
Verifiable Visualization for Isosurface Extraction
T. Etiene, C. Scheidegger, L.G. Nonato, R.M. Kirby Member, IEEE, C.T. Silva Member, IEEE

Fig. 1. Through the verification methodology presented on this paper we were able to uncover a convergence problem within a publicly available
marching-based isosurfacing code (top left) and fix it (top right). The problem causes the mesh normals to disagree with the known gradient field when
refining the voxel size h (bottom row). The two graphs show the convergence of the normals before and after fixing the code.

Abstract— Visual representations of isosurfaces are ubiquitous in the scientific and engineering literature. In this paper, we present
techniques to assess the behavior of isosurface extraction codes. Where applicable, these techniques allow us to distinguish whether
anomalies in isosurface features can be attributed to the underlying physical process or to artifacts from the extraction process.
Such scientific scrutiny is at the heart of verifiable visualization – subjecting visualization algorithms to the same verification process
that is used in other components of the scientific pipeline. More concretely, we derive formulas for the expected order of accuracy
(or convergence rate) of several isosurface features, and compare them to experimentally observed results in the selected codes.
This technique is practical: in two cases, it exposed actual problems in implementations. We provide the reader with the range of
responses they can expect to encounter with isosurface techniques, both under “normal operating conditions” and also under adverse
conditions. Armed with this information – the results of the verification process – practitioners can judiciously select the isosurface
extraction technique appropriate for their problem of interest, and have confidence in its behavior.

Index Terms—Verification, V&V, Isosurface Extraction, Marching Cubes

1 INTRODUCTION

In this age of scientific computing, the simulation science pipeline of
mathematical modeling, simulation and evaluation is a rendition of
the scientific method as commonly employed as the traditional exper-
imental pipeline. Critical to this simulation approach is the evaluation
stage in which numerical data are post-processed, visualized and then
examined in order to answer the original queries that instigated the
investigation. In fact, visualization of scientific results has become
as much a part of the scientific process as mathematical modeling or
numerical simulation.

Despite its growing importance in the scientific computing process,

• Etiene, Scheidegger, Kirby and Silva are with the School of Computing and
Scientific Computing and Imaging Institute, University of Utah, Salt Lake
City, UT, 84112, USA. E-mail: {tetiene,cscheid,kirby,csilva}@cs.utah.edu

• Nonato is with Universidade de São Paulo, Brazil. E-mail:
gnonato@icmc.usp.br

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

visualization has not fallen under the same rigorous scrutiny as other
components of the pipeline like mathematical modeling and numerical
simulation. Unlike in traditional computational science and engineer-
ing areas, there is no commonly accepted framework for verifying the
accuracy, reliability, and robustness of visualization tools. This pre-
cludes a precise quantification of the visualization error budget in the
larger scientific pipeline. Furthermore, very few investigations have
focused on how the error originating from other components of the
computational pipeline impacts visualization algorithms.

In this paper, we advocate the use of techniques from the veri-
fication and validation process used in the engineering community
(Section 2 presents V&V in more detail). While the lack of a well-
established framework for verifying visualization tools has meant that
a variety of analysis techniques have been developed [25, 28], we be-
lieve that visualization has achieved sufficient importance to warrant
investigation of stricter verification methodologies. Several authors
have already asserted this need [7, 11], and in this paper we present
techniques that are a concrete step towards reducing the gap between
best practices in simulation science and visualization.

The purpose of this work is to present a verification methodology
for visualization tools that has comparable rigor to that of other com-
ponents of the computational scientific pipeline. More specifically, we
set out to define a verification methodology in the mold of the area

of V&V, in the context of visualization. Furthermore, we illustrate
our proposal by testing several publicly available isosurface extraction
codes to the verification procedure, giving a detailed description of the
steps involved in the process.

It is important to emphasize that the point of verification procedures
is not to compare algorithms to one other with the hope of finding the
best alternative. This procedure equips developers of new algorithms
and/or implementations with a process that provides a systematic way
of identifying and correcting errors in both algorithms and implemen-
tations. The goal is to provide users with a methodology that will give
them a more concrete model for the behavior of the implementation,
which will increase confidence in the visualization tools. As we will
show, a fair verification analysis can bring out unforeseen behavior,
and quickly detect implementation problems that might not be caught
through standard comparisons or visual inspection.

The contributions of this work are threefold. To the best of our
knowledge, we, for the first time, apply the framework of verifica-
tion to assess the correctness of visualization tools. Furthermore, we
provide a detailed description of how to accomplish the verification
procedure by subjecting different isosurfacing tools to the battery of
tests comprising the V&V process. Our second contribution is the un-
derlying mathematical analysis and associated manufactured solutions
developed to analyze the isosurfacing methods. We should clarify that
when applying MMS for other techniques (even in the case of iso-
surface extraction), the theoretical analysis should be tailored to the
particular features of these algorithms. The manufactured solutions
presented here are simple but general enough to be promptly employed
for evaluating other visualization tools besides isosurfacing. Our third
contribution is a comprehensive set of results obtained using the tech-
nique, including the finding of implementation errors in two publicly
available isosurface extraction codes.

2 VALIDATION AND VERIFICATION
In this section we provide a brief introduction to the idea of verification
and validation (V&V), and in particular, its application in visualiza-
tion scenarios. We will also review efforts to verify implementations
in the specific context of isosurface extraction.

Babuška and Oden define verification as “the process of determin-
ing if a computational model obtained by discretizing a mathematical
model of a physical event and the code implementing the computa-
tional model can be used to represent the mathematical model of the
event with sufficient accuracy” [1]. Although they review the con-
cept only in the context of computational science and engineering
applications, it is important to appreciate that the same idea applies
to scientific visualization. Verification is about investigating to what
extent a (numerical) approximation scheme – both in algorithm and
corresponding implementation – represents the desired mathematical
model. Validation, on the other hand, is about ensuring that the model
represents physical reality. In this paper, we will concern ourselves
only with verification, under the assumption that the model has been
validated by the user of the technique. This is the perspective Kirby
and Silva suggest for “Verifiable Visualization” [11].

