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Abstract

We presen a practical systemto visualizelarge datasetsinteractively on commality
PCs. Interactive visualization has applications in many areas,including computer-
aided design,engineering.ertertainment, and training. Traditionally, visualization of
large datasetshasrequired expensiwe high-end graphicsworkstations. Recertly, with
the exponertial trend of higher performanceand lower cost of PC graphics cards,
inexpensiwe PCs are becomingan attractiv e alternative to high-end machines. But a
barrier in exploiting this potential is the small memory sizeof typical PCs.

Our systemusesnew out-of-coretechniquesto visualizedatasetsmuch larger than
main memory In a preprocessingphase,we build a hierarchical decompsition of the
dataset using an octree, precompute coe cien ts used for visibility determination,
and create levels of detail. At runtime, we use multiple threadsto overlap visibility
computation, cadhe managemenh and rasterization. The structure of the octree and
the visibility coe cien ts are kept in main memory The cortents of the octree nodes
are loaded on demandfrom disk into a cadie. To nd the visible set, we usea fast
approximate algorithm followed by a hardware-assistedconsenrative algorithm. To
hide I/0O latency, a separatethread prefetchesnodesthat arelikely to becomevisible.

We alsodescrile a sort- rst parallel extensionof the systemthat usesa cluster of
PCs to drive a high-resolution, multi-tile screen.A client processinteracts with the
user,and a set of sener processesenderthe screentiles. To avoid sendingthe ertire
datasetfrom the client to the sewersewery frame, the senersaccesshe datasetfrom
a shared le systemor from a local copy on disk. Putting the I1/O load on the sener
side makesthe network bandwidth requiremens low and the architecture scalable.

Using a cluster of 8 PCs, the system can generatehigh resolution images (10
megapixels)of large datasets(12 gigabytes) at interactive frame rates (5{10 frames
per second). Thus, our systemis a cost-e ective alternative to high-end madines,

and can help bring visualization of large datasetsto a broaderaudience.
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Chapter 1

Intro duction

This dissertationis about a set of newtechniquesfor interactive visualization of large
datasetson inexpensive PCs. Is this chapter we state this problem more precisely
de ning what we mean by interactive, large, and inexpensive. We also explain why
we care about large datasets,why we want to useinexpensive PCsto visualizethem,
and what is challengingabout solvingthis problem. Wethen presen a high-level view

of our approad to solwe this problem, and outline the remainder of the dissertation.

1.1 Goal

The goal behind this dissertationis making interactive visualization of large datasets
viable on inexpensive commality PCs. Throughout this dissertationwe usethe term
interactive visualization whenwe meanvisualization with a target renderingspeedof
10 or more framesper second(fps). We resene the term real-time visualization for
when we meanvisualization with a target of 30 or more fps. We usethe term large
datasetsto refer to a datasetthat is larger than the main memory available on the
PC beingused. And we usethe term inexpensive PC to referto a PC that costsless

than US$2,000.We assumethat this price includesa graphicscard.



1.2 Motiv ations

Why do we care about visualization of large datasets? And why do we want to use
PCsfor that? We careabout visualization of large datasetsbecauseat hasapplications

in many areas,including:
computer-aideddesignand engineering
visualization of medical data
modeling and simulation of weapons
modeling and simulation of weather and ecosystems
exploration of oil and gas
virtual training

We want to usecommality PCs to visualize large datasetsmainly becausePCs
have a better price/performanceratio than the alternatives. Traditionally, visual-
ization of large datasetshas required expensiwe high-end graphicsworkstations. Re-
certly, with the exponertial trend of higher performanceand lower costof PC graphics

cards, inexpensiwe PCs are becomingan attractiv e alternative to high-end madines.

1.3 Challenges

Performing visualization of large datasetson commadity PCsis di cult. The main
challengeis the gapthat existsbetweenthe sizeof the main memory of a commality
PC and the size of \in teresting” datasets. Of course,what is a commality PC is a
moving target, and what is interesting is subjective. To make this discussionmore
concrete,considerthe year 2003. A typical PC hasabout 512 MB of main memory;

while a machine with 16 GB of main memory would be consideredhigh-end. Still, a



numerical weather simulation would have no trouble producing hundredsof gigabytes
of data. The ubiquitous 32-bit PC cannot even addressthat much memory.

Not only doesthe gap betweendatasetand main memory sizesexist, but alsoit is
widening. Although memory sizesare growing exponertially, roughly doubling every
18 months, dataset sizesare growing faster. It is easierto produce or acquire more
data than to improve and lower the costsof main memory technology.

To bridge this gap, we needto dewelop out-of-core! algorithms, also known as
external algorithms or secondary-memoryalgorithms. Out-of-core algorithms keep
the bulk of the data on disk, and keepin main memory (or in core) only the part of
the data that is being processed.

Adapting an existing in-core algorithm to work out-of-coreis not trivial. Partial
solutions sudh as paging or virtual memory are not su cient [32 101]. Becausedisk
accesdatenciesare v e to six ordersof magnitude greaterthan main memory access
latencies[15]], an out-of-coreprogramis likely to have its running time dominated by
disk operations,and may run many times moreslowly than its in-corecournterpart. To
avoid se\ere performancedegradation,an out-of-coreprogram shouldtry to minimize
the number of disk operationsand hide the disk latency by performing disk operations
concurrertly with other operations. The performanceof out-of-coreprogramscan be
greatly improved by organizingthe data in a way that increasedocality of reference
and by prefetching data from disk into memory beforeit is needed[54].

Besidesthe relative small memory, another limitation of commality PCs that
makes visualization of large datasetsdi cult is the availability of only one graphics
card per PC. High-end graphics workstations sud as the Silicon Graphics Onyx4

UltimateVision [128 can have up to 32 graphicspipes. Having only a singlegraphics

1The word \core" is an old-fashionedterm for main memory. It dates badk to the days (1961{
1971) of ferrite core memory, an early form of non-volatile storagebuilt by hand from tiny rings of
magnetizable material threaded onto very ne wire to form large (e.g., 13"x13") rectangular arrays.
Each corestored onebit of data. The related expression\core dump" refersto a copy of the contents
of the memory, produced when a processis terminated by certain kinds of internal error [64].



pipe limits our choiceof algorithms. In a multi-pip e system, multiple tasksthat need
to accesghe graphicshardware could run in parallel. On a single-pipe system,these
operations would have to run sequetially .

Yet another limitation of commality PCs is low display resolution. When inter-
acting with large datasets, it is natural to want to visualize these datasetsat high
resolution. A high resolution image can give us insights that we would not gain by
looking at separatelow resolutionsimages. For example,compareour ability to un-
derstand a map on a large 34"x44" sheetof paper versusa booklet with 16 regular
pages,8.5"x11" ead. Similarly, looking at a 4096 3072-pixelimage of a dataset
at onceis much more informative than scrolling through it with a 1024 768-pixel

window. Looking at a large image helpsus to seethe big picture.

1.4 Solutions

In this dissertation we presert a systemthat allows us to use commality PCs to
visualize datasets much larger than main memory at interactive frame rates and
at high resolution. The system usesa set of new out-of-core techniques that are
simple and yet e ectiv e at hiding the weaknessesf PCs and exploiting the strengths
of PC graphics cards. Consideredin isolation, eat of these techniquesis pretty
straightforward. The conbination of these techniques allows us to build a system
that works under our constrains and satis es our goals (the whole is greater than
the sum of its parts).

The processof visualizing a dataset using our system consistsof a pipeline of
stepsthat can be broken down into two major phases:preprocessingand rendering
(Figure 1.1). In the preprocessingphase,we rst build a hierarchical spatial decom-
position of the dataset using an out-of-core octree. Then, we compute directional

visibility coe cien ts for eat octree node. Thesecoe cien ts are usedat runtime for
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Figure 1.1: The main stepsin ead phaseof our visualization system'spipeline.

fast and accurate approximate visible set computation. Finally, we create se\eral
levels of detail for eat octree node.

In the rendering phase,our systemusesmultiple threads (typically running on a
singleprocessor)to overlap visibility computation, cache managemen and rasteriza-
tion. The systemkeepsin main memory a description of the structure of the octree
and the coveragecoe cien ts. The cortents of the octree nodes,which are the bulk of
the data, are kept on disk, and are brought into the geometrycade in main memory
whenneeded.The cade usesa least-recetly-used replacemetn policy, which exploits
well the frame-to-framecoherenceaypical of interactive visualization sessions.

The computation of the visible setis donein two steps. First, a fast appraximate
visibility algorithm determinesan initial guessof the visible set. Then, a hardware-
assistedalgorithm augmerts this setto make it a consenative visible set. To hide
the cost of disk operations, a look-aheadthread guesseshe nodesthat the usermay
seenext, and prefetchesthose nodesinto the geometry cade.

All the stepsin both the preprocessingand rendering phasesare implemerted
using out-of-coretechniquessothat the systemcanrun on a PC with small memory.
Thesetechniques assumethat the datasetis static (i.e., the geometricinformation
doesnot changeover time), and favor interactivity over image quality. The images
producedby our systemhave Goraud-shadingquality, as supported by the graphics

card, which is acceptablefor a previewer.
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Figure 1.2: The sort- rst parallel extensionof our visualization system.

In this dissertation we also descrile a sort- rst parallel extensionof the system
(Figure 1.2). This extensionallows us to usea cluster of PCs to drive a multi-tile
screento generatehigh resolution imagesat interactive frame rates. When running
on a cluster, the system consistsof a client process,possibly running on a remote
madine, and many interconnectedsener processesgad renderingatile of the screen.

To avoid sendingthe ertire datasetfrom the client to the sewersat every frame,
which would create a bottlenedk and prevent interactivity, the seners accessthe
dataset from a shared le systemor from a local copy on disk. The client only
needsto senduser interface commandsto the se\ers, and the seners only needto
syndronize with ead other at the end of ead frame. Eadh rendering sener is
responsiblefor determining the data it needs,and for pulling the data from disk into
its cade. Putting the 1/O load on the sener side lowers the network bandwidth
requiremerts, and makesthe architecture scalableand practical.

Using this systemwe were able to usea small cluster (8 PCs) to generatehigh
resolutionimages(10 megapixels)of large datasets(12 gigabytes) at interactive frames
(5{10 frames per second). These results demonstrate that our systemis a cost-
e ectiv e alternative to high-end madhines, and can help bring visualization of large

datasetsto a broader group of people.



1.5 Outline of the Dissertation

The remainder of this dissertation is organizedas follows. Chapter 2 reviews bac-
ground material and previousworks related to ours. Chapter 3 descrikesthe out-of-
corealgorithms usedin the preprocessingphaseto build an octree for a given dataset,
precomputevisibility coe cien ts, and createlevels of detail. Chapter 4 descrikesthe
out-of-core, multi-threaded algorithms usedin the rendering phaseto compute vis-
ibilit y, managethe memory cade, and rasterize the dataset. Chapter 5 descrikes
the sort- rst parallel extension of the rendering algorithms usedto produce high-
resolution imagesof the dataset on a multi-tile screendriven by a cluster of PCs.

Finally, Chapter 6 preserts conclusionsand discusseslirections for future work.



Chapter 2

Related W ork

In this chapter we reviewbadkground material and previousworks relatedto ours. We
start by discussingtechniquesrelated to managemen of large datasets,optimization
of the graphicspipeline, and parallel rendering. We then presen a chart comparing
our systemto previousrelated systemsbasedon the set of techniquesthey use. We

nish by discussingthe reasonswhy we chosethe techniqueswe use.

2.1 Management of Large Datasets

The generalapproad to handle datasetslarger than main memory is to break the
datasetinto manageablegieces,and bring the appropriate level of detail of eat piece
of the datasetinto memory on demand. Breaking the datasetinto piecesis known
asspatialization. Precomputing levels of detail is known as simpli cation. Managing

what piecescomein and out of memory involvescading and prefetding.

2.1.1 Spatialization

Spatialization is the processof creating a spatial subdivision for the geometricdata

of a given dataset. There are many di erent kinds of spatial data structures: octree,



k-d tree, BSP tree, hierarchy of boxes, hierarchy of spheres,and many others[119
140. Usingthesedata structures, we canspeedup seartiesand traversalsby pruning
ertire subtreesof the dataset, thus avoiding unnecessarycomputation.

Spatial data structures have beenusedsuccessfullyin many commercialand aca-
demic graphicssystems. Octreeshave beenusedin innumerable cortexts, including
view-frustum culling [23], occlusion culling [56], ray tracing [71], and volume ren-
dering [76). SGI's Optimizer [12§ usesa hierardhy of boxesto spatialize the scene
graph. Id Software's Quake 3 game[134 usesa BSP tree. The QSplat system of
Rusinkiewiczand Levoy [113 usesa hierarchy of spheres.

Spatial data structures are particularly useful for visualization of datasetslarger
than main memory If we have a spatial partitioning of the dataset, we can render
the entire dataset, one part at time, aslong as ead part is small enoughto t in
main memory But how do we createthe spatial partitioning in the rst place?

The databaseliterature usesthe term bulk loading to refer to the out-of-core
construction of spatial data structures. Agarwal et al. [2] and Arge et al. [8] presett
bulk loading algorithms for many spatial data structures, including k-d tree, quad-
tree, and R-tree.

In Chapter 3 we presen a fast and incremenal out-of-corealgorithm to build an
octree whoseleavescortain the geometryof a given dataset. The algorithm imposesa
limit on the number of geometricprimitiv esper leaf, and savesead leafin a separate
le in a hierarchy of directories. The algorithm alsocreatesa small separate le that
cortains the overall structure of the octree. Our algorithm is similar to the algorithms
of Cignoni et al. [22] and Ueng et al. [141]], but there are somedi erences which we

will discussin Chapter 3.



2.1.2 Simpli cation

Another technique to deal with large datasetsis simpli cation, which consists of
precomputing approximate versionsof the datasetknown as levels of detail (LODSs).
Levels of detail can be discrete, cortinuous, or view-dependent.

Systemsthat use discrete levels of detail (also known as static levels of detail)
precomputese\eral simpli ed versionsof eat object or partition of the dataset, and
at runtime display the most appropriate version basedon selectioncriteria sud as
the distanceto the viewer [23 46, 49,52, 117. Static LODs may causedisturbing
artifacts when switching from onelevel to another, but they are easyto precompute
and imposevery little overheadat runtime.

Systemsthat usecortinuous(or progressie) levels of detail precomputea contin-
uous-resolutionrepresetation of the datasetthat allows smooth transition between
approximations [40, 44, 61, 83, 155. Continuous LODs take longerto compute, and
have higher runtime overheadthan static LODs, but they produceimageswith higher
delit y for a given polygon budget.

Systemsthat useview-dependen levels of detail also usea cortinuous-resolution
represemation of the dataset. In addition, thesesystemsallow a singleobject to have
multiple levelsof detail at the sametime, and selecthigher resolutionsfor parts closer
to the viewer and lower resolutionsfor parts farther from the viewer [45, 62, 86].

Recallthat oneof the motivationsto computesimpli ed versionsof a large dataset
is to be able to display it on a macdine with small memory If we want to usethe
samemacdhine to compute the simpli ed versions,the simpli cation algorithm itself
needsto be out-of-core[81, 84].

In our systemwe usestatic levelsof detail, precomputedusing a vertex clustering
technique similar to the one of Rossignacand Borrel [16, 112 127. In Chapter 3 we
discussthis technique in more detail. For more information on LODs, we refer the

readerto the recen book by Luebke et al. [87]
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2.1.3 Geometry Caching and Prefetc hing

A critical part of any systemfor visualization of datasetslarger than main memory
is, of course,the memory managemen subsystem. A simple and e ective approah
is to keepin main memory the least-recettly used(LRU) piecesof geometry[137.
This approad is particularly e ective if the piecesof the datasetthat are visible in
any given frame t togetherin the cade, and there is locality of reference,i.e., the
changesin visibility from frame to frame are small.

