
New Techniques f or Out-Of-Core

Visualiza tion of Lar ge Dat asets

Wagner Toledo Corr êa

A Disser t ation

Presented to the Facul ty

of Princeton University

in Candid acy f or the Degree

of Doctor of Philosophy

Recommended f or Accept ance

by the Pr ogram in

Computer Science

Januar y 2004

c
 Copyright by WagnerToledoCorrêa,2004.

All Rights Reserved

Abstract

We present a practical systemto visualizelarge datasetsinteractively on commodity

PCs. Interactive visualization has applications in many areas,including computer-

aideddesign,engineering,entertainment, and training. Traditionally, visualization of

large datasetshasrequiredexpensive high-endgraphicsworkstations. Recently, with

the exponential trend of higher performanceand lower cost of PC graphics cards,

inexpensive PCs are becomingan attractiv e alternative to high-endmachines. But a

barrier in exploiting this potential is the small memory sizeof typical PCs.

Our systemusesnewout-of-coretechniquesto visualizedatasetsmuch larger than

main memory. In a preprocessingphase,we build a hierarchical decomposition of the

dataset using an octree, precompute coe�cien ts used for visibilit y determination,

and create levels of detail. At runtime, we usemultiple threads to overlap visibilit y

computation, cache management, and rasterization. The structure of the octree and

the visibilit y coe�cien ts are kept in main memory. The contents of the octree nodes

are loadedon demandfrom disk into a cache. To �nd the visible set, we usea fast

approximate algorithm followed by a hardware-assistedconservative algorithm. To

hide I/O latency, a separatethread prefetchesnodesthat are likely to becomevisible.

We alsodescribe a sort-�rst parallel extensionof the systemthat usesa cluster of

PCs to drive a high-resolution, multi-tile screen.A client processinteracts with the

user,and a set of server processesrender the screentiles. To avoid sendingthe entire

dataset from the client to the seversevery frame, the serversaccessthe dataset from

a shared�le systemor from a local copy on disk. Putting the I/O load on the server

sidemakesthe network bandwidth requirements low and the architecture scalable.

Using a cluster of 8 PCs, the system can generatehigh resolution images(10

megapixels)of large datasets(12 gigabytes) at interactive frame rates (5{10 frames

per second). Thus, our system is a cost-e�ective alternative to high-end machines,

and can help bring visualization of large datasetsto a broader audience.

iii

Ac knowledgemen ts

Many people helped me to write this dissertation. I thank my advisors Szymon

Rusinkiewiczand Cl�audio Silva for their guidance,encouragement, and patience. I

thank the other thesiscommittee members,Bernard Chazelle,Brian Kernighan, and

Kai Li, for their feedback. I thank David Dobkin for managingthis committee.

The technical work I present herewas mainly doneunder the supervision of Cl�audio

Silva. For the last two and a half years,I have worked closelywith him at AT&T and

OGI. He devoted a huge amount of time to me, and gave me opportunities to work

in industry and collaborate with other researchers.

A very specialthanks goesto JamesKlosowski, who wasmy co-authorin many papers

and my mentor at IBM Research.

Another very special thanks goesto my dearestfriend, Je� Korn, with whom I shared

the best and worst times during a very turbulent graduateprogram.

I thank Kai Li for giving me a vote of con�dence when I most needed,and for being

the most inspiring teacher I have ever had.

I thank MelissaLawsonfor her help with academic,legal, and personalmatters.

I thank Daniel Aliaga for his encouragement at the early stagesof this work.

I thank my other collaborators: Ant�onio Baptista, Louis Bavoil, Adam Finkelstein,

Shachar Fleishman, Thomas Funkhouser, Robert Jensen,Walter Jim�enez,Michael

Kazhdan, Allison Klein, Wilmot Li, Tim Milliron, Manuel Oliveira, Dirce Pesco,

Sin�esioPesco,Lourena Rocha, SusanThayer, and Jianning Wang.

I thank the other faculty members who helped me: Andrew Appel, Perry Cook, Per

Mykland, Ben Shedd,Mona Singh, and JaswinderPal Singh.

iv

I thank Sandy Barbu, Rebecca Davies, Patricia Florek, Tina McCoy, Jennifer

McNabb, and Patricia Killian for taking careof bureaucratic and legal matters.

