
Parallelizing the ZSWEEP Algorithm for
Distributed-Shared Memory Architectures

RicardoFarias1 andCláudioT. Silva2

1 Departmentof Applied MathematicsandStatistics
StateUniversityof New York at Stony Brook

Stony Brook,NY 11794-3600
rfarias@ams.sunysb.edu

2 AT&T Labs-Research
180ParkAvenue,RoomD265

FlorhamPark,NJ 07932
csilva@research.att.com

Abstract. In this paperwe describea simpleparallelizationof theZSWEEPal-
gorithmfor renderingunstructuredvolumetricgridson distributed-sharedmem-
ory machines,andstudyits performance on threegenerations of SGI multipro-
cessors,includingthenew Origin 3000 series.
Themainideaof theZSWEEP algorithmis very simple;it is basedon sweeping
thedatawith a planeparallelto theviewing plane,in orderof increasingz, pro-
jecting the facesof cells thatareincidentto verticesasthey areencounteredby
the sweepplane.Our parallelextensionof the basicalgorithmmakesuseof an
image-based taskpartitioningscheme.Essentially, thescreenis divided in more
tiles thanthenumber of processors,theneachprocessorperformsthesweepin-
dependentlyon thenext availabletile, until no moretilesareavailableto render.
Here,we detail the modificationsnecessaryto efficiently extend the sequential
algorithmto work on shared-memory machines.We reporton the performance
of our implementation,andshow thatthe tile-basedZSWEEPis naturallycache
friendly, achievesfast renderingtimes,andsubstantial speedups on all the ma-
chineswe usedfor testing.On oneprocessor of our Origin 3000,we measure
the L2 datacachehit rateof the tile-basedZSWEEPto be over 99%; a parallel
efficiency of 83% on 16 processors; andrenderingratesof about300 thousand
tetrahedrapersecondfor a 1024 � 1024image.

1 Introduction

In thispaper, wedescribeaparallelextension of ourZSWEEP[4] algorithmfor render-
ing unstructuredgridson distributedshared-memory machines.Despitethesubstantial
progresson thestate-of-the-artin rendering of irregular grids,high-quality renderings
of very large grids still take a substantialamount of time. Our goal is to explore the
availability of smallandmid-sizeparallelmachinesfor rendering(andalsoto provide
a pathfor exploring muchlarger machines).We focus on distributed-sharedmemory
hardware, sincethesecapabilitiesarequitecommonin serverssoldby majorvendors,
including SGI,SUN,andIBM.



Fig. 1. ZSWEEP algorithmin action.The planesweepis shown in blue while the planedeter-
minedby the target Z is shown in light-gray. Thesweepingdirectionis from theright to theleft
and the sweptverticesareshown in black while the still untouchedverticesareshown in red.
Facesin theusesetof thecurrentvertex areidentifiedandshown aspreviously projectedfaces
(light-blue)andfacesto beprojected(yellow), theonesthatlie aheadof theplanesweep.

Although theprogrammingmodel for shared-memoryparallelization is quite triv-
ial, achieving goodperformanceon actualmachines is usuallyhard. Evenembarrass-
ingly parallelalgorithms, suchas ray castingirregular grids [6] usuallydo not scale
well beyonda few processors.Severalissuessuchasproper loadbalancingneedto be
takeninto account for good performance.Quitepossibly, thehardest issueto dealwith
in distributed-sharedmemory machines is memorycoherenceandrelatedissues.The
problemcomesfromthefactthataccessto memoryis non-uniform,sinceoftenthedata
oneprocessorneeds actuallyresidesin physical memory thatbelongs to another pro-
cessor. Hardwaredesignershavedevelopedintricatetechniquesfor optimizing memory
access(suchas the deployment of large cachesand aggressive memory prefetching
strategies)but still softwarehasto becarefullydevelopedto collaboratewith thehard-
ware,andavoidperformancekillerssuchasunnecessarysharingof data.In general, one
needsalgorithmswith a highdegreeof cachecoherenceto performwell ondistributed
shared-memorymachines.

