
Parallel Performance Measures for Volume Ray Casting

Cl�audio T. Silva and Arie E. Kaufman

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract
We describe a technique for achieving fast volume

ray casting on parallel machines, using a load balanc-
ing scheme and an e�cient pipelined approach to com-
positing. We propose a new model for measuring the
amount of work one needs to perform in order to ren-
der a given volume, and use this model to obtain a
better load balancing scheme for distributed memory
machines. We also discuss in detail the design trade-
o�s of our technique. In order to validate our model
we have implemented it on the Intel iPSC/860 and the
Intel Paragon, and conducted a detailed performance
analysis.

1 Introduction
As researchers and engineers use volume render-

ing to study complex physical and abstract structures
they need a coherent, powerful, easy to use visualiza-
tion tool, that lets them interactively change all the
necessary parameters. Unfortunately, even with the
latest volume rendering acceleration techniques run-
ning on top-of-the-line workstations, it still takes a
few seconds to a few minutes to volume render images.
This is clearly far from interactive. With the advent
of parallel machines, scanners and instrumentation,
larger and larger datasets (typically from 32MB to
512MB) are being generated that would not even �t
in memory of a workstation class machine. Even if ren-
dering time is not a major concern, big datasets may
be expensive to hold in storage, and extremely slow to
transfer to a typical workstations over network links.

These problems lead to the question of whether the
visualization should be performed directly on the par-
allel machines that generate the simulation data or
sent over to a high performance graphics workstation
for post-processing. First, if the visualization software
was integrated in the simulation software, there would
be no need for extra storage and visualization could
be an active part of the simulation. Second, large par-
allel machines can render these datasets faster than
workstations can, possibly in real-time or at least giv-
ing the possibility of achieving interactive rates. Fi-
nally, if real integration between the simulation and

the visualization tool is possible, one could interac-
tively \steer" the simulation, and possibly terminate
simulations that are wrong or uninteresting at an ear-
lier stage instead of performing long and expensive
archiving operations for the generated datasets. In
this paper we focus on the architecture and perfor-
mance measures of visualization algorithms that are
running directly on the parallel machines.

Clearly, an algorithm that runs on a parallel ma-
chine has to be e�cient and should be able to make
good use of the computing power. A conserva-
tive tradeo� between scalability and actual process-
ing speed is very important. Also, the algorithm has
to be space e�cient, and for the case of a distributed
memory MIMD machine, memory duplication should
be avoided. In this paper we propose a space e�-
cient, fast parallel algorithm that addresses these is-
sues. This algorithm will be the basis of a visualization
library in the molds just described using the VolVis
system [1] as its front end.

A large number of parallel algorithms for volume
rendering have been recently proposed. Schroeder and
Salem [13] have proposed a shear based technique for
the CM-2 that could render 1283 volumes at multi-
ple frames a second, using a low quality �lter. The
main drawback of their technique is low image qual-
ity. Their algorithm had to redistribute and resam-
ple the dataset for each view change. Montani et al.
[10] developed a distributed memory ray tracer for the
nCUBE, that used a hybrid image-based load balanc-
ing and context sensitive volume distribution. An in-
teresting point of their algorithm is the use of clus-
ters to generate higher drawing rates at the expense
of data replication. However, their rendering times are
well over interactive times. Using a di�erent volume
distribution strategy but still a static data distribu-
tion, Ma et al. [9] have achieved better frame rates on
a CM-5. In their approach the dataset is distributed
in a K-d tree fashion and the compositing is done in a
tree structure. Others [6, 3, 11] have used similar load
balancing schemes using static data distribution, for
either image compositing or ray data
ow compositing.



Nieh and Levoy [12] have parallelized an e�cient vol-
ume ray caster [8] and achieved very impressive per-
formance on a shared memory DASH machine.

In this paper we concentrate on the parallelization
of a simple but fast method for ray casting, called
PARC (polygon assisted ray casting) [2]. Our parallel
implementation uses a static data decomposition and
an image compositing scheme. We have implementa-
tions that work on the Intel iPSC/860 and the Intel
Paragon. In Section 2 we explain the important issues
in designing and writing a parallel ray caster, followed
by Section 3, where we study a new method for mea-
suring the work done by a ray caster. In Section 4 we
describe our algorithm and its implementation.