I thank my friends in Brazil who kept in touch with me, and help me to stay sane:

VanessaAlmeida, M�arcio Ara�ujo, Juliana Assump�c~ao, ElissandraBarbosa,Rodrigo

Carceroni, Jo~ao Comba, Ricardo Farias, Rodrigo de L�elis, Maur��cio Lima, Jos�e da

Mata, WagnerMeira Jr., Adriana Oliveira, OscarTib �urcio, and Marcelo Walter.

I also thank the friends I madein the US: Ian Buck, Jennifer Colwell, RegisColwell,

AlessandraDickovick, Tyler Dickovick, Pavel Diko, Ben Dressner,Georg Essl, Jon

Forsyth, Juliana Freire, Ben Gum, Greg Humphreys, Robert Kalnins, Je� Korn,

Aaron Lee, Patrick Min, Robert Osada, Lena Petrovi�c, Emil Constantin Praun,

Mukund Raghavachari, Rudrajit Samanta, Erika Ruiz Sandoval, Nathalie Schulten,

Ashley Shelby, Robert Shillingsburg, Ye�m Shuf, Kimberly Smith, Dan Wallach,

Daniel Wang, Matthew Webb, JacquelineWells, and Xiaodong Wen.

I thank the people who I worked with at AT&T: James Abello, David Belanger,

David Korn, Je� Korn, EleftheriosKoutso�os, BalachanderKrishnamurthy, Shankar

Krishnan, StephenNorth, and SureshVenkatasubramanian.

I also thank the people I worked with at IBM: Gregory Abram, Thomas Jackman,

Peter Kirchner, JamesKlosowski, and Frederick Mintzer.

I thank UNC Chapel Hill, Stanford University, UC Berkeley, 3rdTech (Lars Nyland),

Lawrence Livermore National Laboratory (Randy Frank), Sandia (Kenneth More-

land), and Boeing (David Kasik) for datasets.

I thank CNPq, Princeton, Bell Labs, AT&T, OGI, and IBM for �nancial support.

Above all, I thank my family, Pedro, Merĉes,and �Erica, for their patiencewith my

absenceand for their constant and unconditional love.

v

To my parents, Pedro and Merĉes.

vi

Con ten ts

Abstract . iii

Acknowledgements . iv

1 In tro duction 1

1.1 Goal . 1

1.2 Motivations . 2

1.3 Challenges. 2

1.4 Solutions . 4

1.5 Outline of the Dissertation . 7

2 Related Work 8

2.1 Management of Large Datasets . 8

2.1.1 Spatialization . 8

2.1.2 Simpli�cation . 10

2.1.3 Geometry Caching and Prefetching 11

2.2 Graphics Pipeline Optimization . 12

2.2.1 Back-FaceCulling . 13

2.2.2 View-Frustum Culling . 13

2.2.3 OcclusionCulling . 13

2.2.4 Detail Culling . 16

2.2.5 Image-BasedRendering . 16

vii

2.2.6 Point Rendering. 17

2.2.7 Hardware-AssistedRendering 18

2.2.8 Computation Reordering . 18

2.3 Parallel Rendering . 19

2.4 Related Systems. 24

2.5 Discussion . 29

3 Out-Of-Core Prepro cessing 33

3.1 Partitioning the Dataset Using an Octree 33

3.2 Computing Visibilit y Coe�cien ts . 41

3.3 Creating Levels of Detail . 42

3.4 Experimental Results . 44

3.4.1 UNC Power Plant Results . 50

3.4.2 LLNL IsosurfaceResults . 55

3.4.3 Summary of the PreprocessingResults 59

4 Out-Of-Core Rendering 60

4.1 Overview of the RenderingApproach 60

4.2 Reviewof the PLP and cPLP Algorithms 61

4.3 Extensionsto PLP and cPLP . 63

4.3.1 Improving the Accuracy of PLP 63

4.3.2 Improving the Running Time of cPLP 67

4.4 The Geometry Cache . 68

4.5 The From-Point Prefetching Method 70

4.6 Experimental Results . 74

4.6.1 UNC Power Plant Results . 75

4.6.2 LLNL IsosurfaceResults . 83

4.6.3 Summary of RenderingResults 84

viii

5 Out-Of-Core Parallel Rendering 85

5.1 Choosingthe Hardware . 85

5.2 Choosingthe Parallelization Strategy 86

5.3 The Parallel RenderingSystem . 87

5.4 Experimental Results . 89

5.4.1 Results for the Old Cluster . 89

5.4.2 Results for the New Cluster 94

5.4.3 Summary of Parallel RenderingResults 95

6 Conclusions 96

6.1 Summary . 96

6.2 Contributions . 97

6.3 Future Work . 98

6.4 Speculation . 100

6.5 Getting the SourceCode . 101

Bibliograph y 102

ix

Chapter 1

In tro duction

This dissertation is about a set of newtechniquesfor interactive visualization of large

datasetson inexpensive PCs. Is this chapter we state this problem more precisely,

de�ning what we mean by interactive, large, and inexpensive. We also explain why

we careabout large datasets,why we want to useinexpensive PCs to visualizethem,

and what is challengingabout solvingthis problem. Wethen present a high-level view

of our approach to solve this problem, and outline the remainderof the dissertation.

