
VolVis: A Diversified Volume Visualization System

Ricardo Avila‡, Taosong He*, Lichan Hong*, Arie Kaufman*,
Hanspeter Pfister*, Claudio Silva*, Lisa Sobierajski*, Sidney Wang*

‡Howard Hughes Medical Institute *Department of Computer Science
State University of New York at Stony Brook State University of New York at Stony Brook

Stony Brook, NY 11794-5230 Stony Brook, NY 11794-4400

Abstract

VolVis is a diversified, easy to use, extensible, high
performance, and portable volume visualization system for
scientists and engineers as well as for visualization
developers and researchers. VolVis accepts as input 3D
scalar volumetric data as well as 3D volume-sampled and
classical geometric models. Interaction with the data is
controlled by a variety of 3D input devices in an input
device-independent environment. VolVis output includes
navigation preview, static images, and animation
sequences. A variety of volume rendering algorithms are
supported, ranging from fast rough approximations, to
compression-domain rendering, to accurate volumetric ray
tracing and radiosity, and irregular grid rendering.

1. Introduction

The visualization of volumetric data has aided many
scientific disciplines ranging from geophysics to the
biomedical sciences. The diversity of these fields coupled
with a growing reliance on visualization has spawned the
creation of a number of specialized visualization systems.
These systems are usually limited by machine and data
dependencies and are typically not flexible or extensible.
A few visualization systems have attempted to overcome
these dependencies (e.g., AVS, SGI Explorer, Khoros) by
taking a data-flow approach. However, the added
computational costs associated with data-flow systems
results in poor performance. In addition, these systems
require that the scientist or engineer invest a large amount
of time understanding the capabilities of each of the
computational modules and how to effectively link them
together.

VolVis is a volume visualization system that unites
numerous visualization methods within a comprehensive
visualization system, providing a flexible tool for the
scientist and engineer as well as the visualization
developer and researcher. TheVolVis system has been
designed to meet the following key objectives:

Diversity: VolVis supplies a wide range of
functionality with numerous methods provided within each
functional component. For example,VolVis provides
various projection methods including ray casting, ray
tracing, radiosity, Marching Cubes, and splatting.

Ease of use:The VolVis user interface is organized
into functional components, providing an easy to use
visualization system. One advantage of this approach over
data-flow systems is that the user does not have to learn
how to link numerous modules in order to perform a task.

Extensibility: The structure of theVolVis system is
designed to allow a visualization programmer to easily add
new representations and algorithms. For this purpose, an
extensible and hierarchical abstract model was developed
[1] which contains definitions for all objects in the system.

Portability: The VolVis system, written in C, is
highly portable, running on most Unix workstations
supporting X/Motif. The system has been tested on Silicon
Graphics, Sun, Hewlett-Packard, Digital Equipment
Corporation, and IBM workstations and PCs.

Freely available: The high cost of most
visualization systems and difficulties in obtaining their
source code often lead researchers to write their own tools
for specific visualization tasks.VolVis is freely available as
source code.

2. System Overview

Figure 1 shows theVolVis pipeline, indicating some
paths that input data could take through theVolVis system
in order to produce visualization output. Two of the basic
input data classes ofVolVis are volumetric data and 3D
geometric data. The input data is processed by the
Modeling and Filtering components of the system to
produce either a 3D volume model or a 3D geometric
surface model of the data. For example, geometric data can
be converted into a volume model by the Modeling
component of the system, as described in Section 3, to
allow for volumetric graphic operations. A geometric
surface model can be created from a volume model by the
process of surface extraction.

Filtering
Modeling

&

Virtual Input
Device

Input Device
 Abstraction

Physical Input
Device

Manipulation

Environment

Rendering

Image Animation Preview
Navigation

Measurement

3D Scalar Field
3D Geometric

Objects

Volumetric
Model

 Surface
Extraction

 Geometric
Surface Model

Action

Internal Data

Input Data

Output
Visualization

Key:

Figure 1: The VolVis pipeline.

