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Abstract—Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in

three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing

the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for

streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that

allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh

in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality

approximations, and operates out-of-core to process meshes too large for main memory.

Index Terms—Computational geometry and object modeling, out-of-core algorithms, streaming algorithms, mesh simplification, large

meshes, tetrahedral meshes.
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1 INTRODUCTION

SIMPLIFICATION techniques have been a major focus of
research for the past decade due to the increasing size

and complexity of geometric data. Scientific simulations
and measurements from fluid dynamics and partial
differential equation solvers have produced data sets that
are too large to visualize with current hardware. Thus,
approximations which maintain a volumetric mesh are
necessary to achieve a level of interactivity that is necessary
for proper analysis through visualization techniques such
as isosurfacing or direct volume rendering.

Although significant work has been done in simplifying
triangle meshes, relatively little has been done with
tetrahedral meshes. Most of the work in tetrahedral
simplification falls into two categories: edge-collapse
methods and point sampling methods. These algorithms
assume that the entire mesh can be loaded into main
memory. However, due to the high memory overhead of
storing the mesh connectivity in addition to the geometry,
there are limitations on the size of the data set that can be
simplified in this manner.

We present an algorithm that streams the data from disk
through memory and performs the simplification on a
localized portion of the entire mesh. Our approach consists
of two steps. First, the tetrahedral mesh is arranged in a
streaming format that supports coherent sequential access.
Then, this streaming mesh is sequentially simplified using a
quadric error-based scheme that respects boundaries and

fields in the mesh. The resulting mesh is output in the same
streaming format and can be used directly in subsequent
processing. This allows other streaming algorithms to be
used on the simplified mesh such as isosurface extraction
[1] or compression [2].

Our streaming algorithm requires only one pass to
simplify the entire mesh. Thus, the layout of the mesh is of
great importance to producing high quality results. We
perform a reordering of the tetrahedral cells and store them
on disk using a streaming tetrahedral mesh format. This
format provides concurrent access to coherently ordered
vertices and tetrahedra. It also minimizes the duration that
a vertex remains in-core, which limits the memory footprint
of the simplification.

Our tetrahedral simplification incrementally works on
overlapping portions of the mesh in-core (see Fig. 1). We
use the quadric-error metric to perform a series of edge
collapses until a target decimation is reached. By weighting
the boundaries and incorporating the field data in our error
metric, we can keep the error in the simplified approxima-
tion low. This results in a simplification algorithm that can
efficiently simplify extremely large data sets. In addition,
through the use of carefully optimized algorithms, linear
solvers, and data structures we show that significant
improvements in speed and stability can be achieved over
previous techniques.

The main contributions of this paper include:

. We describe a quadric-based edge-collapse simplifi-
cation algorithm that operates on portions of the
streaming tetrahedral mesh. This operation occurs in
a single pass, runs quickly, handles data of arbitrary
size, respects field data, and works out-of-core.

. We improve upon previous stream simplification
methods by ensuring that the output stream is
coherent in order to accommodate further down-
stream processing. We also introduce optimizations
in the data structures and simplification algorithm
which dramatically improve the speed and effi-
ciency of tetrahedral simplification.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007 1

. H.T. Vo and S.P. Callahan are with the Scientific Computing and Imaging
Institute, 50 S Central Campus Drive, Room 3490, Salt Lake City, UT
84112. E-mail: {hvo, stevec}@sci.utah.edu.

. P. Lindstrom and V. Pascucci are with the Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory, 7000 East Avenue,
Box 808, L-560, Livermore, CA 94551. E-mail: {pl, pascucci}@llnl.gov.

. C.T. Silva is with the School of Computing, University of Utah, 50 S.
Central Campus Drive, RM 3190, Salt Lake City, UT 84112.
E-mail: csilva@cs.utah.edu.

Manuscript received 10 Nov. 2005; revised 20 Mar. 2006; accepted 1 May
2006; published online 8 Nov. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0157-1105.

1077-2626/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society



. We provide a new stable solver for quadric-based
simplification that is simpler than the existing algo-
rithms. We also provide both stability and error
analysis of the results generated using this technique.

. We show that our streaming algorithm can success-
fully simplify a data set consisting of over one billion
tetrahedra on a commodity PC with low error.

The remainder of this paper is organized as follows: We
summarize related work in Section 1.1. In Section 2, we
describe our algorithm for arranging the data in a coherent,
streaming mesh. Section 3 provides details on our out-of-
core simplification, Section 4 contains our stability and error
analysis followed by performance measures, Section 5
discusses the benefits of our approach over previous
algorithms, and Section 6 provides final remarks and
directions for future work.

1.1 Related Work

A common result from scientific computations is a scalar
field f in IR3. This scalar field f can be represented over a
domain D as a tetrahedral mesh. When it is not possible to
achieve interactive visualization of f , it is common to find a
tetrahedral mesh with fewer elements and an associated
scalar field f 0 such that the approximation error kf 0 � fk is
minimized. Many algorithms have been proposed in an
attempt to compute f 0 quickly and with little error.

Trotts et al. [3], [4] developed a technique that collapses
one edge at a time, deciding which edge to collapse next
based on an error bound calculated at each step. They
provide a bound on the maximum deviation of the field
data in the simplified mesh from the original.