One of the main requirements for verifiable visualization is to have
a rigorous analysis which predicts the results of the algorithm and its
implementation when evaluating it on a known model problem. The
more complete this analysis is, the more thorough the testing proce-
dures can be. This continuous process of verification through refine-
ment of key controllable input parameters of the method (such as grid
spacing) and testing is different from a one-shot process. The verifica-
tion process should involve a suite of tests with corresponding results
from which one can progressively increase reliance on the method un-
der analysis. When appropriately applied, verification provides ways
to appreciate the nuances of the applicability of the method. As we
will see in this paper, writing down the analysis for the expected re-
sult of isosurface extraction gives us concrete bounds on what features
we can expect the resulting surface to have, and these are extremely
important for users.

A common practice in the visualization community is to test im-
plementations by using complicated, “real-world” datasets. The value
of these tests is that they provide evidence of the algorithm’s appli-

cability. We advocate a complementary approach: developers should
carefully manufacture test cases that can be mathematically modeled
and analyzed, called manufactured solutions. These manufactured so-
lutions can then be used to test the implementations. In this paper, we
present analysis that describe the expected rate of convergence of sev-
eral isosurface features, and test implementations acting on our model
problems using simple analytical volumes. As we show in Sections 3
and 4, this method helps pin down the mathematical characteristics of
the technique, and, more practically, it is quite effective at uncovering
implementation bugs.

The challenge behind manufactured solutions is to construct them in
a way that allows us to predict the expected behavior of the method un-
der investigation. Moreover, the manufactured solutions should tax the
method vigorously, bringing out potential problems. In Section 5, we
will present some situations where incorrectly chosen manufactured
solutions have a big impact in the results. We do so to emphasize that
all components of the pipeline, even the construction and evaluation of
the manufactured solutions, must be meticulously handled to maintain
the rigor of the verification process.
2.1 Isosurface Extraction Algorithms
Isosurface extraction is a popular visualization technique, being a tool
currently used in science, engineering, and applications. This popu-
larity makes it a natural target for this first application of verification
mechanisms in the context of visualization. This same popularity has
also driven a large body of work comparing different isosurface ex-
traction algorithms.

Previous researchers have examined topological issues [13, 17],
mesh quality [5, 22], accuracy [18, 28], and performance [23]. The
influence of different reconstruction schemes and filters in scalar vi-
sualization has also been examined [3, 19]. In this paper, we focus
on techniques to verify the correctness of algorithms and their cor-
responding implementations. In particular, we provide mathematical
tools that other researchers and developers can use to increase their
confidence in the correctness of their own isosurface extraction codes.
A traditional way to test implementations in scientific visualization is
to perform a visual inspection of the results of the Marschner-Lobb
dataset [15]. In this paper, we argue that the stronger methodology
presented here is more effective and more explicit at elucidating a tech-
nique’s limitations.

Globus and Uselton [7] and more recently Kirby and Silva [11] have
pointed out the need for verifying both visualization techniques and
the corresponding software implementations. In this paper, we provide
concrete tools for the specific case of isosurface extraction. Although
this is only one particular technique in visualization, we expect the
general technique to generalize.

It is important to again stress that verification is a process: even
when successfully applied to an algorithm and its implementation,
one can only concretely claim that the implementation behaves cor-
rectly (in the sense of analyzed predicted behavior) for all test cases to
which it has been applied. Because the test set, both in terms of model
problems and analyzed properties, is open-ended and ever increasing,
the verification process must continually be applied to previous and
new algorithms as new test sets become available. This does not, how-
ever, preclude us from formulating a basic set of metrics against which
isosurface extraction methods should be tested, as this is the starting
point of the process. This is what we turn to in the next section.
3 VERIFYING ISOSURFACE EXTRACTION ALGORITHMS

In this section, we describe the technique we use for verifying iso-
surface extraction algorithms, namely the method of manufactured so-
lutions (MMS). We illustrate a possible implementation of MMS in
Figures 2 and 3. This technique requires us to write down the expected
behavior of particular features of interest of the object (or model prob-
lem) being generated. In our case, we are generating triangular ap-
proximations of smooth isosurfaces, and the features of interest are
geometric surface convergence, convergence of normals, area and cur-
vature.

To use MMS, we first accomplish a mathematical analysis of the
expected convergence rate of the features (or characteristics) of inter-
est, known in the numerical literature as the formal order of accuracy

MMS(f ,u,h1)
1 . Let f be a scalar field containing the solution surface S
2 . Let u be a given property (f , normals, area, etc.)
3 . Let h1 be the initial grid size
4 for i← 1 to n
5 do Ghi ← an approximation of f at grid size hi
6 Shi ← an approximation of S computed from Ghi
7 Ehi ← ||u(Shi)−u(S)||u
8 xi← loghi, yi← logEhi
9 hi+1← hi/2

10 q̃← slope of best-fit linear regression of (xi,yi)
11 Compare q̃ and q

Fig. 2. Overview of the method of manufactured solutions (MMS).

of the characteristic. This analysis is done for solutions of the problem
that can be conveniently described and analyzed (these are the man-
ufactured solutions). Then, the code is executed with progressively
refined versions of the data that is used in the generation or sampling
of the manufactured solution. Finally, the empirical convergence rate
is compared to the one predicted by the analysis. When the conver-
gence rates are comparable, we increase our confidence in the algo-
rithm. If the realizable behavior disagrees with the analysis, either (1)
the analysis does not correspond to the correct behavior of the algo-
rithm, (2) the assumptions upon which the analysis was build were
violated by the input data and hence the predicted behavior is not valid
for the circumstances under investigation, or (3) there are issues with
the algorithm or with the implementation of the algorithm (depending
on access to source code and algorithmic details, one may not be able
to distinguish between these two – algorithmic or implementation –
and hence we in this work always consider them together. Given suf-
ficient information, the verification process can help further delineate
between these two issues). Notice, however, that all three situations
warrant further investigation. In the following sections, we will dis-
cuss these issues in more detail. Let us first clarify how we will arrive
at theoretical and empirical convergence rates.