The Measurement component can be used to obtain
quantitative information from the data models. Surface
area, volume, histogram and distance information can be
extracted from volumes using one of several methods.
Isosurface volume and surface area measurements can be
taken either on an entire volume or on a surface-tracked
section. Additionally, surface areas and volumes can be
computed using either a simple non-interpolated voxel
counting method or a Marching Cubes [8] based
measurement method. For geometric surface models,
surface area, volume, and distance measurements can be
performed.

Most of the interaction inVolVis occurs within the
Manipulation component of the system. This part of the
system allows the user to modify object parameters such as
color, texture, and segmentation, and viewing parameters
such as image size and field of view. Within the
Navigation section of the Manipulation component, the
user can interactively modify the position and orientation
of the volumes, the light sources, and the view. This is
closely connected to the Animation section of the
Manipulation component, which allows the user to specify
animation sequences either interactively or with a set of
transformations to be applied to objects in the scene. The
Manipulation component is described in Section 4.

The Rendering component encompasses several
different rendering algorithms, including geometry-based
techniques such as Marching Cubes, global illumination
methods such as ray tracing and radiosity, and direct
volume rendering algorithms such as splatting. The
Rendering component is described in Section 5.

The Input Device component of the system maps
physical input device data into a device independent
representation that is used by various algorithms requiring
user interaction. As a result, theVolVis system is input
device independent, as described in Section 6.

3. Modeling

A primary responsibility of the Modeling component
is the voxelization of geometric data into volumetric model
representations. Voxelizing a continuous model into a
volume raster of voxels requires a geometrical sampling
process which determines the values to be assigned to
voxels of the volume raster. To reduce object space
aliasing, we adopt a volume sampling technique [14] that
estimates the density contribution of the geometric objects
to the voxels. The density of a voxel is determined by a
filter weight function which is proportional to the distance
between the center of the voxel and the geometric
primitive. In our implementation, precomputed tables of
densities for a predefined set of geometric primitives are
used to assign the density value of each voxel. For each
voxel visited by the voxelization algorithm, the distance to
the predefined primitive is used as an index into the tables.

Figure 2: A volumetric ray traced image of a volume-
sampled geometric wine bottle and glasses.

Since the voxelized geometric objects are
represented as volume rasters of density values, we can
essentially treat them as sampled or simulated volume data
sets, such as 3D medical imaging data sets, and employ
one of many volume rendering techniques for image
generation. One advantage of this approach is that volume
rendering carries the smoothness of the volume-sampled
objects from object space over into image space. Hence,
the silhouette of the objects, reflections, and shadows are
smooth. Furthermore, by not performing any geometric
ray-object intersections or geometric surface normal
calculations, a large amount of rendering time is saved. In
addition, CSG operations between two volume-sampled
geometric models are accomplished at the voxel level
during voxelization, thereby reducing the original problem
of evaluating a CSG tree of such operations down to a
Boolean operation between pairs of voxels. Figure 2
shows a ray traced image of a wine bottle and glasses that
were modeled by CSG operations on volume-sampled
geometric objects. The upper right window in Figure 3
shows a ray traced image of a nut and bolt that were also
modeled by CSG operations.

Figure 3: An example VolVis session. The nut and bolt
are volume-sampled geometric models.

4. Manipulation

The Manipulation component ofVolVis consists of
three sections: the Object Control section, the Navigation
section, and the Animation section. The Navigation and
Animation sections are also referred to as the Navigator
and Animator, respectively. Both the Navigator and
Animator produce output visualization, shown in Figure 1
as Navigation Preview and Animation, respectively.

The Object Control section of the system is
extensive, allowing the user to manipulate parameters of
the objects in the scene. This includes modifications to the

color, texture, and shading parameters of each volume, as
well as more complex operations such as positioning of cut
planes and data segmentation. The color and position of
all light sources can be interactively manipulated by the
user. Also, viewing parameters, such as the final image
size, and global parameters, such as ambient lighting and
the background color, can be modified.