Cading aloneis typically not enoughto deliver smaoth frame rates. Even small
changesin visibility may causethe systemto stall becauseof bursts of disk activity.
The resulting frame ratesmay be low and with high variance,which prevert a smooth
interaction with the dataset.

One technique to alleviate this problem is speculative prefetcing, which tries to
bring into memory the piecesof geometrythat will becomevisible \soon." What is
consideredsoon may be di cult to de ne. We want to have the pieceof the dataset
that we areinterestedin readyin memorywhenwe needit, but we alsowant to avoid
polluting the cade with too many piecesthat will end up not being used[10§.

Prefetching is not a novel idea, and has been used in operating systems for
decades[54]. In computer graphics, Funkhouser et al. [50] were one of the rst
to incorporate prefetching into a visualization systemfor large datasets. Their sys-
tem partitioned the datasetinto cells,and precomputedthe cellsthat could be visible
from within ead cell. Whene\er a userertered a cell, all other cellspotentially visible
from that cell would be prefetched.

The systemwe present here also employs prefetching, but we do not precompute
cell-to-cell visibility. Instead, we estimate which cells may becomevisible for eath
position of the user at runtime. Our approad takes less preprocessingtime, and
producesa tighter estimate of the set of cellsto be prefetched. We will discussin

more detail the di erences betweenthesetwo approadesshortly.
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Most visualization systemstry to insulate the high-level software layers of the
application from the low-level layers that perform databasemanagemet A prime
exampleof such an approad is the active data repository (ADR) of Kurc et al. [75].
The ADR framework managesthe datasetstoredin one or more disks, and provides
an application with modular servicesfor memory managemet) data retrieval, and

stheduling of processes.

2.2 Graphics Pip eline Optimization

Over the years, graphicsresearbers have accunulated a large number of techniques

to optimize rendering. Thesetechniquesinclude:

badk-face culling
view-frustum culling
occlusionculling

detail culling
image-basedendering
point rendering
hardware-assistedendering

computation reordering

The next subsectiondiscusseadt of thesetechniques. The discussionis intentionally
brief. The goalis not to explain eat techniquein detail, but to provide the minimum

badkground necessaryto understandthe techniqueswe choseto usein our system.

12



2.2.1 Back-Face Culling

Badk-faceculling meansnot renderinggeometrythat facesaway from the user(avoid-
ing unnecessarycomputation). Implemerting badk-faceculling is trivial, and consists
of a simple dot product between the face normal and the viewing direction. The
OpenGL library [154 hasa ag to enablebadk-faceculling (GL_CULL FACE). It is

alsopossibleto usespatial data structures to perform hierarchical badk-face culling.

2.2.2 View-F rustum Culling

View-frustum culling meansnot rendering geometrythat is outside the eld of view
of the user'scamera(again, avoiding unnecessarycomputation). Implemerting view-
frustum culling is pretty easyas well, and typically consistsof chedking bounding
volumes(such asboxesor spheres)gainstthe planesthat de ne the viewing frustum.
Meoller and Haines[93 discussse\eral algorithms for volume/frustum intersection.
We can use a hierardical spatial partitioning of the datasetto speedup view-
frustum culling [23. Whenewer a node is totally outside (or totally inside) the view-

frustum, all of its descendats also are.

2.2.3 Occlusion Culling

Another technique to avoid unnecessarycomputation is occlusion culling, which
meansnot rendering geometry hidden by other geometry or in other words, only
rendering the geometry that is visible. Unlike bad-face culling and view-frustum
culling, occlusionculling is di cult to implemert. Visible surfacedetermination is a
hard problem that hasbeenstudied for decadeq136.

In their survey on visibility algorithms, Cohen-Or et al. [24] classify visibility
algorithms accordingto se\eral criteria. Here we brie y summarizethe criteria that

are most relevant to this dissertation:

13



From-p oint vs. from-region: Some algorithms compute visibility from the eye-
point only, while others compute visibility from a region in space. Sincethe
user often stays for a while in the sameregion, the from-region algorithms

amortize the cost of visibility computations over a number of frames.

Precomputed vs. online: Many algorithms require an o ine computation, while
others work on the y. For example, from-region algorithms require a pre-
processingstep to divide the model in regionsand compute region visibility.

From-point algorithms typically compute visibility at runtime.

Object space vs. image space: Somealgorithms (e.g., ray tracing) compute vis-
ibilit y in object space,using the 3D primitiv es. Others (e.g., Z-bu er) operate

in image space,using the discreterasterization fragmerts of the primitiv es.

Conserv ativ e vs. appro ximate: Few visibility algorithms compute exact visibil-
ity. Most algorithms are consenative, and overestimatethe set of visible prim-
itiv es. Other algorithms compute approximate visibility, and do not guarartee

nding all visible primitiv es.

The visibilit y algorithm mostrelevant to this dissertationis the prioritized-layered
projection (PLP) algorithm of Klosowski and Silva [73]. PLP is anapproximate, from-
point, object-spaceuvisibility algorithm that requiresvery little preprocessing. The
preprocessingconsistsof building a spatial partitioning for the datasetand computing
simple statistics for ead cell. At runtime PLP usesheuristicsto estimate how likely
it is for ead cell to be visible, and adds cellsto an approximate visible set up to
a user-de ned budget of geometry to be rendered per frame. Klosowski and Silva
also deweloped cPLP [74], a consenative, image-spacealgorithm that usesPLP to
obtain an initial guess,and then augmerts the approximate visible set to make it
consenative. In Chapters3 and 4 we will discussPLP and cPLP in more detail, and

presen the extensionswe have madeto thesealgorithms.
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For a detailed and comprehensie survey on visibility algorithms, pleaseconsult
the article of Cohen-Oret al. [24] Herewe limit ourselesto brie y mertioning some
of thesealgorithms to illustrate the main di erences betweenthem and PLP/cPLP .

Teller et al. [13§ deweloped the from-regionvisibility algorithm that was usedby
Funkhouseret al. [50] in their walkthrough system. The algorithm of Teller et al.
requires long preprocessingtimes, and assumesthat the models are made of axis-
alignedcells. In cortrast, PLP and cPLP require very little preprocessingand make
no assumptionsabout the geometry of the model.

Wonka et al. [157 presened a from-regionvisibility preprocessingalgorithm with
occluder fusion. Their algorithm used2 processordo overlap visibility computation
andrenderingat runtime (similarly to Garlick et al. [53]). The algorithm requiredlong
preprocessingtimes (9 hours for a model with 8 million triangles), and was limited
to 2.5D datasets. In later work, Wonka et al. [153 useda from-point approad that
neededlittle preprocessingbut they only reported results for in-core, 2.5D datasets.

Durand et al. [4]] presened a from-regionvisibility preprocessingalgorithm that
could handle 3D ernvironments, asopposedto 2.5D [152, but the algorithm required
long preprocessingtimes (33 hours for a model with 6 million triangles). Sdau-

er et al. [120 also presened a from-region 3D visibility preprocessingalgorithm,
but their largesttest model had only 0.6 million triangles.

Chhugani et al. [20] dewloped a systemthat precomputesfrom-region visibility
and levelsof detail per region. Their systemfocuseson imageaccuracy and s ableto
interactively render large datasetswith lessthan one pixel of screen-spaceleviation
and correct visibility. Unfortunately, for a model with 13 million triangles, and using
a cluster of 16 PCs, the accuracyguarartee costs128 hours of precomputation.

Hall-Holt and Rusinkiewicz[58] deweloped the visible zonealgorithm for conser-
vative visibility computation with incremenal updates. Their algorithm is able to

adieve real-time frame rates for 2D and 2.5D datasets.
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2.2.4 Detail Culling

Detail culling meansnot renderinggeometricdetails that arelikely to be unimportant
to the nal image. Detail culling relatesto the generic strategy of computing an
answer for a problem at the lowest acceptableaccuracy Detail culling is also known
aslevel-of-detail (LOD) managemenh

As we have discussedabove, typically LOD data structures are precomputed. At
runtime, the renderingengineselectsthe appropriate level of detail. Funkhouserand
Sequin [49] descriked LOD managemeh as an optimization problem that tries to
maximize image quality (benet) given the time and geometry constrains (costs).
Avila and Sdiroeder [9] and El-Sana and Chiang [42] also deweloped systemsfor
interactive out-of-corerendering basedon LOD managemeh Andujar et al. [7] and
El-Sanaet al. [43 have combined level of detail managemet with occlusion culling
in in-core rendering systems.

Continuousand view-dependent LODs tend to produceimageswith better quality
than static LODs, but static LODs are more appropriate for today's graphics hard-
ware. It is much faster to usedisplay lists or vertex arrays [154 to display a static

LOD than to loop through the individual triangles of a cortinuous LOD.

2.2.5 Image-Based Rendering

Image-basedenderingtechniquesgeneratenew image from precomputedsamplesof
the plenoptic function [1]. The plenoptic function is a 7D function that returns the
color visible from point (py; py; P;) and direction (vy;Vy;V;) at time t. Becauseof its
high dimensionality, densely sampling this function is not feasible,and researbers
have investigated using sparsesamplingsof lower-dimensionslicesof this function.
The lumigraph [55 and the light eld [77] data structures are samplingsof 4D
slicesof the plenoptic function. The lower dimensionality comesfrom xing t and

limiting the userto look at a corvex object from the outside. The concenric mosaics
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data structure [131]] is a samplingof a 3D slice of the plenoptic function that con nes
the viewing position on a planeand usesa singleangleto de ne the viewing direction.

Precomputedimagesof syrnthetic modelsor photographsof real environments can
be combined with appraximate geometryto generatea sampling of a 4D slice of the
plenoptic function [36, 37, 72]. A singleimageusedfor texture mapping [149 canbe
thought of asa samplingof a 2D slice of the plenoptic function. Many systemshave
usedimageimpostorsto replacegeometryand acceleraterendering[5, 6, 34, 38, 88,
91, 129 130 137. Imageimpostorscan be thought of as a special caseof LOD.

Image-basedenderingtechniqueshave the potertial to simultaneously easemod-
eling and speed up rendering. In particular, thesetechniquescan deliver very high
guality imagesat an almost constart cost per image. Unfortunately, preprocessing
requiremerts for image-basedendering techniquesto handle large datasetsare very
high. Our systemdoesnot useany image-basedechnique.

Thereis a large number of IBR techniques,covering a spectrum from pure geome-
try to pureimagery A detailed survey of thesetechniquesis outside the scoge of this
dissertation. For further information, we refer the readerto the SIGGRAPH course

noteson image-basedendering[35)].

2.2.6 Point Rendering

Large datasetsmay have many more polygonsthan the available screenhas pixels.
As a consequenceamarny triangles may have a projected areasmallerthan a pixel. In
this case,it makessensdo renderpoint samplesinstead of triangles. Recertly, many
researbers have deweloped point-basedrendering systems[13, 57, 78, 104 113 121].

Among these systems,the QSplat system[113 and its extensionfor streaming
datasetsover a network [114 shareour goal of visualizing datasetslarger than main
memory on commadity hardware. Point rendering has also beenusedto render 3D

surfaces[33, 79] and fuzzy objects sud asclouds, re, and plants [15, 109 133.
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2.2.7 Hardw are-Assisted Rendering

As graphicsalgorithms mature, their implemertations becomeavailable in hardware
through simple application programming interfaces (APIs) sud as OpenGL [154.
Graphics cards are getting faster and more sophisticated at an amazing rate, and
exploiting the new algorithms available in hardware through OpenGL extensionsis
key to deweloping competitiv e systems. Two examplesof OpenGL extensionsthat we
exploit in our systemare vertex arrays and occlusionqueries.

The vertex array extensionusesblocks of vertices, colors, and normals to draw
primitiv es. The typesof primitiv esinclude points, lines, triangles, triangle fans, and
triangle strips. The vertex array extensionallows us to setup pointers to blocks of
data, and then call a singlefunction (glDrawElemerts) that takescare of transferring
the data from main memory to graphicscard memory, and then renderingit. Ren-
dering using glDrawElemerts is typically much faster than looping over the data and
calling the OpenGL functions for ead vertex.

There are se\eral typesof occlusionquery extensions.The HP occlusiontest [124],
lets us senda piece of geometryto the graphics hardware, and ask if that piece of
geometry would have beenvisible. A more sophisticated extension, the NVIDIA
occlusionquery[110, lets us sendvarious piecesof geometryto the graphicshardware
at the sametime, and get for ead of them the number of pixels that would have been
aected. In Chapter 4 we descrike how we exploit these extensionsto accelerate

consenative occlusionculling.

2.2.8 Computation Reordering

Sometimesa given computation consistsof independernt operations, and the nal
result does not depend on the order in which the operations are executed. In this
case,it may be possibleto restedule the execution of the operations to exploit

coherenceand obtain substartial performanceimprovemerts.
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Pharr et al. [105 deweloped a ray tracing systemfor datasetslarger than memory
that employed computation reordering. They acdhieved large rendering speedupsby
resteduling the ray intersectioncomputations. Our systemis di erent from theirs in
someaspects: they focus on photorealism, while we focus on interactivity; and they
usea regular grid to spatialize the dataset, while we usean octree. But our systems
sharea basicidea: do as much computation as possiblewith the data currertly in
memory, and delay computationsthat needdata currertly on disk. In particular, our
rasterization phasedoesnot rasterizethe visible octreenodesin a xed order. Instead,
the nodesin memory are rasterized rst, while nodeson disk are being fetched to be
rasterizedlater. The nal imageis una ected by the out-of-order execution,because
the Z-bu er algorithm sorts the primitiv esat the pixel level.

Another way improve renderingperformanceis by doing attribute clustering. Typ-
ically, the renderingenginekeepstrack of a renderingstate, which includesattributes
sud asthe current material (for example,that is how OpenGL works [154). If many
primitiv es share the same attributes, it is usually faster to render them together,
becausewe then save time that would be wasted on cortext switches.

A similar technique is mode sorting. Supposethat someprimitiv esin the dataset
are to be rendered as polygons, and other primitiv es are to be renderedas lines.
Switching from polygon rendering mode to line rendering mode takestime. If we

reorderthe traversalof the primitiv esto avoid mode changesrenderingwill be faster.

2.3 Parallel Rendering

Researbes have investigatedthe use of parallel madines for computer graphicsfor
decades. In 1983, Ullner [147 presented a ray tracing madine. In 1990, Gar-
lick et al. [53 presened the idea of exploiting multipro cessomworkstations to overlap

visibility computations with rendering.
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Many other approatesto parallel rendering have beenproposedover the years.
Molnar et al. [94] classifyparallelization strategiesin three categoriesbasedon where
in the renderingpipeline sorting for visible-surfacedetermination takesplace. Sorting
may happen during geometry preprocessing,between geometry preprocessingand
rasterization, or during rasterization. The three categoriesof parallelization strategies

are sort- rst, sort-middle, and sort-last:

Sort-rst  algorithms [66, 99, 117, 11§ distribute raw primitiv es (with unknown
screen-spaceoordinates) during geometrypreprocessing.Theseapproadesdi-
vide the 2D screeninto disjoint regions(or tiles), and assignead regionto a
di erent processor,which is responsible for all of the rendering in its region.
For ead frame, a pre-transformation step determinesthe regionsin which eat
primitiv e falls. Then a redistribution step transfers the primitivesto the ap-
propriate renderers. Sort- rst approades take advantage of frame-to-frame
coherencewell, sincefew primitiv estend to move betweentiles from oneframe
to the next. Sort-rst algorithms can also use any rendering algorithm, since
ead processorasall the information it needsto do a completerendering. Fur-
thermore, as rendering algorithms advance, sort- rst approades can take full
advantage of them. One disadwantage of sort- rst is that primitivesmay clus-
ter into regions, causingload balancing problems betweenrenderers. Another
disadwantage is that more than onerenderermay processthe sameprimitiv e if

it overlapsscreenregion boundaries.