1.1 Goal

The goal behind this dissertation is making interactive visualization of large datasets

viable on inexpensive commodity PCs. Throughout this dissertationwe usethe term

interactive visualization whenwe meanvisualization with a target renderingspeedof

10 or more framesper second(fps). We reserve the term real-time visualization for

when we meanvisualization with a target of 30 or more fps. We usethe term large

datasetsto refer to a dataset that is larger than the main memory available on the

PC being used. And we usethe term inexpensivePC to refer to a PC that costsless

than US$2,000.We assumethat this price includesa graphicscard.

1

1.2 Motiv ations

Why do we care about visualization of large datasets? And why do we want to use

PCsfor that? Wecareabout visualization of largedatasetsbecauseit hasapplications

in many areas,including:

� computer-aideddesignand engineering

� visualization of medical data

� modeling and simulation of weapons

� modeling and simulation of weather and ecosystems

� exploration of oil and gas

� virtual training

We want to usecommodity PCs to visualize large datasetsmainly becausePCs

have a better price/performanceratio than the alternatives. Traditionally, visual-

ization of large datasetshas required expensive high-end graphicsworkstations. Re-

cently, with the exponential trend of higherperformanceand lower costof PC graphics

cards, inexpensive PCs are becomingan attractiv e alternative to high-endmachines.

1.3 Challenges

Performing visualization of large datasetson commodity PCs is di�cult. The main

challengeis the gap that existsbetweenthe sizeof the main memoryof a commodity

PC and the sizeof \in teresting" datasets. Of course,what is a commodity PC is a

moving target, and what is interesting is subjective. To make this discussionmore

concrete,considerthe year 2003. A typical PC has about 512 MB of main memory,

while a machine with 16 GB of main memory would be consideredhigh-end. Still, a

2

numericalweathersimulation would have no trouble producing hundredsof gigabytes

of data. The ubiquitous 32-bit PC cannot even addressthat much memory.

Not only doesthe gapbetweendatasetand main memorysizesexist, but alsoit is

widening. Although memory sizesare growing exponentially , roughly doubling every

18 months, dataset sizesare growing faster. It is easierto produce or acquire more

data than to improve and lower the costsof main memory technology.

To bridge this gap, we need to develop out-of-core1 algorithms, also known as

external algorithms or secondary-memoryalgorithms. Out-of-core algorithms keep

the bulk of the data on disk, and keepin main memory (or in core) only the part of

the data that is being processed.

Adapting an existing in-core algorithm to work out-of-coreis not trivial. Partial

solutions such as paging or virtual memory are not su�cien t [32, 101]. Becausedisk

accesslatenciesare �v e to six ordersof magnitude greater than main memory access

latencies[151], an out-of-coreprogramis likely to have its running time dominatedby

disk operations,and may run many timesmoreslowly than its in-corecounterpart. To

avoid severeperformancedegradation,an out-of-coreprogramshouldtry to minimize

the number of disk operationsand hide the disk latency by performingdisk operations

concurrently with other operations. The performanceof out-of-coreprogramscan be

greatly improved by organizing the data in a way that increaseslocality of reference

and by prefetching data from disk into memory beforeit is needed[54].

Besidesthe relative small memory, another limitation of commodity PCs that

makesvisualization of large datasetsdi�cult is the availabilit y of only one graphics

card per PC. High-end graphics workstations such as the Silicon Graphics Onyx4

UltimateVision [128] can have up to 32 graphicspipes. Having only a singlegraphics

1The word \core" is an old-fashionedterm for main memory. It dates back to the days (1961{
1971) of ferrite core memory, an early form of non-volatile storagebuilt by hand from tiny rings of
magnetizablematerial threaded onto very �ne wire to form large (e.g., 13"x13") rectangular arrays.
Each corestored onebit of data. The related expression\core dump" refersto a copy of the contents
of the memory, produced when a processis terminated by certain kinds of internal error [64].