Direct volume rendering is a termusedto definea particular setof rendering tech-
niqueswhich avoids generatingintermediary (surface) representationsof the volume
data.Instead,the scalarfield is generally modeledasa cloud-like material,andren-
deredby computingasetof lighting equations. In general,while evaluating thevolume
rendering equations [12], it is necessaryto have, for eachline of sight (ray) through
an imagepixel, thesortedorderof the cells intersectedby the ray, so that the overall
integral in therenderingequation canbeevaluated.



ZSWEEP[4] is an algorithm for the computation of the sortedorderof the cells
intersectedby all theraysin a givenimage.Themain ideaof theZSWEEPalgorithm
is very simple; it is basedon sweepingthe datawith a planeparallel to the viewing
plane(shown in blueon Fig. 1), in orderof increasingz, projectingthe facesof cells
that are incident to verticesas they areencounteredby the sweepplane.ZSWEEP’s
faceprojection is differentfrom theonesusedin projective methods,e.g.[14]. During
faceprojection, we simply compute the intersectionof the ray emanating from each
pixel, andstoretheir z-value,andotherauxiliary information, in sortedorderin a list
of intersectionsfor thegiven pixel. Theactuallighting calculations [12] aredeferred to
a laterphase(b). Compositingis performedasthe“targetZ” plane(shown in grayon
Fig. 1) is reached. The efficiency arisesfrom: (1) the fact that the algorithm exploits
the implicit (approximate)global ordering that the z-ordering of the vertices induces
on thecells thatareincident on them,thusleadingto only a very smallnumberof ray
intersectionaredoneout of order; (2) the useof early compositing which makesthe
memory footprint of the algorithm quite small. The key properties for the efficiency
of ZSWEEPis the fact that given a meshwith v verticesandc cells, the amount of
sortingZSWEEPdoesis O

�
vlogv� (in practice), i.e., depending on thenumber of ray

intersections, this is substantiallylower thantheamount of sortingnecessaryto sortall
theintersectionsfor eachpixel.

Contributions:

– Weproposeasimpleparallel extensionof thebasicalgorithmusinganimage-based
(i.e,tiling) taskpartitioning scheme.FollowingNiehandLevoy [13], ouralgorithm
is basedon anadaptive image-basedtaskscheduling scheme.Basically, we divide
thescreeninto tiles,whicharedynamicallyassignedto theprocessors.

– We describethe changes that needto be performedto the original algorithmto
efficiently implementa tile-basedZSWEEP.

– We perform a detailedanalysisof the memory characteristics of the tile-based
ZSWEEP. In particular, we show thattheimagetiling strategy improvesthemem-
ory coherency of ZSWEEP, andcanleadto thewholesetof rayintersectionsfitting
in thesecondary level (L2) cache.On theOrigin 3000this leadsto betterthan99%
hit rateandgreatlyimprovedrendering rates.
Evenon single-processormachines the tile-basedZSWEEPis considerably more
efficient thantheoriginal algorithm.

– Finally, we studyloadbalancing andefficiency of theparallelZSWEEPon three
generationsof SGImultiprocessors,including thenew Origin 3000series.

The paper is organizedasfollows. In Sec.2, we briefly describe relatedwork. In
Sec.3, we present theparallelalgorithm. Thenin Sec.4, we presentour experimental
resultson threedifferent kinds of SGImultiprocessors.Sec.5 endsthepaperwith final
remarks,andfuture work.

2 Related Work

We keepour relatedwork sectionshortandfocus on parallelrendering algorithms for
irregular grids andotherwork directly relevant to ourwork. Theoriginal ZSWEEPpa-



per[4] containsreferencesto previouswork in volumerenderingof irregular grids.(In
thatpaper, we failedto mention two relevant publicationsby WestermannandErtl [17,
18] describing fastrenderingtechniqueswhich arealsobasedon thesweepparadigm.
Thesepapers describetechniqueswhich areable to exploit the graphics hardwareto
achievefastrendering.) For a discussionof computationalcomplexity issuesin render-
ing of irregulargrids,wepoint thereaderto [15].