Sort-middle algorithms [4, 47, 96] distribute screen-spacerimitiv es between the
geometry preprocessingand rasterization stages. Sort-middle approades as-
signan arbitrary subsetof primitiv esto eat geometryprocessorand a portion
of the screento ead rasterizer. A geometryprocessortransforms and lights its
primitiv es, and then sendsthem to the appropriate rasterizers. Until recerily,

this approad has beenthe most popular due to the availability of high-end
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graphics machines. One disadwantage of sort-middle approatesis that primi-
tivesmay be distributed unewenly over the screen,causingload imbalancebe-
tweenrasterizers. Sort-middle alsorequireshigh bandwidth for the transfer of

data betweenthe geometryprocessingand rasterization stages.

Sort-last approathes[59, 95 14§ distribute pixels during rasterization. They as-
sign an arbitrary subsetof the primitiv esto ead renderer. A renderer com-
putes pixel valuesfor its subset,no matter wherethey fall in the screen,and
then transfer these pixels (color and depth values) to compositing processors.
Sort-last approatesscalewell with respect to the number of primitiv es, since
they render ead primitiv e exactly once. On the other hand, they needa high
bandwidth network to handle all the pixel transfers. Another disadwantage of
sort-last approadiesis that they only determinethe nal depth of a pixel during
the composition phase,and thereforemake it di cult (if not impossible)to use

certain rendering algorithms, e.g., transparencyand anti-aliasing.

Here we will focus on recent parallel rendering systems, esgecially on systems
gearedtowards using clustersof commality PCs and renderingon multi-tile displays.

Samana et al. [117, 11§ deweloped a sort- rst rendering systemusing a network
of commadity PCs. The main focusof their work wason load balancingthe geometry
processingand rasterization work done on eat of the PCs, rather than on handling
very large models. To achieve a well balancedsystem,they deweloped dynamic screen
partitioning schemesthat predict the rendering costs of groups of triangles and at-
tempt to minimize the amourt of overlap betweentriangles and screenpartitions. A
limitation of their systemwasthat in somecaseghe screenpartitioning schemecould
becomethe bottlenedk. Another limitation was the lack of scalability with respect
to model size, as the model had to be replicated in main memory on ead of the

rendering nodesof their cluster.
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In subsequet work, Samarna et al. [114 deweloped a hybrid sort- rst/sort-last
parallel rendering algorithm, which scaledbetter with processorcourt and screen
resolution. Their new approad performs dynamic, view-dependen partitioning of
both the 3D model and the 2D screen. The objectivesthat they are addressingare
balancing the rendering load on the nodes as well as minimizing the screenspace
overlaps which require the subsequen pixel transfer and compositing step. Once
again, the geometryis replicated on ead of the nodes,and the dynamic partitioning
phasecould becomea bottlenedk and limit the frame rate.

In morerecert work, Samarna et al. [115 addressthe replication problem, storing
(in main memory) copiesof the model only in k of the available n nodes,wherek < n.
Still, neither the preprocessingphasenor the renderingphasewould be ableto handle
a model larger than main memory The systemwe presen herecan handlearbitrarily
large models (limited only by the sizeof the available secondarymemory).

Mueller [99, 100 has performedextensive experimerts usinga sort- rst rendering
system. He emphasizeghat sort- rst hasan advantage over sort-middle, becauseit
can exploit the frame-to-framecoherencanherert in interactive applications. He also
points out that sort- rst hasan advantage over sort-last, becausat doesnot require
high communication bandwidth for pixel trac. Part of Mueller's work was on the
load-balancingproblem. He designeda dynamic stchemefor partitioning the screen
sothat ead processorhas a balancedrenderingload. His algorithm is the basisfor
the work of Samana et al. [117]. Mueller alsoworked on the databasemanagemenh
problem, focusingon retained-male databaseshat t in the memory of the graphics
hardware. In corrast, we focus our work on immediate-made databasesthat are
larger than the main memory of the host hardware.

WireGL [18, 65, 66, 67] is a systemthat allows the output resolution of an un-
modi ed graphicsapplication to be scaledto the resolution of a tiled display, with

little or no lossin performance. WireGL replacesthe OpenGL driver on the client
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madine, interceptsthe OpenGL calls, and sendsthe calls over a high-speednetwork
to senerswhich renderthe geometry WireGL includesan e cien t network protocol,
a geometry bucketing scheme,and an OpenGL state tracking algorithm. WireGL is
able to sustain rendering performanceof over 70 million triangles per secondon a
32-nade cluster. It assumeshowewer, that the ertire model ts in the main memory
of the client machine. Another limitation is that the geometry bucketing algorithm
assumeghat the geometry primitiv esthat are closeto ead other in the GL stream
are also closetogether spatially, which may not be the case.

Chromium [68] is a systemthat, as WireGL, replacesthe OpenGL driver. Chro-
mium is much more exible than WireGL, and lets a programmercreateapplications
using stream processingunits (SPUs). For example, a \pack™ SPU on the client
side interceptsthe OpenGL calls, packs the OpenGL streaminto buckets, and sends
the buckets over the network to a renderingsener. The renderingsener unpads the
OpenGL streamfrom the network, and usesa \render" SPU to generatepixels. SPUs
are free to changethe OpenGL stream, and can be chained. For example,there are
SPUsto invert the colors, or add alpha blending, or display hidden lines.

Chromium has beenusedto re-implemen WireGL, and implemert other sort-
rst and sort-last systems[14]. One disadvantage of Chromium is that it doesnot
have built-in support for large datasets. Although it is conceiable to use Chromium
to build an out-of-corerendering system,sud a systemdoesnot yet exist. Another
disadwantage of Chromium is that if the client application doesnot (or cannot) exploit
display lists, the application performancewill su er. In our experience,even when
Chromium is running on the client macine (making the network overheaddisappear),
an immediate mode application typically achievesonly 10%of its native performance.

Lombeyda et al. [85] dewloped a parallel systemfor interactive volume render-
ing using commaity hardware. Zhang et al. [157 employed a cluster of PCs for

visualization of isosurfaceof massie datasets.
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2.4 Related Systems

Is this sectionwe compareour systemto previously published systems.When evalu-

ating a system,we asked the following questions:

Can it handlelarge datasets? Doesit useprefetcing?

Doesit run on commality PCs? Doesit exploit hardware support?

Is the preprocessingfast? Doesit renderin high resolution?
Doesit useocclusionculling? Can it handle arbitrary 3D models?
Is occlusionculling from-point? Can it handle dynamic geometry?
Doesit support LODs? Doesit run unmodi ed programs?

Doesit useimageimpostors?

Table 2.1 summarizesthe answersto thesequestionsfor the systemsmost related to
ours. We now briey review eat of the systemsin Table 2.1 in chronologicalorder.
Clark [23] proposedbad in 1976many of the major techniquesstill usedtoday by
rendering systems. His ideasincluded hierarchical view frustum culling, hierarchical
simpli cation and LOD managemen hierarchical occlusionculling, and working set
managemeh (on-demandloading and least-recetly-used replacemet). It is unclear,
howewer, whether or not Clark had a working systemthat implemerted all his ideas.
Airey et al. [3] descriked a systemthat combined LOD managemehwith the idea
of precomputing visibility information for models made of axis-alignedpolygons.
Funkhouseret al. [50] were the rst to publish a systemthat supported models
larger than main memory and performed speculative prefetching. Their approad

relied on the from-regionvisibilit y algorithm of Teller et al. [13§, which requireslong
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1990 Airey's
1993 Funkhouser's
1996 VTK
1997 Cox's
1998 Optimizer
1999 MMR
2000 Prince's
2000 QSplat

2001 Jupiter
2001 Moreland's
2001 Samarna's
2001 Wald's
2002 Chromium
2002 GigaWalk
2002 OpenSG
2002 Varadhan's
2002 XFastMesh
2003 Lindstrom's
2003 Wald's
2003 Yoon's
2003 iWalk (ours)

Table 2.1: Comparisonof systemsrelated to ours.
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preprocessingimes, and assumeshat the modelsare made of axis-alignedcells. Our
approad is basedon the from-point visibility algorithm of Klosowski and Silva [73],
which requiresvery little preprocessing,and handlesarbitrary 3D geometry

The visualization toolkit (VTK) [123 is a genericcollection of libraries and tools
for developmern of renderingsystems.Many systemshave beenbuilt ontop of VTK,
but VTK haslittle support out-of-corerendering,thread-safet, and occlusionculling.

Cox [37 preserted a pagedsegmenh systemto managethe scenedatabasecade.
Cox showved that an application that cortrols pagingitself achievesmuch better per-
formancethan an application that relies on the operating system'smanagemen of
virtual memory.

The OpenGL Optimizer [125 12€ is a commercial package available from SGI
that provides an application programming interface (API) for visualization of large
models. There is a large overlap in goals between our system and Optimizer, but
our methods di er. Unfortunately, Optimizer is expensiwe, gearedtowards high-end
hardware, and it is not available for Linux. Optimizer is being discortinued and
replacedby Performer[127), which is available for Linux, and we hope will evertually
support all the featuresof Optimizer on commadity hardware. A similar product is
TGS's commercialversion of Open Inventor [139.

Aliaga et al. [5] dewloped the massive model rendering (MMR) system. MMR
employed a large number of accelerationtechniques,including replacingdistant geom-
etry with imageimpostors, managinglevels of detail, and culling occludedgeometry
MMR wasperhapsthe rst publishedsystemto handlemodelswith tensof millions of
polygonsat interactive frame rates. On the other hand, MMR required weeksof pre-
processingtime and expensiwe high-end graphicsworkstations. Our systemrequires
much lesspreprocessingtime, and runs on commality PCs.

Prince [107 preserted an out-of-core extensionfor the progressie meshesdata

structure [61]. Prince useda regular grid to spatialize the dataset, and did not use
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occlusionculling. His systemrelied on systemcalls of the Windows APl to manage
virtual memory, and was limited to datasetsof at most 2GB on 32-bit madhines. It

is unclear how Prince implemerted prefetching, becausehis systemdid not support

asyndironous data loading. It is also unclear how well his system would perform
for truly large datasets,becausePrince only reported results for datasetsthat were
smallerthan the memory of the test madine.

Rusinkiewiczand Levoy [113 deweloped QSplat, a point-based rendering system
for massive meshes.QSplat employs all the accelerationtechniquesour systemem-
ploys, exceptfor occlusionculling. QSplat is able to render billion-triangle meshesat
interactive frame rates with very acceptableimage quality. An extensionof QSplat
supports streaming massive meshesover a slov network connection[114.

Bartz et al. [11] presertied the Jupiter toolkit for visualization of large datasets.
Jupiter is a joint e ort between HP and the University of Tubingen. The toolkit
supports occlusion culling and level-of-detail managemenh Out-of-core and parallel
renderingare currently being added.

Moreland et al. [98] presened a sort-last parallel renderingsystemfor visualization
of large datasetson a display wall driven by a cluster of PCs. Their systemscales
very well with data size,and is ableto generatel2-megapixeimagesof a model with
half a billion triangles at almost interactive frame rates.

Samarna etal.[115 116 117 118 dewelopeda parallel renderingsystemfor display
walls driven by a cluster of PCs. As we have mertioned, the focus of their researt
was on load balancing algorithms, not on out-of-corerendering.

Wald et al. [149 deweloped a ray tracing systemfor out-of-corerenderingof large
models on a cluster of PCs. A key di erence betweenour work and theirs is that
they useray tracing, and we usethe Z-bu er. Although ray tracing allows them to
usemore sophisticatedrendering algorithms, the Z-bu er allows us to exploit better

hardware support and produce higher resolution images.
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Humphreyset al. [68] developed Chromium, which we have discussedn the pre-
vious section. We mertion it here again to emphasizethat Chromium's goal is to
provide medanisms,not algorithms. It is alsoimportant to note that Chromium can
scalethe resolution of an unmadi e d client application. This feature is important if
the client application is only available in binary format, or if the application requires
a commerciallicenseper rendering node.

Baxter et al. [12] deweloped GigaWalk, an in-core rendering systemfor high-end
madines that used multiple threadsto combine occlusion culling with hierarchical
level-of-detail managemen

Reinerset al. [11]] dewloped the OpenSG scenegraph system. The OpenSG
project sharesmany of our goals, and the systemis similar in spirit to other scene
graph systemssud asPerformer[127 and Jupiter [11]. Vo et al. [144 have recerily
added multi-threading and clustering support to OpenSG.

Varadhan and Manocha [143 descriked a system for out-of-core rendering that
combined hierarchical LODs [46] and prefetching, but their systemdoesnot perform
occlusionculling, and their preprocessingstep is in-core.

DeCoro and Pajarola [39 deweloped XFastMesh,a systemfor interactive out-of-
corerenderingof large datasetsThe systemsupports view-dependert levels of detail,
but doesnot support occlusionculling, and dependson an in-core preprocessingstep.

Lindstrom [82] deweloped a systemfor out-of-corebuilding and rendering of mul-
tiresolution surfaces. His systemsupports view-dependen levels of detail, but does
not support occlusionculling.

In more recert work, Wald et al. [145 deweloped a parallel ray tracer capableof
interactively rendering dynamic geometry but they only report results for models
smaller than main memory.

Yoon et al. [159 preserted an in-core rendering system for high-end PCs that

combinesview-dependert level of details and occlusionculling.
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The last row in Table 2.1 shows the featuressupported by our system,which we
have namediW alk. No other systemsupports all the featuresthat iWalk supports.
On the other hand, iWalk doesnot support a few featuressupported by other systems.
Among thesesystems MMR is the only onethat supports imageimpostors. Although
imageimpostorsmay allow MMR to generateimageswith higher delit y at the lowest
levelsof details, imageimpostorsrequire long preprocessingimes and a large amourt
of storage. Another feature not supported by iWalk is dynamic geometry Only
Chromium [68] and the recen in-core systemof Wald et al. [143 support dynamic
geometry Finally, only Chromium is able to run unmodi ed applications.

To concludethis section,let us make it clearthat the comparisonin Table 2.1is
intentionally incomplete. We have ignored many factors that are not critical to us,

but may be important in other contexts. Thesefactors include:

vendor support code license

community support view-dependert LODs

platform availability volume rendering

userinterface photorealismlevel
documertation load balancing
code maturity collision detection

2.5 Discussion

During the dewelopmen stagesof our system, we kept two main design goals in
mind: we wanted all the steps,including preprocessingto work on a PC with small
memory, and we wanted to deliver interactive frame rates. Guided by these goals,

for ead stageof the pipeline we developed techniquesthat work out-of-coreand that
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favor interactivity over image quality. Becauseof the hugedi erence in performance
between main memory and disk, a major focus of the design of these techniques
was trying to save memory for the geometry cace and avoid disk accesses.The
combination of thesetechniquesis a systemthat is simple, practical, scalable,and
that strikes a good balance between interactivity and image quality. The system
works around the weaknesseand exploits the strengths of current PC hardware.

The algorithms we choseto usefor ead step of the pipeline are appropriate for
the speci ¢ task we are interestedin, i.e., usingcommadlity PCsto visualize datasets
larger than main memory Thesechoicesmay not be appropriate for a systemthat
can aord to keepthe ertire datasetin memory or for a systemwhosegoal is to
generatephotorealistic images. Similarly, techniques appropriate for those systems
would not be the best for our goalsand constrains.

For the spatialization data structure, we chosean octree. Although a regular grid
would have beensimpler, an octree allows us to perform hierarchical view-frustum
culling. A hierarchy of boxesor a hierarchy of sphereswould have beengood choices
aswell, but our visibility algorithms assumethat the leavesof the hierarchy form a
spatial decompsition.

