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Abstract

We present a practical system to visualize large datasets interactively on commodity

PCs. Interactive visualization has applications in many areas, including computer-

aided design, engineering, entertainment, and training. Traditionally, visualization of

large datasets has required expensive high-end graphics workstations. Recently, with

the exponential trend of higher performance and lower cost of PC graphics cards,

inexpensive PCs are becoming an attractive alternative to high-end machines. But a

barrier in exploiting this potential is the small memory size of typical PCs.

Our system uses new out-of-core techniques to visualize datasets much larger than

main memory. In a preprocessing phase, we build a hierarchical decomposition of the

dataset using an octree, precompute coefficients used for visibility determination,

and create levels of detail. At runtime, we use multiple threads to overlap visibility

computation, cache management, and rasterization. The structure of the octree and

the visibility coefficients are kept in main memory. The contents of the octree nodes

are loaded on demand from disk into a cache. To find the visible set, we use a fast

approximate algorithm followed by a hardware-assisted conservative algorithm. To

hide I/O latency, a separate thread prefetches nodes that are likely to become visible.

We also describe a sort-first parallel extension of the system that uses a cluster of

PCs to drive a high-resolution, multi-tile screen. A client process interacts with the

user, and a set of server processes render the screen tiles. To avoid sending the entire

dataset from the client to the severs every frame, the servers access the dataset from

a shared file system or from a local copy on disk. Putting the I/O load on the server

side makes the network bandwidth requirements low and the architecture scalable.

Using a cluster of 8 PCs, the system can generate high resolution images (10

megapixels) of large datasets (12 gigabytes) at interactive frame rates (5–10 frames

per second). Thus, our system is a cost-effective alternative to high-end machines,

and can help bring visualization of large datasets to a broader audience.
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Silva. For the last two and a half years, I have worked closely with him at AT&T and

OGI. He devoted a huge amount of time to me, and gave me opportunities to work

in industry and collaborate with other researchers.

A very special thanks goes to James Klosowski, who was my co-author in many papers

and my mentor at IBM Research.

Another very special thanks goes to my dearest friend, Jeff Korn, with whom I shared

the best and worst times during a very turbulent graduate program.

I thank Kai Li for giving me a vote of confidence when I most needed, and for being

the most inspiring teacher I have ever had.

I thank Melissa Lawson for her help with academic, legal, and personal matters.

I thank Daniel Aliaga for his encouragement at the early stages of this work.

I thank my other collaborators: António Baptista, Louis Bavoil, Adam Finkelstein,

Shachar Fleishman, Thomas Funkhouser, Robert Jensen, Walter Jiménez, Michael
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Mata, Wagner Meira Jr., Adriana Oliveira, Oscar Tibúrcio, and Marcelo Walter.

I also thank the friends I made in the US: Ian Buck, Jennifer Colwell, Regis Colwell,

Alessandra Dickovick, Tyler Dickovick, Pavel Diko, Ben Dressner, Georg Essl, Jon

Forsyth, Juliana Freire, Ben Gum, Greg Humphreys, Robert Kalnins, Jeff Korn,

Aaron Lee, Patrick Min, Robert Osada, Lena Petrović, Emil Constantin Praun,
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Chapter 1

Introduction

This dissertation is about a set of new techniques for interactive visualization of large

datasets on inexpensive PCs. Is this chapter we state this problem more precisely,

defining what we mean by interactive, large, and inexpensive. We also explain why

we care about large datasets, why we want to use inexpensive PCs to visualize them,

and what is challenging about solving this problem. We then present a high-level view

of our approach to solve this problem, and outline the remainder of the dissertation.

1.1 Goal

The goal behind this dissertation is making interactive visualization of large datasets

viable on inexpensive commodity PCs. Throughout this dissertation we use the term

interactive visualization when we mean visualization with a target rendering speed of

10 or more frames per second (fps). We reserve the term real-time visualization for

when we mean visualization with a target of 30 or more fps. We use the term large

datasets to refer to a dataset that is larger than the main memory available on the

PC being used. And we use the term inexpensive PC to refer to a PC that costs less

than US$2,000. We assume that this price includes a graphics card.
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1.2 Motivations

Why do we care about visualization of large datasets? And why do we want to use

PCs for that? We care about visualization of large datasets because it has applications

in many areas, including:

• computer-aided design and engineering

• visualization of medical data

• modeling and simulation of weapons

• modeling and simulation of weather and ecosystems

• exploration of oil and gas

• virtual training

We want to use commodity PCs to visualize large datasets mainly because PCs

have a better price/performance ratio than the alternatives. Traditionally, visual-

ization of large datasets has required expensive high-end graphics workstations. Re-

cently, with the exponential trend of higher performance and lower cost of PC graphics

cards, inexpensive PCs are becoming an attractive alternative to high-end machines.

1.3 Challenges

Performing visualization of large datasets on commodity PCs is difficult. The main

challenge is the gap that exists between the size of the main memory of a commodity

PC and the size of “interesting” datasets. Of course, what is a commodity PC is a

moving target, and what is interesting is subjective. To make this discussion more

concrete, consider the year 2003. A typical PC has about 512 MB of main memory,

while a machine with 16 GB of main memory would be considered high-end. Still, a

2



numerical weather simulation would have no trouble producing hundreds of gigabytes

of data. The ubiquitous 32-bit PC cannot even address that much memory.

Not only does the gap between dataset and main memory sizes exist, but also it is

widening. Although memory sizes are growing exponentially, roughly doubling every

18 months, dataset sizes are growing faster. It is easier to produce or acquire more

data than to improve and lower the costs of main memory technology.

To bridge this gap, we need to develop out-of-core1 algorithms, also known as

external algorithms or secondary-memory algorithms. Out-of-core algorithms keep

the bulk of the data on disk, and keep in main memory (or in core) only the part of

the data that is being processed.

Adapting an existing in-core algorithm to work out-of-core is not trivial. Partial

solutions such as paging or virtual memory are not sufficient [32, 101]. Because disk

access latencies are five to six orders of magnitude greater than main memory access

latencies [151], an out-of-core program is likely to have its running time dominated by

disk operations, and may run many times more slowly than its in-core counterpart. To

avoid severe performance degradation, an out-of-core program should try to minimize

the number of disk operations and hide the disk latency by performing disk operations

concurrently with other operations. The performance of out-of-core programs can be

greatly improved by organizing the data in a way that increases locality of reference

and by prefetching data from disk into memory before it is needed [54].

Besides the relative small memory, another limitation of commodity PCs that

makes visualization of large datasets difficult is the availability of only one graphics

card per PC. High-end graphics workstations such as the Silicon Graphics Onyx4

UltimateVision [128] can have up to 32 graphics pipes. Having only a single graphics

1The word “core” is an old-fashioned term for main memory. It dates back to the days (1961–
1971) of ferrite core memory, an early form of non-volatile storage built by hand from tiny rings of
magnetizable material threaded onto very fine wire to form large (e.g., 13”x13”) rectangular arrays.
Each core stored one bit of data. The related expression “core dump” refers to a copy of the contents
of the memory, produced when a process is terminated by certain kinds of internal error [64].
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pipe limits our choice of algorithms. In a multi-pipe system, multiple tasks that need

to access the graphics hardware could run in parallel. On a single-pipe system, these

operations would have to run sequentially.

Yet another limitation of commodity PCs is low display resolution. When inter-

acting with large datasets, it is natural to want to visualize these datasets at high

resolution. A high resolution image can give us insights that we would not gain by

looking at separate low resolutions images. For example, compare our ability to un-

derstand a map on a large 34”x44” sheet of paper versus a booklet with 16 regular

pages, 8.5”x11” each. Similarly, looking at a 4096×3072-pixel image of a dataset

at once is much more informative than scrolling through it with a 1024×768-pixel

window. Looking at a large image helps us to see the big picture.

1.4 Solutions

In this dissertation we present a system that allows us to use commodity PCs to

visualize datasets much larger than main memory at interactive frame rates and

at high resolution. The system uses a set of new out-of-core techniques that are

simple and yet effective at hiding the weaknesses of PCs and exploiting the strengths

of PC graphics cards. Considered in isolation, each of these techniques is pretty

straightforward. The combination of these techniques allows us to build a system

that works under our constraints and satisfies our goals (the whole is greater than

the sum of its parts).

The process of visualizing a dataset using our system consists of a pipeline of

steps that can be broken down into two major phases: preprocessing and rendering

(Figure 1.1). In the preprocessing phase, we first build a hierarchical spatial decom-

position of the dataset using an out-of-core octree. Then, we compute directional

visibility coefficients for each octree node. These coefficients are used at runtime for

4



determine
visible nodes

load nodes
into cache

rasterize
nodes

rendering
phase

preprocessing
phase

build
octree

create
levels

of detail

compute

coefficients
visibility

Figure 1.1: The main steps in each phase of our visualization system’s pipeline.

fast and accurate approximate visible set computation. Finally, we create several

levels of detail for each octree node.

In the rendering phase, our system uses multiple threads (typically running on a

single processor) to overlap visibility computation, cache management, and rasteriza-

tion. The system keeps in main memory a description of the structure of the octree

and the coverage coefficients. The contents of the octree nodes, which are the bulk of

the data, are kept on disk, and are brought into the geometry cache in main memory

when needed. The cache uses a least-recently-used replacement policy, which exploits

well the frame-to-frame coherence typical of interactive visualization sessions.

The computation of the visible set is done in two steps. First, a fast approximate

visibility algorithm determines an initial guess of the visible set. Then, a hardware-

assisted algorithm augments this set to make it a conservative visible set. To hide

the cost of disk operations, a look-ahead thread guesses the nodes that the user may

see next, and prefetches those nodes into the geometry cache.

All the steps in both the preprocessing and rendering phases are implemented

using out-of-core techniques so that the system can run on a PC with small memory.

These techniques assume that the dataset is static (i.e., the geometric information

does not change over time), and favor interactivity over image quality. The images

produced by our system have Goraud-shading quality, as supported by the graphics

card, which is acceptable for a previewer.
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Figure 1.2: The sort-first parallel extension of our visualization system.

In this dissertation we also describe a sort-first parallel extension of the system

(Figure 1.2). This extension allows us to use a cluster of PCs to drive a multi-tile

screen to generate high resolution images at interactive frame rates. When running

on a cluster, the system consists of a client process, possibly running on a remote

machine, and many interconnected server processes, each rendering a tile of the screen.

To avoid sending the entire dataset from the client to the severs at every frame,

which would create a bottleneck and prevent interactivity, the servers access the

dataset from a shared file system or from a local copy on disk. The client only

needs to send user interface commands to the severs, and the servers only need to

synchronize with each other at the end of each frame. Each rendering server is

responsible for determining the data it needs, and for pulling the data from disk into

its cache. Putting the I/O load on the server side lowers the network bandwidth

requirements, and makes the architecture scalable and practical.

Using this system we were able to use a small cluster (8 PCs) to generate high

resolution images (10 megapixels) of large datasets (12 gigabytes) at interactive frames

(5–10 frames per second). These results demonstrate that our system is a cost-

effective alternative to high-end machines, and can help bring visualization of large

datasets to a broader group of people.
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1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 reviews back-

ground material and previous works related to ours. Chapter 3 describes the out-of-

core algorithms used in the preprocessing phase to build an octree for a given dataset,

precompute visibility coefficients, and create levels of detail. Chapter 4 describes the

out-of-core, multi-threaded algorithms used in the rendering phase to compute vis-

ibility, manage the memory cache, and rasterize the dataset. Chapter 5 describes

the sort-first parallel extension of the rendering algorithms used to produce high-

resolution images of the dataset on a multi-tile screen driven by a cluster of PCs.

Finally, Chapter 6 presents conclusions and discusses directions for future work.
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Chapter 2

Related Work

In this chapter we review background material and previous works related to ours. We

start by discussing techniques related to management of large datasets, optimization

of the graphics pipeline, and parallel rendering. We then present a chart comparing

our system to previous related systems based on the set of techniques they use. We

finish by discussing the reasons why we chose the techniques we use.

2.1 Management of Large Datasets

The general approach to handle datasets larger than main memory is to break the

dataset into manageable pieces, and bring the appropriate level of detail of each piece

of the dataset into memory on demand. Breaking the dataset into pieces is known

as spatialization. Precomputing levels of detail is known as simplification. Managing

what pieces come in and out of memory involves caching and prefetching.

2.1.1 Spatialization

Spatialization is the process of creating a spatial subdivision for the geometric data

of a given dataset. There are many different kinds of spatial data structures: octree,
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k-d tree, BSP tree, hierarchy of boxes, hierarchy of spheres, and many others [119,

140]. Using these data structures, we can speed up searches and traversals by pruning

entire subtrees of the dataset, thus avoiding unnecessary computation.

Spatial data structures have been used successfully in many commercial and aca-

demic graphics systems. Octrees have been used in innumerable contexts, including

view-frustum culling [23], occlusion culling [56], ray tracing [71], and volume ren-

dering [76]. SGI’s Optimizer [126] uses a hierarchy of boxes to spatialize the scene

graph. Id Software’s Quake 3 game [134] uses a BSP tree. The QSplat system of

Rusinkiewicz and Levoy [113] uses a hierarchy of spheres.

Spatial data structures are particularly useful for visualization of datasets larger

than main memory. If we have a spatial partitioning of the dataset, we can render

the entire dataset, one part at time, as long as each part is small enough to fit in

main memory. But how do we create the spatial partitioning in the first place?

The database literature uses the term bulk loading to refer to the out-of-core

construction of spatial data structures. Agarwal et al. [2] and Arge et al. [8] present

bulk loading algorithms for many spatial data structures, including k-d tree, quad-

tree, and R-tree.

In Chapter 3 we present a fast and incremental out-of-core algorithm to build an

octree whose leaves contain the geometry of a given dataset. The algorithm imposes a

limit on the number of geometric primitives per leaf, and saves each leaf in a separate

file in a hierarchy of directories. The algorithm also creates a small separate file that

contains the overall structure of the octree. Our algorithm is similar to the algorithms

of Cignoni et al. [22] and Ueng et al. [141], but there are some differences which we

will discuss in Chapter 3.
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2.1.2 Simplification

Another technique to deal with large datasets is simplification, which consists of

precomputing approximate versions of the dataset known as levels of detail (LODs).

Levels of detail can be discrete, continuous, or view-dependent.

Systems that use discrete levels of detail (also known as static levels of detail)

precompute several simplified versions of each object or partition of the dataset, and

at runtime display the most appropriate version based on selection criteria such as

the distance to the viewer [23, 46, 49, 52, 112]. Static LODs may cause disturbing

artifacts when switching from one level to another, but they are easy to precompute

and impose very little overhead at runtime.

Systems that use continuous (or progressive) levels of detail precompute a contin-

uous-resolution representation of the dataset that allows smooth transition between

approximations [40, 44, 61, 83, 155]. Continuous LODs take longer to compute, and

have higher runtime overhead than static LODs, but they produce images with higher

fidelity for a given polygon budget.