As we saidbefore, for evaluating the volumerendering equations, it is necessary
to have, for eachline of sight (ray) through an imagepixel, the sortedorderof the
cells intersectedby theray, sothattheoverall integral in therendering equation canbe
evaluated.

Onesolutionto this problem is to compute theintersectionsof rayswith eachcell
in the meshindependently, thensort eachlist of intersections before compositing is
performed.This is essentiallytheapproachproposedby Ma andCrockett [10]. In more
detail, their technique distributesthe cells among processorsin a round-robin fash-
ion. For eachviewpoint, eachprocessorindependentlycomputestheray intersections,
which are later composited in a secondphaseof the algorithm. Oneof the potential
shortcomingsof this technique is that it requires thestorageof a very largenumber of
rayintersections.Ma andCrockettcleverly avoid thispotentially crippling shortcoming
by scheduling thecomputationusinga k-d tree.As shown on [10, 11], their algorithm
hasbeenshown to bevery scalableon message-passingmachines,including the IBM
SP-2and the Cray T3D. Recently, Hofsetzand Ma [5] have developed an efficient
shared-memoryversion of this algorithm, which they demonstrateon a 16-processor
SGI Origin 2000. They showedthata naive port of theoriginal algorithm leadto poor
performance,but with substantialchanges to the original implementation, very good
performancewasachieved.

Oneof theadvantagesof theMaandCrocketttechniqueis thatnomeshconnectivity
is necessary. At thesametime,by completelyignoring connectivity, thisalgorithm does
not exploit a lot of thecoherenceintrinsic in the mesh,which bothraisesits memory
requirements,andforcesit into having to sort potentially very large lists. Most other
algorithmsfor renderingirregular gridsactuallyattemptto usemeshcoherence(in the
form of connectivity among cells),andtry to get thesortingcostascloseto linearas
possible.

HongandKaufman[6] proposesa very efficient ray-castingbasedrendering algo-
rithm for curvilineargrids.Their work is similar in somewaysto [1], but optimized
for curvilinear grids,which makesit fasterandusefar lessmemorythan[1]. Our in-
terestin their work for thepurposesof this paperis thefactthatthey parallelizedtheir
fastray casteron a 16-processorSGI machine usingan image-basedtaskscheduling
schemesimilar to the onewe usein this paper. The speedups achieved wereon the
orderof 11.88on16 processors,or 74%efficiency. Theparallelization of a ray casting
techniquehasalsobeenstudiedby Uselton[16] with verygood results.

Challinger [2] andWilhelmsetal [19] proposesimilarscanlinerenderingalgorithms
(similar in severalrespectsto [15]). Both paperreport on parallelizations,which is the
mainfocus of [2]. Challingeralsousesanimagetiling schemefor parallelization with
verygoodresults,whicharereportedseparatefor different phasesof thealgorithm,and



(a) (b)

Fig. 2. A 8-by-8tiling decompositionis shown. In (a)weshow theshaftsgeneratedby eachtiling
region.In (b), wegiveacloseupof thedecompositionon thedataset.Eachregionwascomputed
by intersectingtheoctreewith theshaftsshown in (a).

whentakenall into account, amount to impressive speedups of a little over 70 on 100
processorsof a BBN TC2000.

Still onshared-memorymachines,Williams [20] reports parallelizing his rendering
algorithm for an8-processorSGI 4D/VGX. Othernotable papers (which focus on ren-
deringregulargrids)includeNiehandLevoy [13] andLacroute [7,8]. Wewouldliketo
notethat irregular grid renderingalgorithmstendto behardto parallelizewith screen-
spaceparallelismbecauseof theirobject-spacedisparateresolution. Thatis, possibly, a
largenumber of cellsprojectinto asmallareaof thescreen.