Several techniques for simplification have recently been
proposed that act on the vertices. Van Gelder et al. [5]
remove vertices based on mass and data error metrics. Uesu
et al. [6] provide a fast point-based method which works
directly on the underlying scalar field. These techniques are
more memory efficient than edge collapse methods, but
require the addition of Steiner points to handle nonconvex
meshes. This requirement makes them difficult to modify
for streaming algorithms.

The idea of a progressive mesh for surface level of detail
control was proposed by Hoppe [7] and later extended to
simplicial complexes by Popovi�c and Hoppe [8]. Staadt and
Gross [9] define appropriate cost functions to account for
volume preservation, gradient estimation, and scalar data
with progressive tetrahedral meshes. Chopra and Meyer
[10] propose a fast progressive mesh decimation scheme
that is based on the scalar field of the mesh.

Many algorithms have been developed that use different
error metrics to perform the simplification via edge
collapses. Cignoni et al. [11] use domain and field (i.e.,
range) error metrics to approximate the original mesh. The
use of a quadric error metric for surface simplification was
introduced by Garland and Heckbert [12]. Their method
uses iterative contractions on vertex pairs and calculates the
error approximations using quadric matrices. Natarajan
and Edelsbrunner [13] extend the quadric error metric to
preserve topological features. Garland and Zhou [14]
recently generalized the quadric error metric for simplify-
ing simplicial elements in any dimension.

As model size has continued to increase faster than main
memory size in commodity PCs, techniques have been
developed to simplify these data sets out-of-core. Lindstrom
[15] proposed an algorithm that simplifies triangle meshes
of arbitrary size. This algorithm improves upon Rossignac
and Borel’s [16] vertex-clustering method by using the
quadric error metric. The mesh is stored as a redundant list
of three vertex positions per triangle. This “triangle soup” is
read one triangle at a time and a simplified mesh is
constructed incrementally and kept in-core. Lindstrom and
Silva [17] improve upon the quality of this algorithm while
making the method more memory efficient by storing the
simplified mesh out-of-core during processing. They handle
boundaries separately to preserve the overall shape of the
mesh. Wu and Kobbelt [18] propose an edge collapse-based
streaming method for large triangle meshes that requires
only one pass to decimate the entire mesh. All three of these
methods make use of a redundant on-disk mesh represen-
tation that is two times larger than an indexed mesh.
However, they are fast because no global indexing is
required, which results in better cache coherency. Isenburg
et al. [19] present a triangle mesh simplification algorithm
based on the processing sequence paradigm. A processing
sequence is a mesh representation that interleaves the
ordering of the indexed triangles and vertices. This
representation provides fast out-of-core access because it
arranges the data in a memory-efficient order while
requiring no additional storage. We improve upon the
method of Isenburg et al. by placing fewer restrictions on
the input mesh, making the algorithm directly applicable to
a larger class of mesh producing applications.

With an increase in streaming algorithms, the need for a
streamable format that efficiently codes both geometry and
connectivity becomes necessary. Isenburg and Lindstrom
[20] provide the underlying work for streaming representa-
tions of polygonal meshes. They provide metrics and
diagrams for measuring the streamability of a mesh and
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Fig. 1. Streaming simplification performed on a tetrahedral mesh ordered from bottom to top. The portion of the mesh that is in-core at each step is

shown in green.



discuss methods for improving its layout so as to reduce its
memory footprint and the time each mesh element remains
in-core. Mascarenhas et al. [1] extend this format to handle
volumetric grids, which allows for streaming out-of-core
isosurface extraction.

2 MESH LAYOUT

Traditional object file formats consist of a list of vertices
followed by a list of polygonal or polyhedral elements that
are defined by indexing into the vertex list. Dereferencing
such a mesh, i.e., accessing vertices via their indices,
requires the whole vertex list to be in memory since
elements are generally not assumed to reference vertices in
any particular order; an element can arbitrarily reference
any vertex in the list. Furthermore, streaming such a mesh
implies buffering all vertices before the first element is
encountered in the stream. A logical progression for large
meshes is to store them in a streaming mesh representation
that interleaves the vertices and elements and stores them in
a “compatible” order. This representation allows a vertex to
be introduced (added to an in-core active set) when needed
and finalized (removed from the active set) when no longer
used.

Isenburg and Lindstrom [20] provide a streaming mesh
format for triangle meshes that extends the popular OBJ file
format. We use their format with straightforward additions
to handle tetrahedral meshes. This includes extending the
vertices to four values hx; y; z; fi that represent the position
in 3D space and a scalar value. In addition, we provide a
new element type for a tetrahedral cell that indexes four
vertices. This format allows us to finalize a vertex when it is
no longer in use by using a negative index into the vertex
list, which is backward compatible with the OBJ format.
Fig. 2 shows an ASCII example of the streaming tetrahedral
format.

