Parallelizing the ZSWEEP Algorithm for
Distributed-Shared Memory Architectures

RicardoFariag andClaudioT. Silva?

1 Departmenof Applied Mathematicsand Statistcs
StateUniversity of New York at Story Brook
Story Brook,NY 117943600

rfarias@uns. sunysh. edu

2 AT&T Labs-Research
180 Park Avernue,RoomD265
FlorhamPark,NJ 07932
csil va@esearch. att.com

Abstract. In this paperwe describea simpleparallelizationof the ZSWEEPal-
gorithmfor renderingunstructuredsolumetricgrids on distributed-shareanem-
ory machinesand studyits performane on threegeneratios of SGI multipro-
cessorsincludingthe new Origin 3000 series.

Themainideaof the ZSWERP algorithmis very simple;it is basedon sweeping
the datawith a planeparallelto the viewing plane,in orderof increasinge, pro-
jecting the facesof cellsthatareincidentto verticesasthey areencoutneredby
the sweepplane.Our parallelextensionof the basicalgorithmmakesuseof an
image-baseé taskpartitioningschemeEssentiallythe screernis divided in more
tiles thanthe numbe of processorstheneachprocessoperformsthe sweepin-
depemently on the next availabletile, until no moretiles areavailableto render
Here,we detail the modificationsnecessaryo efficiently extendthe sequential
algorithmto work on shared-memy machinesWe reporton the performane
of ourimplementationandshaw thatthetile-basedZSWEEPiIs naturallycache
friendly, achievesfastrenderingtimes, and substatial speedup on all the ma-
chineswe usedfor testing.On one processo of our Origin 3000, we measure
the L2 datacachehit rateof the tile-basedZSWHEEP to be over 99%; a parallel
efficiengy of 83% on 16 processes; and renderingratesof about300 thousand
tetrahedrgersecondor a 1024x 1024image.

1 Introduction

In this paperwe describea parallelextensia of our ZSWEEP[4] algorithmfor rencer-
ing unstricturedgridson distributedsharedmemoy machines. Despitethe substantial
progesson the state-ofthe-artin rendeing of irreguar grids, high-quality renderirgs
of vely large grids still take a substantiabmoun of time. Our goal is to explore the
availability of smallandmid-size parallelmachinedor rencering (andalsoto provide
a pathfor exploring muchlarger machires). We focus on distributedsharedmemoy
hardware, sincethesecapabilitiesarequite commonin senerssold by majorverdors,
including SGI, SUN, andIBM.

Fig. 1. ZSWERP algorithmin action. The planesweepis shavn in blue while the planedeter
minedby thetarget Z is shavn in light-gray. The sweepingdirectionis from theright to theleft
andthe sweptverticesare shavn in black while the still untowchedverticesare shavn in red.
Facesin the usesetof the currentvertex areidentifiedand shavn aspreviously projectedfaces
(light-blue)andfacesto be projected(yellow), the onesthatlie aheadof the planesweep.

Although the progjammingmocel for shared-ramoryparallelizatio is quite triv-
ial, achiering goodperfomanceon actualmachina is usuallyhard Evenembarass-
ingly parallelalgorithis, suchasray castingirreguar grids [6] usuallydo not scale
well beyonda few process@. Severalissuessuchasproper load balancingneedto be
takeninto accoum for goad perfamance Quite possibly the hardest issueto dealwith
in distributedsharedmemay machins is memorycoheenceandrelatedissues.The
prodem comesfrom thefactthataccesso memoryis nonruniform, sinceoftenthedata
oneprocessomeed actuallyresidesin physical memay thatbelong to anotrer pro-
cessorHardwaredesignes have develgpedintricatetechnigesfor optimizing memoy
accesgqsuchasthe deployment of large cachesand aggressive memoy prefdching
stratgyies)but still softwarehasto be carefullydevelgpedto collaboatewith the hard
ware,andavoid performane killers suchasunnecessargharingof data.ln generg one
needsalgoithmswith a high degreeof cachecoherereto performwell ondistributed
sharedmemorymachires.