2 Performance Considerations
In analyzing the performance of parallel algorithms,

there are many considerations related to the machine
limitations, like for instance, communication network
latency and throughput [11]. Latency can be mea-
sured as the time it takes a message to leave the
source processor and be received at the destination
end. Throughput is the amount of data that can be
sent on the connection per unit time. These num-
bers are particularly important for algorithms in dis-
tributed memory architectures. They can change the
behavior of a given algorithm enough to make it com-
pletely impractical.

Throughput is not a big issue for methods based
on volume ray casting that perform static data distri-
bution with ray data
ow as most of the communica-
tion is amortized over time [10, 6, 3]. On the other
hand, methods that perform compositing at the end
of rendering or that have communication scheduled
as an implicit synchronization phase have a higher
chance of experiencing throughput problems. The rea-
son for this is that communication is scheduled all at
the same time, usually exceeding the machines archi-
tectural limits. One should try to avoid synchronized
phases as much as possible.

Latency is always a major concern, any algorithm
that requires communication pays a price for using the
network. The start up time for message communica-
tion is usually long compared to CPU speeds. For
instance, in the iPSC/860 it takes at least 200�s to
complete a round trip message between two proces-
sors. Latency hiding is an important issue in most
algorithms, if an algorithm often blocks waiting for
data on other processors to continue its execution, it
is very likely this algorithm will perform badly. The
classic ways to hide latency is to use pipelining or pre-
fetching [5].

Even though latency and throughput are very im-
portant issues in the design and implementation of a
parallel algorithm, the most important issue by far is
load balancing. No parallel algorithm can perform well
without a good load balancing scheme.

Again, it is extremely important that the algorithm
has as few inherently sequential parts as possible if at
all. Amadahl's law [5] shows how speed up depends
on the parallelism available in your particular algo-
rithm and that any, however small, sequential part
will eventually limit the speed up of your algorithm.

Given all the constraints above, it is clear that to
obtain good load balancing one wants an algorithm
that:

� Needs low throughput and spreads communica-
tion well over the course of execution.

� Hides the latency, possibly by pipelining the oper-
ations and working on more than one image over
time.

� Never causes processors to idle and/or wait for
others without doing useful work.

A subtle point in our requirements is in the last
phrase, how do we classify useful work ? We de�ne
useful work as the number of instructions Iopt executed
by the best sequential algorithm available to volume
render a dataset. Thus, when a given parallel im-
plementation uses a suboptimal algorithm, it ends up
using a much larger number of instructions than the-
oretically necessary as each processor executes more

instructions than Iopt
P

(P denotes the number of pro-
cessors). Clearly, one needs to compare with the best
sequential algorithm as this is the actual speed up the
user gets by using the parallel algorithm instead of the
sequential one.

The last point on useful work is usually neglected
in papers on parallel volume rendering and we be-
lieve this is a serious 
aw in some previous approaches
to the problem. In particular, it is widely known
that given a transfer function and some segmentation
bounds, the amount of useful information in a volume
is only a fraction of its total size. Based on this fact,
we can claim that algorithms that use static data dis-
tribution based only on spatial considerations are pre-
senting \e�ciency" numbers that can be inaccurate,
maybe by a large margin.

To avoid the pitfalls of normal static data distri-
bution, we present in the next section a new way to
achieve realistic load balancing. Our load balancing
scheme, does not scale linearly as others claimed be-
fore, but achieves very fast rendering times while min-
imizing the \work" done by the processors.

3 Load Balancing
This section explains our new approach to load bal-

ancing, which is based on the PARC (polygon assisted
ray casting) algorithm [2]. The section presents a
short description of PARC and describes di�erent ap-
proaches to using it as a load balancing technique.
PARC can be characterized as a presence acceleration



technique [4], like the octree decompositions of Levoy
[8]. Instead of stepping through the whole volume for
rendering, only the parts that contain relevant data
are used, this can save an enormous amount of ren-
dering time, not only in volume stepping, but also be-
cause it greatly decreases the number of compositing
and shading calculations one needs to perform.

The rational behind PARC is simple. As one needs

to calculate the integral I =
R t1
t0

e
�
R

t

t0

�(s)ds
I(t)dt dur-

ing rendering, PARC �nds tighter bounds for t0 and t1,
thus, substantially lowering the rendering time. PARC
does this by enclosing the volume with a rough polyg-
onal approximation, which is transformed and scan
converted into front and back Z bu�ers. For each ray
the front one gives us a conservative estimate for t0,
and the back one gives the t1 estimate.