An important consideration with streaming meshes is
the ability to analyze the efficiency of a mesh layout.
Isenburg and Lindstrom developed several techniques for
visualizing properties of the mesh to determine the
effectiveness of the layout. We use similar tools to measure
tetrahedral mesh quality. An important property is the front
width, or the maximum number of concurrently active

vertices. An active vertex is one that has been introduced,
but not yet finalized. The width of a streaming mesh gives a
lower bound on the amount of memory required for
dereferencing (and, thus, processing) the mesh. Another
important property of the mesh is the front span, which
measures the maximum index difference (plus one) of the
concurrently active vertices. A low span allows a faster
implementation because optimizations can be performed
that achieve the best performance when the span is similar
to the width. Low span makes for efficient indexing in the
file format, bounds the width, and, for simplification
purposes, ensures that vertices do not become stagnant in
the buffer, which would prevent all incident edges from
being collapsed. The efficiency of our layout depends on
quantifying these properties, thus we provide analysis on
different layout techniques so that we can choose the most
streamable layout for a given data set.

One simple mesh layout is to sort the vertices on a spatial
direction, in particular one that crosses the most tetrahedra.
Wu and Kobbelt [18] use this technique for triangle mesh
simplification. This can be accomplished for large meshes
by performing an out-of-core sort on the vertices [17] and
writing them into a new file. An additional file is created to
contain a mapping of the old ordering to the new one. Next,
the tetrahedral cells are written to a new file and reindexed
according to the mapping file. A sort is then performed on
the file containing the tetrahedral cells based on the largest
index of each cell. Finally, the vertex file and the cell file are
read simultaneously and interleaved into a new file by
writing each cell immediately after the vertex correspond-
ing to the cell’s largest index has been written. Spatial
layouts work especially well when considering meshes that
have a dominant principal direction.

Other techniques may be desirable if the mesh does not
have a dominant principal direction, such as a sphere. An
approach to handle this type of data is to use a bricking
method similar to the one proposed by Cox and Ellsworth
[21] in which the vertices are ordered into a fixed number of
small cubes for better sequential access. A similar approach
is to arrange the vertices using a Lebesgue space-filling
curve (i.e., z-order), which provides better sequential access
in the average case. This arrangement can be generated by
creating an out-of-core octree [22] of the vertices and
traversing them in-order. The interleaved mesh is then
written to a file in the same manner described above for
spatial sorting. The results of the layout produced by
bricking and z-order traversal are similar. When streamed
they provide a more contiguous portion of the mesh on
average, but the front width and span are typically much
larger than sorting spatially.

Another approach used for laying out the mesh on disk
is spectral sequencing. This heuristic finds the first nontrivial
eigenvector (the Fiedler vector) of the mesh’s Laplacian
matrix and was shown by Isenburg and Lindstrom [20] to
be very effective at producing low-width layouts. They
provide an out-of-core algorithm for generating this
ordering for streaming triangle meshes, which we have
extended to handle tetrahedra. This method works parti-
cularly well for curvy triangle meshes, but tetrahedral
meshes are generally less curvy and more compact. Still, in
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Fig. 2. Layout diagrams with cell indices on the horizontal and vertex
indices on the vertical axis. A vertex is active from the time it is
introduced until it is finalized, as indicated by the horizontal lines. (a) A
standard format for tetrahedral meshes based on the OBJ format. (b) A
streaming format that interleaves vertices with cells. Vertex finalization is
provided with a negative index (i.e., relative to the most recent vertex).



most cases, this ordering results in the lowest width, which
is ideal for minimizing memory consumption.

A final approach is to create a topological layout, which
starts at a vertex on the boundary and grows out to
neighboring vertices. To grow in a contiguous manner, we
use a breadth-first traversal with optimizations to improve
coherence [20]. Instead of a traditional FIFO priority queue,
we assign priority using three keys. First, the oldest vertex
on the queue is used in the same way that it would be in
standard breadth-first algorithms. However, if multiple
vertices were added to the queue at the same time, a second
and third key are used to achieve a more coherent order.
The second key is Boolean and gives preference to a vertex
if it is the final one in a cell that has not been processed.
Finally, the third key is to use the vertex that was most
recently put on the queue, which is more likely to be
adjacent to the last vertex. These sort keys guarantee a
layout that is compact [20] such that runs of vertices are
referenced by the next cell, and runs of cells reference the
previous vertex (e.g., as in Fig. 2b). In practice, this traversal
can be accomplished out-of-core by breaking the mesh into
pieces. Using this approach, we were able to minimize the
front span of the data sets in all of our experimental cases.
This is ideal because having a span and width that are
similar allows us to exploit optimization techniques
described in the simplification algorithm. Recently, Yoon
et al. [23] propose a layout based on local mesh optimiza-
tions which reduce cache misses. This approach applied to
tetrahedra would also give a compact representation as
with our breadth-first layout and could be used to achieve
similar results.

Table 1 shows the front width and span for four different
data sets produced by the layout techniques described
above. Spectral sequencing proves to be the superior choice
when low width and thus memory efficiency is required.
Breadth-first layouts are not as memory-efficient, but as we
will see can be processed fast. Note that, unlike [19], we do
not require a face-connected order and we do not require
that each vertex be finalized before it can be inserted into
the in-core mesh. This allows us to avoid local reordering of
the tetrahedra or the vertices.