Systems that use view-dependent levels of detail also use a continuous-resolution

representation of the dataset. In addition, these systems allow a single object to have

multiple levels of detail at the same time, and select higher resolutions for parts closer

to the viewer and lower resolutions for parts farther from the viewer [45, 62, 86].

Recall that one of the motivations to compute simplified versions of a large dataset

is to be able to display it on a machine with small memory. If we want to use the

same machine to compute the simplified versions, the simplification algorithm itself

needs to be out-of-core [81, 84].

In our system we use static levels of detail, precomputed using a vertex clustering

technique similar to the one of Rossignac and Borrel [16, 112, 122]. In Chapter 3 we

discuss this technique in more detail. For more information on LODs, we refer the

reader to the recent book by Luebke et al. [87]
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2.1.3 Geometry Caching and Prefetching

A critical part of any system for visualization of datasets larger than main memory

is, of course, the memory management subsystem. A simple and effective approach

is to keep in main memory the least-recently used (LRU) pieces of geometry [137].

This approach is particularly effective if the pieces of the dataset that are visible in

any given frame fit together in the cache, and there is locality of reference, i.e., the

changes in visibility from frame to frame are small.

Caching alone is typically not enough to deliver smooth frame rates. Even small

changes in visibility may cause the system to stall because of bursts of disk activity.

The resulting frame rates may be low and with high variance, which prevent a smooth

interaction with the dataset.

One technique to alleviate this problem is speculative prefetching, which tries to

bring into memory the pieces of geometry that will become visible “soon.” What is

considered soon may be difficult to define. We want to have the piece of the dataset

that we are interested in ready in memory when we need it, but we also want to avoid

polluting the cache with too many pieces that will end up not being used [108].

Prefetching is not a novel idea, and has been used in operating systems for

decades [54]. In computer graphics, Funkhouser et al. [50] were one of the first

to incorporate prefetching into a visualization system for large datasets. Their sys-

tem partitioned the dataset into cells, and precomputed the cells that could be visible

from within each cell. Whenever a user entered a cell, all other cells potentially visible

from that cell would be prefetched.

The system we present here also employs prefetching, but we do not precompute

cell-to-cell visibility. Instead, we estimate which cells may become visible for each

position of the user at runtime. Our approach takes less preprocessing time, and

produces a tighter estimate of the set of cells to be prefetched. We will discuss in

more detail the differences between these two approaches shortly.
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Most visualization systems try to insulate the high-level software layers of the

application from the low-level layers that perform database management. A prime

example of such an approach is the active data repository (ADR) of Kurc et al. [75].

The ADR framework manages the dataset stored in one or more disks, and provides

an application with modular services for memory management, data retrieval, and

scheduling of processes.

2.2 Graphics Pipeline Optimization

Over the years, graphics researchers have accumulated a large number of techniques

to optimize rendering. These techniques include:

• back-face culling

• view-frustum culling

• occlusion culling

• detail culling

• image-based rendering

• point rendering

• hardware-assisted rendering

• computation reordering

The next subsections discuss each of these techniques. The discussion is intentionally

brief. The goal is not to explain each technique in detail, but to provide the minimum

background necessary to understand the techniques we chose to use in our system.
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2.2.1 Back-Face Culling

Back-face culling means not rendering geometry that faces away from the user (avoid-

ing unnecessary computation). Implementing back-face culling is trivial, and consists

of a simple dot product between the face normal and the viewing direction. The

OpenGL library [154] has a flag to enable back-face culling (GL CULL FACE). It is

also possible to use spatial data structures to perform hierarchical back-face culling.

2.2.2 View-Frustum Culling

View-frustum culling means not rendering geometry that is outside the field of view

of the user’s camera (again, avoiding unnecessary computation). Implementing view-

frustum culling is pretty easy as well, and typically consists of checking bounding

volumes (such as boxes or spheres) against the planes that define the viewing frustum.

Möller and Haines [93] discuss several algorithms for volume/frustum intersection.

We can use a hierarchical spatial partitioning of the dataset to speed up view-

frustum culling [23]. Whenever a node is totally outside (or totally inside) the view-

frustum, all of its descendants also are.

2.2.3 Occlusion Culling

Another technique to avoid unnecessary computation is occlusion culling, which

means not rendering geometry hidden by other geometry, or in other words, only

rendering the geometry that is visible. Unlike back-face culling and view-frustum

culling, occlusion culling is difficult to implement. Visible surface determination is a

hard problem that has been studied for decades [136].

In their survey on visibility algorithms, Cohen-Or et al. [24] classify visibility

algorithms according to several criteria. Here we briefly summarize the criteria that

are most relevant to this dissertation:
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From-point vs. from-region: Some algorithms compute visibility from the eye-

point only, while others compute visibility from a region in space. Since the

user often stays for a while in the same region, the from-region algorithms

amortize the cost of visibility computations over a number of frames.

Precomputed vs. online: Many algorithms require an offline computation, while

others work on the fly. For example, from-region algorithms require a pre-

processing step to divide the model in regions and compute region visibility.

From-point algorithms typically compute visibility at runtime.

Object space vs. image space: Some algorithms (e.g., ray tracing) compute vis-

ibility in object space, using the 3D primitives. Others (e.g., Z-buffer) operate

in image space, using the discrete rasterization fragments of the primitives.

Conservative vs. approximate: Few visibility algorithms compute exact visibil-

ity. Most algorithms are conservative, and overestimate the set of visible prim-

itives. Other algorithms compute approximate visibility, and do not guarantee

finding all visible primitives.

The visibility algorithm most relevant to this dissertation is the prioritized-layered

projection (PLP) algorithm of Klosowski and Silva [73]. PLP is an approximate, from-

point, object-space visibility algorithm that requires very little preprocessing. The

preprocessing consists of building a spatial partitioning for the dataset and computing

simple statistics for each cell. At runtime PLP uses heuristics to estimate how likely

it is for each cell to be visible, and adds cells to an approximate visible set up to

a user-defined budget of geometry to be rendered per frame. Klosowski and Silva

also developed cPLP [74], a conservative, image-space algorithm that uses PLP to

obtain an initial guess, and then augments the approximate visible set to make it

conservative. In Chapters 3 and 4 we will discuss PLP and cPLP in more detail, and

present the extensions we have made to these algorithms.
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For a detailed and comprehensive survey on visibility algorithms, please consult

the article of Cohen-Or et al. [24] Here we limit ourselves to briefly mentioning some

of these algorithms to illustrate the main differences between them and PLP/cPLP.

Teller et al. [138] developed the from-region visibility algorithm that was used by

Funkhouser et al. [50] in their walkthrough system. The algorithm of Teller et al.

requires long preprocessing times, and assumes that the models are made of axis-

aligned cells. In contrast, PLP and cPLP require very little preprocessing, and make

no assumptions about the geometry of the model.

Wonka et al. [152] presented a from-region visibility preprocessing algorithm with

occluder fusion. Their algorithm used 2 processors to overlap visibility computation

and rendering at runtime (similarly to Garlick et al. [53]). The algorithm required long

preprocessing times (9 hours for a model with 8 million triangles), and was limited

to 2.5D datasets. In later work, Wonka et al. [153] used a from-point approach that

needed little preprocessing, but they only reported results for in-core, 2.5D datasets.

Durand et al. [41] presented a from-region visibility preprocessing algorithm that

could handle 3D environments, as opposed to 2.5D [152], but the algorithm required

long preprocessing times (33 hours for a model with 6 million triangles). Schau-

fler et al. [120] also presented a from-region 3D visibility preprocessing algorithm,

but their largest test model had only 0.6 million triangles.

Chhugani et al. [20] developed a system that precomputes from-region visibility

and levels of detail per region. Their system focuses on image accuracy, and is able to

interactively render large datasets with less than one pixel of screen-space deviation

and correct visibility. Unfortunately, for a model with 13 million triangles, and using

a cluster of 16 PCs, the accuracy guarantee costs 128 hours of precomputation.

Hall-Holt and Rusinkiewicz [58] developed the visible zone algorithm for conser-

vative visibility computation with incremental updates. Their algorithm is able to

achieve real-time frame rates for 2D and 2.5D datasets.

15



2.2.4 Detail Culling

Detail culling means not rendering geometric details that are likely to be unimportant

to the final image. Detail culling relates to the generic strategy of computing an

answer for a problem at the lowest acceptable accuracy. Detail culling is also known

as level-of-detail (LOD) management.

As we have discussed above, typically LOD data structures are precomputed. At

runtime, the rendering engine selects the appropriate level of detail. Funkhouser and

Séquin [49] described LOD management as an optimization problem that tries to

maximize image quality (benefit) given the time and geometry constraints (costs).

Avila and Schroeder [9] and El-Sana and Chiang [42] also developed systems for

interactive out-of-core rendering based on LOD management. Andújar et al. [7] and

El-Sana et al. [43] have combined level of detail management with occlusion culling

in in-core rendering systems.

Continuous and view-dependent LODs tend to produce images with better quality

than static LODs, but static LODs are more appropriate for today’s graphics hard-

ware. It is much faster to use display lists or vertex arrays [154] to display a static

LOD than to loop through the individual triangles of a continuous LOD.

2.2.5 Image-Based Rendering

Image-based rendering techniques generate new image from precomputed samples of

the plenoptic function [1]. The plenoptic function is a 7D function that returns the

color visible from point (px, py, pz) and direction (vx, vy, vz) at time t. Because of its

high dimensionality, densely sampling this function is not feasible, and researchers

have investigated using sparse samplings of lower-dimension slices of this function.

The lumigraph [55] and the light field [77] data structures are samplings of 4D

slices of the plenoptic function. The lower dimensionality comes from fixing t and

limiting the user to look at a convex object from the outside. The concentric mosaics
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data structure [131] is a sampling of a 3D slice of the plenoptic function that confines

the viewing position on a plane and uses a single angle to define the viewing direction.

Precomputed images of synthetic models or photographs of real environments can

be combined with approximate geometry to generate a sampling of a 4D slice of the

plenoptic function [36, 37, 72]. A single image used for texture mapping [149] can be

thought of as a sampling of a 2D slice of the plenoptic function. Many systems have

used image impostors to replace geometry and accelerate rendering [5, 6, 34, 38, 88,

91, 129, 130, 132]. Image impostors can be thought of as a special case of LOD.

Image-based rendering techniques have the potential to simultaneously ease mod-

eling and speed up rendering. In particular, these techniques can deliver very high

quality images at an almost constant cost per image. Unfortunately, preprocessing

requirements for image-based rendering techniques to handle large datasets are very

high. Our system does not use any image-based technique.

There is a large number of IBR techniques, covering a spectrum from pure geome-

try to pure imagery. A detailed survey of these techniques is outside the scope of this

dissertation. For further information, we refer the reader to the SIGGRAPH course

notes on image-based rendering [35].

2.2.6 Point Rendering

Large datasets may have many more polygons than the available screen has pixels.

As a consequence, many triangles may have a projected area smaller than a pixel. In

this case, it makes sense to render point samples instead of triangles. Recently, many

researchers have developed point-based rendering systems [13, 57, 78, 104, 113, 121].

Among these systems, the QSplat system [113] and its extension for streaming

datasets over a network [114] share our goal of visualizing datasets larger than main

memory on commodity hardware. Point rendering has also been used to render 3D

surfaces [33, 79] and fuzzy objects such as clouds, fire, and plants [15, 109, 133].
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2.2.7 Hardware-Assisted Rendering

As graphics algorithms mature, their implementations become available in hardware

through simple application programming interfaces (APIs) such as OpenGL [154].

Graphics cards are getting faster and more sophisticated at an amazing rate, and

exploiting the new algorithms available in hardware through OpenGL extensions is

key to developing competitive systems. Two examples of OpenGL extensions that we

exploit in our system are vertex arrays and occlusion queries.

The vertex array extension uses blocks of vertices, colors, and normals to draw

primitives. The types of primitives include points, lines, triangles, triangle fans, and

triangle strips. The vertex array extension allows us to setup pointers to blocks of

data, and then call a single function (glDrawElements) that takes care of transferring

the data from main memory to graphics card memory, and then rendering it. Ren-

dering using glDrawElements is typically much faster than looping over the data and

calling the OpenGL functions for each vertex.

There are several types of occlusion query extensions. The HP occlusion test [124],

lets us send a piece of geometry to the graphics hardware, and ask if that piece of

geometry would have been visible. A more sophisticated extension, the NVIDIA

occlusion query [110], lets us send various pieces of geometry to the graphics hardware

at the same time, and get for each of them the number of pixels that would have been

affected. In Chapter 4 we describe how we exploit these extensions to accelerate

conservative occlusion culling.

2.2.8 Computation Reordering

Sometimes a given computation consists of independent operations, and the final

result does not depend on the order in which the operations are executed. In this

case, it may be possible to reschedule the execution of the operations to exploit

coherence and obtain substantial performance improvements.
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Pharr et al. [105] developed a ray tracing system for datasets larger than memory

that employed computation reordering. They achieved large rendering speedups by

rescheduling the ray intersection computations. Our system is different from theirs in

some aspects: they focus on photorealism, while we focus on interactivity; and they

use a regular grid to spatialize the dataset, while we use an octree. But our systems

share a basic idea: do as much computation as possible with the data currently in

memory, and delay computations that need data currently on disk. In particular, our

rasterization phase does not rasterize the visible octree nodes in a fixed order. Instead,

the nodes in memory are rasterized first, while nodes on disk are being fetched to be

rasterized later. The final image is unaffected by the out-of-order execution, because

the Z-buffer algorithm sorts the primitives at the pixel level.

Another way improve rendering performance is by doing attribute clustering. Typ-

ically, the rendering engine keeps track of a rendering state, which includes attributes

such as the current material (for example, that is how OpenGL works [154]). If many

primitives share the same attributes, it is usually faster to render them together,

because we then save time that would be wasted on context switches.

A similar technique is mode sorting. Suppose that some primitives in the dataset

are to be rendered as polygons, and other primitives are to be rendered as lines.

Switching from polygon rendering mode to line rendering mode takes time. If we

reorder the traversal of the primitives to avoid mode changes, rendering will be faster.

2.3 Parallel Rendering

Researches have investigated the use of parallel machines for computer graphics for

decades. In 1983, Ullner [142] presented a ray tracing machine. In 1990, Gar-

lick et al. [53] presented the idea of exploiting multiprocessor workstations to overlap

visibility computations with rendering.
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Many other approaches to parallel rendering have been proposed over the years.

Molnar et al. [94] classify parallelization strategies in three categories based on where

in the rendering pipeline sorting for visible-surface determination takes place. Sorting

may happen during geometry preprocessing, between geometry preprocessing and

rasterization, or during rasterization. The three categories of parallelization strategies

are sort-first, sort-middle, and sort-last:

Sort-first algorithms [66, 99, 117, 118] distribute raw primitives (with unknown

screen-space coordinates) during geometry preprocessing. These approaches di-

vide the 2D screen into disjoint regions (or tiles), and assign each region to a

different processor, which is responsible for all of the rendering in its region.