The Navigator allows the user to interactively
manipulate objects within the system. The user can
translate, scale and rotate all volumes and light sources, as
well as the view itself. The Navigator can also be used to
interactively manipulate the view in a manner similar to a
flight simulator. To provide interactive navigation speed, a
fast rendering algorithm was developed which involves
projecting reduced resolution representations of all objects
in the scene. This task is relatively simple for geometric
objects, where calculating, storing, and projecting a
polygonal approximation requires little overhead.
However, when considering a volumetric isosurface the
cost of an additional representation increases considerably.
A simple and memory efficient method available within
the Navigator creates a reduced resolution representation
of an isosurface by uniformly subdividing the volume into
boxes and projecting the outer faces of all the boxes that
contain a portion of the isosurface. These subvolumes
serve a dual purpose in that they are also used by the
PARC (Polygon Assisted Ray Casting) acceleration
method [1] during ray casting and ray tracing.

Although the PARC subvolume representation can
be stored as a compact list of subvolume indices, the
resulting images are boxy and uninformative for many data
sets. To overcome this problem, another method is
provided which utilizes a reduced resolution Marching
Cubes representation of an isosurface. In order to reduce
the amount of data required for this representation, edge
intersections used to compute triangle vertices are
restricted to one of four possible locations. This results in
much smoother images which are typically more
informative than the uniform subdivision method. The
Navigator also supports the otherVolVis rendering
techniques that are described in Section 5, although
interactive projection rates with these methods can be
achieved only on high-end workstations.

The Animator also allows the user to specify
transformations to be applied to objects within the scene,
but as opposed to the Navigator which is used to apply a
single transformation at a time, the Animator can be used
to specify a sequence of transformations to produce an
animation. The user can preview the animation using one
of the fast rendering techniques within the Navigator. The
user can then select a more accurate and time consuming
rendering technique, such as volumetric ray tracing, to

create a high quality animation. In addition to simple
rotation, translation and scaling animations, the Navigator
can be used to interactively specify a ‘‘flight path’’, which
can then be passed to the Animator, and rendered to create
an animation.

An example session of theVolVissystem is shown in
Figure 3. The long window on the left is the mainVolVis
interface window, with buttons for each of the major
components of the system. The current scene is displayed
in the Navigator window on the left, and in the Rendering
image window on the right. A low resolution Marching
Cubes technique was used in the Navigator, while a ray
casting technique using the PARC acceleration method
was employed during rendering.

5. Rendering

Rendering is one of the most important and
extensive components of theVolVis system. For the user,
speed and accuracy are both important, yet often
conflicting aspects of the rendering process. For this
reason, a variety of rendering techniques have been
implemented within theVolVis system, ranging from the
fast, rough approximation of the final image, to the
comparatively slow, accurate rendering within a global
illumination model. Also, each rendering algorithm itself
supports several levels of accuracy, giving the user an even
greater amount of control. In this section, a few of the
rendering techniques developed for theVolVis system are
discussed.

Tw o of theVolVis rendering techniques, volumetric
ray tracing, and volumetric radiosity, are built upon global
illumination models. Standard volume rendering
techniques, which are also supported byVolVis, typically
employ only a local illumination model for shading, and
therefore produce images without global effects. Including
a global illumination model within a visualization system
has several advantages. First, global effects can often be
desirable in scientific applications. For example, by
placing mirrors in the scene, a single image can show
several views of an object in a natural, intuitive manner
leading to a better understanding of the 3D nature of the
scene. Also, complex surfaces are often easier to render
when represented volumetrically than when represented by
high-order functions or geometric primitives, as described
in Section 3. Volumetric ray tracing is described in
Section 5.1 and volumetric radiosity is discussed in
Section 5.2.

In order to reduce the large storage and transmission
overhead as well as the volume rendering time for
volumetric data sets, a data compression technique is
incorporated into theVolVissystem. This technique allows

volume rendering to be directly performed on the
compressed data and is described in Section 5.3.

Although many scanning devices create data sets
that are inherently rectilinear, this restriction poses
problems for fields in which an irregular data
representation is necessary. These fields include
computational fluid dynamics, finite element analysis, and
meteorology. Therefore, support was added for irregularly
gridded data formats in theVolVis system, as discussed in
Section 5.4.