3 TETRAHEDRAL SIMPLIFICATION

3.1 Quadric-Based Simplification

To achieve high-quality approximations, we use the quadric
error metric proposed by Garland and Zhou [14]. This metric
measures the squared (geometric and field) distances from
points to hyperplanes spanned by tetrahedra. The volume
boundaries are preserved using a similar metric on the
boundary faces and by weighting boundary and interior

errors appropriately. The generalized quadric error allows
the flexibility of representing field data by extending the
codimension of the manifold. Given a scalar function f : D �
IR3 ! IR defined over a domain D represented by a
tetrahedral mesh, we can represent the vertices at each
point p as hxp; yp; zp; fpi, which can be considered a point on a
3D manifold embedded in IR4. Thus, by extending the
quadric to handle field data, the algorithm intrinsically
optimizes the field approximation along with the geometric
position.

The quadric error of collapsing an edge to a single point is
expressed as the sum of squared distances to all accumulated
incident hyperplanes and can, in n dimensions, be encoded
efficiently as a symmetricn� nmatrix A, ann-vector b, and a
scalar c. It is sufficient to component-wise add these terms to
combine the quadric error of two collapsed vertices. Finding
the point x that minimizes this measure amounts to solving a
linear system of equations Ax ¼ b. Once x is computed, we
test whether collapsing to this point causes any tetrahedra to
flip [10], i.e., changes the sign of their volume, in which case
we disallow the edge collapse. Because A is not necessarily
invertible, it is important to choose a linear solver that is
numerically stable. Since quadric metrics are covered in great
detail elsewhere (see, e.g., [12], [114]), we here focus only on
the numerical issues of robustly minimizing quadric errors
(see Section 3.4).

3.2 Streaming Simplification

Combining streaming meshes with quadric-based simplifi-
cation, we introduce a technique for simplifying large
tetrahedral meshes out-of-core. We base our streaming
algorithm on [19] and [20], but make several general
improvements and provide a list of optimizations that
compared to a less carefully engineered implementation
results in dramatic speed improvements.

First, unless already provided with streaming input, we
convert standard indexed meshes and optionally reorder
them for improved streamability. Then, portions of the
streaming mesh are loaded incrementally into a fixed-size
main memory buffer and are simplified using the quadric-
based method. Once the in-core portion of the mesh reaches
the user-prescribed resolution, simplified elements are
output, e.g., to disk or to a downstream processing module.
Thus, input and output happen virtually simultaneously as
the mesh streams through the memory buffer (see Fig. 3).

To ensure that the final approximation is the desired
size, two control parameters have been added: target
reduction and boundary weight. Target reduction is the ratio
between the number of tetrahedra in the output mesh and
the number of tetrahedra in the original mesh. Alterna-
tively, this parameter can be expressed as a target
tetrahedral count of the resulting mesh. The boundary
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TABLE 1
Analysis of Mesh Layout



weight prevents the shape of the mesh from changing
throughout the simplification. We use a fixed value of
100 times the maximum field value in the data for the
weight in our experiments. Similarly to [14], the scalar field
is always normalized to the geometry range before actual
simplification begins.

Because we only keep a small set of tetrahedra in
memory, we do not know the entire mesh connectivity.
Thus, we keep the boundary between the set of tetrahedra
that are currently in memory and all remaining elements
—tetrahedra that have not yet been read or that have been
output—fixed to ensure that the simplified mesh is crack-
free. We call this boundary the stream boundary, which
consists entirely of faces from the interior of the mesh. We
can identify the stream boundary faces as they are read in
by utilizing the finalization information stored in the
streaming mesh. A face of the current in-core mesh is part
of the stream boundary if none of its three vertices are
finalized. We disallow collapsing any edge that has one or
both vertices on the stream boundary.

Due to the stream boundary constraint, if we read in one
portion of the mesh, simplify it, and write it out to disk in
one phase, our output mesh will have unsimplified areas
along the stream boundaries. This results in an approxima-
tion that is oversimplified in areas and undersimplified in
others. To avoid this problem, we follow the algorithm
proposed by Wu and Kobbelt [18]. Their algorithm consists
of a main loop in which READ, DECIMATE, and WRITE
operations are performed in each iteration. The READ
operation introduces new elements until it fills the buffer.
Next, DECIMATE simplifies the elements in the buffer until
either the target ratio is reached or the buffer size is halved.
Finally, in their method the WRITE operation outputs the
elements with the largest error to file.

As in [20], we improve upon [18], [19] by ensuring, to the
extent possible, that the relative order among input
elements is preserved in the output stream, with the caveat
that tetrahedra whose vertices have not yet been finalized
(i.e., are on the input stream boundary) must be delayed.
Therefore, the output typically retains the coherence of the
input. An error-driven output criterion, on the other hand,
can considerably fragment the buffer and split off small
“islands” that remain in the buffer for a long time without
being eligible for simplification and, thus, unnecessarily

clog the stream buffer. Furthermore, such an output stream
generally has poor stream qualities, which affects down-
stream processing. The front width (i.e., number of active
vertices), for example, is particularly important for tetra-
hedral meshes for which each active vertex affects on
average four times as many elements as in a triangle mesh
and, therefore, more adversely affects memory require-
ments and processing delay. Furthermore, we relax the
requirement that the stream of tetrahedra (triangles)
advance in a face (edge) adjacent manner [19], as this is of
no particular value to us, and we allow any coherent
ordering of mesh elements. Finally, using the more
streamable layouts and simpler streaming mesh formats
and API from [20], we gain considerably in performance
and memory usage over [19].