For each frame, a pre-transformation step determines the regions in which each

primitive falls. Then a redistribution step transfers the primitives to the ap-

propriate renderers. Sort-first approaches take advantage of frame-to-frame

coherence well, since few primitives tend to move between tiles from one frame

to the next. Sort-first algorithms can also use any rendering algorithm, since

each processor has all the information it needs to do a complete rendering. Fur-

thermore, as rendering algorithms advance, sort-first approaches can take full

advantage of them. One disadvantage of sort-first is that primitives may clus-

ter into regions, causing load balancing problems between renderers. Another

disadvantage is that more than one renderer may process the same primitive if

it overlaps screen region boundaries.

Sort-middle algorithms [4, 47, 96] distribute screen-space primitives between the

geometry preprocessing and rasterization stages. Sort-middle approaches as-

sign an arbitrary subset of primitives to each geometry processor, and a portion

of the screen to each rasterizer. A geometry processor transforms and lights its

primitives, and then sends them to the appropriate rasterizers. Until recently,

this approach has been the most popular due to the availability of high-end
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graphics machines. One disadvantage of sort-middle approaches is that primi-

tives may be distributed unevenly over the screen, causing load imbalance be-

tween rasterizers. Sort-middle also requires high bandwidth for the transfer of

data between the geometry processing and rasterization stages.

Sort-last approaches [59, 95, 148] distribute pixels during rasterization. They as-

sign an arbitrary subset of the primitives to each renderer. A renderer com-

putes pixel values for its subset, no matter where they fall in the screen, and

then transfer these pixels (color and depth values) to compositing processors.

Sort-last approaches scale well with respect to the number of primitives, since

they render each primitive exactly once. On the other hand, they need a high

bandwidth network to handle all the pixel transfers. Another disadvantage of

sort-last approaches is that they only determine the final depth of a pixel during

the composition phase, and therefore make it difficult (if not impossible) to use

certain rendering algorithms, e.g., transparency and anti-aliasing.

Here we will focus on recent parallel rendering systems, especially on systems

geared towards using clusters of commodity PCs and rendering on multi-tile displays.

Samanta et al. [117, 118] developed a sort-first rendering system using a network

of commodity PCs. The main focus of their work was on load balancing the geometry

processing and rasterization work done on each of the PCs, rather than on handling

very large models. To achieve a well balanced system, they developed dynamic screen

partitioning schemes that predict the rendering costs of groups of triangles and at-

tempt to minimize the amount of overlap between triangles and screen partitions. A

limitation of their system was that in some cases the screen partitioning scheme could

become the bottleneck. Another limitation was the lack of scalability with respect

to model size, as the model had to be replicated in main memory on each of the

rendering nodes of their cluster.
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In subsequent work, Samanta et al. [116] developed a hybrid sort-first/sort-last

parallel rendering algorithm, which scaled better with processor count and screen

resolution. Their new approach performs dynamic, view-dependent partitioning of

both the 3D model and the 2D screen. The objectives that they are addressing are

balancing the rendering load on the nodes as well as minimizing the screen space

overlaps which require the subsequent pixel transfer and compositing step. Once

again, the geometry is replicated on each of the nodes, and the dynamic partitioning

phase could become a bottleneck and limit the frame rate.

In more recent work, Samanta et al. [115] address the replication problem, storing

(in main memory) copies of the model only in k of the available n nodes, where k < n.

Still, neither the preprocessing phase nor the rendering phase would be able to handle

a model larger than main memory. The system we present here can handle arbitrarily

large models (limited only by the size of the available secondary memory).

Mueller [99, 100] has performed extensive experiments using a sort-first rendering

system. He emphasizes that sort-first has an advantage over sort-middle, because it

can exploit the frame-to-frame coherence inherent in interactive applications. He also

points out that sort-first has an advantage over sort-last, because it does not require

high communication bandwidth for pixel traffic. Part of Mueller’s work was on the

load-balancing problem. He designed a dynamic scheme for partitioning the screen

so that each processor has a balanced rendering load. His algorithm is the basis for

the work of Samanta et al. [117]. Mueller also worked on the database management

problem, focusing on retained-mode databases that fit in the memory of the graphics

hardware. In contrast, we focus our work on immediate-mode databases that are

larger than the main memory of the host hardware.

WireGL [18, 65, 66, 67] is a system that allows the output resolution of an un-

modified graphics application to be scaled to the resolution of a tiled display, with

little or no loss in performance. WireGL replaces the OpenGL driver on the client
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machine, intercepts the OpenGL calls, and sends the calls over a high-speed network

to servers which render the geometry. WireGL includes an efficient network protocol,

a geometry bucketing scheme, and an OpenGL state tracking algorithm. WireGL is

able to sustain rendering performance of over 70 million triangles per second on a

32-node cluster. It assumes, however, that the entire model fits in the main memory

of the client machine. Another limitation is that the geometry bucketing algorithm

assumes that the geometry primitives that are close to each other in the GL stream

are also close together spatially, which may not be the case.

Chromium [68] is a system that, as WireGL, replaces the OpenGL driver. Chro-

mium is much more flexible than WireGL, and lets a programmer create applications

using stream processing units (SPUs). For example, a “pack” SPU on the client

side intercepts the OpenGL calls, packs the OpenGL stream into buckets, and sends

the buckets over the network to a rendering server. The rendering server unpacks the

OpenGL stream from the network, and uses a “render” SPU to generate pixels. SPUs

are free to change the OpenGL stream, and can be chained. For example, there are

SPUs to invert the colors, or add alpha blending, or display hidden lines.

Chromium has been used to re-implement WireGL, and implement other sort-

first and sort-last systems [14]. One disadvantage of Chromium is that it does not

have built-in support for large datasets. Although it is conceivable to use Chromium

to build an out-of-core rendering system, such a system does not yet exist. Another

disadvantage of Chromium is that if the client application does not (or cannot) exploit

display lists, the application performance will suffer. In our experience, even when

Chromium is running on the client machine (making the network overhead disappear),

an immediate mode application typically achieves only 10% of its native performance.

Lombeyda et al. [85] developed a parallel system for interactive volume render-

ing using commodity hardware. Zhang et al. [157] employed a cluster of PCs for

visualization of isosurface of massive datasets.
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2.4 Related Systems

Is this section we compare our system to previously published systems. When evalu-

ating a system, we asked the following questions:

• Can it handle large datasets?

• Does it run on commodity PCs?

• Is the preprocessing fast?

• Does it use occlusion culling?

• Is occlusion culling from-point?

• Does it support LODs?

• Does it use image impostors?

• Does it use prefetching?

• Does it exploit hardware support?

• Does it render in high resolution?

• Can it handle arbitrary 3D models?

• Can it handle dynamic geometry?

• Does it run unmodified programs?

Table 2.1 summarizes the answers to these questions for the systems most related to

ours. We now briefly review each of the systems in Table 2.1 in chronological order.

Clark [23] proposed back in 1976 many of the major techniques still used today by

rendering systems. His ideas included hierarchical view frustum culling, hierarchical

simplification and LOD management, hierarchical occlusion culling, and working set

management (on-demand loading and least-recently-used replacement). It is unclear,

however, whether or not Clark had a working system that implemented all his ideas.

Airey et al. [3] described a system that combined LOD management with the idea

of precomputing visibility information for models made of axis-aligned polygons.

Funkhouser et al. [50] were the first to publish a system that supported models

larger than main memory and performed speculative prefetching. Their approach

relied on the from-region visibility algorithm of Teller et al. [138], which requires long
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1976 Clark’s • • • •

1990 Airey’s • • •

1993 Funkhouser’s • • • • •

1996 VTK • • • • •

1997 Cox’s • • • • •

1998 Optimizer • • • • • • • • •

1999 MMR • • • • • • •

2000 Prince’s • • • • • • •

2000 QSplat • • • • • • • •

2001 Jupiter • • • • • • •

2001 Moreland’s • • • • • • •

2001 Samanta’s • • • • •

2001 Wald’s • • • • • •

2002 Chromium • • • • • • •

2002 GigaWalk • • • • •

2002 OpenSG • • • • • •

2002 Varadhan’s • • • • •

2002 XFastMesh • • • • • •

2003 Lindstrom’s • • • • • •

2003 Wald’s • • • • • •

2003 Yoon’s • • • • • •

2003 iWalk (ours) • • • • • • • • • •

Table 2.1: Comparison of systems related to ours.
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preprocessing times, and assumes that the models are made of axis-aligned cells. Our

approach is based on the from-point visibility algorithm of Klosowski and Silva [73],

which requires very little preprocessing, and handles arbitrary 3D geometry.

The visualization toolkit (VTK) [123] is a generic collection of libraries and tools

for development of rendering systems. Many systems have been built on top of VTK,

but VTK has little support out-of-core rendering, thread-safety, and occlusion culling.

Cox [32] presented a paged segment system to manage the scene database cache.

Cox showed that an application that controls paging itself achieves much better per-

formance than an application that relies on the operating system’s management of

virtual memory.

The OpenGL Optimizer [125, 126] is a commercial package available from SGI

that provides an application programming interface (API) for visualization of large

models. There is a large overlap in goals between our system and Optimizer, but

our methods differ. Unfortunately, Optimizer is expensive, geared towards high-end

hardware, and it is not available for Linux. Optimizer is being discontinued and

replaced by Performer [127], which is available for Linux, and we hope will eventually

support all the features of Optimizer on commodity hardware. A similar product is

TGS’s commercial version of Open Inventor [139].

Aliaga et al. [5] developed the massive model rendering (MMR) system. MMR

employed a large number of acceleration techniques, including replacing distant geom-

etry with image impostors, managing levels of detail, and culling occluded geometry.

MMR was perhaps the first published system to handle models with tens of millions of

polygons at interactive frame rates. On the other hand, MMR required weeks of pre-

processing time and expensive high-end graphics workstations. Our system requires

much less preprocessing time, and runs on commodity PCs.

Prince [107] presented an out-of-core extension for the progressive meshes data

structure [61]. Prince used a regular grid to spatialize the dataset, and did not use
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occlusion culling. His system relied on system calls of the Windows API to manage

virtual memory, and was limited to datasets of at most 2GB on 32-bit machines. It

is unclear how Prince implemented prefetching, because his system did not support

asynchronous data loading. It is also unclear how well his system would perform

for truly large datasets, because Prince only reported results for datasets that were

smaller than the memory of the test machine.

Rusinkiewicz and Levoy [113] developed QSplat, a point-based rendering system

for massive meshes. QSplat employs all the acceleration techniques our system em-

ploys, except for occlusion culling. QSplat is able to render billion-triangle meshes at

interactive frame rates with very acceptable image quality. An extension of QSplat

supports streaming massive meshes over a slow network connection [114].

Bartz et al. [11] presented the Jupiter toolkit for visualization of large datasets.

Jupiter is a joint effort between HP and the University of Tübingen. The toolkit

supports occlusion culling and level-of-detail management. Out-of-core and parallel

rendering are currently being added.

Moreland et al. [98] presented a sort-last parallel rendering system for visualization

of large datasets on a display wall driven by a cluster of PCs. Their system scales

very well with data size, and is able to generate 12-megapixel images of a model with

half a billion triangles at almost interactive frame rates.

Samanta et al. [115, 116, 117, 118] developed a parallel rendering system for display

walls driven by a cluster of PCs. As we have mentioned, the focus of their research

was on load balancing algorithms, not on out-of-core rendering.

Wald et al. [146] developed a ray tracing system for out-of-core rendering of large

models on a cluster of PCs. A key difference between our work and theirs is that

they use ray tracing, and we use the Z-buffer. Although ray tracing allows them to

use more sophisticated rendering algorithms, the Z-buffer allows us to exploit better

hardware support and produce higher resolution images.
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Humphreys et al. [68] developed Chromium, which we have discussed in the pre-

vious section. We mention it here again to emphasize that Chromium’s goal is to

provide mechanisms, not algorithms. It is also important to note that Chromium can

scale the resolution of an unmodified client application. This feature is important if

the client application is only available in binary format, or if the application requires

a commercial license per rendering node.

Baxter et al. [12] developed GigaWalk, an in-core rendering system for high-end

machines that used multiple threads to combine occlusion culling with hierarchical

level-of-detail management.

Reiners et al. [111] developed the OpenSG scene graph system. The OpenSG

project shares many of our goals, and the system is similar in spirit to other scene

graph systems such as Performer [127] and Jupiter [11]. Voß et al. [144] have recently

added multi-threading and clustering support to OpenSG.

Varadhan and Manocha [143] described a system for out-of-core rendering that

combined hierarchical LODs [46] and prefetching, but their system does not perform

occlusion culling, and their preprocessing step is in-core.

DeCoro and Pajarola [39] developed XFastMesh, a system for interactive out-of-

core rendering of large datasets The system supports view-dependent levels of detail,

but does not support occlusion culling, and depends on an in-core preprocessing step.

Lindstrom [82] developed a system for out-of-core building and rendering of mul-

tiresolution surfaces. His system supports view-dependent levels of detail, but does

not support occlusion culling.

In more recent work, Wald et al. [145] developed a parallel ray tracer capable of

interactively rendering dynamic geometry, but they only report results for models

smaller than main memory.

Yoon et al. [156] presented an in-core rendering system for high-end PCs that

combines view-dependent level of details and occlusion culling.
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The last row in Table 2.1 shows the features supported by our system, which we

have named iWalk. No other system supports all the features that iWalk supports.

On the other hand, iWalk does not support a few features supported by other systems.

Among these systems, MMR is the only one that supports image impostors. Although

image impostors may allow MMR to generate images with higher fidelity at the lowest

levels of details, image impostors require long preprocessing times and a large amount

of storage. Another feature not supported by iWalk is dynamic geometry. Only

Chromium [68] and the recent in-core system of Wald et al. [145] support dynamic

geometry. Finally, only Chromium is able to run unmodified applications.

To conclude this section, let us make it clear that the comparison in Table 2.1 is

intentionally incomplete. We have ignored many factors that are not critical to us,

but may be important in other contexts. These factors include:

• vendor support

• community support

• platform availability

• user interface

• documentation

• code maturity

• code license

• view-dependent LODs

• volume rendering

• photorealism level

• load balancing

• collision detection

2.5 Discussion

During the development stages of our system, we kept two main design goals in

mind: we wanted all the steps, including preprocessing, to work on a PC with small

memory, and we wanted to deliver interactive frame rates. Guided by these goals,

for each stage of the pipeline we developed techniques that work out-of-core and that
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favor interactivity over image quality. Because of the huge difference in performance

between main memory and disk, a major focus of the design of these techniques

was trying to save memory for the geometry cache and avoid disk accesses. The

combination of these techniques is a system that is simple, practical, scalable, and

that strikes a good balance between interactivity and image quality. The system

works around the weaknesses and exploits the strengths of current PC hardware.