3 The Parallel ZSWEEP Algorithm

In this sectionwe describe our parallelization of theZSWEEPalgorithm. Thesequen-
tial algorithm is highly efficient, anduseslittle extra memory on top of the original
dataset.It is basedon computing ray intersections with the facesof the cells, which
are“roughly” pre-sortedin depthby usinga sortof theverticesof thecells.Eachtime
a vertex is found during a z-sweep,the facesincident on it aremarked, and the ray
intersections for thepixels thatoverlapwith thefacesarecomputed,andinsertedon in-
tersectionlists.In orderto avoid having thelistsgetarbitrarily large,ZSWEEPemploys
a schemefor earlycompositing.See[4] for full details.

Following previousworks,includingNieh andLevoy [13] andHongandKaufman
[6], our parallelization is basedon breaking thescreeninto tiles.Thenplacingthetiles
into a work queuewhich processorscompete for work. Eachprocessorcontinously
fetchesa tile from thework queue, andcomputesthesubimagecorresponding to that
tile until all thetiles havebeenrendered.In order for a givenprocessorto computethe



imagefor a tile usingZSWEEP, we mustdetermine all theverticesfrom any facethat
intersectsthe“shaft” emanatingfrom thattile. Thisis similarto theparallelview sortof
Challinger[2], andis primarily themaindifferencebetweenthesequential andparallel
ZSWEEP, sincein thesequentialalgorithm theverticesareknown apriori (thatis, all of
themaresortedin depth).

For efficiency purposes,we madea small datastructure change.While in the se-
quential ZSWEEPimplementation the use set of a vertex is the list of cells incident
on it, in theparallelversion we decidedto breakthecells into its facesandkeepthem
in theusesetof thevertices.Thereasonfor themodification comesfrom thefact that
theprojectionof a facerequiresasomewhat expensivesetup(see[1] for details).Since
facesmight intersectmultiple tiles of the screen,the setuptime would be replicated
multiple times.By actuallyhaving a list of the faces,we areableto parallelizethese
computationsasa first phasein theparallelrender.

Weseparatethecomputationof theverticesthatbelongto animagetile into a view
independentphasewhich is performedonly once whenthe datais first loaded,anda
view dependentphasewhich is performedby eachprocessorwhenrenderinga given
tile. Theview independentphaseconsistsof (1) constructing anoctreeof theverticesof
themesh;(2) computing for eachoctree“leaf” thefaceswhichintersectthatleaf(in the
implementationweusetheboundingboxof thefaces,whichis aconservativeestimate);
(3) record for eachleaf thelist of faceswhichhavenonvoid intersection. Fromsuchlist
weareableto determinetheverticesthatmustbeconsideredin thesweepingphase,for
eachleaf.Theview dependentphaseusestheoctreeto find which leavesintersectthe
shaftcorrespondingto thetile, thenusestheunionof all theverticesassignedto those
leavesastheinput for therenderingroutine.(SeeFig. 2.)

The actualrendering algorithmis fairly simple.Given p processors and f faces,
eachprocessortransforms f

p faces.Theimageis dividedinto tiles,andeachprocessor
will incrementallygraba tile, andrender thesubimagecorrespondingto thattile. Ren-
deringatile is performedby (a)findingtheleavesof theoctreewhichproject insidethe
particulartile, (b) computing verticesof all thefaceswhich intersectany of theleaves
found, and(c) projecting thefacesin order(thatis, thelastphaseis simply thesequen-
tial ZSWEEPappliedto thesubsetof theverticeswhichhavefacesprojectinginsidethe
tile). In our implementation,we arecareful to clip theprojection of thefacesto within
thetile beingcomputed.

As shown in Sec.4, we achievevery goodloadbalancing with this simplescheme.
The costof rendering a tile is dependentboth on its area,andthe number of points
which projectinto it. Experimentally, we have found that theareacostis considerably
larger thanthe costassociatedwith the number of points. The number of points can
vary asmuchasby a factorof five, andhave little impacton the running time of the
region.