3.3 Implementation Details

Since our method processes different mesh portions of
bounded size sequentially, a statically allocated data
structure is more efficient than dynamic allocations, which
collectively increase the memory footprint. The size for this
buffer should be OðwidthÞ depending on the width of the
input mesh. However, in practice, we are able to simplify
even a 14 million tetrahedra data set using only 20MB of
RAM (see Section 4).

In our implementation, we extended Rossignac’s corner
table [24] for triangle meshes to tetrahedral meshes. The
original corner table requires two fixed-size arrays V and O

indexed by corners (vertex-cell associations) c, where V ½c�
references the vertex of c and O½c� references the “opposite”
corner of c.

In the case of tetrahedral simplification, the most
common query is to find all tetrahedra around a vertex.
Therefore, we replace the O array with a link table L of
equal size, which joins together all corners of a given vertex
in a circular linked list. We additionally store with each
vertex an index to one of its corners.

We store the mesh internally as three fixed-size arrays of
vertices, tetrahedra, and corners (i.e., the links L). Each
vertex contains a pointer to one corner and the quadric error
information ðA;p; "Þ using a parameterization that expli-
citly represents the vertex geometry and scalar data in p

(see Section 3.4 and Fig. 4). In Fig. 4, only p and vidx are
stored out-of-core, while the rest are computed on-the-fly.
This data structure employs 69 bytes per vertex and 37 bytes
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Fig. 3. Example of a buffer moving across the surface of a tetrahedral

mesh sorted from left to right. As new tetrahedra are introduced, the

tetrahedra that have been in-core the longest are removed from

memory.

Fig. 4. Data structures used for our quadric-based simplification.



per tetrahedra. The quadrics for the tetrahedra are
calculated when we read in a new set of tetrahedra and
are then distributed to the vertices. For each finalized
vertex, we compute boundary quadrics for all incident
boundary faces (if any) that have no other finalized vertices
and distribute these quadrics to the boundary vertices.

Garland and Zhou [14] use a greedy edge collapse
method and maintain a priority queue for the edges ordered
by quadric error. Forsaking greediness, we obtain compar-
able mesh quality by using a multiple choice randomized
approach [18], [25] with eight candidates per collapse. There
are several advantages of using randomized selection. One
is that we no longer need a priority queue or explicit
representation of edges. Instead, an edge can be found by
randomly picking a tetrahedron and then randomly
selecting two of its vertices. Another advantage is that the
randomized technique can be further accelerated by
exploiting information readily available through our
quadric representation (see Section 3.4). Table 2 illustrates
the performance of the randomized approach over the
priority-queue-based approach. Both algorithms simplified
the models to 10 percent of their original resolutions. The
randomized results were collected as an average of three
runs on the same input with different random seeds.
Intuition would suggest that the results generated by the
priority-queue approach would have smaller error because
it always picks the edge with the smallest error to collapse
at each step. However, this is not optimal in many cases. A
series of minimal edge collapses can lead to a locked state
where the edges with the smallest error cannot be collapsed
without flipping tetrahedra. In practice, the problem is
more likely to occur in the homogeneous regions of a data
set, which contains edges with zero error. The priority-
queue approach will greedily simplify this region as much
as possible first, leaving it in a locked state. As a result,
many neighbor regions (containing edges with small error)
may not get simplified because it would violate the flipping
constraint. On the other hand, the randomized approach
tends to spread the simplification over the whole model,
resulting in significantly less locked state. This explains
why the maximum error of the Torso data set using the
priority queue approach was very high compared to the
randomized approach. In general, the randomized ap-
proach produces comparable quality to a priority queue,
while demonstrating superior performance. Error measure-
ment are explained in greater detail in Section 4.

Before we output a tetrahedron, we must ensure that its
four vertices are output first. Once a vertex is output, we

mark it as not being collapsible in future iterations. To
enhance the performance, we use a lazy deletion scheme,
where all vertices and tetrahedra to be deleted are initially
marked. At the end of each WRITE phase, we make a linear
pass through all vertices and tetrahedra to remove marked
elements and compact the arrays. Since we do not allocate
additional memory during simplification, keeping deleted
vertices and tetrahedra does not increase the memory
footprint.

Storing large data sets on disk in ASCII format can
adversely affect performance because converting ASCII
numbers to an internal binary representation can be
surprisingly slow. We have extended the ASCII stream
format in Fig. 2 to a binary representation. Because our
program spends more than 30 percent of the time on disk
I/O, this optimization results in a nonnegligible speedup.
For example, on the SF1 data set it improves overall
performance by 17 percent.

Since we only maintain a small portion of the mesh in-core,
we require a way of mapping global vertex indices to in-core
buffer indices. Usually a hash map is used, but, with our low-
span breadth-first mesh layout, this hash map can be replaced
by a fixed-size array indexed using modular arithmetic. We
move occasional high-span vertices that cause “collisions” in
this circular array to an auxiliary hash [20].