The algorithms we chose to use for each step of the pipeline are appropriate for

the specific task we are interested in, i.e., using commodity PCs to visualize datasets

larger than main memory. These choices may not be appropriate for a system that

can afford to keep the entire dataset in memory, or for a system whose goal is to

generate photorealistic images. Similarly, techniques appropriate for those systems

would not be the best for our goals and constraints.

For the spatialization data structure, we chose an octree. Although a regular grid

would have been simpler, an octree allows us to perform hierarchical view-frustum

culling. A hierarchy of boxes or a hierarchy of spheres would have been good choices

as well, but our visibility algorithms assume that the leaves of the hierarchy form a

spatial decomposition.

For the visibility algorithms, we chose PLP and cPLP. Because PLP is an ap-

proximate algorithm, it might produce objectionable artifacts if used alone by the

rendering thread. Thus, we also use cPLP (implemented using the new OpenGL

occlusion query extensions) in combination with LODs in the rendering thread. On

the other hand, PLP is perfect for the prefetching thread. Because prefetching is

speculative, an approximate visible set is good enough. In addition, because PLP

does not need to access the disk or the graphics card, the prefetching thread runs

without disturbing the other threads.

Another advantage of PLP and cPLP is that they are from-point algorithms. If

memory is plentiful, from-region visibility may be a better alternative than from-point
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visibility. But if memory is at a premium, from-point visibility is more indicated, be-

cause it gives a smaller visible set, which in turn takes less space in the cache, and

requires fewer disk accesses. In addition, from-point algorithms require less prepro-

cessing time than from-region algorithms.

For the rendering primitives, we chose to use triangles, because they are the com-

mon denominator of higher order primitives, and current graphics cards are optimized

to rasterize triangles. Another good choice would have been using points as primitives.

We chose not to use display lists. Rendering is fastest in current graphics cards

if the geometry is stored in display lists, but displays lists take up a lot memory. A

display list must make a copy of all data it requires to recreate the call sequence that

created it. The OpenGL implementation also needs some extra memory to manage

the display lists of a given context. If the dataset is small, this memory overhead

may not be a problem. But if the dataset is large, display lists may actually hurt

performance, because they could cause memory thrashing. [103]

We chose to use static LODs. Although continuous and view-dependent LODs

produce smooth transitions between approximations, static LODs are better suited for

today’s graphics cards. Each static LOD can be stored and rendered as a vertex array,

fully utilizing the potential of the graphics card. Continuous and view-dependent

LODs tend be CPU-bound, and leave the graphics card under-utilized.

For the parallel extension of our system, we chose a simple sort first architecture,

mainly because sort-first allows each renderer to run the entire graphics pipeline for

the primitives in its tile. A sort-middle approach requires fast access to the interme-

diate results between the geometry processing and rasterization stages of the graphics

pipeline, which current PC graphics cards do not provide. A sort-last approach would

have prevented us from using occlusion culling based on image-space queries.

Early results of this work have been published elsewhere [26, 27, 28, 29, 30, 31].

In this dissertation we present new results and techniques. Since the publication of
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those papers, we have addressed some of the issues listed there as future work. In

particular, we have added level-of-detail management and fast conservative occlusion

culling to the system. In addition, we have tested our system using much larger

datasets. Finally, we have updated the numbers for the experiments presented in

those papers to reflect our current hardware.

The large number of recent publications on out-of-core rendering indicates that

visualization of large datasets is far from being a solved problem. We hope to show

that the techniques we present here are simple, yet useful and powerful, and contribute

to the advancement of this field.
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Chapter 3

Out-Of-Core Preprocessing

Recall that one of our goals is to visualize datasets that are larger than the main

memory available in an inexpensive PC. Our approach is to keep the bulk of the

dataset on disk, and load on demand from disk into a memory cache the visible parts

of the dataset at the appropriate level of detail. Is this chapter, we describe the

preprocessing algorithms that partition the model, compute coefficients that are used

for visibility estimation, and create the levels of details for each part of the dataset.

3.1 Partitioning the Dataset Using an Octree

The first preprocessing step is to build an octree [119] that partitions the dataset

into manageable pieces. A brute-force, in-core algorithm to build the octree would

need a machine with large enough memory to hold the entire dataset. We avoid this

brute-force approach, because we do not want to use a separate expensive machine

with large memory just to build the octree. The out-of-core algorithm we present

here builds the octree directly on a machine with small memory.

The algorithm first breaks the model in sections that fit in main memory, and

then incrementally builds the octree on disk, one pass for each section, keeping in

memory only the section being processed.
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Figure 3.1: The layout of an octree on disk. The out-of-core spatialization algorithm
builds an octree for a dataset, saving the skeleton of the octree in the hierarchy
structure (HS) file, and the geometric contents of each node in a separate file.

To store the octree on disk, our algorithm saves the geometric contents of each

octree node in a separate file, and creates a hierarchy structure (HS) file (Figure 3.1).

The HS file has information about the spatial relationship of the nodes in the hi-

erarchy, and for each node it contains the node’s bounding box and auxiliary data

used for visibility culling. The HS file is the main data structure that our rendering

approach uses to control the flow of data. A key assumption we make is that the

HS file fits in memory. That is usually a trivial assumption. For example, the size of

the HS file for the Boeing 777 dataset (Figure 3.2) is only 1.2 MB.

Figure 3.3 shows the high-level view of the out-of-core algorithm to build an

octree for a given dataset given a maximum number of vertices per leaf. We begin

by breaking the dataset into sections, which is very simple. Let N be the number of

primitives in the dataset, and n the number of primitives that the machine can hold

in memory (typically, N is much larger than n). We can create dN/ne sections of at

most n primitives each, without bringing the entire dataset into memory, by reading

at most n primitives at a time, and writing them to a separate file. Chiang et al. [21]
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(a) exterior view (b) interior view

(c) another interior view (d) octree

Figure 3.2: The Boeing 777 dataset with 352 million triangles (7.5 GB of data). The
size of the octree using at most 480,000 vertices per leaf is only 1.2 MB.
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octree_build(dataset, max_vertices_per_leaf)

{

break dataset in sections that fit in memory;

compute dataset bounding box b;

create empty octree with b and max_vertices_per_leaf;

save octree structure;

for (each section) {

octree_insert_section(octree.root, section);

}

}

Figure 3.3: Pseudocode for building an octree.

propose a technique that splits the dataset in spatially coherent sections. Many CAD

models and datasets resulting from simulations already come as a set of small pieces,

so this step may not be necessary.

In the next step, we create an empty octree using the bounding box of the dataset

and the given maximum number of vertices per leaf. If the dataset was already given

as a set of sections, we can compute the bounding box with a single pass over the

dataset, bringing into memory one section at a time. Otherwise, we can compute the

bounding box while breaking the dataset into sections.

Before proceeding, we save the structure of the octree on disk. This allows us

to make the insertion of a section completely self-contained, and the whole process

incremental. In particular, if we add new sections to the dataset in the future, we

do not have to recompute the octree from scratch. The necessity for this incremental

approach became evident when we were building octrees for models of real-world

environments acquired by multiple passes of 3D scanning.

In the final high-level step, we insert the sections of the dataset into the octree

one at a time. Figure 3.4 shows the pseudocode for inserting a section into an octree.

We begin by loading the structure of the octree and the data for the section. Note

that we do not load the data inside the previously existing octree nodes. We only

load the structure file, which as we have mentioned, is very small.
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octree_insert_section(octree, section)

{

load octree structure;

load section;

for (each primitive in section) {

octree_route_primitive(octree.root, primitive);

}

octree_save_data(octree);

save octree structure;

free section;

}

Figure 3.4: Pseudocode for inserting a section into an octree.

For each primitive of the section, we route the primitive, i.e., we find the octree

leaf that should store the primitive. Figure 3.5 shows the pseudocode for routing

a primitive. We recursively search for the leaf that intersects the primitive. If the

primitive intersects multiple leaves, we replicate the primitive in all intersected leaves.

When we reach a leaf, we check if it is full, i.e., if the number of vertices in the leaf

has reached the specified maximum. If the leaf is not full, we insert the primitive

there. Otherwise, we create eight children nodes for the leaf, making it an internal

node, and redistribute its data among its children.

Finally, we save the data files of the octree nodes affected by the insertions. Fig-

ure 3.6 shows the pseudocode for saving the octree data. For each octree node that

used to be a leaf before the insertion of the current section, we perform the following

steps. If the node is still a leaf, we merge the new data with the old data (if any). If

the result of the merge exceeds the allowed maximum number of vertices per node,

we redistribute the data, which will make the leaf into an internal node. Then, we

write the data files of the current subtree. If the node used to be a leaf and now is

an internal node, we check if the node used to have data. If it did, we merge all the

new data of the current subtree with the old data, redistribute the data, and write

the data files. If the node used to be empty, we just write the data files for the new

data in the current subtree.
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octree_route_primitive(node, primitive)

{

if (node is leaf) {

if (node is not full) {

insert primitive into node;

} else {

create eight children for node;

distribute data among children;

}

} else {

for (each child) {

if (primitive intersects child) {

octree_route_primitive(child, primitive)

}

}

}

}

Figure 3.5: Pseudocode for routing a primitive.

The final leaves may have different numbers of primitives and volumes, but each

leaf will contain at most the predefined number of vertices. The important point is

that all insertions are local to a leaf, and therefore never require reading from disk

more than one octree node of a fixed maximum size.

If we are building a dataset incrementally, a new section may not fit inside the

bounding box of the original dataset. In this case, to avoid rebuilding the octree

for the entire dataset, we grow the octree toward the new section. We create seven

siblings for the current root node, and a new root that will be the parent of the

old root and its new siblings. We repeat this until the octree does contain the new

section, and then proceed with the insertion as before.

The final number of files corresponding to the leaves of the octree may be large

(e.g., tens of thousands). If we save all the files in the same directory, opening a

file might involve a linear search on the file name. To avoid this problem, we save

the octree leaves in a hierarchy of directories, where each directory stores at most a

certain number of files (typically 25).
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octree_save_data(octree)

{

for (each node that used to be a leaf) {

if (node is leaf) {

if (node has new data) {

if (node had old data) {

read old data;

merge with new data;

free old data;

remove old data file;

}

if (new data is too big) {

split node;

redistribute data;

}

write data files in this subtree;

}

} else {

if (node had old data) {

merge new data of this subtree;

read old data;

merge with new data;

free old data;

remove old data file;

redistribute data;

write data files in this subtree;

} else {

write data files in this subtree;

}

}

}

}

Figure 3.6: Pseudocode for saving the octree data.
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Our spatialization algorithm has three important features:

• It is an out-of-core algorithm. When adding a section, we only need memory

for the section itself, the hierarchy structure file, and the contents of one leaf.

The section fits in memory by construction, the size of HS file is negligible, and

the size of the contents of a leaf is limited by the maximum number of vertices

per leaf. Thus, we can create octrees for extremely large data.

• It is an incremental algorithm. If new objects are added to the dataset, only

the spatial regions touched by those objects need to be updated, as opposed to

rebuilding the entire hierarchy. This is particularly useful for applications that

build models incrementally, such as 3D scanning.

• It is fast. For each section, the algorithm only reads a modified node once,

doing the insertion in the most efficient way.

Some researchers have developed similar algorithms. Ueng et al. [141] presented

an out-of-core algorithm to build an on-disk octree for large unstructured tetrahedral

meshes. Both their algorithm and ours save the structure (or skeleton) of the octree

in a file, and the contents of the octree nodes in separate files. Also, both algorithms

enforce a maximum amount of data per octree node. The main difference is that,

when adding a new section to an existing octree, their algorithm may need to read

the same node multiple times, while our algorithm only needs to read an affected

node at most once per section.

Cignoni et al. [22] developed an out-of-core algorithm for simplification of large

datasets. Their algorithm first builds a raw (not indexed) octree-based external mem-

ory mesh (OEMM), and then traverses the raw OEMM twice to build an indexed

OEMM. Our preprocessing algorithm is similar to the first phase of their simplifica-

tion algorithm. The main difference is that they build the octree starting from the

leaves at a predefined depth, and then merge adjacent leaves with few primitives. We
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build the octree starting from the root, and then split leaves with too many primitives.

We expect our algorithm and theirs to have similar running times.

Many other researchers have developed spatialization algorithms with the same

goal, but different implementations. The algorithm of Wald et al. [146] creates a BSP

tree for the dataset. Pharr et al. [105] and Prince [107] use a regular grid.

McMains et al. [90] have developed an out-of-core technique to build a topolog-

ical data structure for a large dataset of unordered polygons. Their data structure

supports much more functionality than we need. The extra connectivity information

is not useful to us. We are only interested in interactive rendering. Using a simple

octree allows us to have very fast preprocessing times.

3.2 Computing Visibility Coefficients

The next preprocessing step is computing visibility coefficients for each octree leaf.

As we will see in more detail in Chapter 4, these visibility coefficients are used at

runtime by the prioritized-layered projection (PLP) [73] algorithm to estimate the

octree nodes that are visible from the current viewpoint. The basic idea is to compute

a value that estimates how likely it is for a node to block the light passing through

it. In their original paper, Klosowski and Silva estimated this likelihood based on the

number of primitives in the leaf.

We improve upon Klosowski and Silva’s approach by precomputing a set of view-

dependent values based on the screen coverage of the primitives in a node relative

to the screen coverage of the node’s bounding box. For each octree leaf, we place

an arbitrary number of sample viewpoints around the octree leaf. We pick each

viewpoint so that when we look from the viewpoint towards the center of the node

we are able to see the entire node, and we maximize the projected screen area of the

node’s bounding box.
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For each sample viewpoint, we rasterize the node’s bounding box in green and

then the node’s contents in red over a black background, without depth tests. We

then read back the frame buffer, and count the number of green and red pixels, ng

and nr. We approximate the probability of the node blocking light from this viewing

direction by the ratio of red pixels to lit pixels, nr/(nr + ng).

We typically store 20 of such coefficients per node. At runtime, we pick the

coefficient whose corresponding sampling direction is closest to the current viewing

direction. These coefficients are fast to precompute, cheap to store, and give us a

more accurate estimate of visibility at runtime than other simpler statistics such as

the number of primitives in the node.

3.3 Creating Levels of Detail

The final preprocessing step is precomputing levels of detail. For each octree node, we

compute a small set of static levels of detail. We use the vertex clustering algorithm of

Rossignac and Borrel [112]. Typically we precompute 3 to 5 successive approximations

of the data in each octree node. Each approximation has roughly 1/4 of data of the

previous approximation. At runtime, the appropriate level of detail is selected based

on the expected contribution of the octree node to the quality of the image.