Directvolume rendeing is a termusedto definea particuar setof rendeing tech-
niqueswhich avoids gereratingintermediary (surface representationf the volume
data.Instead the scalarfield is gererally moceled as a cloud-like material,andren-
deredby computing a setof lighting equatios. In gereral,while evaluatirg thevolume
rendeing equdions [12], it is necessaryo have, for eachline of sight (ray) through
animagepixe, the sortedorderof the cells intersectedy the ray, sothatthe overall
integral in therenceringequaion canbeevaluated

ZSWEEPI4] is analgorithm for the compuation of the sortedorder of the cells
intersectedy all theraysin a givenimage.The mainideaof the ZSWEEPalgoritim
is very simple;it is basedon sweepingthe datawith a planeparallelto the viewing
plane(shovn in blue on Fig. 1), in orderof increasingz, projectingthe facesof cells
thatareincidentto verticesasthey are encounteredby the sweepplane.ZSWEEPS
faceprojedion is differentfrom the onesusedin projectve method, e.g.[14]. During
faceprojedion, we simply compute the intersectionof the ray emarating from each
pixel, andstoretheir zvalue,andotherauxiliaty information,in sortedorderin alist
of intersectimsfor thegiven pixel. Theactuallighting calculatiors [12] aredeferral to
alaterphae (b). Compositingis performedasthe “targetZ” plane(shovn in grayon
Fig. 1) is reachedThe efficiency arisesfrom: (1) the fact that the algoiithm exploits
the implicit (appoximate)globd ordeing that the z-ordeing of the vertices induces
onthecellsthatareincidert onthem,thusleadingto only a very small nunber of ray
intersectionare doneout of order (2) the useof early compsiting which makesthe
memoy footprint of the algoithm quite small. The key propaties for the efficiency
of ZSWEEPIis the fact that given a meshwith v verticesandc cells, the amoun of
sortingZSWEEPdoesis O(vlogv) (in practicg, i.e.,depening on the numter of ray
intersectios, thisis substantialljowerthantheamouwnt of sortingnecessaryo sortall
theintersectiongor eachpixel.

Contributions:

— Weproposeasimplepardlel extersionof thebasicalgorithmusinganimage-tased
(i.e,tiling) taskpartitioring schemeFollowing Nieh andLevoy [13], ouralgorithm
is basedon anadaptive image-baedtaskschediing schemeBasically we divide
thescreerinto tiles, which aredynamicallyassignedo the processa.

— We describethe changs that needto be performedto the original algorithmto
efficiently implenentatile-basedZSWEEP

— We perfam a detailedanalysisof the memoy charactastics of the tile-based
ZSWEEPRIn particdar, we show thattheimagetiling stratgy improvesthe mem-
ory cohereny of ZSWEERandcanleadto thewholesetof rayintersectionditting
in thesecondry level (L2) cacheOntheOrigin 3000this leadsto betterthan99%
hit rateandgreatlyimprovedrendeing rates.

Even on single-pocessomachine the tile-basedZSWEEPIs consideably more
efficientthanthe original algoiithm.

— Finally, we studyload balarcing and efficiency of the parallelZSWEEPon three
genersions of SGI multiprocessorsincluding the new Origin 3000series.

The pape is organizedasfollows. In Sec.2, we briefly descrile relatedwork. In
Sec.3, we presenthe parallelalgoithm. Thenin Sec.4, we presenbur experimental
resultson threedifferen kinds of SGI multiprocessorsSec.5 endsthe paperwith final
remarls, andfuture work.

2 Reated Work

We keepour relatedwork sectionshortandfocus on parallelrendeing algorithns for
irreguar grids andotherwork directly relevart to ourwork. Theoriginal ZSWEEPpa-

per[4] containgefererresto previouswork in volumerenderingof irreguar grids. (In
thatpaperwe failedto mertion two relevant puldicationsby WestermanmandErtl [17,
18] describimg fastrendering techniqgieswhich arealsobasedon the sweepparaligm.
Thesepapes describetechniqees which are ableto exploit the graphics hardvareto
achieve fastrendeing.) For adiscussiorof compuationalcompleity issuesn rencer
ing of irregular grids,we pointthereadetto [15].