With all of the optimizations described above, our
simplifier can run at high speed without any dynamic
memory allocation at runtime. The performance and
memory summary can be found in Table 3. The results
are for simplifying the Fighter data set (1.4 M tetrahedra)
completely in-core on a P4 2.2GHz with 1GB of RAM.
Further efficiency improvements relating to quadric error
metrics will be discussed in the following section.

3.4 Numerical Issues

Great care has to be taken when working with quadric metrics
to ensure numerical stability while retaining efficiency. To
minimize quadric errors, a positive semidefinite system of
linear equations must be solved, for which numerically
accurate but heavy-duty techniques such as singular value
decomposition (SVD) [15], [26] and QR factorization [27] have
been proposed. However, even constructing, representing,
and evaluating quadric errors require that special care be
taken. Here, we outline an efficient representation of quadric
error functions that leads to numerically stable operations,
improved speed, and less storage.

The standard representation [14] of quadric errors is
parameterized by ðA;b; cÞ and is evaluated as

QðxÞ ¼ xTAx� 2bTxþ c: ð1Þ
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Priority-Queue (P) versus Randomized (R) Approach

TABLE 3
Implementation Improvements



Typically, the three terms in this equation are “large,” but
sum to a “small” value, resulting in a loss of precision. One
can show that the roundoff error is proportional to
kAk kxk2. Furthermore, in addition to this quadric informa-
tion, it is common to store the vertex position (and field
value) p that minimizes Q separately. Lindstrom [28]
suggested an alternative representation that removes this
redundancy:

QðxÞ ¼ ðx� pÞTAðx� pÞ þ "; ð2Þ

where A is the same as in the standard representation and

Ap ¼ b;

pTApþ " ¼ c:

This parameterization ðA;p; "Þ provides direct access to
the minimum quadric error " and the minimizer p. This not
only saves memory, but also results in a more stable
evaluation of Q as the roundoff error is now proportional to
k A kk x� p k2 and we are generally interested in evaluat-
ing QðxÞ near its minimum p as opposed to near the origin.
Another significant benefit of this representation is that it
provides a lower bound "i þ "j on Qi þQj when collapsing
two vertices vi and vj. Using randomized edge collapse [18],
we can thus often avoid minimizing Qi þQj if the lower
bound already exceeds the smallest quadric error found so
far. In this paper, this representation is used explicitly to
speed up the algorithm, reduce in-core storage, and
improve numerical robustness rather than as a means of
compressing quadric information for out-of-core storage.

Our quadric representation also lends itself to an
efficient and numerically stable iterative linear solver. To
handle ill-conditioned matrices A, we have adapted the
well-known conjugate gradient (CG) method [29] to work
on semidefinite matrices (see Fig. 5). As in SVD, we provide
a tolerance �max on the condition number �ðAÞ and
preempt the iterative solver when all remaining conjugate
directions are deemed “insignificant” for reducing Q. The
effect of this is similar to zeroing small singular values in
SVD. Using our quadric representation, we conveniently
initialize the CG solver with the guess x ¼ ðpi þ pjÞ=2.
Whereas CG methods are typically used to quickly
approximate solutions to very large systems using only a

few iterations, our method can be considered “direct” in the
sense that we solve for each of the n (i.e., four) components,
although in the Krylov basis rather than in the Euclidean
basis as done by the Cholesky method. We never require
more than n iterations and only in the rank-deficient case do
we perform fewer than n iterations.

A final word of caution: The computation of generalized
quadrics presented in [14] computes A ¼ I�N, whose null
space nullðAÞ ¼ rangeðNÞ is spanned by the tetrahedron,
via subtraction, which, due to roundoff error, can leave A
indefinite, i.e., with one or more negative eigenvalues. This
causes Q to have a “saddle” shape with no defined
minimum and can cause numerical instability. Instead, we
compute a 4D “volume normal” using a generalization of
the 3D cross product to 4D.

n ¼ det

e1 e2 e3 e4

�1x �1y �1z �1s
�2x �2y �2z �2s
�3x �3y �3z �3s

0
BB@

1
CCA;

where ei is the i-column of the 4� 4 identity matrix and v1,
v2, and v3 are three vectors from one of the tetrahedron’s
vertices to the others. The outer product of this normal with
itself gives a positive semidefinite A for a tetrahedron.

Because of our attention to numerical stability, with
�max ¼ 104 we are able to use single precision floating-point
throughout our simplifier, even for the largest meshes.
Since the 4D quadric information requires 15 scalars per
vertex, this saves considerable memory and improves the
speed.

4 RESULTS

4.1 Stability and Error Analysis

We have described a CG method for solving the linear
equations that arise when minimizing the quadric error.
The choice of solver is important because degenerate
tetrahedra and regions of near-constant field value can
cause singularity. For testing purposes, we constructed a
data set by subdividing a tetrahedron into hundreds of
smaller tetrahedra by linear interpolating the vertices and
field data. Obviously, these small tetrahedra all lie on the
hyperplane spanned by the original tetrahedron, thus they
are solutions to the linear equations. We then picked a
solution as a target for each collapsed edge. We experi-
mented with several linear solvers, as shown in Table 4. The
results are for simplifying the Fighter data set (1.4 M
tetrahedra) completely in-core. We experimented with
Cholesky factorization, the least square QR factorization
[29], and CG.