Rossignac and Borrel [112] use two factors to grade a vertex: the length of the

longest edge incident to the vertex, and the maximum angle between the edges in-

cident to the vertex. Unfortunately, these factors may be misleading if the dataset

has been triangulated already [87]. Since most of our test datasets were already tri-

angulated when we obtained them, we searched for a different metric to grade the

vertices. We found that we obtained better-looking simplified versions of the dataset

by ignoring the angle between the edges, and weighting a vertex by the maximum

area of the faces incident to the vertex.
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There are many reasons why we chose to use simple vertex clustering instead of

more sophisticated simplification approaches:

• Vertex clustering is very simple and very robust. In particular, it makes no

assumptions about the original geometry.

• Vertex clustering is very fast. Simplifying a node after it is in memory is faster

than reading the node from disk.

• Vertex clustering only needs to traverse the data once, which is important for

us, because we are I/O bound.

• The quality of the approximations produced by vertex clustering is good enough

for an interactive previewer such as we want, and not much worse than that of

more complicated, slower methods.

• The error introduced by the simplification is bounded (in the Hausdorff distance

sense) by an intuitive, user-controlled accuracy dial.

• Vertex clustering does not require the construction of a topological adjacency

graph between faces, edges, and vertices.

• Vertex clustering produces static LODs, which are better suited for current

hardware than dynamic LODs.

Originally, we used to employ Popinet’s implementation [106] of Lindstrom’s algo-

rithm [81, 84] to compute LODs. But the computation of adjacency information was

proving to be too time consuming for very large datasets. When we started experi-

menting with a 473-million triangle dataset, we realized we had to sacrifice fidelity to

achieve practical preprocessing times.

Ho et al. [60] also use vertex clustering in their mesh compression system. To

compress meshes larger than main memory, Ho et al. advocate automatically parti-

tioning the mesh into sub-meshes that fit in memory, and compress them separately,

43



ignoring intersections between neighboring regions of the partition. Ho et al. point

out that this approach is advantageous, because it is simple and allows them to

leverage existing in-core simplification techniques for each region. Hoppe [63] and

Bernardini et al. [13] also partition the input dataset into pieces small enough to fit

in memory, and then simplify them individually.

Isenburg and Gumhold [69] have developed an out-of-core compression technique

that converts massive meshes into a streamable representation. Their focus is on one-

pass decoders that allow for streaming decompression that can start producing mesh

triangles as soon as the first few bytes become available. They are more interested in

compression ratio than frame rates. For example, the execution time of their rendering

system was bound by the computation of triangle normals, which they could have

precomputed, but they chose not to.

Isenburg and Gumhold [69] point out that they dislike the approach of simplifying

pieces of the dataset separately, because of the discontinuities that may be introduced

between regions. We do not mind the discontinuities. In practice they are not too

disturbing, and they can be easily fixed, if necessary [63].

3.4 Experimental Results

In this section we report on the performance of our preprocessing algorithms. One of

our goals was to evaluate the time necessary to preprocess a dataset. For the system

to be practical, the preprocessing step needs to be automatic and reasonably fast. A

few minutes or even a couple of hours may be acceptable, but days would be too long.

Another goal of these experiments was to study the tradeoff between the granu-

larity of the spatialization, i.e., the choice of the maximum number vmax of vertices

per leaf, and the size of resulting octree. Finer granularity (small vmax) allows for

more precise view-frustum and occlusion culling, potentially reducing the load on the
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graphics card. But small granularity also increases the chance of primitive replica-

tion, and increases the traversal load on the CPU. Coarser granularity (large vmax)

reduces the traversal time, and decreases the chances of replication, but increases the

chances of fetching and rendering invisible geometry. Choosing the right granularity

can affect the running time by a factor greater than ten [125].

Yet another goal of these experiments was to assess the quality of the levels of

detail produced by vertex clustering. A common criticism towards vertex clustering

is that it may produce poor approximations of the dataset. We will se below that

the quality of the approximations is good enough for an interactive previewer. If the

need for better approximations arises, we can use any other simplification algorithm,

because the simplification step is orthogonal to the rest of the system.

We ran experiments with two datasets. The first dataset is the UNC power plant

model [147], which contains 13 million triangles (Figures 3.7–3.9). This is a chal-

lenging model, because of its high depth complexity, which calls for occlusion culling.

View-frustum culling, even if combined with LOD management, would render many

invisible triangles unnecessarily. Another reason why we ran tests with the power

plant model is that many previous systems have used it, which allows us to make

more objective comparisons.

The second dataset is the Lawrence Livermore National Laboratory (LLNL) iso-

surface dataset [97], which contains 473 million triangles (Figure 3.10). This is a

truly massive dataset whose original size is 8.3 GB. After converting the dataset to

our own format, the size went up to 9.8 GB, mainly because the original dataset did

not have vertex colors. We assigned to each vertex a color that indicates its height.

We ran the preprocessing tests on a 2.4 GHz Pentium IV computer with 512 MB

of RAM and a 250 GB IDE disk. The computer was equipped with a NVIDIA

GeForce Quadro FX 500 graphics card. The computer’s operating system was Red

Hat Linux 8.0. The total cost of this machine is about US$1,000.
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Figure 3.7: An exterior view of the UNC power plant [147] with 13 million triangles.
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Figure 3.8: An interior view of the UNC power plant model [147].
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Figure 3.9: Another interior view of the UNC power plant model [147].
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Figure 3.10: The LLNL isosurface dataset [97] with 473 million triangles.
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Max vert/leaf Build time Size (MB) Depth Leaves Nodes Triangles
3750 10m 03s 1052 11 72,416 82,761 30,461,154
7500 7m 51s 833 11 33,944 38,793 25,985,206

15000 6m 24s 671 10 15,177 17,345 22,073,219
30000 5m 17s 578 9 6,847 7,825 20,088,458
60000 4m 45s 510 9 3,354 3,833 18,301,106

120000 4m 16s 465 8 1,744 1,993 17,509,750
240000 3m 57s 426 8 701 801 16,215,938

Table 3.1: Building the octree for the power plant model.

3.4.1 UNC Power Plant Results

Building the Octree

The power plant model consists of 21 sections, each of which fits in the main memory

of the test machine. We used our out-of-core incremental spatialization algorithm

to build the octree for the entire model, one section at a time. Table 3.1 shows the

results for the construction of the octree for the power plant model. We varied the

maximum number of vertices per leaf from 3,750 to 240,000. The finer the granularity,

the longer it took to build the octree. The running time is in the order of minutes,

and it is dominated by disk reads and writes. Other researchers report much longer

running times to spatialize this model [5, 146].

Because of triangle replication, the finer the granularity, the larger the size of

the octree. Figure 3.11 shows a chart with the total octree size plotted versus the

maximum number of vertices per leaf. Based on this chart, and runtime trial and

error, we chose 15,000 vertices per leaf for the rest of experiments with this model.

Figure 3.12 shows the power plant model from another angle with the structure

of the octree superimposed. The octree shown is the one created using 120,000 as the

maximum number of vertices per leaf. Note that the grid is irregular, i.e., some nodes

are larger (in volume) than others, which reflects the different density of triangles per

volume of different regions of the model.
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Figure 3.11: Octree size versus maximum number of vertices per leaf.

Computing Visibility Coefficients

We rasterized each octree node on a 64× 64-pixel window, and used 20 sample view-

points. The total running time to compute the visibility coefficients was 2 minutes

and 36 seconds. The total size of the visibility coefficients was 711 KB. Thus, both

the time and storage requirements for the visibility coefficients are negligible.

Creating Levels of Detail

We created at most 5 levels of detail for each octree node: the original data plus 4

approximations starting with a grid of 128 voxels per axis. Each approximation had

roughly 1/4 of the data of the preceding level of detail. The total running time to

create the level of details was 8 minutes and 5 seconds. The total size of the additional

data was 268 MB. Figure 3.13 shows closeup views of several levels of detail of the

powerplant model. Vertex clustering does a good job at preserving the overall shape

of the model, even for very low polygonal counts, especially if we consider how simple

and fast the algorithm is. Figure 3.14 shows those same levels of detail using regular

views, i.e., from the distance that they would be seen at runtime. In these views, the

artifacts created by vertex clustering are much less noticeable.
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Figure 3.12: The UNC power plant model [147] with the octree superimposed.

52



(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.13: Closeup view of several levels of detail of the power plant.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.14: Regular view of several levels of detail of the powerplant.
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3.4.2 LLNL Isosurface Results

Building the Octree

To build the octree for the LLNL isosurface, we used the limit of 480,000 vertices per

leaf. The original dataset has 473 million triangles, and its size (after adding colors)

is 9.8 GB. The resulting octree has 561 million triangles (because of replication of

triangles that intersect multiple nodes), and its size is 10 GB. The octree has 7,393

nodes, 6,469 leaves, and the maximum depth is 5. The construction of the octree

took 1 hour and 24 minutes. The size of the hierarchy structure file for this octree is

1.3 MB. Figure 3.15 shows a screenshot of the structure of this massive octree.

Computing Visibility Coefficients

To compute the visibility coefficients for the LLNL isosurface, we used the same

approach we used for the power plant model. The total running time to compute the

visibility coefficients was 25 minutes and 46 seconds. The total size of the visibility

coefficients was 303 KB.

Creating Levels of Detail

To create the levels of detail for the LLNL isosurface, we created at most 4 ap-

proximations of the original data starting from a grid of 128 voxels per axis. Each

approximation had at most 1/4 of the data of the previous approximation. The total

running time to create the levels of detail was 1 hour and 16 minutes, and the total

size of the approximations was 2.3 GB.

Figure 3.16 shows closeup views of several levels of detail of the LLNL isosurface

dataset. Figure 3.17 shows those same levels of detail using regular views. Once

again, the quality of the approximations produced by vertex clustering seems good

enough for our purposes.
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Figure 3.15: The structure of the octree for the LLNL isosurface.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.16: Closeup view of several levels of detail of the LLNL isosurface.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.17: Regular view of several levels of detail of the LLNL isosurface.
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3.4.3 Summary of the Preprocessing Results

Our system was able to spatialize the UNC power plant model in about 6 minutes.

The system was also able to spatialize the LLNL isosurface dataset, which is 20

times larger than the main memory of our test machine, in about 1.5 hours, which is

fast enough to be practical. The computation time and storage requirements for the

visibility coefficients were negligible. The computation time and storage requirements

for the levels of detail were low, and the quality of the approximations produced by

vertex clustering was good enough for an interactive previewer.

The best numbers we know for automatic, out-of-core spatialization of the power

plant model are from Wald et al. [146]: roughly 30 minutes. The actual number they

published in 2001 is 2.5 hours, but we are estimating that our test machine is roughly

5 times faster than the one they used then. Thus, keeping in mind that our data

structures are different (we use an octree, and they use a BSP tree), it is perhaps fair

to say that our spatialization algorithm is 5 times faster than theirs.

For the LLNL isosurface, we are unaware of any out-of-core preprocessing numbers

on low-end PCs. Lindstrom [82] reports 2 hours and 40 minutes for an isosurface about

half the size of the one we used. We cannot make a direct comparison, however,

because his algorithm is more sophisticated (it creates view-dependent LODs, as

opposed to static LODs), and his test machine was a high-end SGI Onyx2.
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Chapter 4

Out-Of-Core Rendering

This chapter presents our approach to render datasets larger than main memory. So

far we have shown how to break the dataset into manageable pieces, and how to

precompute visibility information and levels of detail for each piece. Now we show

how to render the pieces at runtime. We start with an overview or the rendering

approach, followed by a review of the PLP and cPLP visibility algorithms. Then,

we describe our extensions to PLP and cPLP, and present our cache management

techniques, including our novel prefetching algorithm.

4.1 Overview of the Rendering Approach

We named our rendering system iWalk. Figure 4.1 shows a diagram of iWalk’s ren-

dering approach. The user interface (a) keeps track of the position, orientation, and

field-of-view of the user’s camera. For each new set of camera parameters, the system

computes the visible set — the set of octree nodes that the user sees. According

to the user’s choice, the system can compute an approximate visible set (b), or a

conservative visible set (c). To compute an approximate visible set, iWalk uses the

prioritized-layered projection (PLP) algorithm [73]. To compute a conservative visi-

ble set, iWalk uses cPLP [74], a conservative extension of PLP. (We will review PLP
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Figure 4.1: The multi-threaded out-of-core rendering approach of the iWalk system.
For each new camera (a), the system finds the set of visible nodes using either approx-
imate visibility (b), or conservative visibility (c). For each visible node, the rendering
thread (d) sends a fetch request to the geometry cache (i), and then sends the node
to the graphics card (e). The prefetching thread (g) predicts future cameras, esti-
mates the nodes that the user would see then (h), and sends prefetch requests to the
geometry cache (i).

and cPLP shortly.) For each node in the visible set, the rendering thread (d) sends

a fetch request to the geometry cache (i), which will read the node from disk (j)

into memory. The rendering thread then sends the node to the graphics card (e) for

display (f). To avoid bursts of disk operations, the prefetching thread (g) predicts

where the user’s camera is likely to be in the next few frames. For each predicted

camera, the prefetching thread uses PLP (h) to estimate the visible set, and then

sends prefetch requests to the geometry cache (i).

4.2 Review of the PLP and cPLP Algorithms

To better understand the rendering approach, we need to review the visibility algo-

rithms that iWalk uses. When iWalk is running in approximate mode, the rendering

thread uses the prioritized-layered projection (PLP) algorithm [73]. In conserva-

tive mode, the rendering thread uses the cPLP algorithm [74]. In either mode, the

prefetching thread uses PLP.
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PLP is an approximate, from-point visibility algorithm that may be thought of as a

set of modifications to the traditional hierarchical view frustum culling algorithm [23].

First, instead of traversing the model hierarchy in a predefined order, PLP keeps the

hierarchy leaf nodes in a priority queue called the front, and traverses the nodes

from highest to lowest priority. The front is initialized with the leaf closest to the

viewpoint. When PLP visits a node, it adds it to the visible set, removes it from the

front, and adds the unvisited neighbors of the node to the front. Second, instead of

traversing the entire hierarchy, PLP works on a budget, stopping the traversal after a

certain number of primitives have been added to the visible set. Finally, PLP requires

each node to know not only its children, but also all of its neighbors.

An implementation of PLP may be simple or sophisticated, depending on the

heuristic to assign priorities to each node. Several heuristics precompute for each

node an opacity value between 0.0 and 1.0 that estimates how likely it is for the

node to occlude an object behind it. At run time, the priority of a node is found by

initializing it to 1.0, and attenuating it based on the opacity of the nodes found along

the traversal path to the node (Figure 4.2). In the next section we describe how we

use the precomputed view-dependent visibility coefficients as opacity values.

In addition to being time-critical, another key feature of PLP that iWalk exploits

is that PLP can generate an approximate visible set based on just the information

stored in the hierarchy structure file created at preprocessing time (Figure 3.1). In

other words, PLP can estimate the visible set without access to the actual scene

geometry, thus allowing us to keep invisible geometry on disk.