As we saidbefae, for evaluating the volume rencering equatioss, it is necessary
to have, for eachline of sight (ray) through an image pixel, the sortedorder of the
cellsintersectedy theray, sothattheoverall integral in therendeing equdion canbe
evaluated

Onesolutionto this prodem is to compute the intersectionf rayswith eachcell
in the meshindepadently then sort eachlist of intersectios befae compgiting is
perfamed.Thisis essentiallytheappr@achproposedby Ma andCrockett[10]. In more
detail, their technique distributesthe cells amorg proessorsin a rourd-rokin fash-
ion. For eachviewpoirt, eachprocessoiindependentlycompuestheray intersectios,
which arelater compaitedin a secondphaseof the algorithm. One of the potential
shortcaningsof this technige is thatit requresthe storageof a vely large numker of
rayintersectims.Ma andCroclettcleverly avoid this poternially crippling shortcaning
by schedling the compuationusinga k-d tree.As shovn on[10, 11], their algorithm
hasbeenshavn to be very scalableon messagegssingmachires,includng the IBM
SP-2andthe Cray T3D. Recently Hofsetzand Ma [5] have developed an efficient
sharedmemoryversion of this algoithm, which they demanstrateon a 16-grocessor
SGI Origin 20M. They shavedthata naive port of the original algorithm leadto poa
perfamance but with substantiachangsto the original implemeration, very goad
perfamancewasachiezed

Oneof theadvartagef theMa andCrocletttechnigieis thatnomeshcomectiity
is necessanAt thesamedime, by completelyignoring conrectuity, thisalgorithm does
not exploit a lot of the coheenceintrinsic in the mesh,which both raisesits memoy
requiementsandforcesit into having to sort potertially very large lists. Most other
algorittmsfor renceringirregular grids actuallyattemptto usemeshcoheence(in the
form of conrectiity amorg cells), andtry to getthe sortingcostascloseto linearas
possible.

HongandKaufman[6] propsesa very efficient ray-castingpasedendeing algo-
rithm for curvilinear grids. Their work is similar in somewaysto [1], but optimized
for cundlinear grids, which malkesit fasterandusefar lessmemorythan[1]. Ourin-
terestin their work for the pumposesof this paperis thefactthatthey parallelizedtheir
fastray casteron a 16-piocessoiSGI machne usinganimage-lasedtask scheduliig
schemesimilar to the onewe usein this paper The speedup achiered were on the
orderof 11.880n 16 proessorspr 74%efficiency. The pardlelization of aray casting
techniqgie hasalsobeenstudiedby Uselton[16] with very goad results.

Challinge [2] andWilhelmsetal [19] proposesimilarscanlineaenceringalgoithms
(similarin severalrespectgo [15]). Both paperrepot on parallelizatiois, whichis the
mainfocus of [2]. Challingeralsousesanimagetiling schemeor pardlelization with
very goodresultswhich arerepatedseparatéor different phase®f thealgoithm, and

@ (b)

Fig. 2. A 8-by-8tiling decompsitionis shavn. In (a) we shawv the shaftsgeneratedby eachtiling
region. In (b), we give a closeup of thedecompositioron the datasetEachregion wascompued
by intersectinghe octreewith the shaftsshavn in (a).

whentakenall into accoum, amour to impressie speedug of alittle over 70 on 100
processorsof aBBN TC2000

Still onshared-ramorymachinesWilliams [20] repots parallelizirg his rencering
algorithm for an8-processoiSG14D/VGX. Othernotalte papes (which focus onren-
deringregular grids)includeNiehandLevoy [13] andLacroue[7, 8]. We wouldliketo
notethatirreguar grid renceringalgoritimstendto be hardto parallelizewith screen-
spaceparallelismbecaus®f their object-spae disparateesolution. Thatis, possibly a
largenumter of cellsprojectinto asmallareaof thescreen.