In order to skip over empty space inside volumes,
our implementation of PARC uses pre-calculated
cubes aligned with the primary axes to bound cubes
inside the volume. For each particular view, we scan
convert the cubes into a Z bu�er (implemented in soft-
ware) to obtain closer bounds on the intervals where
the ray integrals need to be calculated. This method
achieves speeds comparable with the fastest high qual-
ity volume renderers.

One can specify the number of cubes in the sub-
division of the original dataset. This determines the
accuracy of the t0 and t1 estimates; the higher the
number of cubes, the closer to the exact intersection
points they are. If the estimates are accurate, we per-
form less work on the ray, but on the other hand the
scan conversion time is higher as the number of cubes
grows very fast. For instance, one can ask for a level 4
PARC approximation, this means the dataset is par-
titioned to 24 intervals in each of the coordinate di-
rections, for a total of 4096 small cubes. Depending
on the low and high threshold speci�ed, one usually
gets a much lower number of such cubes. For instance,
with a level 4 PARC approximation of a CT 3D recon-
structed head at a 20-200 threshold, only 38% of the
cubes are non-empty.

The cubes generated by PARC are the basic units
for our load balancing. As the cubes are very close
approximation of the amount of work one has to per-
form during ray tracing, we use the number of cubes
a processor has as the measure of how much work is
performed by that particular processor. Let P denote
the number of processors, and ci the number of cubes
processor i has. To achieve a good load balancing we
need a scheme that minimizes the following heuristic
function for a partition X = (c1; c2; : : :):

f(X) = max
i6=j

jci � cjj; 8i; j � P (1)

The main problem in implementing this approach
is that for ray casting to be e�cient the dataset part

of a particular processor need to be contiguous. Not
only this makes compositing easier but it also reduces
the number of intersection calculations required. Once
one decides what shape to assign to each processor,
one just needs to use either Equation 1 or a variation of
it. For the rest of the paper we describe an implemen-
tation of our load balancing scheme that uses slabs,
which are consecutive slices of the dataset aligned on
two major axes, as the basic partition blocks of the
dataset for load balancing. Slabs are very easy to im-
plement and we show that they provide a good sense of
load balance. In the case of slabs, the PARC algorithm
produces an ordered list of number: b1; b2; : : : ; bn,
which are the number of cubes in each slab. We need
to �nd indices pairs (k11; k

2
1); (k

1
2; k

2
2) : : : ; (k

1
P ; k

2
P ), that

minimizes the following expression:

f(X) = max
i6=j

������

k2iX

m=k1
i

bm �

k2jX

m=k1
j

bm

������
; 8i; j � P (2)

The problem of computing the optimal (as de�ned
by our heuristic choice) load balance partition indices
can be solved naively as follows. We can compute all
the possible partitions of the integer n, where n is
the number of slabs, into P numbers, where P is the
number of processors. For example, if n = 5, and P =
3, then 1+1+3 represents the solution that gives the
�rst slab to the �rst processor, the second slab to the
second processor and the remaining three slabs to the
third processor. Enumerating all possible partitioning
to get the optimal one is a feasible solution but can
be very computationally expensive for large n and P .
At this time we have a Prolog implementation of a
slightly revised algorithm. Instead of calculating the
minmax Equation 2, we choose the permutation with
the smallest square di�erence from the average.

In order to show how well our approach works in
practice, let us work out the example of using our
load balancing example to divide the neghip dataset
(the negative potential of a high-potential iron pro-
tein of 663 resolution) for four processors, using a
level 4 PARC decomposition with a 10 to 200 value
threshold. After running PARC we get the following
16 numbers, one for each slab, out of the 1570 to-
tal cubes:f12, 28, 61, 138, 149, 154, 139, 104, 106,
139, 156, 151, 129, 62, 29, 13g. The naive ap-
proach of other volume renderers has been to assign
an equal part of the volume to each processor, result-
ing in the following partition: f12+28+61+138=239,
149+154+139+104=546, 106+139+156+151=552,
129+62+29+13=233g, where processors 2 and 3 have
twice as much work than processor 1 and 4. Our ap-
proach based on Equation 2 gives us f388, 397, 401,
384g, clearly a much more balanced solution.