For the visibility algorithms, we chose PLP and cPLP. BecausePLP is an ap-
proximate algorithm, it might produce objectionable artifacts if usedalone by the
rendering thread. Thus, we also use cPLP (implemented using the new OpenGL
occlusionquery extensions)in conbination with LODs in the renderingthread. On
the other hand, PLP is perfect for the prefetching thread. Becauseprefetcing is
speculative, an appraximate visible set is good enough. In addition, becausePLP
does not needto accessthe disk or the graphics card, the prefetching thread runs
without disturbing the other threads.

Another advantage of PLP and cPLP is that they are from-point algorithms. If

memoryis plertiful, from-regionvisibility may be a better alternative than from-point
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visibility. But if memoryis at a premium, from-point visibility is more indicated, be-
causeit givesa smaller visible set, which in turn takeslessspacein the cade, and
requiresfewer disk accessesln addition, from-point algorithms require lessprepro-
cessingtime than from-region algorithms.

For the rendering primitiv es,we choseto usetriangles, becausehey are the com-
mon denominatorof higher order primitiv es,and current graphicscardsare optimized
to rasterizetriangles. Another good choicewould have beenusingpoints asprimitiv es.

We chosenot to usedisplay lists. Renderingis fastestin current graphicscards
if the geometryis stored in display lists, but displays lists take up a lot memory. A
display list must make a copy of all data it requiresto recreatethe call sequencehat
createdit. The OpenGL implemertation also needssomeextra memory to manage
the display lists of a given cortext. If the datasetis small, this memory overhead
may not be a problem. But if the datasetis large, display lists may actually hurt
performance,becausethey could causememory thrashing. [103

We choseto use static LODs. Although cortinuous and view-dependen LODs
producesmooth transitions betweenapproximations, static LODs are better suited for
today's graphicscards. Eacd static LOD canbe storedand renderedasa vertex array,
fully utilizing the potertial of the graphics card. Continuous and view-dependen
LODs tend be CPU-bound, and leave the graphicscard under-utilized.

For the parallel extensionof our system,we chosea simple sort rst architecture,
mainly becausesort- rst allows eat rendererto run the ertire graphicspipeline for
the primitiv esin its tile. A sort-middle approad requiresfast accesdo the interme-
diate results betweenthe geometryprocessingand rasterization stagesof the graphics
pipeline, which current PC graphicscardsdo not provide. A sort-last approad would
have prevented us from using occlusionculling basedon image-spacejueries.

Early results of this work have been published elsewherd?26, 27, 28, 29, 30, 31].

In this dissertation we presert new results and techniques. Sincethe publication of
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those papers, we have addressedsomeof the issueslisted there as future work. In
particular, we have addedlevel-of-detail managemet and fast consenative occlusion
culling to the system. In addition, we have tested our system using much larger
datasets. Finally, we have updated the numbers for the experimerts preserted in
those papersto re ect our current hardware.

The large number of recent publications on out-of-core rendering indicates that
visualization of large datasetsis far from being a solved problem. We hope to show
that the techniqueswe presen hereare simple, yet usefuland powerful, and cortribute

to the advancemen of this eld.
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Chapter 3

Out-Of-Core Prepro cessing

Recall that one of our goalsis to visualize datasetsthat are larger than the main
memory available in an inexpensive PC. Our approad is to keepthe bulk of the
dataseton disk, and load on demandfrom disk into a memory cade the visible parts
of the dataset at the appropriate level of detail. Is this chapter, we descrike the
preprocessingalgorithms that partition the model, compute coe cien ts that are used

for visibility estimation, and createthe levels of details for eat part of the dataset.

3.1 Partitioning the Dataset Using an Octree

The rst preprocessingstep is to build an octree [119 that partitions the dataset
into manageablepieces. A brute-force, in-core algorithm to build the octree would
needa madine with large enoughmemoryto hold the erntire dataset. We avoid this
brute-force approad), becausewe do not want to use a separateexpensive madine
with large memory just to build the octree. The out-of-core algorithm we presen
here builds the octree directly on a machine with small memory.

The algorithm rst breaksthe model in sections that t in main memory and
then incremenally builds the octree on disk, one passfor eat section, keepingin

memory only the sectionbeing processed.
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Figure 3.1: The layout of an octree on disk. The out-of-corespatialization algorithm
builds an octree for a dataset, saving the skeleton of the octree in the hierarchy
structure (HS) le, and the geometriccortents of ead node in a separate le.

To store the octree on disk, our algorithm savesthe geometric cortents of eath
octreenodein a separate le, and createsa hierarchy structure (HS) le (Figure 3.1).
The HS le has information about the spatial relationship of the nodesin the hi-
erardy, and for ead node it cortains the node's bounding box and auxiliary data
usedfor visibility culling. The HS le is the main data structure that our rendering
approad usesto cortrol the ow of data. A key assumptionwe make is that the
HS le ts in memory That is usually a trivial assumption. For example,the size of
the HS le for the Boeing 777 dataset (Figure 3.2) is only 1.2 MB.

Figure 3.3 shaws the high-level view of the out-of-core algorithm to build an
octree for a given dataset given a maximum number of vertices per leaf. We begin
by breakingthe datasetinto sections,which is very simple. Let N be the number of
primitiv esin the dataset, and n the number of primitiv esthat the macine can hold
in memory (typically, N is much larger than n). We can create d\N=ne sectionsof at
most n primitiv esead, without bringing the ertire datasetinto memory, by reading

at most n primitiv esat a time, and writing them to a separate le. Chianget al. [2]]
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(a) exterior view (b) interior view

(c) another interior view (d) octree

Figure 3.2: The Boeing 777 datasetwith 352million triangles (7.5 GB of data). The
sizeof the octree using at most 480,000verticesper leaf is only 1.2 MB.
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octree_build(dataset, max_vertices_per_leaf)

{
break dataset in sections that fit in memory;
compute dataset bounding box b;
create empty octree with b and max_vertices_per_leaf;
save octree structure;
for (each section) {
octree_insert_section(octree.root, section);
}
}

Figure 3.3: Pseudaode for building an octree.

proposea technique that splits the datasetin spatially coheren sections.Many CAD
modelsand datasetsresulting from simulations already comeas a set of small pieces,
sothis step may not be necessary

In the next step, we createan empty octree usingthe bounding box of the dataset
and the given maximum number of verticesper leaf. If the datasetwasalready given
as a set of sections,we can compute the bounding box with a single passover the
dataset, bringing into memory one sectionat a time. Otherwise,we can computethe
bounding box while breaking the datasetinto sections.

Before proceeding,we save the structure of the octree on disk. This allows us
to make the insertion of a section completely self-conained, and the whole process
incremertal. In particular, if we add new sectionsto the datasetin the future, we
do not have to recomputethe octree from scratdh. The necessy for this incremertal
approat becameevidert when we were building octrees for models of real-world
environmernts acquired by multiple passesf 3D scanning.

In the nal high-level step, we insert the sectionsof the datasetinto the octree
oneat atime. Figure 3.4 shaws the pseuda@ode for inserting a sectioninto an octree.
We begin by loading the structure of the octree and the data for the section. Note
that we do not load the data inside the previously existing octree nodes. We only

load the structure le, which aswe have mertioned, is very small.
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octree_insert_section(octree, section)

{

load octree structure;

load section;

for (each primitive in section) {
octree_route_primitive(octree.root, primitive);

}

octree_save_data(octree);
save octree structure;
free section;

Figure 3.4: Pseudaode for inserting a sectioninto an octree.

For eath primitiv e of the section, we route the primitiv e, i.e., we nd the octree
leaf that should store the primitiv e. Figure 3.5 shows the pseuda@ode for routing
a primitive. We recursiwely seard for the leaf that intersectsthe primitiv e. If the
primitiv e intersectsmultiple leaves,we replicate the primitiv ein all intersectedleaves.
When we read a leaf, we ched if it is full, i.e., if the number of verticesin the leaf
has reathed the speci ed maximum. If the leaf is not full, we insert the primitiv e
there. Otherwise, we create eight children nodesfor the leaf, making it an internal
node, and redistribute its data amongits children.

Finally, we save the data les of the octree nodesa ected by the insertions. Fig-
ure 3.6 shavs the pseuda@ode for saving the octree data. For ead octree node that
usedto be a leaf beforethe insertion of the current section,we perform the following
steps. If the node is still a leaf, we mergethe new data with the old data (if any). If
the result of the mergeexceedghe allowed maximum number of vertices per node,
we redistribute the data, which will make the leaf into an internal node. Then, we
write the data les of the current subtree. If the node usedto be a leaf and now is
an internal node, we ched if the node usedto have data. If it did, we mergeall the
new data of the current subtreewith the old data, redistribute the data, and write
the data les. If the node usedto be empty, we just write the data les for the new

data in the current subtree.
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octree_route_primitive(node, primitive)

{
if (node is leaf) {
if (node is not full) {
insert primitive  into node;
} else {
create eight children for node;
distribute  data amongchildren;
}
} else {
for (each child) {
if (primitive intersects child) {
octree_route_primitive(child, primitive)
}
}
}
}

Figure 3.5: Pseuda@ode for routing a primitiv e.

The nal leavesmay have di erent numbers of primitiv esand volumes,but eadh
leaf will cortain at most the prede ned number of vertices. The important point is
that all insertions are local to a leaf, and therefore never require reading from disk
more than one octree node of a xed maximum size.

If we are building a datasetincremertally, a new sectionmay not t inside the
bounding box of the original dataset. In this case,to avoid rebuilding the octree
for the entire dataset, we grow the octree toward the new section. We create se\en
siblings for the current root node, and a new root that will be the parernt of the
old root and its new siblings. We repeat this until the octree does cortain the new
section,and then proceedwith the insertion as before.

The nal number of les correspnding to the leaves of the octree may be large
(e.g., tens of thousands). If we save all the les in the samedirectory, opening a
le might involve a linear sear& on the le name. To avoid this problem, we save
the octree leavesin a hierarchy of directories, where ead directory storesat most a

certain number of les (typically 25).
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octree_save_data(octree)
{
for (each node that used to be a leaf) {
if (node is leaf) {
if (node has newdata) {
if (node had old data) {
read old data;
merge with new data;
free old data;
remove old data file;
}
if (new data is too big) {
split  node;
redistribute data;

}

write data files in this subtree;
}
} else {
if (node had old data) {
merge new data of this subtree;
read old data;
merge with new data;
free old data;
remove old data file;
redistribute data;
write data files in this subtree;
} else {
write data files in this subtree;

}

Figure 3.6: Pseudaode for saving the octree data.
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Our spatialization algorithm hasthree important features:

It is an out-of-core algorithm. When adding a section, we only need memory
for the sectionitself, the hierarchy structure le, and the contents of one leaf.
The section ts in memory by construction, the sizeof HS le is negligible,and
the sizeof the contents of a leaf is limited by the maximum number of vertices

per leaf. Thus, we can create octreesfor extremely large data.

It is an incremertal algorithm. If new objects are addedto the dataset, only
the spatial regionstouched by those objects needto be updated, as opposedto
rebuilding the ertire hierarchy. This is particularly usefulfor applications that

build modelsincremertally, sud as 3D scanning.

It is fast. For ead section, the algorithm only readsa modi ed node once,

doing the insertion in the most e cien t way.

Somereseartbers have deweloped similar algorithms. Ueng et al. [14]] presened
an out-of-corealgorithm to build an on-disk octree for large unstructured tetrahedral
meshes.Both their algorithm and ours save the structure (or skeleton) of the octree
in a le, and the contents of the octree nodesin separate les. Also, both algorithms
enforcea maximum amourt of data per octree node. The main di erence is that,
when adding a new sectionto an existing octree, their algorithm may needto read
the samenode multiple times, while our algorithm only needsto read an a ected
node at most onceper section.

Cignoni et al. [22] deweloped an out-of-core algorithm for simpli cation of large
datasets. Their algorithm rst builds a raw (not indexed) octree-basecdexternal mem-
ory mesh (OEMM), and then traversesthe raw OEMM twice to build an indexed
OEMM. Our preprocessingalgorithm is similar to the rst phaseof their simpli ca-
tion algorithm. The main di erence is that they build the octree starting from the

leavesat a prede ned depth, and then mergeadjacert leaveswith few primitiv es. We
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build the octreestarting from the root, and then split leaveswith too many primitiv es.
We expect our algorithm and theirs to have similar running times.

Many other researters have deweloped spatialization algorithms with the same
goal, but di erent implemertations. The algorithm of Wald et al. [14§ createsa BSP
tree for the dataset. Pharr et al. [10§ and Prince [107 usea regular grid.

McMains et al. [90] have deweloped an out-of-core technique to build a topolog-
ical data structure for a large dataset of unordered polygons. Their data structure
supports much more functionality than we need. The extra connectivity information
is not usefulto us. We are only interestedin interactive rendering. Using a simple

octree allows us to have very fast preprocessingtimes.

3.2 Computing Visibilit y Coecien ts

The next preprocessingstep is computing visibility coe cien ts for eat octree leaf.
As we will seein more detail in Chapter 4, thesevisibility coe cien ts are used at
runtime by the prioritized-layered projection (PLP) [73 algorithm to estimate the
octreenodesthat are visible from the current viewpoint. The basicideaisto compute
a value that estimateshow likely it is for a node to block the light passingthrough
it. In their original paper, Klosowski and Silva estimatedthis likelihood basedon the
number of primitiv esin the leaf.

We improve upon Klosowski and Silva's approad by precomputing a set of view-
dependen valuesbasedon the screencoverageof the primitivesin a node relative
to the screencoverageof the node's bounding box. For ead octree leaf, we place
an arbitrary number of sample viewpoints around the octree leaf. We pick eat
viewpoint sothat when we look from the viewpoint towards the certer of the node
we are able to seethe entire node, and we maximize the projected screenareaof the

node's bounding box.
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For eath sampleviewpoint, we rasterize the node's bounding box in greenand
then the node's cortents in red over a black badkground, without depth tests. We
then read bad the frame bu er, and court the number of greenand red pixels, ngq
and n,. We approximate the probability of the node blocking light from this viewing
direction by the ratio of red pixelsto lit pixels, n,=(n, + ng).

We typically store 20 of sudh coe cients per node. At runtime, we pick the
coe cien t whosecorrespnding sampling direction is closestto the current viewing
direction. These coe cien ts are fast to precompute, cheap to store, and give us a
more accurate estimate of visibility at runtime than other simpler statistics suc as

the number of primitiv esin the node.

3.3 Creating Levels of Detall

The nal preprocessingstepis precomputinglevelsof detail. For ead octree node, we
computea small setof static levelsof detail. We usethe vertex clusteringalgorithm of
Rossignaand Borrel [113. Typically we precompute3 to 5 successig appraximations
of the data in ead octree node. Each appraximation hasroughly 1/4 of data of the
previous approximation. At runtime, the appropriate level of detail is selectedbased
on the expected cortribution of the octree node to the quality of the image.
Rossignacand Borrel [119 usetwo factors to grade a vertex: the length of the
longestedgeincidert to the vertex, and the maximum angle betweenthe edgesin-
cidert to the vertex. Unfortunately, thesefactors may be misleadingif the dataset
has beentriangulated already [87]. Sincemost of our test datasetswere already tri-
angulated when we obtained them, we searted for a di erent metric to grade the
vertices. We found that we obtained better-looking simpli ed versionsof the dataset
by ignoring the angle betweenthe edges,and weighting a vertex by the maximum

areaof the facesincident to the vertex.
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There are many reasonswhy we choseto use simple vertex clustering instead of

more sophisticatedsimpli cation approades:

Vertex clustering is very simple and very robust. In particular, it makes no

assumptionsabout the original geometry

Vertex clusteringis very fast. Simplifying a node after it is in memory is faster

than readingthe node from disk.

Vertex clustering only needsto traversethe data once,which is important for

us, becausewe are I/O bound.

The quality of the approximations producedby vertex clusteringis good enough
for an interactive previewer sud aswe want, and not much worsethan that of

more complicated, slover methods.