3 TheParalled ZSWEEP Algorithm

In this sectionwe descrile our pardlelization of the ZSWEEPalgorithm Thesequen
tial algorithm is highly efficient, and useslittle extra memoy on top of the original
datasetlt is basedon computing ray intersectios with the facesof the cells, which
are“roughly” presortedin depthby usinga sortof the verticesof the cells. Eachtime
a vertex is found duiing a z-sweepthe facesincidert on it are marked, andthe ray
intersectios for thepixels thatoverlap with thefacesarecomputed,andinsertedonin-
tersectiorists. In orderto avoid having thelists getarbitrarily large, ZSWEEPemploys
aschemdor earlycompsiting.See[4] for full details.

Following previousworks,includingNieh andLevoy [13] andHongandKaufman
[6], our parallelizaion is basedn brealng the screerinto tiles. Thenplacingthetiles
into a work queuewhich processorscompete for work. Each processoicontinotsly
fetchesa tile from the work queue andcomputesthe subimagecorrespnding to that
tile until all thetiles have beenrencered.In orde for a givenprocessoto computethe

imagefor atile usingZSWEER we mustdeternine all the verticesfrom ary facethat
intersectghe“shaft” emanatindgrom thattile. Thisis similarto the parallelview sortof
Challinger[2], andis primaily the maindifferencebetweerthe sequetial andparallel
ZSWEERsincein thesequentiaidlgoithm theverticesareknown aprioii (thatis, all of
themaresortedin depth).

For efficiengy purposes,we madea small datastructue charge. While in the se-
querial ZSWEEPimplemenation the use set of a vertex is thelist of cellsincident
onit, in the parallelversian we decidedto breakthe cellsinto its facesandkeepthem
in the usesetof the vertices.Thereasorfor the modification comesfrom the factthat
theprgectionof afacerequiresa somavhat expensie setup(see[1] for details).Since
facesmight intersectmultiple tiles of the screenthe setuptime would be replicaed
multiple times. By actually having a list of the faces,we areableto parallelizethese
compuationsasafirst phasdn theparallelrencer.

We separatéhe computationof the verticesthatbelongto animagetile into a view
indepadentphasewhich is perfomedonly one whenthe datais first loaded,anda
view depewnlentphasewhich is performedby eachprocessowhenrendering a given
tile. Theview independenphaseconsistf (1) constructiig anoctreeof theverticesof
themesh;(2) compuing for eachoctre€'leaf” thefaceswvhichintersecthatleaf (in the
implemenationwe usethebowndingboxof thefaceswhichis aconsevative estimate);
(3) recod for eachleafthelist of faceswhichhave nonvoid intersectionFromsuchlist
we areableto deternine theverticesthatmustbe considredin the sweepingohasefor
eachleaf. Theview depenént phaseusesthe octreeto find which leavesintersecthe
shaftcorrespndingto thetile, thenusesthe unionof all theverticesassignedo those
leavesastheinputfor therenderingroutine. (SeeFig. 2.)

The actualrendeing algorithmis fairly simple.Given p processa and f faces,
eachprocessortransfoms i faces.Theimageis dividedinto tiles, andeachprocessor
will increnentallygrabatile, andrencer the subimagecorrespndingto thattile. Ren-
deringatile is perfamedby (a)findingtheleavesof theoctreewhich prgectinsidethe
particulartile, (b) computing verticesof all thefaceswhich intersectary of theleaves
found, and(c) projeding thefacesn order(thatis, thelastphasds simplythe sequen
tial ZSWEEPappliedto thesubsebdf theverticeswhich have facesprgectinginsidethe
tile). In ourimplemantation,we arecaretl to clip the projection of thefacesto within
thetile beingcompued.

As shawvn in Sec.4, we achieve very goodloadbalancimg with this simplescheme.
The costof renderimg a tile is depementboth on its area,andthe nunber of points
which projectinto it. Expeimentally, we have found thatthe areacostis considrably
larger thanthe costassociatedvith the numker of points. The numter of points can
vary asmuchashby a factorof five, andhave little impacton the runring time of the
region.