One can see that some con�gurations will yield bet-
ter load balancing than others but this is a limitation



of the particular space subdivision one chooses to im-
plement, the more complex the subdivision one allows,
the better load balancing but the harder it is to im-
plement a suitable load balancing scheme and the as-
sociated ray caster. Figure 1 plots the examples just
described for the naive approach. Figure 2 shows how
well our load balancing scheme works for a broader
set of processor arrangements. By comparing both
plots, one can see that our algorithm generates much
smoother curves, thus leading to better load balanc-
ing.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

N
um

be
r 

of
 c

ub
es

Processor Number

out of 4 processors
out of 8 processors

Figure 1: The graph shows the number of cubes per
processor under naive load balancing.

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 c

ub
es

Processor Number

out of 2 processors
out of 3 processors
out of 4 processors
out of 8 processors

out of 10 processors

Figure 2: Load balancing measures for our algorithm.
The graph shows the number of cubes the processor
receives in our algorithm.

Figures 3 and 4 show the rendering times on the
Intel Paragon, showing the correlation between the
number of cubes a processor has and the amount of
work it has to perform. By comparing these graphs

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e 
to

 R
en

de
r 

(m
se

c)

Node Number

time to render with 4 processors

Figure 3: Naive load balancing on the Paragon. The
graph shows the actual rendering times for 4 proces-
sors using the naive load balancing.

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e 
to

 R
en

de
r 

(m
se

c)

Node Number

time to render with 4 processors

Figure 4: Our load balancing on the Paragon. The
graph shows the actual rendering times for 4 proces-
sors using our load balancing.



and those in Figures 1 and 2, one can observe that our
load balancing is e�ective and accurate, compared to
the naive approach of equally subdividing the dataset.
If one was calculating a single image, the total render-
ing time of the image subparts would be the maximum
of every processor plus the compositing time. As will
be seen in the next section, we use a pipeline approach
to optimize image generation performance, by amor-
tizing compositing over time.

4 Parallel Ray Casting
The version of our parallel PARC-based volume ray

caster described here uses the NX/2 library on the
iPSC/860 and the Paragon, although previous ver-
sions also ran under TCP/IP on workstations. We
plan to release a production level version of this code
on the iPSC/860, Paragon, PVM, network worksta-
tions (TCP/IP) together with a distribution version
of VolVis [1].

In order to avoid the processors having direct ac-
cess to the dataset description �les, we chose to broad-
cast once the necessary information for the rendering,
like the dataset, processor assignments, transfer func-
tions, and so on, and have all the processors synchro-
nize during this phase. Clearly, this may make our
implementation unsuitable for someone that needs to
generate only a single image, specially because some
machines (like the iPSC/860) have slow processor ac-
cess to NFS mounted �les. The best scenario is one
where the datasets are generated on the parallel ma-
chine, and not moved in and out at all.

After initialization, user commands representing
di�erent viewing angles are sent to all the processors
by broadcast messages. Only information like trans-
formation matrices and image sizes are sent at this
time to minimize the communication cost per image.
In order to avoid 
ooding the parallel machine with re-
quests, a feedback synchronization technique is used.
It basically balances the requests rate with the ma-
chine power available. The 
ow of messages in the
algorithm is shown in Figure 5.

The feedback synchronization techniques we use are
based on work by Van Jacobson [7], who designed a
set of techniques to avoid congestion in TCP/IP net-
works. We use a variation of his slow-start and round-
trip-time estimation technique, where the host slowly
sends requests and adaptively changes the rate of re-
quests with the feedback it receives from the network.
This is implemented by having the host keep the num-
ber of outstanding image render requests, and setting
a maximum on this number based on the number of
processors and the amount of memory each has. At
the start of the computation the host begins sending
image requests to the processors, and for every image
received it sends two requests to the processors until
the maximum is achieved. Also the host keeps a run-
ning average of the time taken to compute an image,

Node 1 Node 2 Node 3

Node 4
Node 0

User Workstation

Figure 5: Overview of communication 
ow in the al-
gorithm. Arrow width represents the expected band-
width necessary in each communication link.

computed as Tf = �Ti + (1 � �)M , where Tf is the
new estimate, Ti was the initial estimate, M is the
time measured in the last image computation, and �
is an amortization constant. By changing � we can
make the host more or less responsive to changes in
rendering times. By using this procedure, when this
time increases the host can adaptively decrease the
rate of requests or increase the rate if the processors
begin computing images faster.