The error introducedby the simpli cation is bounded(in the Hausdor distance

sense)oy an intuitiv e, user-cortrolled accuracydial.

Vertex clustering does not require the construction of a topological adjacency

graph betweenfaces,edges,and vertices.

Vertex clustering produces static LODs, which are better suited for current

hardware than dynamic LODs.

Originally, we usedto employ Popinet's implemertation [104 of Lindstrom's algo-
rithm [81, 84]to compute LODs. But the computation of adjacencyinformation was
proving to be too time consumingfor very large datasets. When we started experi-
merting with a 473-million triangle dataset, we realizedwe had to sacri ce delit y to
achieve practical preprocessingtimes.

Ho et al. [6(] also use vertex clustering in their mesh compressionsystem. To
compressmeshedarger than main memory, Ho et al. advocate automatically parti-

tioning the meshinto sub-mesheghat t in memory, and compresshem separately
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ignoring intersectionsbetween neighboring regionsof the partition. Ho et al. point
out that this approad is advantageous, becauseit is simple and allows them to
leverage existing in-core simpli cation techniquesfor ead region. Hoppe [63] and
Bernardini et al. [13] also partition the input datasetinto piecessmall enoughto t
in memory, and then simplify them individually.

Iserburg and Gumhold [69] have deweloped an out-of-corecompressiontechnique
that cornverts massie meshednto a streamablerepresetation. Their focusis on one-
passdecalersthat allow for streamingdecompressiorthat can start producing mesh
triangles assoon asthe rst few bytes becomeavailable. They are more interestedin
compressiomatio than framerates. For example,the executiontime of their rendering
systemwas bound by the computation of triangle normals, which they could have
precomputed,but they chosenot to.

Iserburg and Gumhold [69 point out that they dislike the approad of simplifying
piecesof the datasetseparately becauseof the discortin uities that may beintroduced
betweenregions. We do not mind the discortinuities. In practice they are not too

disturbing, and they can be easily xed, if necessary63].

3.4 Experimen tal Results

In this sectionwe report on the performanceof our preprocessingalgorithms. One of
our goalswasto evaluate the time necessaryto preprocessa dataset. For the system
to be practical, the preprocessingstep needsto be automatic and reasonablyfast. A
few minutes or even a coupleof hoursmay be acceptable but days would be too long.

Another goal of theseexperimerts was to study the tradeo betweenthe granu-
larity of the spatialization, i.e., the choice of the maximum number v, Of vertices
per leaf, and the size of resulting octree. Finer granularity (small vi,ax) allows for

more preciseview-frustum and occlusionculling, potertially reducingthe load on the
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graphicscard. But small granularity also increasesthe chance of primitiv e replica-
tion, and increasesthe traversalload on the CPU. Coarsergranularity (large Vmax)
reducesthe traversaltime, and decreaseshe chancesof replication, but increaseghe
chancesof fetching and rendering invisible geometry Choosingthe right granularity
cana ect the running time by a factor greaterthan ten [125.

Yet another goal of these experimerts was to assesghe quality of the levels of
detail producedby vertex clustering. A commoncriticism towards vertex clustering
is that it may produce poor appraximations of the dataset. We will se below that
the quality of the appraximations is good enoughfor an interactive previewer. If the
needfor better approximations arises,we can useany other simpli cation algorithm,
becausethe simpli cation stepis orthogonalto the rest of the system.

We ran experimerts with two datasets. The rst datasetis the UNC power plant
model [147, which cortains 13 million triangles (Figures 3.7{3.9). This is a chal-
lengingmodel, becauseof its high depth complexity, which calls for occlusionculling.
View-frustum culling, even if combined with LOD managemety would render many
invisible triangles unnecessarily Another reasonwhy we ran tests with the power
plant model is that many previous systemshave usedit, which allows us to make
more objective comparisons.

The seconddatasetis the LawrenceLivermore National Laboratory (LLNL) iso-
surface dataset [97], which cortains 473 million triangles (Figure 3.10). This is a
truly massie dataset whoseoriginal sizeis 8.3 GB. After cornverting the datasetto
our own format, the sizewert up to 9.8 GB, mainly becausethe original datasetdid
not have vertex colors. We assignedto ead vertex a color that indicatesits height.

We ran the preprocessingtests on a 2.4 GHz Pertium IV computer with 512 MB
of RAM and a 250 GB IDE disk. The computer was equipped with a NVIDIA
GeForce Quadro FX 500 graphicscard. The computer's operating systemwas Red

Hat Linux 8.0. The total cost of this madine is about US$1,000.
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Figure 3.7: An exterior view of the UNC power plant [147 with 13 million triangles.
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Figure 3.8: An interior view of the UNC power plant model [147.
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Figure 3.9: Another interior view of the UNC power plant model [147.
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Figure 3.10: The LLNL isosurfacedataset[97] with 473 million triangles.
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Max vert/leaf Build time Size(MB) Depth Leaves Nodes Triangles

3750 10m03s 1052 11 72,416 82,761 30,461,154
7500 7m 51s 833 11 33,944 38,793 25,985,206
15000 6m 24s 671 10 15,177 17,345 22,073,219
30000 5m 17s 578 9 6,847 7,825 20,088,458
60000 4m 45s 510 9 3,354 3,833 18,301,106
120000 4m 16s 465 8 1,744 1,993 17,509,750
240000 3m 57s 426 8 701 801 16,215,938

Table 3.1: Building the octree for the power plant model.

3.4.1 UNC Power Plant Results
Building the Octree

The power plant model consistsof 21 sections,ead of which ts in the main memory
of the test machine. We used our out-of-core incremenal spatialization algorithm
to build the octree for the ertire model, one sectionat a time. Table 3.1 shows the
results for the construction of the octree for the power plant model. We varied the
maximum number of verticesper leaffrom 3,750to 240,000.The ner the granularity,
the longerit took to build the octree. The running time is in the order of minutes,
and it is dominated by disk readsand writes. Other researbersreport much longer
running times to spatialize this model [5, 144.

Becauseof triangle replication, the ner the granularity, the larger the size of
the octree. Figure 3.11 shows a chart with the total octree size plotted versusthe
maximum number of vertices per leaf. Basedon this chart, and runtime trial and
error, we chose15,000vertices per leaf for the rest of experimerts with this model.

Figure 3.12 shows the power plant model from another angle with the structure
of the octree superimposed. The octree shown is the onecreatedusing 120,000asthe
maximum number of verticesper leaf. Note that the grid isirregular, i.e., somenodes
arelarger (in volume) than others, which re ects the di erent density of triangles per

volume of di erent regionsof the model.
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Figure 3.11: Octree sizeversusmaximum number of verticesper leaf.
Computing Visibilit y Coecien ts

We rasterizedead octree node on a 64 64-pixelwindow, and used20 sampleview-
points. The total running time to compute the visibility coe cien ts was 2 minutes
and 36 seconds.The total sizeof the visibility coe cien ts was 711 KB. Thus, both

the time and storagerequiremers for the visibility coe cien ts are negligible.

Creating Levels of Detalil

We createdat most 5 levels of detail for ead octree node: the original data plus 4
appraoximations starting with a grid of 128 voxels per axis. Each appraximation had
roughly 1/4 of the data of the precedinglevel of detail. The total running time to
createthe level of details was8 minutesand 5 seconds.The total sizeof the additional
data was 268 MB. Figure 3.13 shows closeupviews of se\eral levels of detail of the
powerplant model. Vertex clustering doesa good job at preservingthe overall shape
of the model, even for very low polygonal courts, especially if we considerhow simple
and fast the algorithm is. Figure 3.14 shavs those samelevels of detail using regular
views, i.e., from the distancethat they would be seenat runtime. In theseviews,the

artifacts createdby vertex clustering are much lessnoticeable.
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Figure 3.12: The UNC power plant model [147 with the octree superimposed.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.13: Closeupview of se\eral levels of detail of the power plant.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.14: Regular view of seeral levels of detail of the powerplart.
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3.4.2 LLNL Isosurface Results
Building the Octree

To build the octree for the LLNL isosurfacewe usedthe limit of 480,000verticesper
leaf. The original datasethas473million triangles, and its size(after adding colors)
is 9.8 GB. The resulting octree has 561 million triangles (becauseof replication of
triangles that intersect multiple nodes), and its sizeis 10 GB. The octree has 7,393
nodes, 6,469 leaves, and the maximum depth is 5. The construction of the octree
took 1 hour and 24 minutes. The sizeof the hierarchy structure le for this octreeis

1.3 MB. Figure 3.15shaws a screenshowf the structure of this massiwe octree.

Computing Visibilit y Coe cien ts

To compute the visibility coe cients for the LLNL isosurface,we used the same
approad we usedfor the power plant model. The total running time to computethe
visibility coe cien ts was 25 minutes and 46 seconds.The total sizeof the visibility

coe cien ts was 303KB.

Creating Levels of Detall

To create the levels of detail for the LLNL isosurface,we created at most 4 ap-
proximations of the original data starting from a grid of 128 voxels per axis. Each
appraximation had at most 1/4 of the data of the previousapproximation. The total
running time to createthe levels of detail was 1 hour and 16 minutes, and the total
sizeof the approximations was 2.3 GB.

Figure 3.16 shows closeupviews of seeral levels of detail of the LLNL isosurface
dataset. Figure 3.17 shaws those samelevels of detail using regular views. Once
again, the quality of the approximations produced by vertex clustering seemsgood

enoughfor our purposes.
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Figure 3.15: The structure of the octree for the LLNL isosurface.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.16: Closeupview of se\eral levels of detail of the LLNL isosurface.
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(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.17: Regular view of se\eral levels of detail of the LLNL isosurface.
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3.4.3 Summary of the Prepro cessing Results

Our systemwas able to spatialize the UNC power plant model in about 6 minutes.
The system was also able to spatialize the LLNL isosurfacedataset, which is 20
times larger than the main memory of our test madine, in about 1.5 hours, which is
fast enoughto be practical. The computation time and storagerequiremerts for the
visibility coe cien ts werenegligible. The computation time and storagerequiremerts
for the levels of detail were low, and the quality of the appraximations produced by
vertex clustering was good enoughfor an interactive previewer.

The best numberswe know for automatic, out-of-core spatialization of the power
plant model are from Wald et al. [144: roughly 30 minutes. The actual number they
publishedin 2001is 2.5 hours, but we are estimating that our test madine is roughly
5 times faster than the one they usedthen. Thus, keepingin mind that our data
structures are di erent (we usean octree, and they usea BSP tree), it is perhapsfair
to say that our spatialization algorithm is 5 times faster than theirs.

For the LLNL isosurfacewe are unaware of any out-of-corepreprocessingiumbers
onlow-endPCs. Lindstrom [82] reports 2 hoursand 40 minutesfor anisosurfaceabout
half the size of the one we used. We cannot make a direct comparison, however,
becausehis algorithm is more sophisticated (it createsview-dependent LODs, as

opposedto static LODs), and his test madine was a high-end SGI Onyx2.
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Chapter 4

Out-Of-Core Rendering

This chapter presens our approad to render datasetslarger than main memory. So
far we have shavn how to break the dataset into manageablepieces,and how to
precompute visibility information and levels of detail for eat piece. Now we show
how to render the piecesat runtime. We start with an overview or the rendering
approad, followed by a review of the PLP and cPLP visibility algorithms. Then,
we descrilke our extensionsto PLP and cPLP, and presen our cadie managemenh

techniques,including our novel prefetching algorithm.

4.1 Overview of the Rendering Approac h

We named our rendering systemiWalk. Figure 4.1 shows a diagram of iWalk's ren-
dering approad. The userinterface (a) keepstrack of the position, oriertation, and
eld-of-view of the user'scamera. For ead new set of cameraparameters,the system
computesthe visible set| the set of octree nodesthat the user sees. According
to the user's choice, the system can compute an approximate visible set (b), or a
consenative visible set (c). To compute an approximate visible set, iWalk usesthe
prioritized-layered projection (PLP) algorithm [73]. To compute a consenrative visi-

ble set, iWalk usescPLP [74], a consenative extensionof PLP. (We will review PLP
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Figure 4.1: The multi-threaded out-of-corerendering approad of the iWalk system.
For eath newcamera(a), the system nds the setof visible nodesusing either approx-

imate visibility (b), or consenrative visibility (c). For ead visible node, the rendering
thread (d) sendsa fetch requestto the geometry cade (i), and then sendsthe node
to the graphicscard (e). The prefetching thread (g) predicts future cameras,esti-
matesthe nodesthat the userwould seethen (h), and sendsprefetch requeststo the
geometry cade (i).

and cPLP shortly.) For ead node in the visible set, the renderingthread (d) sends
a fetch requestto the geometry cadhe (i), which will read the node from disk (j)

into memory The renderingthread then sendsthe node to the graphicscard (e) for
display (f). To avoid bursts of disk operations, the prefetching thread (g) predicts
where the user'scamerais likely to be in the next few frames. For eat predicted

camera, the prefetdhing thread usesPLP (h) to estimate the visible set, and then

sendsprefetch requeststo the geometry cade (i).

4.2 Review of the PLP and cPLP Algorithms

To better understand the rendering approad), we needto review the visibility algo-
rithms that iWalk uses.When iWalk is running in approximate mode, the rendering
thread usesthe prioritized-layered projection (PLP) algorithm [73]. In consenra-
tive mode, the rendering thread usesthe cPLP algorithm [74]. In either mode, the

prefetching thread usesPLP.
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PLP isanappraximate, from-point visibilit y algorithm that may bethought of asa
setof modi cations to the traditional hierarchical view frustum culling algorithm [23].
First, instead of traversingthe model hierarchy in a prede ned order, PLP keepsthe
hierarchy leaf nodesin a priority queue called the front, and traversesthe nodes
from highestto lowest priority. The front is initialized with the leaf closestto the
viewpoint. When PLP visits a node, it addsit to the visible set removesit from the
front, and addsthe unvisited neighbors of the node to the front. Second,instead of
traversingthe ertire hierarchy, PLP works on a budget, stopping the traversalafter a
certain number of primitiv eshave beenaddedto the visible set. Finally, PLP requires
ead node to know not only its children, but alsoall of its neighbors.

An implemertation of PLP may be simple or sophisticated, depending on the
heuristic to assign priorities to eat node. Seeral heuristics precompute for eat
node an opacity value between 0.0 and 1.0 that estimateshow likely it is for the
node to occlude an object behind it. At run time, the priority of a node is found by
initializing it to 1.0, and attenuating it basedon the opacity of the nodesfound along
the traversal path to the node (Figure 4.2). In the next sectionwe descrilke how we
usethe precomputedview-dependent visibility coe cien ts as opacity values.

In addition to beingtime-critical, another key feature of PLP that iWalk exploits
is that PLP can generatean approximate visible set basedon just the information
stored in the hierarchy structure le createdat preprocessingtime (Figure 3.1). In
other words, PLP can estimate the visible set without accessto the actual scene
geometry thus allowing us to keepinvisible geometryon disk.

PLP doesnot guarartee image quality, and someframesmay shav objectionable
artifacts. To avoid this problem, the system may use cPLP [74], a consenative
extensionof PLP that guarartees100%accurateimages.Howewer, cPLP cannot nd
the visible setfrom the HS le only, and needsto readthe geometryof all potertially

visible nodes. The additional disk operationsmay make cPLP much slower than PLP.
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Figure 4.2: A section of the Sada Hall model. At runtime, the iWalk systemuses
the prioritized-layered projection (PLP) algorithm to estimate the nodespotertially

visible from the current view frustum (outlined in yellow). The color of eaty node
indicates the projection priority of the node. Model courtesy of UC Berkeley

4.3 Extensions to PLP and cPLP

In this sectionwe presett our extensionsto the PLP and cPLP. We rst shav how to
improve the accuracyof the approximate visible setreturned by PLP. Then we shov

how to exploit new OpenGL extensionsto improve the running time of cPLP.