5.1. Volumetric Ray Tracing

The volumetric ray tracer provided within theVolVis
system is intended to produce accurate, informative images
[11]. In classical ray tracing, the rendering algorithm is
designed to generate images that are accurate according to
the laws of optics. InVolVis, the ray tracer must handle
classical geometric objects as well as volumetric data, and
strict adherence to the laws of optics is not always
desirable. For example, a scientist may wish to view the
maximum value along the segment of a ray passing
through a volume, instead of the optically-correct
composited value. Figure 4 illustrates the importance of
including global effects in a maximum-value projection of
a hippocampal pyramidal neuron data set which was
obtained using a laser-scanning confocal microscope.
Since maximum-value projections do not give depth
information, a floor is placed below the cell, and a light
source above the cell. This results in a shadow of the cell
on the floor, adding back the depth information lost by the
maximum-value projection.

In order to incorporate both geometric and
volumetric objects into one scene, the classical ray tracing
intensity equation, which is evaluated only at surface
locations, must be extended to include volumetric effects.
The intensity of light,I λ (x, →ω), for a given wav elengthλ ,
arriving at a positionx, from the direction →ω , can be
computed by:

(1)I λ (x, →ω) = I vλ (x, x′) + τ λ (x, x′)I sλ (x′, →ω)

wherex′ is the first surface intersection point encountered
along the ray→ω originating atx. I sλ (x′, →ω) is the intensity
of light at this surface location, and can be computed with
a standard ray tracing illumination equation [15].
I vλ (x, x′) is the volumetric contribution to the intensity
along the ray fromx to x′, andτ λ (x, x′) is the attenuation
of I sλ (x′, →ω) by any intervening volumes. These values are
determined using volume rendering techniques, based on a
transport theory model of light propagation [7]. The basic
idea is similar to classical ray tracing, in that rays are cast
from the eye into the scene, and surface shading is
performed on the closest surface intersection point. The

difference is that shading must be performed for all
volumetric data that are encountered along the ray while
traveling to the closest surface intersection point.

Figure 4: A volumetric ray traced image of a cell using
a maximum-value projection.

For photo-realistic rendering, the user typically
wants to include all of the shading effects that can be
calculated within a given time limit. However,
visualization users may find it necessary to view
volumetric data with no shading effects, such as when
using a maximum-value projection. InVolVis, the user has
control over the illumination equations for both volumetric
and geometric objects, and can specify, for each object in
the scene, which shading effects should be computed. For
example, in Figure 4 no shading effects were included for
the maximum-value projection of the cell, while all parts
of the illumination equation were considered when shading
the geometric polygon. In another example, the user may
place a mirror behind a volumetric object in a scene in
order to capture two views in one image, but may not want
the volumetric object to cast a shadow on the mirror, as
shown in Figure 5. The head was obtained using magnetic
resonance imaging, with the brain segmented from the
same data set. The mirror is a volume-sampled polygon
that was created using the modeling technique described in
Section 3.

5.2. Volumetric Radiosity

The ray tracing algorithm described in the previous
section can be used to capture specular interactions
between objects in a scene. In reality, most scenes are
dominated by diffuse interactions, which are not accounted
for in the standard ray tracing illumination model. For this
reason, VolVis also contains a radiosity algorithm for

volumetric data. Volumetric radiosity includes the
classical surface ‘‘patch’’ element as well as a ‘‘voxel’’
element. As opposed to previous methods that use
participating media to augment geometric scenes [10], this
method is intended to render scenes that may solely consist
of volumetric data. Each patch or voxel element can emit,
absorb, scatter, and transmit light. Both isotropic and
diffuse emission and scattering of light are allowed, where
‘‘isotropic’’ implies directional independence, and
‘‘diffuse’’ implies Lambertian reflection (i.e., dependent on
normal or gradient). Light entering an element that is not
absorbed or scattered by the element is transmitted
unchanged.