4 Experimental Results

In this sectionwe summarize our findingsabout theperformanceof ouralgorithm. We
ranourexperimentsonthreedifferencemachines,all manufacturedby SGI:



40

50

60

70

80

90

100

110

120

0 5 10 15 20 25 30 35

R
en

de
rin

g 
T

im
e

�

Number of Tiles

frodo
bilbo

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35

M
is

s 
R

at
e

Number of Tiles

frodo
bilbo

(b)

Fig. 3. Sequentialtile-basedZSWEEPresultsfor renderingthesmallSPXdatasetat1024 � 1024
resolutionunderdifferenttiling. In (a),weseetherenderingtimes.In (b), theL2 datacachemiss
rate.By usingtiling, themissratedropsconsiderably to under1% on frodo.

– bilbo: 12-processorSGI Onyx. Theprocessorsare194Mhz MIPS R10000. Eight
of themhave1 MB of secondarycache,andtheotherfour have2 MB of secondary
cache.Bilbo has2 GB of memory. This machine is a snoop-basedmultiprocessor
[3, Chapter6], a designwhich is popular in smallparallelmachines,but doesnot
scalewell.

– smaug: 24-processorSGI Origin 2000. It is equippedwith sixteen250Mhz MIPS
R10000andeight 300 Mhz MIPS R12000. EachR10000hasa 4MB secondary
level cache,while eachR12000 hasa 8 MB secondary level cache.Smaughas14
GB of memory. Thismachine is basedonascalableshared-memorysystem,andit
usesdirectory-basedcachecoherence[3, Chapter8].

– frodo: 16-processorSGI Origin 3000. It is equippedwith sixteen400Mhz MIPS
R12000and it has12 GB of memory. This machine is a fasterand more scal-
abledirectory-baseddistributedshared-memorysystem.In particular, eachparallel
“node” hasfour processors(comparedto two for the O2K), andhighermemory
bandwidth, andmuchlower latency.

4.1 Sequential Tile-Based ZSWEEP

An interestingfact is that the tile-basedZSWEEPis fasterby almost50% than the
original. This is somewhatcounterintuitive, sinceit actuallydoesmorework: it needs
to sort verticesmultiple times(the actualnumber depends on tiling andresolutionof
octree),andit definitely touchesfacesmultiple times,although theactualpixel calcu-
lationsarequite similar. A potential advantageof the tile-basedapproach is that the
“target Z” usedfor earlycompositing is likely to bemoreaccurate. But whenwe first
noticedthis speedup from tiling, we suspectedthat theseperformancegains actually
arisefrom bettermemorycoherency.

We usedperfex, an SGI IRIX tool which is able to configure andretrieve the
MIPS R10K hardwarecounters, to validateour hypothesis.In Fig. 3, we show some



0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

R
en

de
rin

g 
T

im
e 

(s
ec

)

Number of Processors

frodo 16x16
smaug 16x16
bilbo 16x16

Fig. 4. Runningtimeson up to 12 processors for the Postdatasetfor imagesof size512 � 512
with 16-by-16tiling.

of our findings. In particular, we canseethat the L2 datacachehit rate 1 is greatly
improvedwith caching, andthereis a corresponding improvement in rendering times.
On frodo, wegetbetterthan99%hit rates,andon bilbo they wereimprovedfrom just
a bit over 50%to over 90%.Another interestingstatisticsis thenumberof TLB misses
whichchanges by a factorof 300onsomeof theruns,thusindicatingtheconsiderable
betterdatalocality of thetile-basedapproach.