4.3.1 Impro ving the Accuracy of PLP

In their original paper, Klosowski and Silva [73] computed the opacity of an octree
node basedon the number of primitiv es inside the node. One problem with this
heuristic is that the number of primitiv esmay not correlate well with visibility. A
node with many small triangles clusteredtogether may be lesslikely to occludeother
nodesthan a node with a singlelarge triangle.

A better way to estimate the opacity of an octree node is to usethe ratio of the
projected area of the geometryinside the node relative to the projected area of the
node's bounding box. We usethe term visibility coe cien t to refer to this ratio. Of

course,the visibility coe cien ts depend on the currernt viewing direction. Computing
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thesecoe cien ts for ead viewing direction at runtime would be too expensiw, and
it would prevernt usfrom adhieving interactive frame rates. To avoid this problem, we
pick a number of sampleviewing directions (typically 20), and precomputethe coe -
cierts for thesedirections (Chapter 3). At runtime, we determinethe sampledirection
that is closestto the current viewing direction, and usethe coe cien t precomputed
for that direction to approximate the opacity of an octree node.

Instead of using a single view-dependert sampleto approximate the opacity of
a node, we could interpolate between a certain number of closestsample viewing
directions. In their image-basedendering system, Debevec et al. [37] usethe three
closestsampleviewing directionsto nd the weights to blend precomputedimages.
We experimerted with this idea, but found that the additional running time costwas
not worth the marginal gain in accuracy

To further improve PLP's accuracy we also modify the way to compute a node's
projection priority (usedin the PLP front). Klosowski and Silva [73] compute pro-
jection priorities basedon the number of primitiv esin eat node, the normal of the
face shared by two nodes, and a penalty factor for adjacenciesthat are not star-
shaped. The number of primitiv esmay not correlate well with visibility, and taking
into accoun sharedfacesand star-shaped adjacenciesreatesspecial cases.

Our approad to compute the node's projection priority is basedon sparseray
tracing. We trace a certain number of rays (typically 0.1% of the total number of
pixels) from the viewpoint to the scene.Ead ray hasa cortribution value initialized
to 1. When aray hits a node, we assignthe ray cortribution to the node's projection
priority. If multiple rays hit a node, we averagetheir cortributions. After aray passes
through a node, we attenuate the ray's cortribution by a factor basedon the opacity
of the node and the distance traveled by the ray inside the node. We terminate a
ray if its cortribution falls below a certain threshold (typically 0.01). The projection

priority of a node not hit by any ray is O.
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Figure 4.3illustrates how the useof precomputedvisibilit y coe cien ts and runtime
sparseray tracing improvesthe computation of projection priorities. The gure shavs
a sectionof the Sada Hall model seenby the user'sview frustum outlined in yellow.
The color of ead octree node encalesthe projection priority of the node using the
samescaleused in Figure 4.2. Figure 4.3a shows the priorities computed by the
original heuristic. Notice how the priorities decreasesmoothly from node to node.
Figure 4.3b shaws the rays traced from the user's point of view. Figure 4.3c shows
the priorities computed by the improved heuristic, which are more accurate. Notice
the sharp decreasesn priorities from visible nodesto occludednodes.

The improved visibility heuristic helpsthe systemin many ways:

Better images in appro ximate mode: If the systemis running in approximate
mode, the imagesgeneratedusing the improved heuristic will be more accurate

than the imagesgeneratedusing the original heuristic.

Better frame rates in conservation mode: If the systemis running in consena-
tive mode, frame rates will tend to improve, becausethe initial guessof the
visible set will be more accurate,and cPLP will needfewer operationsto com-

pute a consenative visible set.

Better prefetc hing: Usingthe improved heuristic, the prefetching thread will have
a better guessof what nodesto bring from disk into memory, which reduces

cade pollution, and avoids stalls due to cacde misses.

Better LOD selection: Our systemusesthe estimate of the visibility of an octree
node as a hint for what level of detail to usefor the node. A better visibility
estimate allows us to uselower levels of detail for nodesthat are likely to be

occluded, which in turn improvescade and disk bandwidth usage.
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(a) priorities using original heuristic

(b) usingray tracing to improve heuristic

(c) priorities using improved heuristic

Figure 4.3: Improving the accuracyof PLP.
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4.3.2 Impro ving the Running Time of cPLP

The cPLP algorithm [74] augmerts the approximate visible setfound by PLP to make
it a consenative one. The basicideais to keepprojecting visible nodesand adding
their potertially visible neighbors (that have not beenvisited yet) to the front until
the front is empty. Klosowski and Silva prove that when the front is empty, all the
potertially visible nodeshave beenfound.

Klosowski and Silva alsoshov how to implemert cPLP usingimage-spaceisibility
gueries. One approad that they presen (and that we implemert in our system)is
using an item-bu er. First, the geometry of the visible set found so far is rendered
on the Z-bu er. Then, the bounding boxes of the nodes currertly in the front are
renderedon the color bu er with a colorthat encalesthe node number. To determine
the visible nodes,the color bu er is read badk and searted for node numbers. This
approad is portable to any systemthat supports OpenGL, but readingbadk the color
bu er is still a slow operation on current graphicscards.

Another approad presened by Klosowski and Silva (and reimplemeried by us) is
to usethe HP occlusiontest [124. The HP test allows usto senda pieceof geometry
to the graphicspipeline,and then askthe graphicscard whether or not that geometry
was visible. The HP test is typically much faster than reading bad the color bu er.
Unfortunately, the HP test only allows us to have one occlusionquery at a time, and
the result of the query is a single booleanvalue.

Recenly, NVIDIA solwedthe limitations of the HP occlusiontest, and gave usthe
capability we needto implemert cPLP very e cien tly. The newer NVIDIA graphics
cardshave an occlusionquery extension[11q that allowsusto askabout the visibility
of multiple piecesof geometryin parallel. In addition, the result of ead query is not
just a boolean ag, but a count of the number of visible pixels for the correspnding
geometry The NVIDIA occlusionqueriesalsorun faster than the HP tests, because

they avoid pipeline stalls by running multiple queriesin parallel.
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Our implemertation of cPLP using the NVIDIA occlusion query extension is
roughly 3 times faster than the implemertation that reads bad the color bu er,
and roughly 50% faster than then implemertation using HP tests. Becausewe as-
sumethat the dataset is static, we can create an occlusion query per octree node
when the program starts, and delete the occlusion querieswhen the program exits.
For best performance,instead of repeatedly issuinga visibilit y query and then getting
its result, weissuemultiple visible queries,and later gettheir results. This decoupling
hidesthe latency of the visibility tests performedby the graphicscard.

Another use of the NVIDIA occlusionquery extensionis in LOD selection. The
court of visible pixelsreturned by the occlusionquery of a node givesus a hint of what
level of detail to usefor the node. We could alsoget this hint from the implemertation

using an item-bu er, but not from the implemertation usingthe HP test.

4.4 The Geometry Cache

To render a model larger than main memory, the iWalk system keepson disk an
octree-basedrepresemation for the model (Figure 3.1), and loads on demand the
cortents of the octree nodesthat the usersees.Becausenodesthat are visible in one
frametend to be visible in the next frame (frame-to-frame coherence)jWalk tries to
reducethe number of disk operations by maintaining a geometry cade (Figure 4.1i)
with the contents of the most recerly usednodes.

As the userwalks through a model, the consenrative visibilit y thread (Figure 4.19
and the rendering thread (Figure 4.1d) send fetch requeststo the geometry cace
(Figure 4.1i). A fetch requestcortains the identi cation of an octree node whose
corntents will be rendered. The geometry cade puts the fetch requestsin a queue,
and a set of fetch threads processthe requests. (Butenhof [19 usesthe term work

gueueto refer to a set of threads that acceptwork requestsfrom a commonqueue,
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processingthem potertially in parallel.) Each fetch thread pops a requestfrom the
fetch queue,and cheds whether the contents of the requestednode is in memory (a
hit) or not (a miss). In the caseof a miss, the fetch thread allocatesmemory for the
cortents of the requestednode, and readsit from disk (Figure 4.1j). If the cade is
full, the leastrecerly usednodesare evicted from memory Finally, the fetch thread
puts the requestednode in a queuefor nodesthat are readyto be rendered.

Sincethe cost of disk read operations is high, most systemstry to overlap these
operationswith other computationsby running se\eral processe®n a multipro cessor
madine [5, 48, 53], or on a network of madines[146 153. Along thesesamelines,
our systemusesthreadson a singleprocessomacdine to overlap disk operationswith
visibility computations and rendering.

The user can con gure the number of threads that processthe requestsin the
fetch queue. One advantage of using multiple fetch threadsis that it avoids stalls in
the renderingpipeline: if a fetch thread processes miss, that thread will wait until
the requestednode is read from disk, but the fetch threadsthat processhits will put
the requestednodesin the ready queue, keepingthe graphics card busy. Another
advantage of using multiple fetch threadsis that it givesthe operating systemkernel
a chanceto better sthedulethe read operations when there are concurrert misses.

The geometry cade usesa locking medanismto prevent multiple threads from
modifying or deleting the samenode at the sametime. The locking medanism is
similar to the one usedby the UNIX operating systemin its bu er cade [10]. The
main di erence is that the UNIX bu er cahe usesmultiple processedor parallelism
and signals for syndronization, and we use threads and condition variables [19].
Another di erence is that the UNIX bu er cade usesbuers of xed size,and we

usebu ers of variable size.
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4.5 The From-P oint Prefetc hing Metho d

The idea behind prefetding is to predict a set of nodesthat the useris likely to see
next, and bring them to memoryaheadof time. Ideally, by the time the userseedhose
nodes,they will bealreadyin the cate, andthe framerateswill not be a ected by the
disk latency. Systemsresearbters have studied prefetcing strategiesfor decaded54,
108, and many rendering systems[5, 48, 50, 143 have usedprefetching successfully
To our knowledge, all previous prefetching methods that employ occlusion culling
have beenbasedon from-region visibility algorithms, and were designedto run on
multipro cessormadhines. Our prefetching method works with from-point visibility
algorithms, and runs as a separatethread in a uniprocessormadine.

Our prefetching method exploits the fact that PLP can very quickly compute
an approximate visible set. Given the current camera(Figure 4.18, the prefetch-
ing thread (Figure 4.1g predicts the next cameraposition by simply extrapolating
the current position and the camera'’slinear and angular speeds. More sophisticated
prediction schemescould consideraccelerationsand several prior cameralocations.
For eat predicted camera, the prefetching thread usesPLP (Figure 4.1h) to de-
termine which nodesthe predicted camerais likely to see. For ead node likely to
be visible, the prefetching thread sendsa prefetch requestto the geometry cade
(Figure 4.1i). The geometry cade puts the prefetch requestsin a queueand a set
of prefetch threads processthe requests. If there are no fetch requestspending, and
if the maximum amourt of geometrythat can be prefetched per frame hasnot been
reated, a prefetch thread will pop a requestfrom the prefetch queue,and read the
requestednode from disk (if necessaryXFigure 4.1)).

Figures4.4{4.6 show the pseudo-cde for the main routines run by the threadsin
the cache. When a client makesa fetch request,a thread executesthe fetch routine
(and similarly for a prefetdh request). When the client is done using that node, it

must call the releaseroutine. Theseroutines have to be very careful about sharing
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fetch(node, ready_queue)
{
lock cache;
while (node is busy) {
wait until  node is free;
}

mark node as busy;
if (node is valid) {
miss = false;
update node position;
} else {
miss = true;
allocate memory;

}

unlock cache;

if (miss) {
read node;

}

lock cache;
if (miss) {
add node to cache;

}
if (no fetches pending) {

broadcast no fetches pending;

}

unlock cache;
add node to ready_queue;

Figure 4.4: Pseudo-cde for the fetch routine.
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prefetch(node, ready_queue)

{

lock cache;

while (there are fetch requests pending) {
wait until no fetch requests pending;

}

while (node is busy) {
wait until node is free;

}

mark node as busy;

if ((node is valid)
|| (reached maxprefetch amount per frame)
|| (reached maxprefetch request age)) {
can_read = false;

} else {
can_read = true;
allocate memory;

}

unlock cache;

if (can_read) {
read node;
lock cache;
add node to cache;
unlock cache;

}

add node to ready_queue;

Figure 4.5: Pseudo-cde for the prefetch routine.

release(node)

{

lock cache;

mark node as free;

if (node is valid) ({
broadcast memoryavailable;

}

broadcast node is free;
unlock cache;

Figure 4.6: Pseudo-cde for the releaseroutine.
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(a) user'sview (b) cade view

Figure 4.7: A sampleframe inside the power plant model. (a) The imagethat the
usersees.(b) The state of the nodesin the geometrycade.

the cate data structures. To guarartee mutual exclusion,there is a lock to access
the cadhe, and ead node hasa ag indicating whetherit is freeor busy. This scheme
is similar to the one usedin the UNIX buer cade [10. Figure 4.7a shows the

user'sview of the UNC power plant model [147 during a walkthrough session,and

Figure 4.7b shaws the state of the octree nodesin the geometrycade.

Unlike our from-point prefetching method, from-region prefetching methods de-
composethe model into cells, and precompute for ead cell the geometry that the
userwould seefrom any point in the cell. At runtime, from-region methods guessin
which cell the userwill be next, and load the geometry visible from that cell ahead
of time. Our from-point prefetching method has seweral advantagesover from-region
prefetching methods. First, from-regionmethods typically require long preprocessing
times (tens of hours), while our from-point method requireslittle preprocessing(a
few minutes). Second,the set of nodesvisible from a single point is typically much
smallerthan the setof nodesvisible from any point in aregion. Thus, our from-point

prefetching method avoids unnecessarylisk operations, and hasa better chancethan
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a from-region method of prefetching nodesthat actually will be visible scon. Third,
somefrom-region methods require that cells coincide with axis-alignedpolygonsin
the model. Our from-point method imposesno restriction on the model's geometry
Finally, the nodesvisible from a cell may be very di erent from the nodesvisible from
a neighbor of that cell. Thus, a from-region method may causebursts of disk activ-
ity whenthe usercrossesell boundaries,while a from-point method better exploits

frame-to-framecoherence.

4.6 Exp erimen tal Results

In this sectionwe report on the performanceof our systemat runtime. Our main goal
was to verify whether we could achieve interactive frame rates and acceptableimage
quality. Another goal was to study how the many con guration parametersof the
systeminteract, and how they a ect the performanceperceived by the user. More
speci cally, there were se\eral questionswe wanted tp answer. What is the e ect
of multi-threading and prefetching on frame rates? What is the impact of frame-
to-frame coherenceon frame rates? How much better is the approximate visible set
computedby PLP when using sparseray tracing and visibility coe cien ts?

For the runtime tests, we usedthe samedatasetswe usedfor the preprocessing
testsin Chapter 3. Our test machine wasdi erent, howewer. For the runtime testswe
useda 2.8 GHz Pertium IV computer with 512 MB of main memory, a 35 GB SCSI
disk, and a NVIDIA Quadro 980 XGL graphicscard. This madine is slightly better
than the madine we usedfor the preprocessingtests, but it is still an inexpensiwe
PC. This madine alsoran Red Hat Linux 8.0.

The usercancon gure many parametersin our system,including geometrycade
size, number of fetch threads, number of prefetch threads, maximum amourt of

prefetched geometry per frame, primitiv e budget for approximate visibility, target
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frame rate, and image resolution. These parametersdepend mainly on the triangle
throughput of the graphicscard and the disk bandwidth. For our test madine, we
found that the following con guration worked well: 256 MB of geometry cade, 8
fetch threads, 1 prefetch thread, a maximum of 2 MB of prefetched geometry per
frame, a budget of 280,000triangles per frame for approximate visibility, a target

frame rate of 10 fps, and imageresolution of 1024 768.