For a fixed grid size, we will strive to write the approximation error
between the desired isosurface property and its approximation by:

E = |uapprox−uexact |u = O(hp) = αhp (1)

where uapprox,uexact are the approximated and exact values of a prop-
erty u, | · |u is the norm used to compare the approximate and exact
property, p is the order of accuracy and α is a constant.

Practically speaking, the polynomial expression (1) is not very con-
venient for numerical experimentation, as it is hard to find the value
of p from the direct plot of h against E. The standard technique to
estimate p is to linearize by working on a log-log scale:

logE = log(αhp) = logα + p logh. (2)

Using this linearized version, we estimate p from the slope of the
line that best fits the points (logh, logE) in a least-squares sense. We
use this technique in Section 4 when testing the isosurface codes.

MMS critically depends on an analysis of the order of accuracy of
expected solutions. Although this seems quite simple, the order of ac-
curacy under a sensitive norm like || · ||∞ has shown in practice to be
very effective in bringing out implementation errors in numerical ap-
proximation schemes [1, 21]. In this paper, we show that this analysis
is just as effective for isosurface extraction. In addition, we believe
the convergence analysis required by MMS is interesting in its own
right. As we will discuss in Section 5, it helps to shed light on the
consequences of implementation choices.

In the context of isosurface methods, manufactured solutions can
be built by specifying a “solution surface” to be the exact solution and
deriving a scalar field that contains such a solution surface as a level
set. The verification methodology then proceeds as following: (1) use
the manufactured scalar field as input for the isosurfacing methods, (2)
run the methods, and (3) check the output surface against the solution
surface (sometimes called the ansatz solution within the mathematical
verification literature). In many cases, the manufactured scalar field

h
i

u() -= u (h)Ehi || ||
hi(),Ehi

lo
g
E
rr
or

log h
Fig. 3. Workflow for the method of manufactured solution (Figure 2), clockwise
from the top left.

can be derived analytically, making the observed order of accuracy
tractable (we give examples in next section).

In what follows, we will derive expected orders of accuracy for sev-
eral features of surfaces produced by isosurface extraction codes. We
keep our assumptions about the actual algorithms to a minimum to
maximize the applicability of the arguments given. We essentially
only assume that the maximum triangle size can be bounded above
at any time, and use Taylor series arguments (under assumptions of
smoothness) to derive convergence rates. It is important to point out
that order of accuracy analysis of polyhedral surfaces has been studied
by many researchers [8,16,26,27]. In fact, the results presented below
are in agreement with the ones reported in the literature. However, be-
cause we are considering isosurface extraction, some of our arguments
benefit by being able to be condensed to simpler statements.
3.1 Convergence of Vertex Position
We start our analysis of isosurface extraction by studying the conver-
gence of vertex positions. We analyze this convergence indirectly by
relating the values of the scalar field at the vertex points and the dis-
tance between the vertices and the correct isosurface. Given a value
λ such that the exact isosurface S is defined by f (x,y,z) = f (~v) = λ ,
the algebraic distance of ~v to S is defined as | f (~v)− λ | [24]. No-
tice that algebraic distances only makes sense for implicit surfaces:
it requires a scalar field. In addition, we restrict ourselves to regular
isosurfaces, ones where for every point x in S, |∇ f (x)| exists and is
nonzero. Then, the geometric distance between ~v and S is approxi-
mated by | f (~v)−λ |/|∇ f (~v)| [24]. We illustrate this relation in Figure
4. Since, by assumption, |∇ f (x)| > k for some k > 0, and all x in S,
convergence in algebraic distance implies convergence in geometric
distance. Convergence in algebraic distance, however, is much more
tractable mathematically, and this is the item to which we turn our
focus.

Many isosurface methods estimate vertex positions through linear
interpolation along edges of a grid. Let f : U ⊂ R3 → R be the
a smooth real function defined in a subset U = [ax,bx]× [ay,by]×
[az,bz], where [ai,bi], i ∈ x,y,z are real intervals. We assume the
intervals [ai,bi] have the same length and let ax = x0, . . . ,xn = bx,
ay = y0, . . . ,yn = by, and az = z0, . . . ,zn = bz be subdivisions for the
intervals such that xi = x0 + ih, yi = y0 + ih, zi = z0 + ih, i = 0, . . . ,n,
where h is the grid size and ci jk = [xi,xi+1]× [y j,y j+1]× [zk,zk+1] is a
grid cell. Through a Taylor series expansion of f , one can evaluate f
at a point ~p ∈ ci jk as:

f (~p) = fi jk +∇ fi jk ·~δ +
1
2
~δ T H(~ξ)~δ (3)

where fi jk = f (xi,y j,zk), ∇ fi jk is the gradient of f in (xi,y j,zk), H(~ξ)
is the Hessian of f at a point ~ξ connecting (xi,y j,zk) and ~p, and ~δ =
(u,v,w)T is such that ~p = (xi +uh,y j + vh,zk +wh)T .

Let the linear approximation of f in ~p be defined by

f̃ (~p) = fi jk +∇ fi jk ·~δ (4)

and consider a point ~xλ such that f̃ (~xλ) = λ , that is, ~xλ is a point on
the isosurface λ of f̃ .

The algebraic distance between the exact isosurface f (x,y,z) = λ

and the linearly approximated isosurface can be measured by | f (~xλ)−
λ |. From Equations 3 and 4 one can see that

Fig. 4. The distance between a point ~v and the isosurface S with isovalue λ can
be approximated by the algebraic distance divided by the gradient magnitude of
the scalar field at~v, | f (~v)−λ |/|∇ f (~v)|. In the figure, the thick circle represents the
isosurface S and the fainter isolines illustrate changes in gradient magnitude: in
regions of small gradient magnitude, the algebraic distance is small but geometric
distance is large, and vice-versa for large gradient magnitude.