4.2 Load Balancing

We rana batteryof testsfor studying thescalabilityof our algorithm on all thesema-
chines.We tried to usethemachineswhenthey werefree,although this wasvirtually
impossiblefor smaugwhich is usedfor heavy batchprocessingof data.We ran jobs
on smaugat timesof lightestload.Unfortunately, given theheterogenousnature of the
CPUs,it is really not possibleto make very accurate measurementson that machine.
Theothertwo machineswereusedat idle times.Wegenerated512 � 512imagesunder
differentconditions,andchanging thetiling granularity. We usethetermX-by-Y tiling
decompositionto meanthattheimagewassubdividedinto X timesY regions.Thatis,
an8-by-8 tiling decompositionmeansthattheimagewasdividedinto 64 tiles.

Fig. 4 shows therunning timesfor thePostdataseton thedifferentmachinesonup
to 12processors.As canbeseenfrom thepicture,therendering timesarequitefast,and
improveasthenumberof processorsincrease.As expected,frodois considerablyfaster
thantheothertwo machines,andtheparallelefficiency is about93%with 12processors
(11.2 speedup). It is interestingto notethatevenon thebilbo, which hasconsiderably
inferior memory system,our parallel algorithm is ableto scalequitenicely. Part of the
creditmightgo to thefactthatZWEEPtendsto minimizedatamovement.
1 L2 (secondary) datacachehit rateis thefractionof dataaccessesthataresatisfiedfrom acache

line alreadyresidentin thesecondarydatacache.It is calculatedas1.0- (secondarydatacache
missesdivided by primary datacachemisses).This is the exact definition from theperfex
manpage.



0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Lo
ad

 In
ba

la
nc

e

Number of Processors

bilbo 8x8
bilbo 10x10
bilbo 12x12
bilbo 14x14
bilbo 16x16
bilbo 18x18
bilbo 20x20

(a) bilbo

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

Lo
ad

 In
ba

la
nc

e

Number of Processors

smaug 8x8
smaug 10x10
smaug 12x12
smaug 14x14
smaug 16x16
smaug 18x18
smaug 20x20

(b) smaug

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Lo
ad

 In
ba

la
nc

e

�

Number of Processors

frodo 8x8
frodo 10x10
frodo 12x12
frodo 14x14
frodo 16x16
frodo 18x18
frodo 20x20

(c) frodo

Fig. 5. Load imbalancewith different tiling parametersfor the Postdatasetfor imagesof size
512 � 512.

Thetiling granurality hasanimpacton theperformance.We useMa’s loadimbal-
ancemetric to studytheimpacton loadbalancing of different tiling sizes.Givena set
of processorswheretheaveragerenderingtimeis tavg andthemaximum rendering time
is tmax, Ma [9] definestheimbalanceto be:

1 � tavg

tmax
;

basically, his metricmeasures thespreadof therunning timesamongthedifferent
processorsaround the mean.In Fig. 5, we plot the imbalance. As canbe seenin the
picture,bilbo andfrodo behavealmostexactly thesame,while smaug,dueto its differ-
entspeedprocessors,exhibits moreloadimbalance.Theworstloadimbalancehappens
for 8-by-8 tiling decomposition, andcanbeashighas30%.Part of theproblem is that
becausethe datasetis not uniform, somepartsof the screenmight have a very large
numberof faces,thatneedto berendered.With a16-by-16tiling decomposition,things
getsubstantiallybetter, andtheloadimbalanceis lower than5%.



Rendering Times

512 � 512 1024 � 1024 2048 � 2048
SPXSPX1SPX2 SPX3 SPXSPX1SPX2 SPX3 SPX SPX1 SPX2 SPX3

1 4.51 9.95 38.10186.05 15.39 27.86 73.40267.46 82.89145.74298.78731.99
2 2.32 5.09 19.65 97.96 7.78 13.97 36.85135.13 41.85 73.08150.23 375.3
4 1.18 2.62 10.37 50.55 3.99 7.08 18.47 68.12 21.17 36.71 75.65 188.3
8 0.63 1.39 5.60 26.63 2.11 3.71 9.71 36.27 11.04 19.07 39.20 98.09
16 1.38 1.93 10.30 27.56 1.28 2.17 5.61 21.72 6.50 10.96 22.07 56.27

Table 1. Renderingtimeson frodo asthedatasetandimagesizeincreases.