46.1 UNC Power Plant Results

To analyze the overall performance of our system, we measuredthe frame rates
achieved whenwalking through the power plant model along se\eral prede ned paths
(which enabledrepeatable conditions for our experimerts). Note that our algorithms
made no assumptionson the paths being known beforehand;complete camerainter-
activity is always available to the user. The rst path usedhas 36,432viewpoints,
visits almost every part of the model, and requiresfetching a total of 900MB of data
from disk. Using the above con guration, our systemrenderedthe framesalong that
path in 74 minutes. Only 95 frames(0.26%) causedthe systemto achieve lessthan
1 fps. The meanframe rate was 9.2 fps, and the median frame rate was 9.3 fps.

To analyzethe detailed performanceof our system,it is easierto useshorter paths.
For this purpose,we useda 500-framepath which required210MB of data to beread
from disk. If fetched independerly, the maximum amourt of memory necessaryto
render any given frame in approximate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran tests using three
di erent con gurations. The rst con guration is ertirely sequetial: a singlethread
is responsiblefor computing visibilit y, performing disk operations,and rendering. The
secondcon guration adds asyndironousfetching to the rst con guration, allowing
up to 8 fetch threads. The third con guration adds an extra thread for speculative

prefetching to the secondcon guration, allowing up to 2 MB of geometry to be
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prefetched per frame. Figure 4.8 shavs the frame rates achieved by these three
con gurations for the 500-framepath. For the purely sequetial con guration, we
seemarny downward spikesthat correspnd to abrupt dropsin frame rates, which are
causedby the latency of the disk operations, and spoil the user's experience. The
rst spike happensbecausethe cade is initially empty. When we add asyndironous
fetching, many of the downward spikes disappear, but too many still remain. The
user'sexperienceis much better, but the frame rate drops are still disturbing. When
we add speculative prefetching, all signi cant downward spikes disappear, and the
user experienceis smaoth. Note that the gain in interactivity comesertirely from
overlappingthe independert operations. The three con gurations achieve exactly the
sameimage accuracy(Figure 4.9).

Figure 4.10shavs why prefetdhing improvesthe frame rates. The charts compare
the amourt of geometrythat the systemreadsfrom disk per frame for the secondand
third con gurations described above. Prefetching greatly reducesthe needto fetch
large amourts of geometryin a single frame, and thus helpsthe systemto maintain
higher and smoother frame rates.

Figure 4.11shows that the userspeedis anotherimportant parameterin the sys-
tem, and hasto be adjusted to the disk bandwidth. When the user speedincreases,
the changesin the visible set are larger. In other words, as the frame-to-frame co-
herencedecreasesthe amourt of data the systemneedsto read per frame increases.
Thus, cading and prefetching are more e ectiv e if the usermovesat speedscompat-
ible with the disk bandwidth. The gure alsoindicatesthat higher disk bandwidth
should improve frame rates.

The frame rates reported above were obtained when the systemwas running in
approximate mode and with LOD managemenh turned o. In consenative mode,
to obtain similar frame rates we needto turn on LOD managemety otherwisethe

frame rates are not interactive. When using LODs, the frame rates in consenative
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Figure 4.8: Using multiple threadsto improve frame rates.
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Figure 4.9: Image accuracyfor a 500-framewalkthrough of the power plant model
when using approximate visibility. The vertical axis represetts the fraction of correct
pixels in the approximate imagesin comparisonto the consenative images. The
minimum accuracywas 89%, and the median accuracywas 98%.

mode are almost the sameas the frame rates in approximate mode. The di erence
betweenthesecon gurations is the quality of the imagesgenerated. The combination
of consenative visibility with LOD managemehtendsto producebetter nal images
than approximate visibility, especially for exterior views of the model.

When using approximate visibility without LODs, the nodesdeemedto be visible
are renderedin full resolution, and the nodesdeemedto be over the primitiv e budget
are not renderedat all. The nal imagehasareaswith no error and areaswith large
error. In cortrast, when using consenative visibility with LODs, few areashave no
error, but no areahaslarge error. The total number of wrong pixels may be similar
betweenthesetwo approadies,but the imagesproducedby the secondapproadt are
more pleasingto the user.

Figure 4.12 shaws an interior view of the power plant model. Becausethis model
has very high depth complexity, the visible set is very small when the useris inside
the model. In this case the original PLP heuristic is enoughto producevery accurate
images. On the other hand, Figure 4.13 shows that for exterior views the improved

heuristic producesapproximate imagesmuch closerto the consenative images.
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Figure 4.10: Using prefetching to amortize the cost of disk operations. We measured
the amourt of geometryfetched per frame without prefetding (a) and with prefetd-

ing (b). Prefetching amortizesthe cost of bursts of disk operations over frameswith

fewdisk operations,thuseliminating or alleviating mostframerate drops. The system
was con gured to prefetch at most 2 MB per frame.
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Figure 4.11: Adjusting the userspeedto the disk bandwidth. We measurecthe frame
rates along a camerapath inside the power plant model for di erent userspeeds(or
equivalertly, for di erent number of framesin the path). If the usermovestoo fast,
the frame rates are not smooth. The faster the user moves,the larger the changesin
occlusion,and thereforethe larger the number of disk operations.
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(a) user'sview

(b) bird's eye view

(c) bird's eye view with octree
Figure 4.12: Interior view of the power plant model.
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(a) using original approximate visibilit y

(b) using improved approximate visibilit y

(c) using consenative visibilit y
Figure 4.13: Exterior view of the power plant model.
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Figure 4.14: Frame rates for the LLNL isosurfacedataset.

4.6.2 LLNL Isosurface Results

For the LLNL isosurfacedataset,we measuredhe frameratesacieved by our system
usinga 615-framecamerapath. This path wasrecordedin a sessiorin which the user
starts by inspecting the ertire model from the outside, rotating it around. The user
then movescloseto a particular areaof the surface,and nally movesbad to seethe
entire model again.

Becauseof the huge size of this model, approximate visibility alone,i.e., without
LOD managemet is not accuratefor outside views. When we combine approximate
visibility with LOD management the imagesare more accurate, but still far from
correct. If we use consenative visibility alone, the frame rates are too low (up to
seeral minutes per frame). The only con guration able to handle this model at in-
teractive frame rates and acceptableimagequality is the conbination of consenative
visibility and LOD managemenh

Figure 4.14shaws the frame rates achieved using consenative visibility combined
with LOD managemenh The overall mean frame rate was 3 fps. The frame rates
when the user gets closerto a particular areaare higher becausea large part of the

model is not visible then.
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4.6.3 Summary of Rendering Results

Using an inexpensive PC, our systemwas able to render both the UNC power plant
andthe LLNL isosurfaceat interactive frameratesand acceptableimagequality. The
use of multiple threads for asyndironous fetching and prefetding greatly improves
the frame rates, but the performanceof the systemis heavily dependert on frame-to-
frame coherence.The useof sparseray tracing and visibility coe cien ts signi cantly
increaseghe accuracyof the appraximate visible set estimated by PLP. With better
visibility estimation, the systemdelivers better imageswhenrunning in approximate
mode and better frame rates in conserative mode. The system brings to memory
data that is morelikely to bevisible, and hasa better hint (than distanceor projected
area) for LOD selection.

For the UNC power plant model, the best previously publishedout-of-corerender-
ing results are from the ray tracing systemof Wald et al. [144. Our systemacdieves
higher frame rates than theirs, but their systemdelivers better image quality.

For the LLNL dataset, the best out-of-core rendering results are from Lind-
strom [82]. Despite not using occlusion culling, his systemis able to deliver frame

rates similar to the onesadhieved by our systemon similar hardware.
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Chapter 5

Out-Of-Core Parallel Rendering

Chapter 4 descriked the out-of-core rendering approad of the iwalk system. Al-
though iWalk is able to handle models larger than main memory; it only produces
low-resolution (1024 768) imagesat interactive frame rates. This chapter describes
a parallel systemthat usesiWalk as a building block, and delivers high-resolution

(4096 3072)imagesat the sameframe rates or faster.

5.1 Choosing the Hardw are

A traditional approad to parallel rendering hasbeento usea high-end parallel ma-
chine. More recenly, with the explosive growth in power of inexpensiwe graphics
cardsfor PCs, and the availability of high-speednetworks, using a cluster of PCs for

parallel rendering has becomean attractiv e alternative, for many reasong80, 114:

Lower cost A cluster of commadity PCs, ead costing a few thousand dollars, typ-
ically has a better price/p erformanceratio than a high-end, highly-specialized

supercomputerthat may costup to millions of dollars.

Technology trac king High-volume o -the-shelf parts typically improve at faster

rates than special-purpose hardware. We can upgrade a cluster of PCs much
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more frequertly than a high-end system,as new inexpensive PC graphicscards

becomeavailable every 6-12 months.

Mo dularit y and exibilit y We can easily add or remove madinesfrom the clus-
ter, and even mix macdines of di erent kinds. We can also usethe cluster for

tasks other than rendering.

Scalable capacity The aggregatecomputing, storage,and bandwidth capacity of a

PC cluster grows linearly with the number of madinesin the cluster.

Thus we have chosento usea cluster of PCs to drive a multi-pro jector tiled display

to createhigh resolution images.

5.2 Choosing the Parallelization Strategy

As we have discussedn Chapter 2, there are three categoriesof parallelization strate-
gies: sort- rst, sort-middle, and sort-last [94]. Sort- rst approatesdivide the screen
into tiles, and assignead tile to a di erent processor,which is responsible for all
of the rendering in its tile. Sort-middle approades assignan arbitrary subset of
primitiv esto eat geometry processor,and a tile of the screento ead rasterizer. A
geometry processortransforms and lights its primitiv es,and then sendsthem to the
appropriate rasterizers. Sort-last approatesassignan arbitrary subsetof the prim-
itivesto ead renderer. A renderer computes pixel values for its subset, and then
transfer thesepixels to compositing processors.

Given our goal and constrairts, we have chosena sort- rst approad for two main
reasons.First, sort- rst processorsmplemert the ertire pipeline for a portion of the
screen[94], which is exactly the casefor which PC graphicscardsare optimized. And
second,interactive applicationstend to exhibit high frame-to-framecoherencewhich

sort- rst approadesexploit well.
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We rejected sort-middle approades becausethey require a tight integration be-
tweenthe geometry processingand rasterization stages,which is only available on
high-end graphicsmachines[4, 47,96]. On PC graphicscards,there is no fast access
to the results of the geometry processing[11§.

We rejectedsort-last approatesfor two main reasons.First, sort-last approates
require very high bandwidth for pixel compositing [94]. For example, supposeeadt
tile of our screenhas1280 1024pixels, and that we store 7 bytes per pixel (4 for color
and 3 for depth). If our target frame rate is 10 frames per second,ead rendering
sener would need 87.5 MB/s of network bandwidth just to transfer pixels. Some
researbers have addressedhis problem by designingspecializedhardware for pixel
compositing [92, 139, but these madines are expensive. The other reasonwhy
we rejected sort-last approadiesis that they would prevent us from implemerting

occlusionculling basedon image-spacajueries.

5.3 The Parallel Rendering System

To implemert a sort- rst approad, the main challengeis to handle the redistri-
bution step [100. During the geometry processing,after a pre-transformation step
determinesinto which screentiles eat primitiv e falls, the primitiv es must become
available in main memory at the renderersresponsiblefor thosetiles. To get around
the redistribution step, somesystemssimply replicate in main memory the ertire
model on ead renderer. This approad, of course,does not scalewith respect to
model size. More sophisticatedsystemsreplicate the model only on a subsetof the
renderers[115. Our systemkeepsa hierarchical partitioning of the model on disk,
and ead rendererloadsthe visible parts of the model into its memory cade on de-
mand. Sincethe disk where we keepthe model may be a sharednetwork disk or a

local disk, this approad imposesvirtually no limit on the model size.

87



file

client
server

user

input geometry
rendering rendering rendering

server server server
image image image

projector projector projector

Figure 5.1: The out-of-coresort- rst architecture.

Figure 5.1 shows a diagram of our system. A client macdine is responsible for
processinguser interface evernts. For ead display tile there is a dedicatedrendering
sener. At eat frame, the client sendsthe current viewing parametersto the rendering
seners. Note that the client doesalmost no work. The rendering seners run the
sequetial rendering algorithms (from iWalk) that we presened in Chapter 4, with
a few modi cations that we will discussbelon. Eacd renderer readsthe parts of
the model it needsfrom a shared network disk in the le sener, and sendsthe
resulting imageto one of the display projectors. Optionally, ead renderermay read
its primitiv esfrom a local copy of the model. Note that this copy is on disk, not in
main memory Sincedisk spaceis cheap, having a local copy of the model on disk
might not hurt the scalability of the system.

Ead renderingsener is an MPI task and runs basicallythe samecode that iWalk
runs, with a few di erences. First, sinceead rendereris responsiblefor a tile of the
display wall, it performs occlusionculling using only the part of view frustum that
belongsto it. Second,ead rendererreceives input ewvens from the client through
socket comnunication, instead of directly from the user. Finally, to syndironize the
renderers,we add an MPI barrier at the end of the rendering loop, right before

swapping front and bad bu ers.
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We only useMPI to start and syndironizethe seners. The client doesnot needto
have an MPI implemertation available. The client madine only transmits the current
viewing parametersto the rendering seners, and may therefore be as lightweight as
a handheld computer. Somesystemsperform load balancing computations on the
client macdine, in which casethe client may becomea bottlenedk [11§.

Our approad to syndironize the rendering senersis to rely on the MPI barrier,
which has a non-trivial latency. An alternative would be using multi-pip e graphics
cards with inter-pipe syndironization (genlack). Somenew PC graphics cards suth

asthe NVIDIA FX 3000G[107 provide genlack, but their price is still prohibitiv e.

5.4 Experimental Results

In this sectionwe report the results of the performanceand scalability experimerts
we ran for our parallel renderingsystem. The main goal of theseexperimerts was to
study how the systemscaleswith the number of processorsand imageresolution. We
alsowanted to comparethe performanceof the systemwhenthe renderersread data
from a shared le sener versusfrom a copy on a local disk. We report results for two
di erent clusters. The rst clusteris about three yearsold, and the secondcluster is

about oneyear old.

5.4.1 Results for the Old Cluster

The old cluster consistedof 16 rendering serners and a le sener. Eadh rendering
sener was a 900 MHz AMD Athlon with 512 MB of main memory, an NVIDIA
GeForce2graphicscard, and an IDE hard disk. The le sener was a 400 GB disk
array composed of eight SCSI disks con gured as two 200 GB striped disks. As
we have discussedthe client madine does very little processing,and therefore its

hardware details are not important. In thesetests, the client macine wasa 700MHz
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Pentium [11. All the madineswere connectedby switched gigabit ethernet, and ran
RedHat Linux 7.2. The senersran MPI/Pro 1.6.3over TCP/IP for syndironization.

For the old cluster, we only ran experimerts with the UNC power plant model [147]
(Figure 3.7). We ran tests on clustersof 1, 2, 4, 8, and 16 rendering seners. We
useda pre-recordedcamerapath of 500frames,and for eat cluster sizewe collected
statistics for both appraximate visibility mode (using PLP) and consenative visibilit y
mode (using cPLP). In both cases|. OD managemehwasturned o . For ead cluster
size,we rst ran the tests reading the model from the le sener, and then reading

the model from copieson the local disks.

PLP Results

Herewe report the results of the experimerts we ran in appraximate visibility mode,
i.e., using PLP to estimate the visible geometry In typical use, we con gure the
system accordingto the triangle throughput of the graphics cards, the bandwidth
of the disks, the desiredframe rate, and the desiredimage accuracy When using
a cluster of 16 rendering seners, we usually give eat renderer a budget of 70,000
triangles per frame and a geometrycade of 256 MB. This con guration allows us to
generate12-megapixelimagesof the power plant with a median accuracyof 99.3%
at a medianframe rate of 10.8fps. For the scalability analysisthat follows, we used
insteadatotal budgetof 400K triangles per frame, sothat the systemwould be usable
even when con gured with only onerenderingsener.