Cholesky with pivoting provides stable solutions for
solving Ax ¼ b if A is positive definite. However, in order
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Fig. 5. Conjugate gradient solver for positive semidefinite systems

Ax ¼ b. On input x is an estimate of the solution, n ¼ 4 is the number of

linear equations, and �max is a tolerance on the condition number. trðAÞ
is the trace of A.

TABLE 4
Performance of Linear Solvers



to solve this linear system when A has rank-deficiency (the
semidefinite case), we must solve the underconstrained

least square problem. Unfortunately, solving this using

normal equations requires us to be able to perform
Cholesky factorizations on matrices with arbitrary dimen-

sions less than 4� 4. This defeats the purpose of optimizing

our simplification for working only with 4� 4 matrices.

Thus, our implementation uses SVD to handle rank-
deficiency matrices detected by the Cholesky method. As

a result, this method yields the fastest solution when A is

positive-definite, but it becomes slower compared to CG
when handling rank-deficient matrices.

Like Cholesky, QR does not handle the problem of rank-

deficiency. Nevertheless, the implementation for solving the

least square problem using QR factorization is much

simpler than using Cholesky with normal equations since
it does not explicitly require a general representation of

matrices with arbitrary dimensions. We use the least square

version of QR as suggested in [29].
Using all of our solvers, we were able to simplify our

subdivided tetrahedron to its original shape with small

error in both field and geometry. To compare the correct-

ness of their solutions, we recorded norm-2 residuals of
computed solutions to 15,000 linear systems using all three

methods while simplifying the fighter data set. Denote by

eqr, ech, and ecg the sum of all norm-2 residuals of computed

solutions x̂ (i.e., k Ab� x̂ k2) using QR, Cholesky, and CG,
respectively. Given eavg ¼ 1

3 ðeqr þ ech þ ecgÞ, relative errors

of solutions computed by QR, Cholesky, and CG can be

computed as refqr;ch;cgg ¼ efqr;ch;cgg=eavg. Our experiment
found reqr to have the smallest error with 96 percent,

followed by rech with 99 percent. Our CG approach obtained

a comparable result with rech of 105 percent.
Overall, QR gives the most optimal solution in terms of

error, but it is approximately twice as slow as the others. On
the other hand, while Cholesky is a good choice for both

efficiency and accuracy, its implementation is quite com-

plicated. Therefore, we chose CG over the others for its
simplicity and performance while still maintaining com-

paratively optimal solutions.

To estimate the error in the simplified mesh we use two
different methods. The first method is to measure the error
on the surface boundary of the mesh using the tool Metro
[30]. The second method is to measure the error in the field
data using a similar approach to Cignoni et al. [11]. We
sample the domain of the simplified data set at points
inside the domain of the original one. These points are not
only vertices of the input, but also interpolated ones inside
each tetrahedron. The error is then computed by the
differences between their scalar values. Our implementa-
tion differs because it ignores points outside the domain of
the simplified mesh since these points become part of the
surface boundary error. Table 5 shows these measured error
estimations. Field error percentages are in relation to the
range of the field and surface error percentages are in
relation to the bounding box diagonal. Fig. 6 shows an
example of the quality of the resulting field and Fig. 7
shows an example of the quality of the resulting surface.

4.2 Performance

All timing results were generated on a 3.2 GHz Pentium 4
machine with 2.0 GB RAM. For the streaming experiments,
we limit the operating system to only 64 MB RAM by using
the Linux bootloader. Table 5 shows the results of
simplifying a collection of data sets to 10 percent of their
original size using our streaming algorithm and the same
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TABLE 5
In-Core and Streaming Simplification Results

Fig. 6. Volume Rendered images of the Fighter data set show the

preservation of scalar values. The original data set is shown on the left

(1,403,504 tetrahedra) and the simplified version is shown on the right

(140,348 tetrahedra).



implementation optimized for in-core execution. Laying out
the meshes in a stream efficient manner is a one-time
operation and can be performed in-core for all the data sets
we tested. Even the largest data set (14 million tetrahedra)
required only about 40 minutes to lay out using our
Breadth-First approach.

We were able to achieve streaming simplification with
only a slight increase in time and error compared to an in-
core implementation. The streaming technique has the
advantage of a smaller memory footprint. With our
algorithm, we were able to simplify 14 million tetrahedra
while only using 20 MB RAM. Due to the large size of the
SF1 data set, certain parts of the stream were not able to be
simplified accurately, resulting in a larger error. By
increasing the memory slightly, the quality of the simpli-
fication is greatly improved and approaches the in-core
quality. This behavior is not due to the randomization
algorithm since the large buffer size always produces better
quality outputs even with random seeds. Instead, the
quality is improved because each set of candidates has a
wider range to select their targets. Consider a set of
expensive edges that are larger than the buffer size; any
edge collapse will result in a large error no matter how
random the target is. However, if we increase the buffer size
such that the buffer is larger than the expensive edges,
randomized edge collapses will take those edges that are
not so expensive into account, thus improving the quality of
the output.