PLP does not guarantee image quality, and some frames may show objectionable

artifacts. To avoid this problem, the system may use cPLP [74], a conservative

extension of PLP that guarantees 100% accurate images. However, cPLP cannot find

the visible set from the HS file only, and needs to read the geometry of all potentially

visible nodes. The additional disk operations may make cPLP much slower than PLP.
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Figure 4.2: A section of the Soda Hall model. At runtime, the iWalk system uses
the prioritized-layered projection (PLP) algorithm to estimate the nodes potentially
visible from the current view frustum (outlined in yellow). The color of each node
indicates the projection priority of the node. Model courtesy of UC Berkeley.

4.3 Extensions to PLP and cPLP

In this section we present our extensions to the PLP and cPLP. We first show how to

improve the accuracy of the approximate visible set returned by PLP. Then we show

how to exploit new OpenGL extensions to improve the running time of cPLP.

4.3.1 Improving the Accuracy of PLP

In their original paper, Klosowski and Silva [73] computed the opacity of an octree

node based on the number of primitives inside the node. One problem with this

heuristic is that the number of primitives may not correlate well with visibility. A

node with many small triangles clustered together may be less likely to occlude other

nodes than a node with a single large triangle.

A better way to estimate the opacity of an octree node is to use the ratio of the

projected area of the geometry inside the node relative to the projected area of the

node’s bounding box. We use the term visibility coefficient to refer to this ratio. Of

course, the visibility coefficients depend on the current viewing direction. Computing
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these coefficients for each viewing direction at runtime would be too expensive, and

it would prevent us from achieving interactive frame rates. To avoid this problem, we

pick a number of sample viewing directions (typically 20), and precompute the coeffi-

cients for these directions (Chapter 3). At runtime, we determine the sample direction

that is closest to the current viewing direction, and use the coefficient precomputed

for that direction to approximate the opacity of an octree node.

Instead of using a single view-dependent sample to approximate the opacity of

a node, we could interpolate between a certain number of closest sample viewing

directions. In their image-based rendering system, Debevec et al. [37] use the three

closest sample viewing directions to find the weights to blend precomputed images.

We experimented with this idea, but found that the additional running time cost was

not worth the marginal gain in accuracy.

To further improve PLP’s accuracy, we also modify the way to compute a node’s

projection priority (used in the PLP front). Klosowski and Silva [73] compute pro-

jection priorities based on the number of primitives in each node, the normal of the

face shared by two nodes, and a penalty factor for adjacencies that are not star-

shaped. The number of primitives may not correlate well with visibility, and taking

into account shared faces and star-shaped adjacencies creates special cases.

Our approach to compute the node’s projection priority is based on sparse ray

tracing. We trace a certain number of rays (typically 0.1% of the total number of

pixels) from the viewpoint to the scene. Each ray has a contribution value initialized

to 1. When a ray hits a node, we assign the ray contribution to the node’s projection

priority. If multiple rays hit a node, we average their contributions. After a ray passes

through a node, we attenuate the ray’s contribution by a factor based on the opacity

of the node and the distance traveled by the ray inside the node. We terminate a

ray if its contribution falls below a certain threshold (typically 0.01). The projection

priority of a node not hit by any ray is 0.
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Figure 4.3 illustrates how the use of precomputed visibility coefficients and runtime

sparse ray tracing improves the computation of projection priorities. The figure shows

a section of the Soda Hall model seen by the user’s view frustum outlined in yellow.

The color of each octree node encodes the projection priority of the node using the

same scale used in Figure 4.2. Figure 4.3a shows the priorities computed by the

original heuristic. Notice how the priorities decrease smoothly from node to node.

Figure 4.3b shows the rays traced from the user’s point of view. Figure 4.3c shows

the priorities computed by the improved heuristic, which are more accurate. Notice

the sharp decreases in priorities from visible nodes to occluded nodes.

The improved visibility heuristic helps the system in many ways:

Better images in approximate mode: If the system is running in approximate

mode, the images generated using the improved heuristic will be more accurate

than the images generated using the original heuristic.

Better frame rates in conservation mode: If the system is running in conserva-

tive mode, frame rates will tend to improve, because the initial guess of the

visible set will be more accurate, and cPLP will need fewer operations to com-

pute a conservative visible set.

Better prefetching: Using the improved heuristic, the prefetching thread will have

a better guess of what nodes to bring from disk into memory, which reduces

cache pollution, and avoids stalls due to cache misses.

Better LOD selection: Our system uses the estimate of the visibility of an octree

node as a hint for what level of detail to use for the node. A better visibility

estimate allows us to use lower levels of detail for nodes that are likely to be

occluded, which in turn improves cache and disk bandwidth usage.
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(a) priorities using original heuristic

(b) using ray tracing to improve heuristic

(c) priorities using improved heuristic

Figure 4.3: Improving the accuracy of PLP.
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4.3.2 Improving the Running Time of cPLP

The cPLP algorithm [74] augments the approximate visible set found by PLP to make

it a conservative one. The basic idea is to keep projecting visible nodes and adding

their potentially visible neighbors (that have not been visited yet) to the front until

the front is empty. Klosowski and Silva prove that when the front is empty, all the

potentially visible nodes have been found.

Klosowski and Silva also show how to implement cPLP using image-space visibility

queries. One approach that they present (and that we implement in our system) is

using an item-buffer. First, the geometry of the visible set found so far is rendered

on the Z-buffer. Then, the bounding boxes of the nodes currently in the front are

rendered on the color buffer with a color that encodes the node number. To determine

the visible nodes, the color buffer is read back and searched for node numbers. This

approach is portable to any system that supports OpenGL, but reading back the color

buffer is still a slow operation on current graphics cards.

Another approach presented by Klosowski and Silva (and reimplemented by us) is

to use the HP occlusion test [124]. The HP test allows us to send a piece of geometry

to the graphics pipeline, and then ask the graphics card whether or not that geometry

was visible. The HP test is typically much faster than reading back the color buffer.

Unfortunately, the HP test only allows us to have one occlusion query at a time, and

the result of the query is a single boolean value.

Recently, NVIDIA solved the limitations of the HP occlusion test, and gave us the

capability we need to implement cPLP very efficiently. The newer NVIDIA graphics

cards have an occlusion query extension [110] that allows us to ask about the visibility

of multiple pieces of geometry in parallel. In addition, the result of each query is not

just a boolean flag, but a count of the number of visible pixels for the corresponding

geometry. The NVIDIA occlusion queries also run faster than the HP tests, because

they avoid pipeline stalls by running multiple queries in parallel.
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Our implementation of cPLP using the NVIDIA occlusion query extension is

roughly 3 times faster than the implementation that reads back the color buffer,

and roughly 50% faster than then implementation using HP tests. Because we as-

sume that the dataset is static, we can create an occlusion query per octree node

when the program starts, and delete the occlusion queries when the program exits.

For best performance, instead of repeatedly issuing a visibility query and then getting

its result, we issue multiple visible queries, and later get their results. This decoupling

hides the latency of the visibility tests performed by the graphics card.

Another use of the NVIDIA occlusion query extension is in LOD selection. The

count of visible pixels returned by the occlusion query of a node gives us a hint of what

level of detail to use for the node. We could also get this hint from the implementation

using an item-buffer, but not from the implementation using the HP test.

4.4 The Geometry Cache

To render a model larger than main memory, the iWalk system keeps on disk an

octree-based representation for the model (Figure 3.1), and loads on demand the

contents of the octree nodes that the user sees. Because nodes that are visible in one

frame tend to be visible in the next frame (frame-to-frame coherence), iWalk tries to

reduce the number of disk operations by maintaining a geometry cache (Figure 4.1i)

with the contents of the most recently used nodes.

As the user walks through a model, the conservative visibility thread (Figure 4.1c)

and the rendering thread (Figure 4.1d) send fetch requests to the geometry cache

(Figure 4.1i). A fetch request contains the identification of an octree node whose

contents will be rendered. The geometry cache puts the fetch requests in a queue,

and a set of fetch threads process the requests. (Butenhof [19] uses the term work

queue to refer to a set of threads that accept work requests from a common queue,
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processing them potentially in parallel.) Each fetch thread pops a request from the

fetch queue, and checks whether the contents of the requested node is in memory (a

hit) or not (a miss). In the case of a miss, the fetch thread allocates memory for the

contents of the requested node, and reads it from disk (Figure 4.1j). If the cache is

full, the least recently used nodes are evicted from memory. Finally, the fetch thread

puts the requested node in a queue for nodes that are ready to be rendered.

Since the cost of disk read operations is high, most systems try to overlap these

operations with other computations by running several processes on a multiprocessor

machine [5, 48, 53], or on a network of machines [146, 153]. Along these same lines,

our system uses threads on a single processor machine to overlap disk operations with

visibility computations and rendering.

The user can configure the number of threads that process the requests in the

fetch queue. One advantage of using multiple fetch threads is that it avoids stalls in

the rendering pipeline: if a fetch thread processes a miss, that thread will wait until

the requested node is read from disk, but the fetch threads that process hits will put

the requested nodes in the ready queue, keeping the graphics card busy. Another

advantage of using multiple fetch threads is that it gives the operating system kernel

a chance to better schedule the read operations when there are concurrent misses.

The geometry cache uses a locking mechanism to prevent multiple threads from

modifying or deleting the same node at the same time. The locking mechanism is

similar to the one used by the UNIX operating system in its buffer cache [10]. The

main difference is that the UNIX buffer cache uses multiple processes for parallelism

and signals for synchronization, and we use threads and condition variables [19].

Another difference is that the UNIX buffer cache uses buffers of fixed size, and we

use buffers of variable size.

69



4.5 The From-Point Prefetching Method

The idea behind prefetching is to predict a set of nodes that the user is likely to see

next, and bring them to memory ahead of time. Ideally, by the time the user sees those

nodes, they will be already in the cache, and the frame rates will not be affected by the

disk latency. Systems researchers have studied prefetching strategies for decades [54,

108], and many rendering systems [5, 48, 50, 143] have used prefetching successfully.

To our knowledge, all previous prefetching methods that employ occlusion culling

have been based on from-region visibility algorithms, and were designed to run on

multiprocessor machines. Our prefetching method works with from-point visibility

algorithms, and runs as a separate thread in a uniprocessor machine.

Our prefetching method exploits the fact that PLP can very quickly compute

an approximate visible set. Given the current camera (Figure 4.1a), the prefetch-

ing thread (Figure 4.1g) predicts the next camera position by simply extrapolating

the current position and the camera’s linear and angular speeds. More sophisticated

prediction schemes could consider accelerations and several prior camera locations.

For each predicted camera, the prefetching thread uses PLP (Figure 4.1h) to de-

termine which nodes the predicted camera is likely to see. For each node likely to

be visible, the prefetching thread sends a prefetch request to the geometry cache

(Figure 4.1i). The geometry cache puts the prefetch requests in a queue and a set

of prefetch threads process the requests. If there are no fetch requests pending, and

if the maximum amount of geometry that can be prefetched per frame has not been

reached, a prefetch thread will pop a request from the prefetch queue, and read the

requested node from disk (if necessary) (Figure 4.1j).

Figures 4.4–4.6 show the pseudo-code for the main routines run by the threads in

the cache. When a client makes a fetch request, a thread executes the fetch routine

(and similarly for a prefetch request). When the client is done using that node, it

must call the release routine. These routines have to be very careful about sharing
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fetch(node, ready_queue)

{

lock cache;

while (node is busy) {

wait until node is free;

}

mark node as busy;

if (node is valid) {

miss = false;

update node position;

} else {

miss = true;

allocate memory;

}

unlock cache;

if (miss) {

read node;

}

lock cache;

if (miss) {

add node to cache;

}

if (no fetches pending) {

broadcast no fetches pending;

}

unlock cache;

add node to ready_queue;

}

Figure 4.4: Pseudo-code for the fetch routine.
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prefetch(node, ready_queue)

{

lock cache;

while (there are fetch requests pending) {

wait until no fetch requests pending;

}

while (node is busy) {

wait until node is free;

}

mark node as busy;

if ((node is valid)

|| (reached max prefetch amount per frame)

|| (reached max prefetch request age)) {

can_read = false;

} else {

can_read = true;

allocate memory;

}

unlock cache;

if (can_read) {

read node;

lock cache;

add node to cache;

unlock cache;

}

add node to ready_queue;

}

Figure 4.5: Pseudo-code for the prefetch routine.

release(node)

{

lock cache;

mark node as free;

if (node is valid) {

broadcast memory available;

}

broadcast node is free;

unlock cache;

}

Figure 4.6: Pseudo-code for the release routine.
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(a) user’s view (b) cache view

Figure 4.7: A sample frame inside the power plant model. (a) The image that the
user sees. (b) The state of the nodes in the geometry cache.

the cache data structures. To guarantee mutual exclusion, there is a lock to access

the cache, and each node has a flag indicating whether it is free or busy. This scheme

is similar to the one used in the UNIX buffer cache [10]. Figure 4.7a shows the

user’s view of the UNC power plant model [147] during a walkthrough session, and

Figure 4.7b shows the state of the octree nodes in the geometry cache.

Unlike our from-point prefetching method, from-region prefetching methods de-

compose the model into cells, and precompute for each cell the geometry that the

user would see from any point in the cell. At runtime, from-region methods guess in

which cell the user will be next, and load the geometry visible from that cell ahead

of time. Our from-point prefetching method has several advantages over from-region

prefetching methods. First, from-region methods typically require long preprocessing

times (tens of hours), while our from-point method requires little preprocessing (a

few minutes). Second, the set of nodes visible from a single point is typically much

smaller than the set of nodes visible from any point in a region. Thus, our from-point

prefetching method avoids unnecessary disk operations, and has a better chance than
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a from-region method of prefetching nodes that actually will be visible soon. Third,

some from-region methods require that cells coincide with axis-aligned polygons in

the model. Our from-point method imposes no restriction on the model’s geometry.

Finally, the nodes visible from a cell may be very different from the nodes visible from

a neighbor of that cell. Thus, a from-region method may cause bursts of disk activ-

ity when the user crosses cell boundaries, while a from-point method better exploits

frame-to-frame coherence.

4.6 Experimental Results

In this section we report on the performance of our system at runtime. Our main goal

was to verify whether we could achieve interactive frame rates and acceptable image

quality. Another goal was to study how the many configuration parameters of the

system interact, and how they affect the performance perceived by the user. More

specifically, there were several questions we wanted tp answer. What is the effect

of multi-threading and prefetching on frame rates? What is the impact of frame-

to-frame coherence on frame rates? How much better is the approximate visible set

computed by PLP when using sparse ray tracing and visibility coefficients?

For the runtime tests, we used the same datasets we used for the preprocessing

tests in Chapter 3. Our test machine was different, however. For the runtime tests we

used a 2.8 GHz Pentium IV computer with 512 MB of main memory, a 35 GB SCSI

disk, and a NVIDIA Quadro 980 XGL graphics card. This machine is slightly better

than the machine we used for the preprocessing tests, but it is still an inexpensive

PC. This machine also ran Red Hat Linux 8.0.

