangulated,

(i) Perform ear cutting on P , until no fea-
sible ears exist.

(ii) Perform greedy biting on P . If this
results in a greedy bite that splits P ,
then remove P from P , add the two new
polygons to P , and go to (1). Other-
wise, if at least one greedy bite is found
(for some edge of P ), go to (1) (without
splitting P ).

(iii) Perform an edge split for P .



Figure 2: The solid line is calculated by a greedy method. In linking data points, go as far as possible without
exiting the strip de�ned by the dashed lines.

3 Discussion

Terrain Sampling

One of the most interesting properties of our algo-
rithm is the way it samples the dataset. It generates
large triangles in places of relatively little change and
small triangles in areas of more radical change. It is
interesting to try to analyze how this happens, and
here is where we can see the nice coupling of prop-
erties between the ear cutting phase and the others.
If the terrain is largely uniform, ear cutting generally
leads to longer and longer edges of P , until we en-
counter a region of high complexity, at which point
edges are subdivided by greedy biting or edge split-
ting (a method of increasing the sampling resolution).
Once we triangulate the high complexity region, ear
cutting again makes the edges on the boundary larger
and larger, i.e., making the triangles larger. Our algo-
rithm therefore has a natural mechanism for attempt-
ing to minimize the number of triangles required. (Of
course, as we have already said, our algorithm is not
guaranteed to �nd a true minimum (an NP-hard prob-
lem).) The strategy of where/when to apply each of
our three operations a�ects which regions get sampled
at higher resolutions. Thus, we continue to experiment
with further variants of our search strategy in hopes
of obtaining better and smaller triangulations.

Maintaining Structural Fidelity

A primary objective in any algorithm that simpli�es
(compresses) data is to maintain as much of the im-
portant structure of the input as possible. Our algo-
rithm generates a TIN that is close to the input DEM,
according to the given tolerance �. However, beyond
the constraint of being �-close, one may wish to place
further restrictions on the structural �delity; for exam-
ple, one may wish to preserve a selected set of point
features or of edge features, requiring that the sur-
face approximation include these points and segments
in the output TIN. In top-down algorithms, such re-
quirements can be incorporated using constraints; for
example, line segments can be preserved using con-

strained Delaunay triangulation (e.g., [6]). In our
bottom-up algorithm, we can incorporate such con-
straints directly, at low cost, within the test for tri-
angle feasibility: A triangle T 0 is not feasible if its
projection, T , contains a point feature on its interior
or boundary, except at a vertex, or intersects an edge
feature, except if the edge is an edge of T . Further,
our algorithm can maintain the structure of an edge or
a ridge, at a lower resolution (within, say, �) than the
full resolution, by executing the (lower dimensional)
initialization step in a vertical wall (plane) through
each constraint edge.

Termination

It is important to consider whether or not our algo-
rithm ever terminates. Could it ever get \stuck" and
fail to generate any further triangles, even though the
list of untriangulated regions, P , is not empty? The
answer is \no" for the case of the weak feasibility con-
dition, assuming that greedy biting is done by search-
ing over all possible bites. As a proof, consider a poly-
gon P 2 P . If P has no grid points, then any ear of
P is feasible. (Any simple polygon with at least 4
vertices has at least two ears, by the \Two Ear The-
orem" [18].) If P has grid points in its interior, then
there must exist a triangulation of these points within
P (since any polygonal domain can be triangulated).
All triangles in this triangulation must obey weak fea-
sibility. In particular, there must exist a triangle T
that shares at least one of its edges with P . Such a
triangle is either a (feasible) ear of P (found in ear
cutting) or a potential bite (found in greedy biting,
assuming that we do a full search). This proves ter-
mination.

In the strong feasibility case, however we get a dif-
ferent situation. Because of the discrete nature of the
allowed output (i.e., triangles must use original data
points, since we do not allow Steiner points), and the
continuous nature of the strong feasibility condition
(which joins data points to form a polyhedral surface
constraint), there are (rare) instances in which the al-



gorithm, as implemented, can get stuck when using
strong feasibility. In response to this, we have imple-
mented a simple feature that will guarantee termina-
tion in all cases. If the algorithm cannot �nd a fea-
sible triangle, then it relaxes the feasibility condition
in ear cutting, and �nds, instead, an ear that has the
smallest deviation from the original DEM. (This same
feature allows us to limit our search in greedy biting
and still guarantee termination in the weak feasibility
case.)