Datasets Information

Dataset # of vertices# of cells

OxygenPost 109K 513K
SPX 2.9K 13K
SPX1 20K 103K
SPX2 150K 830K
SPX3 1150K 6620K

Table 2. Main datasetsusedfor benchmarking. The first four are tetrahedralizedversionsof
the well-known NASA datasets.SPXis an unstructured grid composed of tetrahedra.We have
subdividedeachtetrahedroninto 8, for eachversionof the last three,that is, SPX3is 512 times
largerthanSPX.Thenumber of verticesandtetrahedraarelistedin thousands.

On frodo, for thePost,using16-by-16 tiling decomposition,thespeedupsare12.3
for a 512 � 512 image,and13.5 for a 1024 � 1024 image,or approximately84% ef-
ficiency. Thebestrendering timesfor thePostare1.5secondsfor a 512 � 512image,
and4.44seconds for a1024 � 1024 image.In general,it is possibleto improvetheload
balancing by simply incresingthetiling resolution. In fact,wewereableto getefficien-
ciesof almost90%by tweaking theparameters.A bettersolutionwould beto have an
adaptive techniquewhichautomaticallyfinetunestheloadbalancing. Wehaveactually
implementedsucha scheme,but werenotableto make it work consistentlyyet.

4.3 Data and Image Scalability

Finally, wepresentsomeresultsrelatedto thedataandimagescalabilityof ourparallel
code.We took the SPX datasetand subdivided it multiple times (by breaking each
tetrahedra into eight).For eachversion of thedataset,we renderedit tentimesalonga
uniform rotationof they-axis.Theimageswerecomputedat differentresolutions,and
thefull resultsarereportedin Table1, andsomesubsetareplottedin Fig. 6.



0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

R
en

de
rin

g 
T

im
e

�

Number of Processes

spx
spx1
spx2
spx3

Fig. 6. Plot for the2048 � 2048datafrom Table1.

5 Conclusion

In thispaper wepresentasimpleparallelizationof theZSWEEPalgorithmfor distributed-
sharedmemory machines.Otherthanchangesto theactualcodeto make it moremod-
ular, andto isolatesharedvariables,we only hadto perform onemajor architectural
change to the algorithm to make it parallel: the introduction of an octreefor the ver-
ticesso we canefficiently find which facesproject into a given tile. In this work, we
wereableto keepall thenicefeaturesof ZSWEEP, i.e., thefactthatit is verysimpleto
implement, robust,andmemory efficient.

We wereableto achieve a parallelefficiency of 84%on 16 processorson anSGI
Origin 3000machine. Thecomplexity of renderingatile is dependentbothonthenum-
berof primitiveswhich projecton the tile, andthe areaof the tile. In order to further
speedupthecodefor moreprocessors,webelievewemightneedamorefinegrainload
balancing schemewhichis ableto dynamically partitionregionswhenwediscover that
we havetoomany primitives thatprojectin it.

It would be usefulto run our codeon larger SMP machines. The reported results
arefor a versionof thecodeparallelized with them fork callsof SGI IRIX. We have
portedthis codeto POSIXPthreads, which runs quitewell on Linux, but we have not
performeddetailanalysisof thePthreadversionperformanceyet.

Acknowledgements

We are grateful to Anne Rogers (AT&T) for suggestions and help in analyzing the
memory characteristicsof thetile-basedZSWEEP, Kwan-LiuMa (UC, Davis) for sug-
gestionsthat greatly improved our presentation, JosephMitchell (Stony Brook) and
BrianWylie (Sandia) for theircollaborationonthis research. NASA hasgracefully pro-
videdtheLiquid Oxygen Postdataset.PeterWilliams (LLNL ) gaveustheSPXdataset.
This work wasmadepossiblewith thegeneroussupport of SandiaNationalLabsand
theDeptof Energy Mathematics,InformationandComputerScienceOffice.R. Farias
acknowledgespartialsupport from CNPq-Brazilundera PhDfellowship.