Whenwe run our systemin appraoximate mode on a singlemacine, the framerates
depend mostly on the number of triangles renderedand the number of disk accesses;
the imageresolution hasa smallerin uence. As we add more madinesto the cluster,
the total resolutionincreasesput the resolution of ead rendererremains xed. The
total triangle budget per frame for PLP alsoremains xed, thus the triangle budget

of eath rendererdecreases.
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Ideally, if we doubledthe number of madiinesin the cluster, we would get twice
the frame rate and the sameimage quality. In practice, seweral factors prevent us
from adieving that. First, there is duplication of e ort. In sort-rst, if a primitive
overlapsmultiple tiles, it is fetched and renderedmultiple times. Sincethe chancesof
overlap increaseas we add processorsthe demandsfor I/O bandwidth and triangle
throughput alsoincrease.There are additional communications costsaswell. At the
end of eat frame, there is an MPI barrier to syndironize all the seners. Finally, the
likelihood of load imbalanceincreasesas the number of processordancreaseswhich
may have a negative e ect on both the frame rate and the image accuracy

Figure 5.2 shows the frame rates achieved by our system when using PLP, as
we vary the cluster size (1, 2, 4, 8, and 16 PCs) and the type of disk (network or
local). ! For these small clusters, the median frame rates (the horizortal lines in
the interior of the boxes) improved substartially with the number of PCs. On the
other hand, the spreadof the frame rates (the height of the boxes)increased.For all
con gurations, there were very few stalls (the horizortal lines outside the whiskers).
A surprising fact is that the disk type has almost no in uence on the frame rates.
The bandwidth of our network disk, measuredusing the Bonnie bendimark [17] from
a rendering sener, is 7.8 MB/s. The similarity betweenthe frame rates for network
and local disks indicates that the total bandwidth required by the rendering seners
is usually lessthan the bandwidth of the network disk. We believe the bandwidth
requiremert is solow becauseour cading and prefetching schemesare exploiting well

the frame-to-framecoherencen our test paths.

IHow to read the box plots. (From the S-Plus user's guide [89].) The horizontal line in the
interior of the box is located at the median of the data, and estimatesthe certer of the distribution
for the data. The height of the box is equal to the interquartile distance, or 1QD, which is the
di erence betweenthe third quartile of the data and the rst quartile, and indicates the spread of
the distribution for the data. The whiskers (the dotted lines extending from the top and bottom
of the box) extend to the extreme values of the data or a distance of 1.5 IQD from the certer,
whichever is less. For data having a Gaussiandistribution, approximately 99.3% of the data falls
inside the whiskers. Data points that fall outside the whiskers may be outliers and so they are
indicated by horizontal lines.

91



25 30
\

20

B

frame rate (frames/s)
15

10
\
IF
I
I
I

[ 18
211
[

I

1 I

o - —

netl locall net2 local2 net4 local4 net8 local8 netl6 locall6

cluster configuration (disk type and number of PCs)

Figure 5.2: Frameratesfor PLP in the old cluster aswe vary the cluster sizeand the
disk type. We ran tests on clustersof 1, 2, 4, 8, and 16 PCs, for both network and
local disks. The median frame rates improve substartially with the number of PCs,
and the disk type makesalmost no di erence.

We measuredthe accuracyadhieved by our systemfor the tests above by compar-
ing the pixels in the imagesproducedby PLP and the pixels in the correct images.
For this particular camerapath, which was inside the power plant, in an areawith
high depth-complexity, PLP estimatesthe visible setvery well. For a singlemadine,
PLP adiievesa medianaccuracyof 99.6%. If the triangles wereuniformly distributed
acrossthe screen,for a constart total triangle budget B, a cluster with P > 1 ren-
dering seners, eat of which with a triangle budget of B=P to renderits screentile,
would achieve the sameaccuracyas a single madine. But typically the distribution

of the triangles is not uniform, and B=P triangles may be too few for someseners

and too many for others. For paths inside the model, this load imbalanceis usually
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small, and the accuracydrops slovly with the cluster size. For the test path, the
median accuracyadieved by the cluster with 16 senerswas 93%, which is high and
typical for paths inside the model. For paths outside the model, the accuracy may

be much lower, unlesswe turn on level-of-detail managemen

cPLP Results

Here we report the results of the experimerts we ran in conserative visibility mode,
i.e., using cPLP to estimate the visible geometry Consenative visibility introduces
another obstaclefor ideal scalability. Recallthat there is a one-to-onecorrespndence
between seners and projectors. Thus, when we increasethe number of seners, al-
though ead sener becomesesponsiblefor a smaller part of the view frustum, that
part will be renderedat higher resolution. As a result, the amourt of geometry visi-
ble through that part of the view frustum that we needto fetch and render may not
decrease.In theory, it could even increase. Sincethe size of the problem may grow
with the cluster size, we cannot expect linear scalability. Turning on level-of-detall
managemen allows us to get almost linear scalability in frame rates, at the cost of
somelossin image accuracy

Figure 5.3 shows the frame rates achieved by our systemwhen using cPLP, aswe
vary the cluster sizeand the type of disk. Recallthat PLP can estimate a visible set
basedonly on the hierarchy structure le createdat preprocessingtime, but cPLP
needsto read the actual scenegeometry Thus, without LOD managemety cPLP
needsto perform many more disk accessethan PLP, and the frame rates for cPLP
are much lower than thosefor PLP. In terms of scalability, even though the maximum
frame rates increasesubstartially with cluster size,the meadian frame rates remain
roughly the same. In terms of disk type, the network disk was able to match once
againthe performanceof the local disks, which indicatesthat making local copiesof

the model on ead sener may be unnecessary
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Figure 5.3: Frame rates for cPLP in the old cluster as we vary the cluster sizeand
the disk type. We ran tests on clustersof 1, 2, 4, 8, and 16 PCs, for both network
and local disks. The median frame rates stay roughly the same,and the disk type
makesalmost no di erence.

5.4.2 Results for the New Cluster

The newcluster consistsof 8 renderingsenersand a le sener. Each renderingsener
is a 2.8 GHz Pertium IV computer with 512 MB of main memory, a 35 GB SCSI
disk, and a NVIDIA Quadro 980 XGL graphicscard. The le sener is similar, but in
addition it hasa 200GB SCSldisk. The client madine is idertical to the rendering
seners. The new cluster alsousesgigabit ethernetfor connectivity. All macinesrun
Red Hat Linux 8.0. The senersuseMPICH 1.2.5for syndronization.

For the newcluster, we ran experimerts for both the UNC power plant model [147]
(Figure 3.7) and the LLNL isosurfacedataset (Figure 3.10). We ran tests on clusters

of 1, 2, 4, and 8 rendering seners. All tests for the new cluster used consenrative
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visibility in combination with LOD managemet As we did for the old cluster, for
eadt cluster size we ran the tests rst reading data from the le sener, and then
reading data from copieson the local disks.

For both datasets,the meanframe rates improved substartially with the number
of PCs, and onceagainthe disk type makesalmost no di erence. In practice, instead
of getting higher mean frame rates with higher variance, we prefer to put a cap on
the frame rates (typically 10 fps), and obtain lower variance. For framesthat could
be renderedfaster, the rendering thread waits for the frame time. Meanwhile, the
prefetching thread has a better chanceto be allowed to bring data from disk into
memory, which reducesstalls due to cade misses,and lowers frame rate variance.

When using 8 rendering seners, eat renderinga 1280by 1024tile, we were able
to renderthe UNC power plant model at 10 framesper secondon average,with very
little variance. For the LLNL isosurface we could sustain 4{5 framesper secondfor

exterior views and 8{10 framesper secondfor interior views.

5.4.3 Summary of Parallel Rendering Results

The sort- rst parallel rendering extensionof our systemallows us to scalethe reso-
lution of an application without any lossin performance.On the other hand, unlike
Chromium [68], our parallel architecture requireschangesin the application source
code. The best parallel rendering systemsfor clusters we know are the ray tracing
system of Wald et al. [14 and the sort-last system of Moreland et al. [9§. The
systemof Wald et al. producesmore photorealistic images,while our systemdeliv-
ers higher frame rates and higher image resolution. Our systemand the system of
Moreland et al. achieve similar results on similar hardware for the LLNL isosurface
dataset. Becausetheir systemusesa sort-last approady, it scalesbetter than ours
with model size. On the other hand, becausewe use a sort- rst approad), we can

take advantage of image-spacecclusionqueries.
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Chapter 6

Conclusions

This chapter endsthe dissertation. Here we summarizeour work, point out our most
important researt cortributions, and discusspossibledirections for future work. We

end by showving how to obtain the sourcecode for our system.

6.1 Summary

We have preserted iWalk, a systemfor interactive and high-resolutionvisualization of
large datasetson commadity PCswith smallmemory. To handledatasetslargerthan
main memory, the systemusesa new set of out-of-core preprocessingand runtime
algorithms. The preprocessingalgorithms break the datasetinto manageablepieces
using an octree, and precompute visibility information and levels of detail for eath
octree node. The runtime algorithms keepthe bulk of the dataseton disk, and bring
octree nodesinto a memory cade on demand. To adiieve interactive and smaoth
frame rates, the systemcombines level-of-detail managemet with occlusionculling,
and usesmultiple threadsto overlap visibility computation, rasterization, fetching,
and prefetdhing. In addition, the systemexploits recent OpenGL extensionssud as
vertex arrays and occlusion queries. To produce high resolution images,a sort- rst

parallel extensionof the systemusesa cluster of PCs to drive a multi-tile display.
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The out-of-core preprocessingand runtime algorithms are simple, e cien t, and
make no assumption about the datasets. The combination of these algorithms is
a practical and scalablesystemthat allows us to use inexpensive PCs to visualize
datasetsthat until recerly would require expensiwe high-end graphicsworkstations.
By being able to run on inexpensiwe hardware, our systemcan help to bring visual-

ization of large datasetsto a broader audience.

6.2 Contributions

The main researt cortributions of our work are:

An out-of-core algorithm to build an octree. Our algorithm is fast and auto-
matic, i.e., it needsno userintervertion. In addition, it is incremenal, i.e., it
allows us to add new data to an existing octree, which is important for some

applications (e.g., 3D scanning).

Extensions of the PLP visibilit y algorithm. Our ray-tracing basedheuristic for
PLP provides more accurateappraximate visible setsat little extra preprocess-
ing and runtime cost. Our hardware-assistedextensionof cPLP, combined with
level-of-detail managemenh requiresvery little preprocessing,and makes con-

senative occlusionculling practical on commality hardware.

An out-of-core, from-p oint prefetc hing algorithm. Our prefetching algorithm
exploits PLP's ability to estimate a visible setwithout having to read geometry
from the disk or usethe graphicscard. The algorithm runs whenthe CPU isidle
waiting for the disk, the graphicscard, or the next frame. Thus, a substartial
improvemert in frame rates comesat almost no additional preprocessingor
runtime costs. We believe our systemis the rst to employ a prefetching method

basedon a from-point visibility algorithm.
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An out-of-core sort-rst parallel rendering architecture. The architecture is

a simple and yet e ective way for an application to increasethe resolution of
the output images,and obtain the sameor faster frame rates. The architecture
keepsthe data on disks on the sener side, thus avoiding a potertial bottlenedk

on the client, and better utilizing the rendering power of the seners.

A system that integrates these techniques. We prove that our technigquesare

practical by integrating them in a systemthat can handle datasetswith hun-
dreds of millions of triangles. In addition, we make our systemopen source,so

other researberscan study it, extendit, or compareit with their own systems.

6.3 Future Work

There are many possibleaveruesfor future work. The following list is in increasing

order of estimated di cult y to implemert:

Add

geometry and appearance quantization. The systemcurrently requires19
bytes per vertex (12 bytes for position, 3 bytesfor normal, and 4 bytesfor color).
We could quantize these geometry and appearanceattributes to save storage.
This changewould reducethe amourt of data transferedfrom the CPU to the

graphicscard, and would free up spacein the cace for more octree nodes.

Eliminate geometry replication. If a triangle intersects multiple octree nodes,

Add

the system currertly replicatesthe triangle in all the intersectednodes. Ge-
ometry replication can easily double the size of the dataset, especially when
the spatialization granularity is ne. Eliminating this problem would be a very

welcomechangeto our system.

support for textures. The systemcurrently doesnot support texture map-

ping. Adding this feature hasthe potertial to improve the imagequality signif-
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icantly. Although graphicscards have support for texture mapping, they have
very small texture memory, Thus, adding this feature should be simple, but

may not be trivial,

Finish support for volumes. The system already has some support for volume
rendering[70]. By usingan out-of-coreextensionof a well-known cell-projection
volumerenderingalgorithm [15Q, the systemis able to handle arbitrarily large

volumes,but the frame rates are not interactive yet.

Add load balancing. The major disadwantage of a sort- rst architecture is the po-
tential for load imbalanceamongthe renderingsenersif the geometryclusters
on regionsof the screen.Mueller [99] and Samana [116 117, 11§ have dewel-
oped techniquesto resizethe screentiles dynamically. Although thesedynamic
technigues promote better balancing, they do not improve frame rates neces-
sarily, becausehey createa bottlened on the client. We would liketo compare
these techniques with a simple static approad in which tiles are subdivided

into a number of sub-tiles equalto the number of rendering seners.

Extract and publish API. We would like to encapsulateour techniquesin a li-
brary with an application programminginterfacethat could be reusedby other
systems. Sourcesof inspiration comefrom the Gang of Four [51], VTK [123,

and Optimizer [129.

Support dynamic scenes. The systemassumeghat the datasetis static, i.e., the
geometry does not changeover time. We would like to extend the systemto
handledynamic geometry The generalcasein which the whole datasetchanges
may betoo dicult. But the special caseof localizedchanges,sud asthe ones
typical of a CAD modeling padkage, seemsmuch easierto solve, although still

very challenging.
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Develop an analytic model for the system. Therearemany internal and exter-
nal parametersthat a ect the performanceof the system. Internal parameters
include the maximum number of verticesper octree node, the sizeof the geom-
etry cade, the geometrybudget for approximate visibility, and the prefetcing
limit per frame, to name a few. External parametersinclude the CPU speed,
the triangle throughput of the graphicscard, and the bandwidths and latencies
of the disks and network connections.A model that predicted the systemper-
formance given these parameterswould be helpful to guide the con guration

and optimization of the system.

Optimize system parameters automatically . If we manageto describe the be-
havior of the systemaccurately with an analytical model, the next step would
be to implemert an optimization procedureto nd the best parametersfor the

systemwithout any programmerintervertion.

6.4 Speculation

Today's graphicscardsare designedto support the Z-bu er algorithm. A revolution-
ary changein computer graphicswill comewhen ray tracing becomessupported in
commality graphicscards. The simplicity and power of the ray tracing algorithm are
just beautiful. Ray tracing hasalmost\built-in" occlusionculling and level-of-detail,
and producesvery photorealistic images. In addition, ray tracing is a menber of
the classof so-called\embarrassingly parallel" algorithms, becausethe color of eah
pixel can be computed completely independerly of the color of other pixels. If we
had a cluster of onemillion madines,we could allocate a macdine to ead pixel of our
screen.If graphicshardware cortinuesto advanceat the current pace,soon enough
a graphics card with one million ray processorswill be available on game consoles.

The recer vertex program extensionto OpenGL is a step in the right direction.
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6.5 Getting the Source Code

The iWalk systemis open sourceand is part of the GTB suite of graphicstools [25].
From the GTB sourceforgewveb site, you can download the sourcecode for iWalk and

other systemsbasedon GTB. GTB is licensedunder the GNU public license.
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