In the computing processors, a set of working re-
quests are queued and serviced on demand. Basically,
there are two di�erent kinds of requests, rendering re-
quests and compositing requests. The �rst type of re-
quest is received directly from the host (where sup-
posedly the user is waiting for images to show up),
while the second comes from other slab neighboring
processors. The computing processor keeps servicing
both types of requests, by picking a message from each
queue.

While servicing a rendering request the processor
allocates enough memory for it, renders it, and keeps
the rendered image around until a compositing request
for that particular image comes from its respective
neighboring processor, then composites its part of the
image and sends it over to the other neighboring pro-
cessor, and continues working on a new rendering re-
quest. The last processor on a chain, sends the whole
image back to the user's workstation. If a composit-
ing request is received for an image that is not ren-
dered yet we take the approach of computing it right
away rather then delaying it as this could double our
memory requirements for images. Once requests are
serviced the memory is immediately freed.

This approach is simple and e�ective. One of
the clear advantages is that if we disregard the mes-
sage and synchronization overhead for a moment, we
see that we are maximizing the computation overlap
among processors and getting a much better utiliza-



tion of the communication network as messages are
being sent during the whole course of the image com-
putation time instead of just at a certain point in time.

One may claim that other, tree based, composit-
ing schemes [9] may yield better results, however, the
drawbacks of these schemes (low processor utilization
during compositing and high network utilization dur-
ing the peak of compositing) are major. Even though
the tree approach would give a �nal image in O(logn)
time steps, it still needs asymptotically the same num-
ber of messages. Therefore, it does not save any com-
putation time, but it actually wastes it when some of
the processors become idle.

The use of a pipelined compositing approach, where
images are asynchronously generated and saved in
bu�ers, requires the use of the feedback synchroniza-
tion technique to avoid increasing the memory over-
head without bounds. An interesting side e�ect of this
technique is that our algorithm automatically adjusts
itself to the rendering times of the particular machine
and/or con�guration being used, like the number of
processors and network performance.

5 Performance Analysis
In this section we present a few performance �g-

ures of our algorithm and demonstrate that our ap-
proach is sound and fast. The main points that we
are discussing are: the e�ectiveness of PARC load bal-
ancing, the communication overhead of the composit-
ing scheme, algorithm behavior under di�erent shad-
ing models, and overhead as compared to a sequential
implementation. The e�ectiveness of our PARC load
balancing was studied extensively in the last section,
but to complete our choice of using PARC as our ray
casting algorithm, it is interesting to compare its ad-
vantages to a more naive ray casting approach where
no presence accelerations are adopted.

A conventional ray caster where the rays are cast
from start to end by calculating intersections with the
bounding box of the object is only slightly di�erent
from a PARC ray caster. A PARC ray caster actu-
ally does more work than a naive one, as it needs to
scan convert and to �nd t0 and t1 from the Z bu�er.
The place that a PARC ray caster really gains perfor-
mance is in the fact that it better approximates the
volume bounds. It should be clear that the higher
the cost of the shading function per step, the more
advantageous it is to calculate these bounds well. In
Figure 6, we can see how a PARC based ray caster per-
forms against a naive ray caster under di�erent shad-
ing functions. For our purposes we consider \light"
shading a method that uses 5-10 instructions per sam-
ple, \medium" a method that uses 50 instructions per
sample, and \heavy" shading functions require about
300 instructions per sample. Nieh and Levoy [12] have
reported that trilinear interpolating a ray sample takes
320 instructions. One can see from Figure 6 that not

only times but also the rate of increase of cost de-
creases as one computes more samples.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

R
en

de
ri

ng
 T

im
es

 (
se

c)

Shading cost in # of instructions.

naive
parc

Figure 6: PARC versus naive ray casting. Times were
calculated on a Sparc1000.