4 Experimental Results

In this sectionwe summaize our findings abou the perfamanceof our algoritthm. We
ranour expeiimentsonthreedifferencemachine, all manufcturedby SGI:

120 frodo —— 05 . frodo ——
110 bilbo —x— 0.45 " bilbo e
0.4 \
0.35
0.3
0.25
0.2
0.15

100
90
80

Rendering Time
Miss Rate

70 P
60

50
40

0.05

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of Tiles Number of Tiles

(@) (b)

Fig. 3. Sequentiatile-basedZ SWEEP resultsfor renderinghesmallSPXdataseat 1024x 1024
resolutionunderdifferenttiling. In (a), we seetherenderingtimes.In (b), theL2 datacachemiss
rate.By usingtiling, the missratedropsconsideraly to under 1% onfrodo.

— bilbo: 12-processoiSGI Onyx. The proessorsare 194Mhz MIPS R100M. Eight
of themhave 1 MB of secondargacheandtheotherfour have 2 MB of secondar
cacheBilbo has2 GB of memoy. This machire is a snoopbasedmultiprocessor
[3, Chapter6], a designwhichis popular in small parallelmachnes,but doesnot
scalewell.

— smaug: 24-processoiSGI Origin 2000. It is equipdwith sixteen250Mhz MIPS
R10000and eight 300 Mhz MIPS R12M0. EachR10000hasa 4MB secondar
level cachewhile eachR120® hasa 8 MB secondry level cache Smaughas14
GB of memory This machire is basecn a scalableshared-remorysystemandit
usedirectay-basedtachecoheence[3, Chapte8].

— frodo: 16-processoiSGI Origin 300Q It is equipped with sixteen400Mhz MIPS
R12000andit has12 GB of memay. This machire is a fasterand more scal-
abledirectay-basedlistributedshared-remorysystemIn particuar, eachparallel
“nodée’ hasfour processordcompredto two for the O2K), and highermemoy
bandwidh, andmuchlower latengy.

4.1 Sequential Tile-Based ZSWEEP

An interestingfact is that the tile-basedZSWEEPIs fasterby almost50% thanthe
original. This is somavhatcounterintuitive, sinceit actuallydoesmorework: it needs
to sortverticesmultiple times (the actualnunber deperls on tiling andresolutionof
octree),andit definitelytouchedacesmultiple times,althowgh the actualpixel calcu-
lations are quite similar. A poterial adwantageof the tile-basedapprachis that the
“target Z" usedfor earlycompaiting is likely to be moreaccurge. But whenwe first
noticedthis speedp from tiling, we suspectedhat theseperfamancegans actually
arisefrom bettermemorycoheengy.

We usedper f ex, an SGI IRIX tool which is able to configue andretrieve the
MIPS R10K hardvare countes, to validateour hypothesis.In Fig. 3, we shav some

X frodo 16x16 ——
s smaug 16x16-—=—]
40 bilbo 16X16 -+ |

Rendering Time (sec)
N
o

Number of Processors

Fig.4. Runningtimeson up to 12 processes for the Postdatasefor imagesof size512x 512
with 16-by-16tiling.

of our findings. In particula, we canseethatthe L2 datacachehit rate ! is greatly
improved with caching andthereis a correspondig improvenentin rendeing times.
Onfrodo, we getbetterthan99%hit rates,andon bilbo they wereimprovedfrom just
abit over 50%to over 90%.Another interestingstatisticss the nunberof TLB misses
which changs by afactorof 300 on someof theruns,thusindicatingthe considerale
betterdatalocality of thetile-basedapprach.