Complexity

We �rst remark that our algorithm uses very little in-
ternal memory. Other than the input data array, we
keep track only of the list P of polygons, each of which
is (typically) very small. Triangles that we generate do
not need to be stored, but can be written out directly
to disk. In contrast, methods that rely on triangula-
tion re�nement must maintain some sort of topological
data structure for the full set of triangles. Typically,
one would expect that if the output size (number of
triangles) is k, then the boundary of the polgyons P
at any given instant will have roughly size

p
k.

It is di�cult to prove a bound on the expected run
time of the algorithm. Clearly, the worst-case running
time is polynomial in the input size, since each primi-
tive test or computation can easily be performed, usu-
ally in worst-case linear time (linear, generally, in the
size of P 2 P). However, our experimental evidence
suggests that the algorithm runs in time roughly linear
in the input size.

The output complexity for our algorithm is again
hard to estimate from a theoretical point of view. The
problem we are trying to solve approximately is known
to be NP-hard, in general. Thus, the best we can hope
for is that we may be able to prove a worst-case bound
on the ratio of our output size (number of triangles)
to the number of triangles in an optimal TIN. There
is good theoretical basis (e.g., from greedy set cover
heuristics) to suggest that our algorithm (or a close
variant thereof) will never produce more than a small
(e.g., logarithmic) factor more triangles than is possi-
ble for a given �. Proving such a fact remains an open
(theoretical) problem. Perhaps the best indication we
have of the e�ectiveness of the algorithm is the exper-
imental data we have, which suggests that our algo-
rithm is obtaining substantially fewer (roughly 20-30
percent) triangles than the competing algorithm, for
the same error tolerance �.

4 Experimental Results

Our algorithm is relatively simple to implement.
Our C implementation has only about 4,000 lines of
code. The code uses several computational geometry
primitives, many of which come from O'Rourke [18],
including segment intersection testing, diagonal clas-
si�cation, point classi�cation (point location with re-
spect to a simple polygon). With these primitives in
hand, and routines to handle simple polygon opera-

tions (e.g., splitting an edge of a polygon, inserting a
vertex.), it is fairly easy to implement the algorithm
described in Section 2. As with all geometric algo-
rithms, care has to be taken with special (degenerate)
cases that arise from collinearities.

In order to study its performance, we have con-
ducted tests of our algorithm and compared it with
Franklin's algorithm, which is a top-down approach.
We compared the speed, average error bound (over all
the triangles), and the complexity of the output (mea-
sured in the number of triangles). We ran both algo-
rithms on the following types of input: real terrain
datasets, arti�cially generated terrains arising from
performing cuts to generate faults, and arti�cially gen-
erated terrains arising from lifting triangulations.

Franklin's algorithm

Franklin's algorithm is described in [9], and is a
nice and e�cient example of a top-down triangula-
tion method. Initially, the algorithm approximates the
DEM by 2 triangles. Then, a general step of the algo-
rithm involves �nding the most deviant point in each
already generated triangle and inserting this new point
into the triangulation, splitting one triangle into three.
Each time a point is inserted, the algorithm checks
each quadrilateral that is formed by a pair of adjacent
triangles, at least one of which is a new triangle (one
of the three incident on the new point). A local con-
dition on the quadrilateral determines whether or not
to perform a diagonal swap. The original code works
by performing a pre-determined number of splits. We
have changed the code to make as many splits as nec-
essary in order to meet a prespeci�ed error bound �.
Franklin's implementation is done carefully, with em-
phasis on e�ciency. For the sake of speed, it uses
internal memory as much as possible.

Experimental Data

Our experiments were conducted on a Silicon Graphics
ONYX, equipped with two 100Mhz R4400 processors
and 64MB of RAM. Only one of the processors was
used. The time to read the terrain datasets from the
disk was not included in our runtimes. In Table 1,
we show the results of running three algorithms on
seven real terrain datasets. We ran Franklin's algo-
rithm (f), and two versions of our algorithm | one
using weak feasibility (w), and one using strong feasi-
bility (s). The table shows the choice of �, the running
times, and the total number of triangles in the output
TIN, for each of the seven terrains. The input terrains
were all scaled to be 120-by-120 elevation arrays, for
uniformity of testing.

In summary, greedy cuts with weak-feasibility beats
Franklin's code in the number of output triangles in
all instances. Greedy cuts with strong-feasibility loses
in most cases, but it applies a stricter accuracy re-
quirement than Franklin's algorithm (which uses weak
feasibility). Franklin's optimized code is usually faster
than our (relatively naive) implementation. We expect
that with �ne tuning and optimization, our algorithm



Table 1: Running times (in sec) of three algorithms on
seven real terrain data sets. (f) indicates Franklin's
code; (w) and (s) indicate our algorithm with weak
and strong feasibility, respectively. All terrains are
120�120 elevation arrays. The error bounds (�) were
chosen to keep the number of triangles (Trgs.) in the
output approximately in the 1000 to 3000 range. Mem-
ory usage is the number of 8Kbyte pages allocated.