The work performed during rendering each ray can
be broken into Ir, the initialization work, and Wr , the
work performed to calculate and shade the samples
along the ray. If perfect load balancing is achieved for
every ray, each processor will perform Wr

P
+ Ir work

per ray, that is, the initialization time is replicated
for every ray. If Wr � Ir, then we can achieve very
high scalability with the algorithm, otherwise, as the
number of processors increases the amount of work
done on the initialization by all the processors PIr gets
larger than Wr , thus limiting the performance. This
makes optimization of the initialization time critical
to the performance of the algorithm.

Initialization time is composed of several compo-
nents, the most time consuming being the PARC pro-
jection time and the transformation time. Right now
it takes anywhere from 350 msec to 1600 msec to scan
convert a level 4 PARC approximation on the ma-
chines we used. We believe scan conversion itself can
be done on the order of 20 times faster when the code
is re-written in a more e�cient way, possibly in i860
speci�c code. By broadcasting at the beginning only
the necessary PARC polygons we can also avoid in-
creasing the number of polygons that need to be scan
converted in each processor, and at the same time de-
crease the memory requirement. Until these changes
get incorporated in our code, our timings are going
to be around the 1 second mark, even if the rest of
the algorithm takes no time at all. However, overall
rendering times decreased substantially after we op-
timized our transformation time by factoring out all
common matrix multiplications and inlining the ones
inside tight loops.

All of the performance numbers presented in the
rest of the section are for the Intel Paragon. The Intel



Paragon uses an Intel i860XP, a 50MHz superscalar
microprocessor, and a 2D mesh interconnection net-
work. Every processor of the machine actually con-
tains two i860XPs, but only one is used for computa-
tion.

Figures 7 and 8 show the average time to composite
di�erent image sizes in three di�erent machine con�g-
urations and for �ve di�erent screen sizes, ignoring
completely the rendering time. We use a slow start
technique for these measures (only when pipelining).
It is interesting to compare the �gures as one can see
that our pipelining method can very well hide the ef-
fects of the network and the work done to composite
the image. For instance, every processor has to spend
around 52 msec to composite a 3002 image (only com-
pute time), if we consider 6 processors, it will take
over 300 msec of CPU time to generate this image,
still with our pipelining approach the user only sees
65 msec as opposed to 330 msec a sequential compos-
ite requires.

0

50

100

150

200

250

10 15 20 25 30

T
im

e 
to

 c
om

po
si

te
 f

in
al

 im
ag

e 
(m

se
c)

Number of processors

500x500 image
400x400 image
300x300 image
200x200 image
100x100 image

Figure 7: Timing as seen by a user of the arriving of
images using our pipelining approach.

In Figure 9, we present some of our rendering times.
These are rendering times for our �rst implementation
and should not be regarded as what we are expecting
for the production level code. One can see from the
graph that our algorithm scales well as the number
of processors increases. Also our prediction that the
higher the shading cost, the better the parallel scala-
bility can be seen from the graphs. We have �ltered
out the PARC rendering time from the numbers. We
expect to speed the PARC projection times up by at
least 20 times with the new scan conversion routines,
and with a new set of fast PARC projection techniques
being designed we anticipate getting scan conversion
to under 25 msec. At this time, the best rates attain-
able by our algorithm are about 1.5 frames/sec on a
32 processor con�guration of our Intel Paragon for a
2562 image size. This is very competitive and even

0

1000

2000

3000

4000

5000

6000

10 15 20 25 30

T
im

e 
to

 c
om

po
si

te
 f

in
al

 im
ag

e 
(m

se
c)

Number of processors

500x500 image
400x400 image
300x300 image
200x200 image
100x100 image

Figure 8: Timing as seen by a user of the arriving of
images using sequential composite.

better than other rendering times published for ma-
chines with this number of processors.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
en

de
ri

ng
 T

im
es

 (
m

se
c)

Number of processors

heavy
medium

light

Figure 9: Rendering times on an Intel Paragon.

6 Conclusions and Future Work
We have shown that using PARC cubes for measur-

ing useful work generates an intuitive way to load bal-
ance volume ray casting on distributed memory par-
allel machines. This not only generates a method that
is theoretically sound but its preliminary implementa-
tion seems to present a method that is both e�cient
and scalable.

We have also proposed a new method for com-
positing that achieves better throughput than previ-
ous methods and that can be used to generate better
refresh rates. If one cannot accept the delay pipelin-
ing imposes, one can always make judicious replication
of volume data, for instance, one volume for every 16



processors to avoid long image delay times and still
keep high refresh rates.