Fig. 5. Isosurface local parametrization and approximation.

| f (~xλ)−λ |= | fi jk +∇ fi jk ·~δ +
1
2
~δ T H(~ξ)~δ −λ |=

| f̃ (~xλ)+O(h2)−λ |= O(h2)
(5)

thus, the linearly approximated isosurface is of second-order accuracy.
3.2 Convergence of Normals
Assume, generally, that the scalar field f (x,y,z) = λ can be locally
written as a graph of a function in two-variables g(x(u,v),y(u,v)) =
λ − f (x(u,v),y(u,v),zk), as illustrated in Figure 5, where x(u,v) =
xi + uh and y(u,v) = y j + vh. This is acceptable because we have al-
ready assumed the isosurface to be regular. Still without losing gen-
erality we write g(x(0,0),y(0,0)) = 0, that is, the isosurface contains
the point (xi,y j,zk). Let ~Φ(u,v) = (x(u,v),y(u,v),g(x(u,v),y(u,v)))
be a parametrization for the isosurface f (x,y,z) = λ in ci jk and

∂~Φ

∂u
× ∂~Φ

∂v
= h2

(
−∂g

∂x
, − ∂g

∂y
,1
)T

= h2~n0 (6)

be the normal vector in ~Φ(0,0) = (xi,y j,g(xi,y j)) (the partial deriva-
tives of g are evaluated at (x(0,0),y(0,0)) = (xi,y j)).

Consider now the triangle defined by the points ~p1, ~p2, and ~p3 ap-
proximating the isosurface f (x,y,z) = λ in the grid cell ci jk (see Fig-
ure 5). Let ~p1 be the grid point (xi,y j,zk), so ~p1 = ~Φ(0,0), ~p2 =
~Φ(u2,v2), and ~p3 = ~Φ(u3,v3). Using the cross product in R3, the nor-
mal of the triangle p1 p2 p3 can be computed by:

~np1 p2 p3=(~p2− ~p1)× (~p3− ~p1)=h(v2g(x(u3,v3),y(u3,v3))− v3g(x(u2,v2),y(u2,v2)))
h(u3g(x(u2,v2),y(u2,v2))−u2g(x(u3,v3),y(u3,v3)))

h2(u2v3−u3v2))

 .
(7)

Expanding g(x(ui,vi),y(ui,vi)), i ∈ {2,3} in a Taylor series, some
terms cancel and the normal ~np1 p2 p3 becomes:

~np1 p2 p3 = rh2
(
−∂g

∂x
+O(h), − ∂g

∂y
+O(h),1

)T
(8)

where r = u2v3−u3v2. Comparing the exact normal vector ~n0 in Equa-
tion 6 with ~np1 p2 p3 above, we recover first-order of accuracy for nor-
mals. In addition, notice that the usual scheme of estimating vertex
normals by the arithmetic mean of triangle normals does not decrease
the order of accuracy; that is, vertex normals (computed by arithmetic
mean) are at least first-order accurate.

Fig. 6. Uniform convergence does not imply convergence in area. The sequence
of curves converges uniformly to a straight line, but the length of the curves does
not change.

3.3 Convergence of Area
Currently, much less is known about convergence in area, compared
to convergence of vertices or normals. To illustrate the difficulty in-
volved in approximating lengths and areas, consider the sequence of
approximations to a straight line shown in Figure 6. Even though the
function sequence converges uniformly to the line, the length of the
approximation stays constant.

To the best of our knowledge, the only relevant results establish
convergence in area given convergence in vertex positions and con-
vergence in normals, such as in Hildebrandt et al. [8]. However, the
authors only establish asymptotic convergence, with no order of accu-
racy associated with it. The argument is more mathematically involved
than space allows here, so we refer the reader to that paper. Currently,
this means that the only information the observed order of accuracy
provides to us is that if we expect convergence in normals, we should
also expect convergence in area, and vice-versa.
3.4 Convergence of Curvature
The following formula gives an estimate of the curvature at a vertex p:

K(p) =
2π−∑θi i+1

1
3 Ai i+1

(9)

where θi i+1 and Ai i+1 are the angle ∠pi ppi+1 and area of the trian-
gle pi ppi+1 respectively (summation is over all triangles comprising
the star of p) [16]. Meek and Walton [16] showed that the curvature
computed via Equation 9 does not converge in general; that is, if the
vertices of the star of p are arbitrarily distributed around p, one cannot
expect curvature convergence. In fact, they described a more general
result stating that O(h) accuracy can only be obtained if the normals
are known to have accuracy O(h2). Subsequently, Xu [26] presented a
very particular distribution of vertices around p under which the cur-
vature estimated by Equation 9 has accuracy O(h2).

Curvature discretization schemes other than the one given in Equa-
tion 9 such as the quadratic-fit and spherical-image method (see Meek
and Walton [16] for details) also demand particular vertex distribu-
tions to ensure convergence. In our context of keeping the analysis ap-
plicable for many isosurfacing algorithms, this means we cannot use
the lack of observed curvature convergence as an indication of prob-
lematic behavior. Based on the results mentioned above, one should
actually expect curvature not to converge for most isosurface extrac-
tion algorithms. More generally, this indicates a weakness of MMS,
namely that some features of interest (such as curvature) will not have
sufficient theoretical order of accuracy to be used in numerical mea-
surements. Notice, in addition, that if we had not written down the
theoretical model for curvature convergence, we might have expected
some sort of curvature approximation. Even a negative result such as
the one presented in this section can increase the confidence in the
results generated by an implementation.
4 EXPERIMENTAL RESULTS
In this section we present the results of applying the afore-described
methodology. We use the framework to verify six different isosurface
extraction codes, namely: VTK Marching Cubes [14], SnapMC [20],
Macet [5], Dual Contouring [10], Afront [22], and DelIso [4]. All
these implementations are open source and/or publicly available1. Be-
fore presenting the actual results of subjecting these implementations
to the verification process, we briefly review their salient features.
VTK Marching Cubes: Marching Cubes [14] (MC) is arguably the
most popular isosurface extraction algorithm. It reduces the problem