Terrain � Time Trgs. Memory

2.5 (f) 3.2 1994 6229
Bu�alo 2.5 (w) 8.12 1641 428

2.5 (s) 21.86 2279 592
2.5 (f) 5.03 2688 8731

Denver 2.5 (w) 17.38 2137 572
2.5 (s) 27.57 2849 700
1.5 (f) 2.23 1564 4781

Eagle Pass 1.5 (w) 4.24 1214 315
1.5 (s) 8.1 1578 454
15 (f) 4.5 2822 8621

Grand Canyon 15 (w) 12.87 2073 488
15 (s) 37.96 3115 844
0.5 (f) 2.44 1297 4084

Jackson 0.5 (w) 2.6 859 231
0.5 (s) 3.62 1127 296
15 (f) 4.03 2561 8082

Moab 15 (w) 10.27 1836 495
15 (s) 21.09 2430 628
5 (f) 5.28 2671 8365

Seattle 5 (w) 9.70 2011 486
5 (s) 26.75 2763 672

will be able to run much faster. But perhaps more
signi�cant is the comparison of memory requirements.
On average, Franklin's algorithm used more than an
order of magnitude the memory our algorithms re-
quire.

Color plate 1 and Color plate 2 show rendering ex-
amples of real terrain rendered with both Franklin's
and our algorithm. Our algorithm generates noticebly
larger polygons.

5 Conclusions and Future Work

We have presented a new method to generate Tri-
angular Irregular Networks (TINs) from dense terrain
grids. Our algorithm di�ers from previous methods in
its use of a bottom-up approach to terrain sampling.
Its key features include:

� Low Complexity Output TIN. Our method gener-
ates very few triangles for a given �. Indeed, a
primary objective in using the greedy optimiza-
tion step is the minimization of the number of
triangles in the output.

� Memory E�ciency. It can be run on very large
terrains, potentially even those whose grids can-
not simultaneously �t in memory.

� Maintenance of Structural Fidelity. Our method
is able to maintain with very little additional
overhead any pre-speci�ed set of features of the
terrain, without the need for adding additional
(Steiner) points.

� Speed. Our running times are comparable to
the fastest available methods, and we can proba-
bly improve the performance dramatically with a
careful re�nement of our code.

Our experimental results so far have focussed on the
quality of the output TIN. The running time can cer-
tainly be improved through more careful coding. Also,
further experimentation with the heuristics, especially
the greedy biting operation, should yield even better
results with respect to the output size. On the theo-
retical side, we are also attempting to prove worst-case
bounds on the performance of the approximation (e.g.,
that we obtain a number of triangles that is guaran-
teed to be within a small factor of optimal).

A straightforward modi�cation of our code will per-
mit the algorithm to work on arbitrary TIN terrain
inputs, rather than just on DEM arrays. Conceptu-
ally, there are no changes needed to the algorithm.
A somewhat less trivial modi�cation will be to gen-
eralize the algorithm to approximate arbitrary (non-
terrain) polyhedral surfaces and to �nd approxima-
tions to a minimum-facet separating surface (as done
in [2, 3, 17], in the convex case).

Another straightforward extension of our method
allows one to use it to build hierarchical representa-
tions of terrain. For example, we can simply start
with an extremely crude terrain approximation (e.g.,
just two triangles), and then adjust � to be smaller and
smaller, making each corresponding TIN a re�nement
of the previous one, until we have the full resolution
grid. An ideal such hierarchy would have logarithmic
height, as the intermediate TINs have sizes 2, 4, 8, 16,
etc.

Another extension that we are pursuing is to ap-
proximate functions (terrains) of three variables. Ap-
proximating such functions is very important in scien-
ti�c visualization. One can apply our same paradigm
to this problem, biting o� tetrahedra that satisfy the
�-�tness criterion. The tricky issue in implement-
ing this algorithm is in maintaining the regions P of
untetrahedralized domain, since this will be a polyhe-
dral space, possibly of high genus.
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Color plate 1: Bu�alo terrain triangulated with (a) Franklin's algorithm, (b) our algorithm (strong-feasibility).

Color plate 2: Jackson terrain triangulated with (a) Franklin's algorithm, (b) our algorithm (strong-feasibility).