We believe our method is simple, fast, uses co-
herency and achieves high resource utilization on a
given machine. As we use PARC, we achieve a
high utilization of the compute processors and thus
a very fast rendering time on every processor. Be-
cause of our pipelined compositing scheme, we achieve
a much higher network utilization than other methods.
Finally, our feedback synchronization image request
technique guarantees a constant 
ow of information
that adapts itself to di�erent con�gurations of proces-
sor performance and network utilization.

Our current implementation can be greatly im-
proved and optimized. One of our main concerns is to
smoothly integrate all the parallel code into VolVis,
so our users can take advantage not only of its in-
tuitive and 
exible user interface, but also of greater
speed provided by parallel machines. Other plans in-
clude the porting of our algorithm to other architec-
tures and a more detailed performance analysis of the
whole algorithm. We are also planning on introduc-
ing optimization that would allow the system to use
data replication and sharing whenever allowed. This
way users with multiple processor shared-memory ma-
chines, like a network of Sparc1000s would be able to
get better performance.

Another direction of future work is the extension of
our load balancing technique to non-slabs partitions.
The major problem is that computing optimal parti-
tions in one dimention (the slab case) is already hard
and computationally expensive. Another interesting
question is whether this method can be extended to
irregular shaped grids.

Acknowledgments

This research has been supported by the National Sci-
ence Foundation under grants CCR-9205047 and DCA
9303181 and by the Department of Energy under the
PICS grant. Special thanks to Rick Avila and Lisa
Sobierajski for several enlightening discussions about
PARC, volume rendering, and the implementation of
VolVis. We are grateful to Juliana Freire for imple-
menting the e�cient Prolog algorithm described in
Section 3 in the XSB system developed at Stony Brook
by David Warren.

References
[1] R. Avila, T. He, L. Hong, A. Kaufman, H. P�s-

ter, C. Silva, L. Sobierajski, and S. Wang. Volvis:
A diversi�ed volume visualization system. In Vi-
sualization '94 Proceedings. IEEE CS Press, Oc-
tober 1994.

[2] R. Avila, L. Sobierajski, and A. Kaufman. To-
wards a comprehensive volume visualization sys-

tem. In Visualization '92 Proceedings, pages 13{
20. IEEE CS Press, 1992.

[3] E. Camahort and I. Chakravarty. Integrating vol-
ume data analysis and rendering on distributed
memory architectures. In 1993 Parallel Render-
ing Symposium Proceedings, pages 89{96. ACM
Press, October 1993.

[4] J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. In 1992 Workshop on
Volume Visualization Proceedings, pages 91{98.
ACM Press, October 1992.

[5] J. Hennesy and D. Paterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan-
Kaufmann, 1990.

[6] W. Hsu. Segmented ray casting for data paral-
lel volume rendering. In 1993 Parallel Rendering
Symposium Proceedings, pages 7{14. ACM Press,
October 1993.

[7] V. Jacobson. Congestion avoidance and control.
Computer Communication Review, 18(4):314{29,
1988.

[8] M. Levoy. E�cient ray tracing of volume data.
ACM Transations on Graphics, 9(3):245{261,
1990.

[9] K. Ma, J. Painter, C. Hansen, and M. Krogh. A
data distributed parallel algorithm for ray-traced
volume rendering. In 1993 Parallel Render-
ing Symposium Proceedings, pages 15{22. ACM
Press, October 1993.

[10] C. Montani, R. Perego, and R. Scopigno. Parallel
volume visualization on a hypercube architecture.
In 1992 Workshop on Volume Visualization Pro-
ceedings, pages 9{16. ACM Press, October 1992.

[11] U. Neumann. Parallel volume-rendering algo-
rithm performance on mesh-connected multicom-
puters. In 1993 Parallel Rendering Symposium
Proceedings, pages 97{104. ACM Press, October
1993.

[12] J. Nieh and M. Levoy. Volume rendering on scal-
able shared-memory mimd architectures. In 1992
Workshop on Volume Visualization Proceedings,
pages 17{24. ACM Press, October 1992.

[13] P. Schroeder and J. Salem. Fast rotation of vol-
ume data on data parallel architectures. In Visu-
alization '91 Proceedings, pages 50{57. IEEE CS
Press, 1991.