4.3 Large-Scale Experiment

Although extremely large meshes exist, it is difficult to
obtain unclassified access to them. To stress our algorithm
on current PC hardware and to demonstrate the scalability
of the technique, we performed streaming simplification on
a huge fluid dynamics data set on a Xeon 3.0GHz machine.
The data set was created from sampling slices of a 2; 0483

simulation and consists of over one billion tetrahedra that
use 18 GB of disk space when stored in the binary format.
The tetrahedra were laid out in the order in which they
were sliced, which is comparable to sorting by axis. An in-
core approach to simplifying this data set would require a
machine with 64 GB RAM. We were able to simplify the
data using only 829 MB RAM to 12 million tetrahedra
(1.2 percent) in 10 hours on our test machine. Because error
estimations were not possible with the entire data set in-
core, we computed the field error on subregions of the mesh

separately to verify the results. In the regions that were
measured, there was 10.85 percent maximum and 1.57 per-
cent RMS field error. Fig. 8 shows an isosurface extracted
from the original and simplified fluid dynamics data set.

5 DISCUSSION

The use of streaming meshes for simplification reduces the
memory footprint of a large mesh considerably. We
improved on the algorithm of Wu and Kobbelt [18] by
preserving the stream order of the mesh between input and
output. A direct comparison with their algorithm shows
that our method consistently achieves a lower width, e.g.,
9 percent versus 59 percent on the Fighter data set, and
span, e.g., 45 percent versus 98 percent, without reducing
the approximation quality. In addition, with the optimiza-
tions that we employ to our data structures, we have been
able to simplify up to 14 million tetrahedra while using only
20 MB RAM. Only the smallest data sets (Torso and Fighter)
could be simplified using our implementation of Wu and
Kobbelt’s algorithm.

Apart from providing a streaming algorithm that
operates on meshes of arbitrary size, we also described
speed and stability optimizations that improve the perfor-
mance of tetrahedral simplification. Our quadric represen-
tation improves linear solver performance. In addition, our
adapted conjugate gradient method and the use of “volume
normals” for tetrahedra reduce the numerical errors and
allow the use of single precision floating-point numbers. By
using a binary format, we improve on storage and speed up
I/O. Finally, through the use of a breadth-first mesh layout,
we have improved the width and the span, which enables
the use of a fixed-size circular array instead of a hash table.
Collisions can occur, but it only happens when the buffer
size is smaller than the span size. Even in the case of
collisions, only a simple primary hash function, e.g.,
modulo, is needed. Thus, it can also avoid linked-lists with
dynamic memory allocation by using an auxiliary hash
table. With these changes, we have improved the speed of
our simplification method by an order of magnitude over
our initial implementation of Garland and Zhou’s quadric-
based simplification [14].
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Fig. 7. Views of the mesh quality on the surface of the Rbl data set. The

original data set is shown on the left (3,886,728 tetrahedra) and the

simplified version is shown on the right (388,637 tetrahedra).

Fig. 8. Isosurfaces of the fluid dynamics data set. A very small portion of
the isosurfaces is shown for the original data set of over a billion
tetrahedra (left) and the simplified data set of only 12 million tetrahedra
(right). The isosurfaces are shown up close using flat shading to
enhance the details of the resulting surface. Our algorithm allows
extensive simplification (almost 1 percent) with negligible numerical
error (1.57 percent RMS) for the fluid dynamics data set, which is too
large to simplify with conventional approaches.



Due to the efficiency of our algorithm, we easily handle the
largest data sets we obtained. In our experimental results, our
streaming algorithm simplifies about 60K tetrahedra per
second and achieves high quality results. Given a machine
with 2.0 GB of RAM, the in-core implementation of our
algorithm could handle approximately 35 million tetrahedra.
Using our streaming method, we were able to simplify a data
set consisting of almost one billion tetrahedra to one percent
using only about 800 MB of RAM with very small error. The
maximum bound of the streaming algorithm is only con-
strained by the front width of the mesh, which we have shown
to be very small when using a good mesh layout.

6 CONCLUSIONS AND FUTURE WORK

We have presented a streaming technique for simplifying
tetrahedral meshes of arbitrary size. We describe several
methods for laying out a tetrahedral mesh on disk in a
coherent, I/O-efficient format. We also show an analysis of
these layouts and the effects they have on the final
simplified mesh. We provide a technique for simplifying
small portions of the mesh in memory while obtaining a
smooth simplification over the entire mesh. The simplifica-
tion occurs in one pass, preserves mesh topology and scalar
information, requires little memory, and runs quickly. We
also provide optimizations to traditional simplification data
structures that improve speed and efficiency. We present a
linear solver that improves stability and speed of quadric-
based simplification. Finally, we provide stability and error
analysis of our algorithm with results for specific examples
that show the time and memory required for processing.

Because the generalized quadric error works on a variety
of data types, an interesting extension would be to attempt
to handle meshes consisting of other types, e.g., hexahedra.
Finally, it would be interesting to take advantage of the
coherent streaming tetrahedral format to perform fast, out-
of-core isosurface extraction.
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