4.2 Load Balancing

We ran a batteryof testsfor studyirg the scalabilityof our algorithm on all thesema-
chines.We tried to usethe machinesvhenthey werefree, although this wasvirtually
impossiblefor smaugwhich is usedfor heary batchproassingof data.We ran jobs
onsmaugattimesof lightestload. Unfortunately given the heterognousnatue of the
CPUsiit is really not possibleto make very accurée measuremntson that machire.
Theothertwo machineswereusedatidle times.We generéed512x 512 imagesuncder
differentconditins,andchangimy thetiling grarularity. We usetheterm X-by-Y tiling
deconpositionto meanthattheimagewassubdvidedinto X timesY regions. Thatis,
an8-by-8 tiling decompsitionmeanghattheimagewasdividedinto 64 tiles.

Fig. 4 shavs theruming timesfor the Postdatasebn thedifferentmachiresonup
to 12 processorsAs canbeseerfrom thepicture, therenderiry timesarequitefast,and
improve asthenumler of proessorsncreaseAs expectedfrodois consicrablyfaster
thantheothertwo machires,andtheparallelefficiency is about93%with 12 processors
(112 speedup It is interestingto notethatevenon the bilbo, which hasconsidgerably
inferior memoy systemour pardlel algoiithm is ableto scalequite nicely. Part of the
creditmightgoto the factthatZWEEPtendsto minimize datamovement.

12 (secondsy) datacachehit rateis thefractionof dataaccessethataresatisfiedrom acache
line alreadyresidentn the secondarylatacachelt is calculatedas1.0- (secondaryglatacache
misseddivided by primary datacachemisses)This is the exact definition from the per f ex
manpage.

0.3 - T 0.25 T T
bilbo 8x8 —— smaug 8x8———
bilbo 10x10 - smaug 10x10%—-
0.25 - bilbo 12x12 1 0.2
bilbo 14x14)
8 8
g %7 -1 5
Tg i / Tg 0.15
€ 015t =
B ® o1
S o1t S
0.05 0.05 -
0 e L L L 0 ri i L L L
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Processors Number of Processors
(a) bilbo (b) smaug
0.3 T T
frodo 8x8 ——
frodo 10x10 -
0.25 frodo 12x12 - 1
frodo 14x14 =
3 02l frodo 16x16 -~ -~]
S : frodo 18x18-- -~
Tg frodo 20x20 -/«
€ 015
E
S o1
0.05 i
=

Number of Processors

(c) frodo

Fig.5. Load imbalancewith differenttiling parametergor the Postdatasefor imagesof size
512x 512.

Thetiling grarurality hasanimpacton the performane. We useMa'’s loadimbal-
ancemetricto studytheimpacton load balancirny of differenttiling sizes.Givena set
of proeessorsvheretheaverage renceringtime is tayg andthemaximum rendeing time
is tmax Ma [9] definegheimbalanceto be:

t
tmax

basically his metric measurs the spreadof the ruming timesamongthe different
processorsarourd the mean.In Fig. 5, we plot the imbalarce. As canbe seenin the
picture,bilbo andfrodo behae almostexaaly thesamewhile smaugdueto its differ
entspeedrocessorsxhibits moreloadimbalarce. Theworstloadimbalanceéhappens
for 8-by-8 tiling decanposition andcanbe ashigh as30%. Part of the prodemiis that
becausdhe dataseis not uniform, somepartsof the screenmight have a very large
numter of facesthatneedto berendeed.With a 16-by-16tiling decanposition things
getsubstantiallybetter andtheloadimbalarceis lowerthan5%.

| Rendering Times |
512x 512 1024x 1024 2048x 2048
SPX[SPXYSPXZJ SPXJ| SPX[SPXISPX2] SPX3| SPX]| SPX1] SPX2] SPX3
451 9.9538.1(186.09/15.3927.86 73.40267.4¢] 82.89145.74298.78731.99
2.32 5.0919.68 97.96| 7.7813.9736.85135.1341.8% 73.08150.28 375.3
1.1 2.6210.37 50.55| 3.99 7.0818.47 68.12/21.17 36.71 75.6% 188.3
0.63 1.39 5.60 26.63] 2.11 3.71 9.71 36.27111.04 19.07 39.20 98.09
6/|1.38 1.9310.30 27.56| 1.28 2.17 5.61 21.72] 6.50 10.96 22.07 56.27
Table 1. Renderingimeson frodo asthe dataseandimagesizeincreases.