1Links at http://www.sci.utah.edu/˜etiene/

of generating an isosurface triangulation to a finite set of cases by con-
sidering the signs of how the isosurface intersects each cell of a regular
background grid. As there are only 256 different types of intersections
between the isosurface and a regular Cartesian 3D cell, a template of
triangles is set to each case, making the implementation quite simple
through a look-up table. The vertices of the triangles lie on the edges
of the cubic cells, and they are computed by linearly interpolating the
implicit function values stored at the corners of the grid cell.
SnapMC: SnapMC [20] is a recently proposed algorithm that extends
the original Marching Cubes look-up table to cases where the isosur-
face goes exactly through the corners of the background grid. The new
look-up table is automatically built by an adaptation of the convex hull
scheme proposed by Bhaniramka et al. [2]. Even though the traditional
Marching Cubes algorithm can easily handle these cases by some kind
of symbolic perturbation, SnapMC perturbs the scalar field to avoid
edge intersections close to grid corners. In particular, it changes the
values on the grid so that the surface is “snapped” to the grid corners.
Macet: Macet [5] is another variant of Marching Cubes that tries to
improve the shape of the triangles in a mesh. Unlike SnapMC, it per-
turbs the active edges of Marching Cubes cases by moving the ver-
tices before the triangulation step. The motivation behind Macet is
that poorly-shaped triangles tend to be generated when the intersec-
tion between the isosurface and a grid cell is approximately parallel to
an edge of the grid cell. Therefore, some corners of the background
grid are displaced so as to avoid the parallel-like intersections.
Dual Contouring: Dual Contouring [10] is a feature-preserving iso-
surfacing method to extract crack-free surfaces from both uniform and
adaptive octree grids. This technique can be seen as a combination
of Extended Marching Cubes [12] and SurfaceNets [6] as it makes
use of Hermite data and quadratic error function minimization to po-
sition the vertices of the surface mesh (as Extended Marching Cubes)
and the dual topology to connect such vertices (as SurfaceNets). Dual
Contouring tends to generate better quality triangles than Marching
Cubes while still being very effective in representing sharp features,
rendering this implicit polygonalization method a good alternative to
the popular Marching Cubes.
Afront: Afront [22] is an advancing-front method for surface extrac-
tion. Although we focus on applying Afront to isosurface extraction,
it can also be used for remeshing and triangulating point-set surfaces.
The outstanding feature of Afront is that it generates triangles adapted
to the local details of a surface, namely its maximum absolute curva-
ture. In this sense, Afront is fundamentally different from the other
algorithms we analyze. In lieu of grid refinement, we will use its ρ

parameter to control triangulation size. Because the manufactured so-
lution we use is a sphere, reducing ρ by half is roughly equivalent to
reducing the maximum triangle size by half. A full analysis of Afront
(and, in particular, the influence of the other main parameter η) war-
rants further investigation, but is beyond the scope of this paper.
DelIso: DelIso [4] is a Delaunay-based approach for isosurfacing. It
computes the restricted Delaunay triangulation from a 3D Voronoi Di-
agram. We run our tests on a customized version of DelIso 16 bit, and
our examples use the default set of parameter.

In what follows, we present the results of applying the verification
process to these algorithms. We will describe the manufactured so-
lutions we use and their observed convergence rate on the isosurface
extraction algorithm.
4.1 Observed order of accuracy
We start by investigating the behavior of the algorithms under the man-
ufactured solution given by the scalar field f (x,y,z) = x2 +y2 + z2−1
and isosurface f (x,y,z) = 0 in the domain D = [−4, 4]3. Let S̃k be a
simplicial complex that approximates S for a given discretization pa-
rameter k (cell size h for marching cubes-based methods, accuracy ρ

for Afront and maximum edge size ι for DelIso).
The order of accuracy for VTK Marching Cubes, SnapMC, Macet

and Dual Contouring depends on the cell size h. We run our tests with
grid refinement hi+1 = hi/2 and initial condition h1. For Afront, the
order of accuracy depends on parameter ρ thus the refinement is given
by ρi+1 = ρi/2 with initial condition ρ1. Our customized version of

Vertex Normal Area Curvature
O(h2) O(h) – O(1)

VTK MC 1.94 0.93 2.00 −3.35
SnapMC 1.93 0.82 2.14 −0.29
Afront∗ −0.06 0.80 1.93 −0.27
Macet1,∗ 0.98 −0.12 0.29 −2.41
Macet2,∗ 0.03 0.75 2.02 −0.61
DC1 1.02 −0.11 0.69 −2.08
DC2 1.96 0.96 1.89 −0.15
DellIso 1.49 1.07 2.04 0.07

Table 1. Comparison between formal order of accuracy and observed order of ac-
curacy using f (x,y,z) = x2 +y2 + z2−1 as a manufactured solution and for different
algorithms. 1 indicates the original source code and 2 our fixed version. ∗ indicates
that a high-order spline was used instead of a linear interpolation (Section 3).

DelIso has an additional parameter ι that controls the largest edge on
the output mesh. In this case, the refinement formula is ιi+1 = ιi/2.
In the particular case of SnapMC, we set the snap parameter γ to its
maximum value (γ = 1/2). Even though the manufactured solution we
selected is about as simple as can be imagined, comparing the formal
order of accuracy with the observed one was enough to suggest bugs in
two implementations. The observed order of accuracy of the examined
properties is presented on Table 1.
4.1.1 Algebraic distance
Section 3.1 shows that one expects second-order convergence for func-
tion value on vertices if linear interpolation is used. We define the
following approximation error on L∞ norm:

Ek = max
j=1···n

|λ − f (v j)| (10)

where λ is the isovalue of interest, v j is a vertex of S̃ and n the number
of vertices. Figure 7(a) shows the vertex observed order of accuracy.
VTK Marching Cubes, SnapMC have nearly quadratic convergence
rates as shown in Figure 7(a). Afront shows a zero-order of accuracy
though it presents very low error (in fact, the lowest in Figure 7(a)).
This is due to the Catmull-Rom spline that is being used for surface
approximation on the voxelized grid. Since it has cubic-order of accu-
racy, even for large values of ρ it can approximate with high precision
the manufactured solution f . Next section shows that this is due to a
poor choice for a manufactured solution. DelIso implementation has
non-zero order of accuracy due to an outlier. Large values of ι causes
bad approximations of the manufactured solution.