References

1. P. Bunyk, A. Kaufman,andC. Silva. Simple,fast,androbust ray castingof irregulargrids.
In ScientificVisualization,Proceedingsof Dagstuhl ’97, pages30–36, 2000.

2. J.Challinger. Scalableparallelvolumeraycastingfor nonrectilinearcomputationalgrids. In
ACM SIGGRAPHSymposiumon Parallel Rendering, pages81–88, November 1993.

3. D. Culler, J. Singh,andA. Gupta. Parallel ComputerArchitecture,A Hardware-Software
Approach. Morgan-Kaufmann,1999.

4. R. Farias,J. Mitchell, andC. Silva. ZSWEEP:An efficient andexact projectionalgorithm
for unstructuredvolumerendering. In 2000VolumeVisualizationSymposium, pages91–99.
October2000.

5. C.HofsetzandK.-L. Ma. Multi-threadedrenderingunstructured-grid volumedataonthesgi
origin 2000.In Third EurographicsWorkshoponParallel GraphicsandVisualization, 2000.

6. L. HongandA. Kaufman.Acceleratedray-castingfor curvilinearvolumes.IEEEVisualiza-
tion ’98, pages247–254, October1998.

7. P. Lacroute.Real-timevolumerenderingonsharedmemorymultiprocessorsusingtheshear-
warpfactorization.IEEEParallel RenderingSymposium, pages15–22, October1995.

8. P. Lacroute. Analysisof a parallelvolumerenderingsystembasedon the shear-warp fac-
torization. IEEE Transactionson Visualizationand ComputerGraphics, 2(3), September
1996.

9. K.-L. Ma. Parallel volume ray-castingfor unstructured-grid dataon distributed-memory
architectures.IEEEParallel RenderingSymposium, pages23–30, October1995.

10. K.-L. Ma andT. Crockett. A scalableparallelcell-projectionvolumerenderingalgorithmfor
three-dimensional unstructureddata. IEEE Parallel RenderingSymposium, pages95–104,
November1997.

11. K.-L. Ma andT. Crockett. Parallel visualizationof large-scaleaerodynamicscalculations:
A casestudyon the Cray T3E. Symposium on Parallel Visualizationand Graphics, pages
15–20, October1999.

12. N. Max. Optical modelsfor direct volumerendering. IEEE Transactionson Visualization
andComputerGraphics, 1(2):99–108, June1995.

13. J.NiehandM. Levoy. Volumerenderingonscalableshared-memory mimdarchitectures.In
1992Workshop on VolumeVisualizationProceedings, pages17–24, October1992.

14. P. Shirley andA. Tuchman.A polygonal approximationto directscalarvolumerendering.
ComputerGraphics(SanDiego Workshop on VolumeVisualization, vol. 24, pages63–70,
November1990.

15. C. SilvaandJ.Mitchell. Thelazy sweepray castingalgorithmfor renderingirregulargrids.
IEEETransactionson VisualizationandComputerGraphics, 3(2),April - June1997.

16. S.Uselton.Volumerenderingfor computationalfluid dynamics:Initial results.TechReport
RNR-91-026,NasaAmesResearchCenter, 1991.

17. R. WestermannandT. Ertl. Thevsbuffer: Visibility orderingof unstructuredvolumeprimi-
tivesby polygon drawing. IEEEVisualization’97, pages35–42, November1997.

18. R. WestermannandT. Ertl. Efficiently usinggraphicshardwarein volumerenderingappli-
cations.Proceedingsof SIGGRAPH98, pages169–178,July 1998.

19. J.Wilhelms,A. VanGelder, P. Tarantino,andJ.Gibbs.Hierarchicalandparallelizabledirect
volume renderingfor irregular and multiple grids. IEEE Visualization’96, pages57–64,
October1996.

20. P. Willi ams. Parallel volumerenderingfinite elementdata. In Proceedingsof Computer
GraphicsInternational, 1993.