= 0o N

| Datasets | nfor mation |
|Dataset ||# of vertices# of cellg

OxygenPos 109 513K
SPX 2.9K 13K
SPX1 20K| 103K
SPX2 150K| 830K
SPX3 1150K 6620K|

Table 2. Main datasetuusedfor benchmarking. The first four are tetrahedralizedrersionsof
the well-known NASA datasetsSPXis an unstructwed grid compose of tetrahedraWe have
subdvided eachtetrahedrorinto 8, for eachversionof the lastthree,thatis, SPX3is 512 times
largerthanSPX.The numbe of verticesandtetrahedrarelistedin thousarls.

Onfrodo, for the Post,using16-by-16 tiling decompsition,the speedpsarel12.3
for a512x 512 image,and 135 for a 1024 x 1024 image,or apprximately 84% ef-
ficiengy. The bestrendeing timesfor the Postare 1.5 secondgor a512x 512image,
and4.44secondfor a1024 x 1024 image.In generaljt is possiblego improve theload
balancimg by simplyincresingthetiling resolutia. In fact,we wereableto getefficien-
ciesof almost90% by tweakirg the parametes. A bettersolutionwould beto have an
adaptve technige whichautormatically fine tunestheloadbalancimg. We have actually
implemenedsucha schemebut werenotableto make it work consistentlyyet.

4.3 Dataand Image Scalability

Finally, we presensomeresultsrelatedto the dataandimagescalabilityof our parallel
code.We took the SPX datasetand subdvided it multiple times (by bre&ing each
tetraheda into eight).For eachversia of the datasetyve renceredit tentimesalonga
uniform rotationof they-axis. Theimageswerecompued at differentresolutiors, and
thefull resultsarerepatedin Tablel, andsomesubsetreplottedin Fig. 6.

800

] e —
700 ¢ S 1
SPX2 e
o 600F Spx3
£
= 500
2
s 400
2
$ 300
o4
200 =
100 .
e

100 12 14 16
Number of Processes

Fig. 6. Plotfor the 2048x 2048 datafrom Tablel.

5 Conclusion

In this pape we presenaisimpleparallelizatio of theZSWEEPalgorithmfor distributed
sharednemoy machires.Otherthanchangsto the actualcodeto make it moremod
ular, andto isolatesharedvariables,we only hadto perform one major architectuwal
chang to the algorithm to male it parallel:the introduction of an octreefor the ver
ticessowe canefficiently find which facesprgect into a giventile. In this work, we
wereableto keepall the nicefeatuesof ZSWEER.e., thefactthatit is very simpleto
implemen, robust,andmemay efficient.

We were ableto achieve a parallel efficiency of 84% on 16 processorson an SGI
Origin 3000machine Thecomgexity of renderingatile is dependentbothonthenum
ber of primitiveswhich projecton thetile, andthe areaof thetile. In orde to further
speedupthecodefor moreprocessa, we believe we mightneedamorefinegrainload
balancig schemawhichis ableto dynamically partitionregionswhenwe discover that
we have too mary primitives thatprojectin it.

It would be usefulto run our codeon larga SMP machine. The repated results
arefor aversion of the codeparallelizel with the m fork calls of SGIIRIX. We have
portedthis codeto POSIX Pthread, which runs quite well on Linux, but we have not
perfameddetailanalysisof the Pthreadversion perfomanceyet.

Acknowledgements

We are gratefil to Anne Roges (AT&T) for suggestioas and help in analyzirg the
memoy charcteristicof thetile-basedZSWEERKwan-Liu Ma (UC, Davis) for sug-
gestionsthat gredly improved our presentationJosephMitchell (Story Brook) and
BrianWylie (Sandg) for their collabaationonthisresearchNASA hasgraceflly pro-
videdtheLiquid Oxygen PostdatasetPeterWilliams (LLNL) gave usthe SPXdataset.
This work wasmadepossiblewith the generais suppat of SandiaNationalLabsand
the Deptof Enegy Mathenatics,InformationandComputerScienceOffice. R. Farias
acknavledgespartialsuppat from CNPQg-Brazilundera PhDfellowship

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. P.Buryk, A. Kaufman,andC. Silva. Simple,fast,androbustray castingof irregulargrids.