The Macet and Dual Contouring curves suggest that the algorithms
converge to a fixed value. In fact, there was indeed a problem in the
implementation that was affecting the convergence of Macet and Dual
Contouring (specifically, we found a hard-coded limit in the number of
steps in a root-finding procedure that was being triggered by the high
resolution of the volume). Once fixed, we obtain the results shown
in Figure 8(a). Macet and Afront now have similar behavior in the
observed order of accuracy of vertex position (Figure 8(a)). This is
because both methods use high-order interpolation with splines, not
linear interpolation as assumed before (see Section 5).
4.1.2 Normals
Section 3.2 shows that one expects first-order of accuracy for normal
computations. We define the following approximation error using L∞

norm: Ek = max
j=1···n

|θσ j | (11)

where θσ j is the angle between the normal of the triangle σ j and the
normal of the point in S closest to the centroid of σ j. As shown
in Figure 7(b), VTK Marching Cubes, Afront, SnapMC and DelIso
have good observed order of accuracy above 0.8. However, only VTK
Marching Cubes and DelIso present close proximity to linear. Macet
and Dual Contouring once again do not present a consistent order. Fig-
ure 8(b) shows the results after fixing both codes.
4.1.3 Area
Although there is no formal order of accuracy for area, one expects
some convergence for it (Section 3.3). We define the following ap-
proximation error: Ek = |A(S)−A(S̃k)| (12)

Fig. 7. Observed order of accuracy. The implementations of Macet and Dual Contouring have a bug that causes the deviation on errors. The black continuous line
represents the expected behavior. p is the slope of the linear regression for each curve.

Bug #1 Bug #2 Quality Observed accuracy
No Fix No Fix Good Bad
Fix 1 No Fix Good Bad
Fix 1 Fixed Bad Good
Fix 2 No Fix Good Bad
Fix 2 Fixed Bad Good

Table 2. Table of results for Macet. Triangle quality versus convergence. We were
not able to find a solution that provides both triangle quality and convergence.

where A is the area function of a continuous or piecewise-linear sur-
face. The results are shown in Figure 7(c). VTK Marching Cubes,
Afront and DelIso present second-order of accuracy as shown in Fig-
ure 7(c). SnapMC accuracy is slightly better than quadratic due to poor
approximation for large h. The error dropped faster than quadratic
when the grid was refined for the first time. Macet and Dual Contour-
ing exhibit once again unexpected behavior. Unlike the previous time,
the curves now seem to diverge when h is too small. Once the bug
is fixed the convergence curves changes, and they become quadratic
(Figure 8(c)).

4.1.4 Curvature
Section 3.4 shows that one expects zero-th order of accuracy for curva-
ture computation. We define the approximation error using L∞ norm:

Ek = max
j=1···n

|K(v j)− K̃(v j)| (13)

where K(v) is the Gaussian curvature at v∈ S and K̃(v) is the Gaussian
curvature at v ∈ S̃. In this particular case where S is a sphere, K(v) = 1
for every v ∈ S. The results are shown in Figure 7(d). DelIso, Afront
and SnapMC are close to zeroth-order accuracy. The curvature order
of accuracy for VTK Marching Cubes, on the other hand, diverges
significantly. This unexpected behavior might deserve further investi-
gation which we leave for future work. Although the curves shown in
Figure 7(d) for Macet and Dual Contouring diverge, they change after
fixing the code (Figure 8(d)).

4.2 Detected Bugs
We were able to find and fix bugs in two of the implementations under
verification, namely, Macet and Dual Contouring, using as manufac-
tured solution a sphere centered at origin with radius 1. The new result
curves are shown in Figure 8. The observed order of accuracy for Dual

Contouring is quite satisfactory for all manufactured solution. In par-
ticular, the normal order of accuracy has the best rate among the meth-
ods. Macet improved for its results for area. On the other hand, it still
has some issues related to normals, which perhaps indicates a need for
more tests and verification. The new order of accuracy for algebraic
distance (Figure 8(a)) does not tell us much about the correctness of
the code because of the zero-th order of accuracy (same for Afront).

The zero-th order of accuracy might happen if the formal order of
accuracy is zero-th order, in which case the observed order matches the
formal order. It might also happen due to a poor choice for manufac-
tured solution. If it is not complex enough, the implementation being
tested may approximate exactly the solution and therefore there is no
error within the approximation although another error source (trun-
cation error, for instance) may show up. The next section presents a
detailed discussion concerning MMS.

Although we managed to fix the Macet convergence problem, we
were not able to do so in a way that preserves triangle quality (Figure
1). Two were the problems we found in the source code, and we pro-
posed two solutions for one of them. Table 2 shows that we could not
find any combination that both fixed the convergence problem and pre-
served the triangle quality simultaneously. This sort of behavior raises
the question if there is a theoretical problem that prevents both from
being satisfied simultaneously, or it is just a matter of finding a better
algorithmic fix. In both cases, further study and subsequent tests must
be accomplished.