Figure 5: A volumetric ray traced image of a human head.

In order to cope with the high number of voxel
interactions required, a hierarchical technique similar to
[5] is used. An iterative algorithm [2] is then used to shoot
voxel radiosities, where several factors govern the highest
level in the hierarchy at which two voxels can interact.
These factors include the distance between the two voxels,
the radiosity of the shooting voxel, and the reflectance and
scattering coefficients of the voxel receiving the radiosity.
This hierarchical technique can reduce the number of
interactions required to converge on a solution by more
than four orders of magnitude.

After the view-independent radiosities have been
calculated, a view-dependent image is generated using a
ray casting technique, where the final pixel value is
determined by compositing radiosity values along the ray.
Figure 6 shows a scene containing a volumetric sphere,
polygon, and light source. The light source isotropically
emits light, and both the sphere and the polygon diffusely
reflect light. The light source is above the sphere and
directly illuminates the top half of the sphere. The bottom
half of the sphere is indirectly illuminated by light
diffusely reflected from the red polygon.

5.3. Compression Domain Volume Rendering

Another rendering method incorporated inVolVis is
a data compression technique for volume rendering. Our
volume compression technique is a 3D generalization of
the JPEG still image compression algorithm [13] , with
one important exception: the transform is a discrete Fourier
transform rather than a discrete cosine transform. The
original 3D data is subdivided intoM×M×M subcubes,
where each subcube is Fourier transformed to the
frequency domain through a 3D discrete Fourier transform.
Each of the 3D Fourier coefficients in each subcube is then
quantized, and the resulting 3D quantized frequency
coefficients are organized as a linear sequence through a
3D zig-zag order. The resulting sequence of Fourier
transform coefficients is then fed into an entropy encoder
that consists of run-length coding and Huffman coding.

Figure 6: A volumetric radiosity projection of a
voxelized sphere and polygon.

To render in the compressed domain, we use a new
class of volume rendering algorithms [3, 9, 12] that are
based on the Fourier projection slice theorem. It states that
a projection of the 3D data volume from a certain direction
can be obtained by extracting a 2D slice perpendicular to
the view direction out of the 3D Fourier spectrum and then
applying an inverse Fourier transform. In our approach we
apply the Fourier projection slice theorem to each subcube
in the Fourier domain, which results in a set of 2D planes
in the spatial domain called subimages that are composited
using spatial compositing to get the final projection of the
original 3D data set.

Using our compression-domain rendering approach,
we were able to achieve high compression ratios while
maintaining image quality. Figure 7 shows a CT scan of a
lobster that was rendered in the compressed domain.

We are currently investigating the adaptation of
subcube sizes to various spatial or frequency domain
criteria, such as subcube AC coefficient energy, which is a
measure of subcube activity, sample density, and
coefficient distribution.

Figure 7: Compression domain volume rendering of a
lobster.

5.4. Irregular Grid Rendering

An intuitive way to visualize irregularly gridded data
sets is to resample the data into a regular grid format.
Unfortunately, it is quite difficult to find a resampling
method that preserves details yet does not require a large
amount of memory. Consequently, we chose to extend the
traditional volume rendering algorithms to process the
irregularly gridded data directly. For example, we have
extended the ray tracing algorithms inVolVis to visualize
data represented in a spherical coordinate system, with
grids that are unevenly spaced inr, evenly spaced inθ , and
unevenly spaced inφ . When rendering, we could cast rays
into the scene, uniformly stepping and compositing along
each ray. A problem with uniform stepping is that it
inevitably misses detailed information. To avoid this
problem, we traverse the ray cell by cell in the volume, in a
method similar to Garrity [4].

6. Input Devices

The Input Device component of theVolVis system
allows the user to control a variety of input devices in an
input device independent environment. For example, to
control the Navigator, the user can utilize a variety of
physical input devices such as a keyboard, a mouse, a
Spaceball, and a DataGlove. To achieve this, we have
developed thedevice unified interface(DUI) [6], which is
a generalized and easily expandable protocol for
communication between applications and input devices.