In ScientificMsualization,Proceeding®of Dagstthl '97, pages30-36, 200Q

. J.Challinger Scalableparallelvolumeraycastingor nonrectilineacomputationagrids. In

ACM SIGGRAPHSymposiunon Parallel Renderingpages81-83, Novembe 1993

. D. Culler, J. Singh,andA. Gupta. Parallel ComputerArchitecture,A Hardware-Softvare

Approach Morgan-Kaufman, 1999.

. R. Farias,J. Mitchell, andC. Silva. ZSWEEP:An efficient andexact projectionalgorithm

for unstructwedvolumerendering In 2000VolumeMisualizationSymposiunpages91-99.
October2000

. C.HofsetzandK.-L. Ma. Multi-threadedrenderingunstructureegrid volumedataon the sgi

origin 2000. In Third EurographicsWorkshop on Parallel Graphicsand Visualization 2000.

. L. HongandA. Kaufman.Accelerateday-castingor curvilinearvolumes.|IEEE Misualiza-

tion '98, pages247-25!, October1998.

. P Lacroute.Real-timevolumerenderingon sharedmemorymultiprocessorsisingtheshear

warpfactorization.|EEE Parallel RenderingSymposiunpagesl5—-22, October1995.

. P. Lacroute. Analysis of a parallelvolume renderingsystembasedon the sheaswarp fac-

torization. |IEEE Transactionson Misualizationand ComputerGraphics 2(3), September
1996.

. K.-L. Ma. Parallel volume ray-castingfor unstructured-gd dataon distributed-memory

architectureslEEE Parallel RenderingSymposim, pages23-3Q October1995

K.-L. Ma andT. Croclett. A scalableparallelcell-projectionvolumerenderingalgorithmfor

three-dimensioal unstructurecata. IEEE Parallel RenderingSymposiumpages95-104,

November1997.

K.-L. Ma andT. Croclett. Parallel visualizationof large-scaleaerodyhamicscalculations:
A casestudyon the Cray T3E. Sympoiim on Parallel Visualizationand Graphics pages
15-2Q Octoberl99,.

N. Max. Optical modelsfor direct volumerendering. IEEE Transactionson Visualization
and ComputerGraphics 1(2):99-1@®, Junel995.

J.NiehandM. Levoy. Volumerenderingon scalableshared-mermry mimd architecturesin

1992Worksh@ on VolumeVisualizationProceedingspagesl 7—24 October1992

P. Shirley andA. Tuchman. A polygonal approximationto directscalarvolumerendering.
ComputerGraphics(SanDiego Workshop on Volume Visualization vol. 24, pages63-70,

November1990.

C. SilvaandJ. Mitchell. Thelazy sweepray castingalgorithmfor renderingirregulargrids.
IEEE Transaction®on Visualizationand ComputerGraphics 3(2), April - Junel997.

S. Uselton.Volumerenderingfor compuationalfluid dynamics:nitial results.TechReport
RNR-91-026 NasaAmesResearcltCenter 1991.

R. WestermanrandT. Ertl. Thevshuffer: Visibility orderingof unstructuredsolumeprimi-

tivesby polygon drawing. IEEE Msualization’97, pages35-42 November1997.

R. WestermanrandT. Ertl. Efficiently usinggraphicshardwarein volumerenderingappli-

cations.Proceeding®f SIGGRAPHI8, pagesl69-178,July 1998.

J.Wilhelms,A. VanGelder P. Tarantino,andJ. Gibbs. Hierarchicalandparallelizabledirect
volume renderingfor irregular and multiple grids. IEEE \Misualization'96, pages57-64,

October1996

P. Williams. Parallel volume renderingfinite elementdata. In Proceedingsof Computer
Graphicsinternational 1993