5 DISCUSSION

As we have shown, MMS is an effective means of diagnosing prob-
lems within the algorithms and implementations of isosurface extrac-
tion algorithms. In this work we have considered the two – algorithm
and implementation – as one unit as one cannot always distinguish
between the two if only limited information (source code and algorith-
mic details) is available. In this section, we present a more thorough
discussion of the use of MMS, particularly for isosurface extraction.
On the implementation and use of MMS. One of the primary ad-
vantages of verifying simulation codes using MMS is that it is a non-
intrusive method. MMS treats the code being verified as a blackbox,
and so can be easily integrated into an existing test suite with little to
no impact. However, MMS does not “see” the implementation, and so

Fig. 8. Observed order of accuracy after fixing Macet and Dual Contouring code (other curves remain the same). The black continuous line represents the expected
behavior. p is the slope of the linear regression for each curve.

provides little direct information about where a particular bug might
be when there is a discrepancy between the formal and observed or-
ders of accuracy. In our experience, there are three main places where
mistakes can happen: (1) in the design and construction of the manu-
factured solution, (2) in the coding of the algorithm being tested, and
(3) in the evaluation and interpretation of the results. Mistakes on the
evaluation of results have two flavors: misinterpretation or poor formal
order of accuracy. The first heavily depends on testers’ and experts’
experience and ability to judge what a good result is. For example,
should the normal observed order of accuracy for Afront and Macet on
Figure 7(b) be considered linear (p = 0.80 and p = 0.75 respectively)?
The latter depends on a rigorous formal order of accuracy analysis of
the algorithm considering all sorts of errors; even round-off errors may
be significant. In fact, we spent more time on writing out rigorously
the analysis of the formal order of accuracy and on searching for possi-
ble sources of error than on the tests themselves. This again highlights
the fact that verification using MMS is a process: it is typical to go
back to the white board and refine formal analyses before arriving at
conclusive answers. Although the formal order of accuracy analysis
might be a painful process, the literature has many results that can be
promptly used. As a consequence, if one wishes to writes his own
MC technique, for instance, his only concern is to write a test which
exploits the results available within the literature.
On the complexity of the manufactured solution. The complexity of
the manufactured solution can have a large influence on the effective-
ness of verification. Suppose one chooses the manufactured solution
to be f (x,y,z) = x + y+ k, k constant, instead of a sphere. Since MC-
based techniques use linear interpolation for surface approximation,
one expects that the function value converges to the exact value regard-
less of any discretization parameter h, i.e., p = 0 (notice that the evalu-
ated error might be non-zero, implying there is some other error source
that does not depend on h). Since such a function f is an extremely
simple manufactured solution, it might not trigger bugs that would oth-
erwise reduce the observed order of accuracy. In our experiments, the
(problematic) implementation of Dual Contouring achieved the formal
order of accuracy for this particularly simple function (p = 0).

Another example on the influence of manufactured solution arose
with in our examination of Afront. Because Afront uses Catmull-Rom
splines, some simple isosurfaces will converge to within numerical
error for very rough volumes, and the numerically observed order of

Fig. 9. Order of accuracy for a transcendental function f (x,y,z) = x2 +
y2 + z2 + cos(Ax)2 + cos(Ay)2 + cos(Az)2, A is a constant. The observed
orders of accuracy for all implementations are relative to the voxel size h.
We expect third-order accuracy for Afront and Macet due to their use of
high-order spline approximations. Both have the expected convergence
rate for all but the last two values.

accuracy will be much lower than expected. With an implicit function
whose isosurfaces are spheres, we observed zero-th order of accuracy
for Afront for algebraic distance. With a modified implicit function
that included transcendental functions, MMS reveals that Afront does
not have the expected convergence rate on the full interval, as shown
in Figure 9. Notice that Macet has similar behavior. Additional tests
are needed to determine the source of this behavior within both codes.

On the order of accuracy. In this paper, we have chosen to make
our formal analysis as generic as possible to accommodate as many
implementations under verification as possible. Although we are able
to evaluate many codes using the same manufactured solution, when
using MMS for a particular code, it is best to exploit as much detail
about the algorithm as necessary. If the goal is to design a manu-
factured solution for verifying Marching Cubes-based techniques the
manufactured solution should exercise all possible cases. Addition-
ally, particular aspects of the manufactured solutions can be incorpo-
rated into the formal analysis. For example, the analysis for Afront be-
comes much more complicated if curvatures are not constant over the
surface (in that case, its additional parameter η comes into play [22],

and accurately bounding the triangle size is not practical).
The errors in Section 4.1 were measured at different locations on the

mesh. Vertex convergence and Gaussian curvature were measured at
triangle vertices, and normals were measured on the triangle centroid.
More importantly, measurements performed at different locations may
have different orders of accuracy, and one needs to be careful about
these issues. As an example, Macet has cubic formal order of accuracy
at vertices due to spline approximation but quadratic formal order of
accuracy at faces’ centroids.

In Section 3, we define the error using a pessimistic L∞ norm. This
makes MMS an extremely sensitive technique. In fact, MMS can de-
tect very subtle off-by-one mistakes in grid sizes and interactions be-
tween node-centric and cell-centric reconstruction kernels, even for
simple manufactured solutions such as spheres. In these situations, it
is important not to infer incorrect conclusions.

The numerical estimates for MMS should be performed on as wide
a range of parameter values as possible. In our tests, the range of
the voxel size was h ∈ (0.001,1.0), and we observed that both faulty
implementations performed appropriately for large values of h. Just
as the implementations might only enter the asymptotic regime and
achieve the formal convergences for small values of h, it might be
that (as we have experienced) bugs only manifest themselves on suffi-
ciently small values of h.
On the limitations of the test. MMS does not cover every aspect of
code verification for isosurface extraction. For example, one impor-
tant aspect we do not know how to test with MMS is the topological
correctness of an extracted mesh. This seems particularly challeng-
ing because there does not seem to be an appropriate measure of con-
vergence for topological properties such as the Euler characteristic or
Betti numbers. A proper study of these issues is an interesting avenue
for future work.
6 CONCLUSIONS AND FUTURE WORK
Because of its simplicity and effectiveness, we believe MMS could
become a standard tool in the verification of scientific visualization
software in the same that it has been adopted by the scientific sim-
ulation community as a trustworthy tool for assess code correctness.
Using a simple manufactured solution, we were able to reveal bugs
that prevented the convergence of some mesh properties of two pub-
licly available isosurfacing codes. In particular, the by-products of the
verification process, namely a continuous refinement of mathematical
analysis of the algorithm’s behavior and a numerical comparison of the
results of the implementation against a known solution are valuable in
their own right, and should be published together with new algorithms.