The user can configure many parameters in our system, including geometry cache

size, number of fetch threads, number of prefetch threads, maximum amount of

prefetched geometry per frame, primitive budget for approximate visibility, target
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frame rate, and image resolution. These parameters depend mainly on the triangle

throughput of the graphics card and the disk bandwidth. For our test machine, we

found that the following configuration worked well: 256 MB of geometry cache, 8

fetch threads, 1 prefetch thread, a maximum of 2 MB of prefetched geometry per

frame, a budget of 280,000 triangles per frame for approximate visibility, a target

frame rate of 10 fps, and image resolution of 1024×768.

4.6.1 UNC Power Plant Results

To analyze the overall performance of our system, we measured the frame rates

achieved when walking through the power plant model along several predefined paths

(which enabled repeatable conditions for our experiments). Note that our algorithms

made no assumptions on the paths being known beforehand; complete camera inter-

activity is always available to the user. The first path used has 36,432 viewpoints,

visits almost every part of the model, and requires fetching a total of 900 MB of data

from disk. Using the above configuration, our system rendered the frames along that

path in 74 minutes. Only 95 frames (0.26%) caused the system to achieve less than

1 fps. The mean frame rate was 9.2 fps, and the median frame rate was 9.3 fps.

To analyze the detailed performance of our system, it is easier to use shorter paths.

For this purpose, we used a 500-frame path which required 210 MB of data to be read

from disk. If fetched independently, the maximum amount of memory necessary to

render any given frame in approximate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran tests using three

different configurations. The first configuration is entirely sequential: a single thread

is responsible for computing visibility, performing disk operations, and rendering. The

second configuration adds asynchronous fetching to the first configuration, allowing

up to 8 fetch threads. The third configuration adds an extra thread for speculative

prefetching to the second configuration, allowing up to 2 MB of geometry to be
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prefetched per frame. Figure 4.8 shows the frame rates achieved by these three

configurations for the 500-frame path. For the purely sequential configuration, we

see many downward spikes that correspond to abrupt drops in frame rates, which are

caused by the latency of the disk operations, and spoil the user’s experience. The

first spike happens because the cache is initially empty. When we add asynchronous

fetching, many of the downward spikes disappear, but too many still remain. The

user’s experience is much better, but the frame rate drops are still disturbing. When

we add speculative prefetching, all significant downward spikes disappear, and the

user experience is smooth. Note that the gain in interactivity comes entirely from

overlapping the independent operations. The three configurations achieve exactly the

same image accuracy (Figure 4.9).

Figure 4.10 shows why prefetching improves the frame rates. The charts compare

the amount of geometry that the system reads from disk per frame for the second and

third configurations described above. Prefetching greatly reduces the need to fetch

large amounts of geometry in a single frame, and thus helps the system to maintain

higher and smoother frame rates.

Figure 4.11 shows that the user speed is another important parameter in the sys-

tem, and has to be adjusted to the disk bandwidth. When the user speed increases,

the changes in the visible set are larger. In other words, as the frame-to-frame co-

herence decreases, the amount of data the system needs to read per frame increases.

Thus, caching and prefetching are more effective if the user moves at speeds compat-

ible with the disk bandwidth. The figure also indicates that higher disk bandwidth

should improve frame rates.

The frame rates reported above were obtained when the system was running in

approximate mode and with LOD management turned off. In conservative mode,

to obtain similar frame rates we need to turn on LOD management, otherwise the

frame rates are not interactive. When using LODs, the frame rates in conservative
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(c) concurrent fetching, rendering, and prefetching

Figure 4.8: Using multiple threads to improve frame rates.
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Figure 4.9: Image accuracy for a 500-frame walkthrough of the power plant model
when using approximate visibility. The vertical axis represents the fraction of correct
pixels in the approximate images in comparison to the conservative images. The
minimum accuracy was 89%, and the median accuracy was 98%.

mode are almost the same as the frame rates in approximate mode. The difference

between these configurations is the quality of the images generated. The combination

of conservative visibility with LOD management tends to produce better final images

than approximate visibility, especially for exterior views of the model.

When using approximate visibility without LODs, the nodes deemed to be visible

are rendered in full resolution, and the nodes deemed to be over the primitive budget

are not rendered at all. The final image has areas with no error and areas with large

error. In contrast, when using conservative visibility with LODs, few areas have no

error, but no area has large error. The total number of wrong pixels may be similar

between these two approaches, but the images produced by the second approach are

more pleasing to the user.

Figure 4.12 shows an interior view of the power plant model. Because this model

has very high depth complexity, the visible set is very small when the user is inside

the model. In this case, the original PLP heuristic is enough to produce very accurate

images. On the other hand, Figure 4.13 shows that for exterior views the improved

heuristic produces approximate images much closer to the conservative images.
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(b) with prefetching

Figure 4.10: Using prefetching to amortize the cost of disk operations. We measured
the amount of geometry fetched per frame without prefetching (a) and with prefetch-
ing (b). Prefetching amortizes the cost of bursts of disk operations over frames with
few disk operations, thus eliminating or alleviating most frame rate drops. The system
was configured to prefetch at most 2 MB per frame.
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(b) high user speed
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(c) normal user speed
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(d) low user speed

Figure 4.11: Adjusting the user speed to the disk bandwidth. We measured the frame
rates along a camera path inside the power plant model for different user speeds (or
equivalently, for different number of frames in the path). If the user moves too fast,
the frame rates are not smooth. The faster the user moves, the larger the changes in
occlusion, and therefore the larger the number of disk operations.
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(a) user’s view

(b) bird’s eye view

(c) bird’s eye view with octree

Figure 4.12: Interior view of the power plant model.
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(a) using original approximate visibility

(b) using improved approximate visibility

(c) using conservative visibility

Figure 4.13: Exterior view of the power plant model.
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Figure 4.14: Frame rates for the LLNL isosurface dataset.

4.6.2 LLNL Isosurface Results

For the LLNL isosurface dataset, we measured the frame rates achieved by our system

using a 615-frame camera path. This path was recorded in a session in which the user

starts by inspecting the entire model from the outside, rotating it around. The user

then moves close to a particular area of the surface, and finally moves back to see the

entire model again.

Because of the huge size of this model, approximate visibility alone, i.e., without

LOD management, is not accurate for outside views. When we combine approximate

visibility with LOD management, the images are more accurate, but still far from

correct. If we use conservative visibility alone, the frame rates are too low (up to

several minutes per frame). The only configuration able to handle this model at in-

teractive frame rates and acceptable image quality is the combination of conservative

visibility and LOD management.

Figure 4.14 shows the frame rates achieved using conservative visibility combined

with LOD management. The overall mean frame rate was 3 fps. The frame rates

when the user gets closer to a particular area are higher because a large part of the

model is not visible then.
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4.6.3 Summary of Rendering Results

Using an inexpensive PC, our system was able to render both the UNC power plant

and the LLNL isosurface at interactive frame rates and acceptable image quality. The

use of multiple threads for asynchronous fetching and prefetching greatly improves

the frame rates, but the performance of the system is heavily dependent on frame-to-

frame coherence. The use of sparse ray tracing and visibility coefficients significantly

increases the accuracy of the approximate visible set estimated by PLP. With better

visibility estimation, the system delivers better images when running in approximate

mode and better frame rates in conservative mode. The system brings to memory

data that is more likely to be visible, and has a better hint (than distance or projected

area) for LOD selection.

For the UNC power plant model, the best previously published out-of-core render-

ing results are from the ray tracing system of Wald et al. [146]. Our system achieves

higher frame rates than theirs, but their system delivers better image quality.

For the LLNL dataset, the best out-of-core rendering results are from Lind-

strom [82]. Despite not using occlusion culling, his system is able to deliver frame

rates similar to the ones achieved by our system on similar hardware.
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Chapter 5

Out-Of-Core Parallel Rendering

Chapter 4 described the out-of-core rendering approach of the iWalk system. Al-

though iWalk is able to handle models larger than main memory, it only produces

low-resolution (1024×768) images at interactive frame rates. This chapter describes

a parallel system that uses iWalk as a building block, and delivers high-resolution

(4096×3072) images at the same frame rates or faster.

5.1 Choosing the Hardware

A traditional approach to parallel rendering has been to use a high-end parallel ma-

chine. More recently, with the explosive growth in power of inexpensive graphics

cards for PCs, and the availability of high-speed networks, using a cluster of PCs for

parallel rendering has become an attractive alternative, for many reasons [80, 116]:

Lower cost A cluster of commodity PCs, each costing a few thousand dollars, typ-

ically has a better price/performance ratio than a high-end, highly-specialized

supercomputer that may cost up to millions of dollars.

Technology tracking High-volume off-the-shelf parts typically improve at faster

rates than special-purpose hardware. We can upgrade a cluster of PCs much
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more frequently than a high-end system, as new inexpensive PC graphics cards

become available every 6-12 months.

Modularity and flexibility We can easily add or remove machines from the clus-

ter, and even mix machines of different kinds. We can also use the cluster for

tasks other than rendering.

Scalable capacity The aggregate computing, storage, and bandwidth capacity of a

PC cluster grows linearly with the number of machines in the cluster.

Thus we have chosen to use a cluster of PCs to drive a multi-projector tiled display

to create high resolution images.

5.2 Choosing the Parallelization Strategy

As we have discussed in Chapter 2, there are three categories of parallelization strate-

gies: sort-first, sort-middle, and sort-last [94]. Sort-first approaches divide the screen

into tiles, and assign each tile to a different processor, which is responsible for all

of the rendering in its tile. Sort-middle approaches assign an arbitrary subset of

primitives to each geometry processor, and a tile of the screen to each rasterizer. A

geometry processor transforms and lights its primitives, and then sends them to the

appropriate rasterizers. Sort-last approaches assign an arbitrary subset of the prim-

itives to each renderer. A renderer computes pixel values for its subset, and then

transfer these pixels to compositing processors.

Given our goal and constraints, we have chosen a sort-first approach for two main

reasons. First, sort-first processors implement the entire pipeline for a portion of the

screen [94], which is exactly the case for which PC graphics cards are optimized. And

second, interactive applications tend to exhibit high frame-to-frame coherence, which

sort-first approaches exploit well.
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We rejected sort-middle approaches because they require a tight integration be-

tween the geometry processing and rasterization stages, which is only available on

high-end graphics machines [4, 47, 96]. On PC graphics cards, there is no fast access

to the results of the geometry processing [116].

We rejected sort-last approaches for two main reasons. First, sort-last approaches

require very high bandwidth for pixel compositing [94]. For example, suppose each

tile of our screen has 1280×1024 pixels, and that we store 7 bytes per pixel (4 for color

and 3 for depth). If our target frame rate is 10 frames per second, each rendering

server would need 87.5 MB/s of network bandwidth just to transfer pixels. Some

researchers have addressed this problem by designing specialized hardware for pixel

compositing [92, 135], but these machines are expensive. The other reason why

we rejected sort-last approaches is that they would prevent us from implementing

occlusion culling based on image-space queries.

5.3 The Parallel Rendering System

To implement a sort-first approach, the main challenge is to handle the redistri-

bution step [100]. During the geometry processing, after a pre-transformation step

determines into which screen tiles each primitive falls, the primitives must become

available in main memory at the renderers responsible for those tiles. To get around

the redistribution step, some systems simply replicate in main memory the entire

model on each renderer. This approach, of course, does not scale with respect to

model size. More sophisticated systems replicate the model only on a subset of the

renderers [115]. Our system keeps a hierarchical partitioning of the model on disk,

and each renderer loads the visible parts of the model into its memory cache on de-

mand. Since the disk where we keep the model may be a shared network disk or a

local disk, this approach imposes virtually no limit on the model size.
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Figure 5.1: The out-of-core sort-first architecture.

Figure 5.1 shows a diagram of our system. A client machine is responsible for

processing user interface events. For each display tile there is a dedicated rendering

server. At each frame, the client sends the current viewing parameters to the rendering

servers. Note that the client does almost no work. The rendering servers run the

sequential rendering algorithms (from iWalk) that we presented in Chapter 4, with

a few modifications that we will discuss below. Each renderer reads the parts of

the model it needs from a shared network disk in the file server, and sends the

resulting image to one of the display projectors. Optionally, each renderer may read

its primitives from a local copy of the model. Note that this copy is on disk, not in

main memory. Since disk space is cheap, having a local copy of the model on disk

might not hurt the scalability of the system.

Each rendering server is an MPI task and runs basically the same code that iWalk

runs, with a few differences. First, since each renderer is responsible for a tile of the

display wall, it performs occlusion culling using only the part of view frustum that

belongs to it. Second, each renderer receives input events from the client through

socket communication, instead of directly from the user. Finally, to synchronize the

renderers, we add an MPI barrier at the end of the rendering loop, right before

swapping front and back buffers.
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We only use MPI to start and synchronize the servers. The client does not need to

have an MPI implementation available. The client machine only transmits the current

viewing parameters to the rendering servers, and may therefore be as lightweight as

a handheld computer. Some systems perform load balancing computations on the

client machine, in which case the client may become a bottleneck [118].

Our approach to synchronize the rendering servers is to rely on the MPI barrier,

which has a non-trivial latency. An alternative would be using multi-pipe graphics

cards with inter-pipe synchronization (genlock). Some new PC graphics cards such

as the NVIDIA FX 3000G [102] provide genlock, but their price is still prohibitive.

5.4 Experimental Results

In this section we report the results of the performance and scalability experiments

we ran for our parallel rendering system. The main goal of these experiments was to

study how the system scales with the number of processors and image resolution. We

also wanted to compare the performance of the system when the renderers read data

from a shared file server versus from a copy on a local disk. We report results for two

different clusters. The first cluster is about three years old, and the second cluster is

about one year old.

5.4.1 Results for the Old Cluster

The old cluster consisted of 16 rendering servers and a file server. Each rendering

server was a 900 MHz AMD Athlon with 512 MB of main memory, an NVIDIA

GeForce2 graphics card, and an IDE hard disk. The file server was a 400 GB disk

array composed of eight SCSI disks configured as two 200 GB striped disks. As

we have discussed, the client machine does very little processing, and therefore its

hardware details are not important. In these tests, the client machine was a 700 MHz
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Pentium III. All the machines were connected by switched gigabit ethernet, and ran

Red Hat Linux 7.2. The servers ran MPI/Pro 1.6.3 over TCP/IP for synchronization.

For the old cluster, we only ran experiments with the UNC power plant model [147]

(Figure 3.7). We ran tests on clusters of 1, 2, 4, 8, and 16 rendering servers. We

used a pre-recorded camera path of 500 frames, and for each cluster size we collected

statistics for both approximate visibility mode (using PLP) and conservative visibility

mode (using cPLP). In both cases, LOD management was turned off. For each cluster

size, we first ran the tests reading the model from the file server, and then reading

the model from copies on the local disks.