The key idea of the DUI is to convert raw data
received from different input sources into unified format
parameters of a ‘‘virtual input device’’. Depending on the
requirements of the application, the parameters may
include a number of 3D positions and orientations as well
as abstract actions. The abstract actions include direct and
simple actions like mouse or Spaceball button clicks , and
complex dynamic actions like two hand gestures or ‘‘snap-
dragging’’. The conversion from the real device operations
to abstract actions is performed by the selected simulation
methods which are incorporated into the DUI.

The most important advantage of employing the
virtual input device paradigm is input device
independence. In the DUI, each application is interactively
assigned a virtual input device, whose configuration is also
interactively decided. Modification of either the input
device component or the application does not affect other
parts of the system. The simulation methods used to
convert different kinds of raw information into the unified
format are often difficult to design. For example, the
recognition of dynamic gestures of a DataGlove is fairly
difficult. By using the DUI, new simulation methods can
be easily incorporated and tested with no adverse effect on
the application or the other parts of the Input Device
component.

However, in order to fully utilize the capability of
different devices, a virtual input device should not totally
hide the device dependent information since different
devices are suitable for different applications. For
example, it is harder to control the Navigator with the
Spaceball than with the DataGlove, since the six degrees of
freedom provided by the Spaceball are not entirely
independent as they are in the DataGlove. In the DUI, a
device information-baseis associated with each virtual
input device. All of the device dependent information
related to a virtual device is classified and stored in an
abstract form, which is then queried by an application
when necessary [6].

We are currently working on the expansion of the
DUI into a general-purpose interaction model. The model
is created based on lightweight threads and is designed to
handle simultaneous high bandwidth, multimodal, and
complex input from multiple users, even through the
network. A general abstract action and input device
description language is also being studied.

7. Implementation

Tw o major concerns during the implementation of
VolVis have been to ensure that the system could be
expanded to include new functionality and techniques, and

that the system would be relatively easy to port to new
platforms. Therefore, the development of theVolVis
system required the creation of a comprehensive, flexible,
and extensible abstract model [1]. The model is organized
hierarchically, beginning with low-level building blocks
which are then used to construct higher-level structures.
For example, low-level objects such as vectors and points
can be combined to create a coordinate system, while at
the highest level the World structure contains the state of
ev ery object in the system. The World structure includes
Lights, Volumes, Views, global cut planes, and global
shading parameters. Each Volume structure includes color
and texture information, local shading parameters, local
cut planes, and data which may be either geometric
descriptions, or rectilinear or irregularly gridded data.

The abstract model is flexible in that a structure can
assume one of many representations. For instance, a
segmentation structure can consist of either a threshold or
opacity and color transfer functions. A natural
consequence of flexibility is expandability. Since the
objects in the abstract model already provide for numerous
representations, the addition of a new segmentation type,
shading type, or even data type is fairly simple.

The VolVis system requires only Unix and X/Motif
to run. Unfortunately, only simple two-dimensional
graphics operations are supported in X. Therefore, all
viewing transformations, shading, and hidden surface
removal must be done in software. This greatly reduces the
rendering speed for the geometry-based projection routines
used in the Navigation section, and therefore also reduces
the overall interactivity of the system. Since many Unix
workstations now include graphics hardware, interactivity
can be maintained by utilizing the graphics language of the
workstation. To avoid rewriting large sections of the code,
we have dev eloped a library of basic graphics functions
that are used throughout theVolVis code. This simplifies
the process of porting the system to a new workstation that
has a different graphics language, since only the graphics
function library must be rewritten.

8. Conclusions

TheVolVissystem for volume visualization has been
used for many tasks in diverse applications and situations.
First, VolVis has been used to test new algorithms for
rendering, modeling, animation generation, and computer-
human interaction. Due to the flexible nature of the
abstract model, testing new ideas within the system is
much easier and less time consuming than writing a new
application for each new algorithm.VolVis has also been
used by scientists and researchers in many different areas.
For example, neurobiologists have usedVolVis to navigate
through the complex dendritic paths of nerve cells, which