As future work, we are investigating the applicability of MMS to
other visualization techniques such as streamline generation and vol-
ume rendering. In particular, we expect MMS to clarify assumptions
and errors intrinsic in these visualizations, a topic that has recently
become very important [9]. More importantly, we hope the examples
presented in this paper encourage the adoption of the technique by the
visualization community at large. We believe such adoption will in-
crease the impact of contributions from the visualization community
to a wider audience.
ACKNOWLEDGEMENTS

We thank Lauro Lins and Tom Peters for help with the pa-
per, João Comba for help with the Macet code, and Tamal Dey
and Joshua Levine for the customized version of DelIso used in
this work. This work was supported in part by grants from
the National Science Foundation (grants IIS-0905385, IIS-0844546,
ATM-0835821, CNS-0751152, OCE-0424602, CNS-0514485, IIS-
0513692, CNS-0524096, CCF-0401498, OISE-0405402, CCF-
0528201, CNS-0551724), the Department of Energy, IBM Fac-
ulty Awards and PhD Fellowship, the US Army Research Of-
fice under grant W911NF0810517, ExxonMobil, and Fapesp-Brazil
(#2008/03349-6).
REFERENCES

[1] I. Babuska and J. Oden. Verification and validation in computational
engineering and science: basic concepts. Computer Methods in Applied
Mechanics and Engineering, 193(36-38):4057–4066, 2004.

[2] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in
any dimension using convex hulls. IEEE TVCG, 10(2):130–141, 2004.

[3] H. Carr, T. Moller, and J. Snoeyink. Artifacts caused by simplicial subdi-
vision. IEEE TVCG, 12(2):231–242, 2006.

[4] T. K. Dey and J. A. Levine. Delaunay meshing of isosurfaces. In SMI ’07:
Proceedings of the IEEE International Conference on Shape Modeling
and Applications 2007, pages 241–250. IEEE Computer Society, 2007.

[5] C. A. Dietrich, C. Scheidegger, J. Schreiner, J. L. D. Comba, L. P. Nedel,
and C. Silva. Edge transformations for improving mesh quality of march-
ing cubes. IEEE TVCG, 15(1):150–159, 2008.

[6] S. Gibson. Using distance maps for accurate surface representation in
sampled volumes. In IEEE Symposium on Volume visualization, pages
23–30, 1998.

[7] A. Globus and S. Uselton. Evaluation of visualization software. SIG-
GRAPH Comp. Graph., 29(2):41–44, 1995.

[8] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence of
metric and geometric properties of polyhedral surfaces. Geometriae De-
diacata, (123):89–112, 2006.

[9] C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors
and uncertainty. IEEE Computer Graphics and Applications, 23(5):6–
10, 2003.

[10] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite
data. In SIGGRAPH’02, pages 339–346. ACM, 2002.

[11] R. Kirby and C. Silva. The need for verifiable visualization. IEEE Com-
puter Graphics and Applications, 28(5):78–83, 2008.

[12] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sen-
sitive surface extraction from volume data. In SIGGRAPH ’01, pages
57–66. ACM, 2001.

[13] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implemen-
tation of marching cubes cases with topological guarantees. Journal of
Graphics Tools, 8(2):1–15, 2003.

[14] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. SIGGRAPH Comp. Graph., 21:163–169, 1987.

[15] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters
for volume rendering. In IEEE Visualization ’94, pages 100–107, 1994.

[16] D. Meek and D. Walton. On surface normal and gaussian curvature ap-
proximation given data sampled from a smooth surface,. Computer-Aided
Geometric Design, 17:521–543, 2000.

[17] P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. IEEE
Computer Graphics and Applications, 13(6):33–41, 1993.

[18] J. Patera and V. Skala. A comparison of fundamental methods for iso
surface extraction. Machine Graphics & Vision International Journal,
13(4):329–343, 2004.

[19] A. Pommert, U. Tiede, and K. Höhne. On the accuracy of isosurfaces
in tomographic volume visualization. In MICCAI’02, pages 623–630,
London, UK, 2002. Springer-Verlag.

[20] S. Raman and R. Wenger. Quality isosurface mesh generation using
an extended marching cubes lookup table. Computer Graphics Forum,
27(3):791–798, 2008.

[21] C. J. Roy. Review of code and solution verification procedures for com-
putational simulation. J. Comput. Phys., 205(1):131–156, 2005.

[22] J. Schreiner, C. Scheidegger, and C. Silva. High-quality extraction of
isosurfaces from regular and irregular grids. IEEE TVCG, 12(5):1205–
1212, 2006.

[23] P. Sutton, C. Hansen, H.-W. Shen, and D. Schikore. A case study of
isosurface extraction algorithm performance. In Data Visualization 2000,
pages 259–268. Springer, 2000.

[24] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. Kriegman. Param-
eterized families of polynomials for bounded algebraic curve and surface
fitting. IEEE PAMI, 16(3):287–303, Mar 1994.

[25] M. Tory and T. Moeller. Human factors in visualization research. IEEE
TVCG, 10(1):72–84, 2004.

[26] G. Xu. Convergence analysis of a discretization scheme for gaussian cur-
vature over triangular surfaces. Comput. Aided Geom. Des., 23(2):193–
207, 2006.

[27] Z. Xu, G. Xu, and J.-G. Sun. Convergence analysis of discrete differential
geometry operators over surfaces. In Mathematics of Surfaces XI, volume
3604 of LNCS, pages 448–457. Springer, 2005.

[28] L. Zhou and A. Pang. Metrics and visualization tools for surface mesh
comparison. In Proc. SPIE - Visual Data Exploration and Analysis VIII,
volume 4302, pages 99–110, 2001.