PLP Results

Here we report the results of the experiments we ran in approximate visibility mode,

i.e., using PLP to estimate the visible geometry. In typical use, we configure the

system according to the triangle throughput of the graphics cards, the bandwidth

of the disks, the desired frame rate, and the desired image accuracy. When using

a cluster of 16 rendering servers, we usually give each renderer a budget of 70,000

triangles per frame and a geometry cache of 256 MB. This configuration allows us to

generate 12-megapixel images of the power plant with a median accuracy of 99.3%

at a median frame rate of 10.8 fps. For the scalability analysis that follows, we used

instead a total budget of 400K triangles per frame, so that the system would be usable

even when configured with only one rendering server.

When we run our system in approximate mode on a single machine, the frame rates

depend mostly on the number of triangles rendered and the number of disk accesses;

the image resolution has a smaller influence. As we add more machines to the cluster,

the total resolution increases, but the resolution of each renderer remains fixed. The

total triangle budget per frame for PLP also remains fixed, thus the triangle budget

of each renderer decreases.

90



Ideally, if we doubled the number of machines in the cluster, we would get twice

the frame rate and the same image quality. In practice, several factors prevent us

from achieving that. First, there is duplication of effort. In sort-first, if a primitive

overlaps multiple tiles, it is fetched and rendered multiple times. Since the chances of

overlap increase as we add processors, the demands for I/O bandwidth and triangle

throughput also increase. There are additional communications costs as well. At the

end of each frame, there is an MPI barrier to synchronize all the servers. Finally, the

likelihood of load imbalance increases as the number of processors increases, which

may have a negative effect on both the frame rate and the image accuracy.

Figure 5.2 shows the frame rates achieved by our system when using PLP, as

we vary the cluster size (1, 2, 4, 8, and 16 PCs) and the type of disk (network or

local). 1 For these small clusters, the median frame rates (the horizontal lines in

the interior of the boxes) improved substantially with the number of PCs. On the

other hand, the spread of the frame rates (the height of the boxes) increased. For all

configurations, there were very few stalls (the horizontal lines outside the whiskers).

A surprising fact is that the disk type has almost no influence on the frame rates.

The bandwidth of our network disk, measured using the Bonnie benchmark [17] from

a rendering server, is 7.8 MB/s. The similarity between the frame rates for network

and local disks indicates that the total bandwidth required by the rendering servers

is usually less than the bandwidth of the network disk. We believe the bandwidth

requirement is so low because our caching and prefetching schemes are exploiting well

the frame-to-frame coherence in our test paths.

1How to read the box plots. (From the S-Plus user’s guide [89].) The horizontal line in the
interior of the box is located at the median of the data, and estimates the center of the distribution
for the data. The height of the box is equal to the interquartile distance, or IQD, which is the
difference between the third quartile of the data and the first quartile, and indicates the spread of
the distribution for the data. The whiskers (the dotted lines extending from the top and bottom
of the box) extend to the extreme values of the data or a distance of 1.5 × IQD from the center,
whichever is less. For data having a Gaussian distribution, approximately 99.3% of the data falls
inside the whiskers. Data points that fall outside the whiskers may be outliers and so they are
indicated by horizontal lines.
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Figure 5.2: Frame rates for PLP in the old cluster as we vary the cluster size and the
disk type. We ran tests on clusters of 1, 2, 4, 8, and 16 PCs, for both network and
local disks. The median frame rates improve substantially with the number of PCs,
and the disk type makes almost no difference.

We measured the accuracy achieved by our system for the tests above by compar-

ing the pixels in the images produced by PLP and the pixels in the correct images.

For this particular camera path, which was inside the power plant, in an area with

high depth-complexity, PLP estimates the visible set very well. For a single machine,

PLP achieves a median accuracy of 99.6%. If the triangles were uniformly distributed

across the screen, for a constant total triangle budget B, a cluster with P > 1 ren-

dering servers, each of which with a triangle budget of B/P to render its screen tile,

would achieve the same accuracy as a single machine. But typically the distribution

of the triangles is not uniform, and B/P triangles may be too few for some servers

and too many for others. For paths inside the model, this load imbalance is usually
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small, and the accuracy drops slowly with the cluster size. For the test path, the

median accuracy achieved by the cluster with 16 servers was 93%, which is high and

typical for paths inside the model. For paths outside the model, the accuracy may

be much lower, unless we turn on level-of-detail management.

cPLP Results

Here we report the results of the experiments we ran in conservative visibility mode,

i.e., using cPLP to estimate the visible geometry. Conservative visibility introduces

another obstacle for ideal scalability. Recall that there is a one-to-one correspondence

between servers and projectors. Thus, when we increase the number of servers, al-

though each server becomes responsible for a smaller part of the view frustum, that

part will be rendered at higher resolution. As a result, the amount of geometry visi-

ble through that part of the view frustum that we need to fetch and render may not

decrease. In theory, it could even increase. Since the size of the problem may grow

with the cluster size, we cannot expect linear scalability. Turning on level-of-detail

management allows us to get almost linear scalability in frame rates, at the cost of

some loss in image accuracy.

Figure 5.3 shows the frame rates achieved by our system when using cPLP, as we

vary the cluster size and the type of disk. Recall that PLP can estimate a visible set

based only on the hierarchy structure file created at preprocessing time, but cPLP

needs to read the actual scene geometry. Thus, without LOD management, cPLP

needs to perform many more disk accesses than PLP, and the frame rates for cPLP

are much lower than those for PLP. In terms of scalability, even though the maximum

frame rates increase substantially with cluster size, the median frame rates remain

roughly the same. In terms of disk type, the network disk was able to match once

again the performance of the local disks, which indicates that making local copies of

the model on each server may be unnecessary.
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Figure 5.3: Frame rates for cPLP in the old cluster as we vary the cluster size and
the disk type. We ran tests on clusters of 1, 2, 4, 8, and 16 PCs, for both network
and local disks. The median frame rates stay roughly the same, and the disk type
makes almost no difference.

5.4.2 Results for the New Cluster

The new cluster consists of 8 rendering servers and a file server. Each rendering server

is a 2.8 GHz Pentium IV computer with 512 MB of main memory, a 35 GB SCSI

disk, and a NVIDIA Quadro 980 XGL graphics card. The file server is similar, but in

addition it has a 200 GB SCSI disk. The client machine is identical to the rendering

servers. The new cluster also uses gigabit ethernet for connectivity. All machines run

Red Hat Linux 8.0. The servers use MPICH 1.2.5 for synchronization.

For the new cluster, we ran experiments for both the UNC power plant model [147]

(Figure 3.7) and the LLNL isosurface dataset (Figure 3.10). We ran tests on clusters

of 1, 2, 4, and 8 rendering servers. All tests for the new cluster used conservative
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visibility in combination with LOD management. As we did for the old cluster, for

each cluster size we ran the tests first reading data from the file server, and then

reading data from copies on the local disks.

For both datasets, the mean frame rates improved substantially with the number

of PCs, and once again the disk type makes almost no difference. In practice, instead

of getting higher mean frame rates with higher variance, we prefer to put a cap on

the frame rates (typically 10 fps), and obtain lower variance. For frames that could

be rendered faster, the rendering thread waits for the frame time. Meanwhile, the

prefetching thread has a better chance to be allowed to bring data from disk into

memory, which reduces stalls due to cache misses, and lowers frame rate variance.

When using 8 rendering servers, each rendering a 1280 by 1024 tile, we were able

to render the UNC power plant model at 10 frames per second on average, with very

little variance. For the LLNL isosurface, we could sustain 4–5 frames per second for

exterior views and 8–10 frames per second for interior views.

5.4.3 Summary of Parallel Rendering Results

The sort-first parallel rendering extension of our system allows us to scale the reso-

lution of an application without any loss in performance. On the other hand, unlike

Chromium [68], our parallel architecture requires changes in the application source

code. The best parallel rendering systems for clusters we know are the ray tracing

system of Wald et al. [146] and the sort-last system of Moreland et al. [98]. The

system of Wald et al. produces more photorealistic images, while our system deliv-

ers higher frame rates and higher image resolution. Our system and the system of

Moreland et al. achieve similar results on similar hardware for the LLNL isosurface

dataset. Because their system uses a sort-last approach, it scales better than ours

with model size. On the other hand, because we use a sort-first approach, we can

take advantage of image-space occlusion queries.
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Chapter 6

Conclusions

This chapter ends the dissertation. Here we summarize our work, point out our most

important research contributions, and discuss possible directions for future work. We

end by showing how to obtain the source code for our system.

6.1 Summary

We have presented iWalk, a system for interactive and high-resolution visualization of

large datasets on commodity PCs with small memory. To handle datasets larger than

main memory, the system uses a new set of out-of-core preprocessing and runtime

algorithms. The preprocessing algorithms break the dataset into manageable pieces

using an octree, and precompute visibility information and levels of detail for each

octree node. The runtime algorithms keep the bulk of the dataset on disk, and bring

octree nodes into a memory cache on demand. To achieve interactive and smooth

frame rates, the system combines level-of-detail management with occlusion culling,

and uses multiple threads to overlap visibility computation, rasterization, fetching,

and prefetching. In addition, the system exploits recent OpenGL extensions such as

vertex arrays and occlusion queries. To produce high resolution images, a sort-first

parallel extension of the system uses a cluster of PCs to drive a multi-tile display.
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The out-of-core preprocessing and runtime algorithms are simple, efficient, and

make no assumption about the datasets. The combination of these algorithms is

a practical and scalable system that allows us to use inexpensive PCs to visualize

datasets that until recently would require expensive high-end graphics workstations.

By being able to run on inexpensive hardware, our system can help to bring visual-

ization of large datasets to a broader audience.

6.2 Contributions

The main research contributions of our work are:

An out-of-core algorithm to build an octree. Our algorithm is fast and auto-

matic, i.e., it needs no user intervention. In addition, it is incremental, i.e., it

allows us to add new data to an existing octree, which is important for some

applications (e.g., 3D scanning).

Extensions of the PLP visibility algorithm. Our ray-tracing based heuristic for

PLP provides more accurate approximate visible sets at little extra preprocess-

ing and runtime cost. Our hardware-assisted extension of cPLP, combined with

level-of-detail management, requires very little preprocessing, and makes con-

servative occlusion culling practical on commodity hardware.

An out-of-core, from-point prefetching algorithm. Our prefetching algorithm

exploits PLP’s ability to estimate a visible set without having to read geometry

from the disk or use the graphics card. The algorithm runs when the CPU is idle

waiting for the disk, the graphics card, or the next frame. Thus, a substantial

improvement in frame rates comes at almost no additional preprocessing or

runtime costs. We believe our system is the first to employ a prefetching method

based on a from-point visibility algorithm.
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An out-of-core sort-first parallel rendering architecture. The architecture is

a simple and yet effective way for an application to increase the resolution of

the output images, and obtain the same or faster frame rates. The architecture

keeps the data on disks on the server side, thus avoiding a potential bottleneck

on the client, and better utilizing the rendering power of the servers.

A system that integrates these techniques. We prove that our techniques are

practical by integrating them in a system that can handle datasets with hun-

dreds of millions of triangles. In addition, we make our system open source, so

other researchers can study it, extend it, or compare it with their own systems.

6.3 Future Work

There are many possible avenues for future work. The following list is in increasing

order of estimated difficulty to implement:

Add geometry and appearance quantization. The system currently requires 19

bytes per vertex (12 bytes for position, 3 bytes for normal, and 4 bytes for color).

We could quantize these geometry and appearance attributes to save storage.

This change would reduce the amount of data transfered from the CPU to the

graphics card, and would free up space in the cache for more octree nodes.

Eliminate geometry replication. If a triangle intersects multiple octree nodes,

the system currently replicates the triangle in all the intersected nodes. Ge-

ometry replication can easily double the size of the dataset, especially when

the spatialization granularity is fine. Eliminating this problem would be a very

welcome change to our system.

Add support for textures. The system currently does not support texture map-

ping. Adding this feature has the potential to improve the image quality signif-
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icantly. Although graphics cards have support for texture mapping, they have

very small texture memory. Thus, adding this feature should be simple, but

may not be trivial,

Finish support for volumes. The system already has some support for volume

rendering [70]. By using an out-of-core extension of a well-known cell-projection

volume rendering algorithm [150], the system is able to handle arbitrarily large

volumes, but the frame rates are not interactive yet.

Add load balancing. The major disadvantage of a sort-first architecture is the po-

tential for load imbalance among the rendering servers if the geometry clusters

on regions of the screen. Mueller [99] and Samanta [116, 117, 118] have devel-

oped techniques to resize the screen tiles dynamically. Although these dynamic

techniques promote better balancing, they do not improve frame rates neces-

sarily, because they create a bottleneck on the client. We would like to compare

these techniques with a simple static approach in which tiles are subdivided

into a number of sub-tiles equal to the number of rendering servers.

Extract and publish API. We would like to encapsulate our techniques in a li-

brary with an application programming interface that could be reused by other

systems. Sources of inspiration come from the Gang of Four [51], VTK [123],

and Optimizer [126].

Support dynamic scenes. The system assumes that the dataset is static, i.e., the

geometry does not change over time. We would like to extend the system to

handle dynamic geometry. The general case in which the whole dataset changes

may be too difficult. But the special case of localized changes, such as the ones

typical of a CAD modeling package, seems much easier to solve, although still

very challenging.
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Develop an analytic model for the system. There are many internal and exter-

nal parameters that affect the performance of the system. Internal parameters

include the maximum number of vertices per octree node, the size of the geom-

etry cache, the geometry budget for approximate visibility, and the prefetching

limit per frame, to name a few. External parameters include the CPU speed,

the triangle throughput of the graphics card, and the bandwidths and latencies

of the disks and network connections. A model that predicted the system per-

formance given these parameters would be helpful to guide the configuration

and optimization of the system.

Optimize system parameters automatically. If we manage to describe the be-

havior of the system accurately with an analytical model, the next step would

be to implement an optimization procedure to find the best parameters for the

system without any programmer intervention.

6.4 Speculation

Today’s graphics cards are designed to support the Z-buffer algorithm. A revolution-

ary change in computer graphics will come when ray tracing becomes supported in

commodity graphics cards. The simplicity and power of the ray tracing algorithm are

just beautiful. Ray tracing has almost “built-in” occlusion culling and level-of-detail,

and produces very photorealistic images. In addition, ray tracing is a member of

the class of so-called “embarrassingly parallel” algorithms, because the color of each

pixel can be computed completely independently of the color of other pixels. If we

had a cluster of one million machines, we could allocate a machine to each pixel of our

screen. If graphics hardware continues to advance at the current pace, soon enough

a graphics card with one million ray processors will be available on game consoles.

The recent vertex program extension to OpenGL is a step in the right direction.

100



6.5 Getting the Source Code

The iWalk system is open source and is part of the GTB suite of graphics tools [25].

From the GTB sourceforge web site, you can download the source code for iWalk and

other systems based on GTB. GTB is licensed under the GNU public license.
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