3

pipe limits our choiceof algorithms. In a multi-pip e system,multiple tasksthat need

to accessthe graphicshardware could run in parallel. On a single-pipe system,these

operations would have to run sequentially .

Yet another limitation of commodity PCs is low display resolution. When inter-

acting with large datasets, it is natural to want to visualize thesedatasetsat high

resolution. A high resolution image can give us insights that we would not gain by

looking at separatelow resolutionsimages.For example,compareour abilit y to un-

derstand a map on a large 34"x44" sheetof paper versusa booklet with 16 regular

pages,8.5"x11" each. Similarly, looking at a 4096� 3072-pixel image of a dataset

at once is much more informative than scrolling through it with a 1024� 768-pixel

window. Looking at a large imagehelpsus to seethe big picture.

1.4 Solutions

In this dissertation we present a system that allows us to use commodity PCs to

visualize datasets much larger than main memory at interactive frame rates and

at high resolution. The system usesa set of new out-of-core techniques that are

simpleand yet e�ectiv e at hiding the weaknessesof PCs and exploiting the strengths

of PC graphics cards. Consideredin isolation, each of these techniques is pretty

straightforward. The combination of these techniques allows us to build a system

that works under our constraints and satis�es our goals (the whole is greater than

the sum of its parts).

The processof visualizing a dataset using our system consistsof a pipeline of

stepsthat can be broken down into two major phases:preprocessingand rendering

(Figure 1.1). In the preprocessingphase,we �rst build a hierarchical spatial decom-

position of the dataset using an out-of-core octree. Then, we compute directional

visibilit y coe�cien ts for each octree node. Thesecoe�cien ts are usedat runtime for

4

determine
visible nodes

load nodes
into cache

rasterize
nodes

rendering
phase

preprocessing
phase

build
octree

create
levels

of detail

compute

coefficients
visibility

Figure 1.1: The main stepsin each phaseof our visualization system'spipeline.

fast and accurate approximate visible set computation. Finally, we create several

levels of detail for each octree node.

In the renderingphase,our systemusesmultiple threads (typically running on a

singleprocessor)to overlap visibilit y computation, cache management, and rasteriza-

tion. The systemkeepsin main memory a description of the structure of the octree

and the coveragecoe�cien ts. The contents of the octreenodes,which are the bulk of

the data, are kept on disk, and are brought into the geometrycache in main memory

whenneeded.The cache usesa least-recently-used replacement policy, which exploits

well the frame-to-framecoherencetypical of interactive visualization sessions.

The computation of the visible set is donein two steps. First, a fast approximate

visibilit y algorithm determinesan initial guessof the visible set. Then, a hardware-

assistedalgorithm augments this set to make it a conservative visible set. To hide

the cost of disk operations,a look-aheadthread guessesthe nodesthat the usermay

seenext, and prefetchesthosenodesinto the geometrycache.

All the steps in both the preprocessingand rendering phasesare implemented

using out-of-coretechniquesso that the systemcan run on a PC with small memory.

These techniques assumethat the dataset is static (i.e., the geometric information

doesnot changeover time), and favor interactivit y over image quality. The images

producedby our systemhave Goraud-shadingquality, as supported by the graphics

card, which is acceptablefor a previewer.

5

rendering
server

rendering
server

rendering
server

rendering
server

file
server

local network

rendering cluster

client
user

interface
events

multi-tile screen

pixels

Figure 1.2: The sort-�rst parallel extensionof our visualization system.

In this dissertation we also describe a sort-�rst parallel extensionof the system

(Figure 1.2). This extensionallows us to use a cluster of PCs to drive a multi-tile

screento generatehigh resolution imagesat interactive frame rates. When running

on a cluster, the system consistsof a client process,possibly running on a remote

machine, andmany interconnectedserver processes,each renderinga tile of the screen.

To avoid sendingthe entire dataset from the client to the severs at every frame,

which would create a bottleneck and prevent interactivit y, the servers accessthe

dataset from a shared �le system or from a local copy on disk. The client only

needsto send user interface commandsto the severs, and the servers only need to

synchronize with each other at the end of each frame. Each rendering server is

responsiblefor determining the data it needs,and for pulling the data from disk into

its cache. Putting the I/O load on the server side lowers the network bandwidth

requirements, and makesthe architecture scalableand practical.

Using this system we were able to use a small cluster (8 PCs) to generatehigh

resolutionimages(10megapixels)of largedatasets(12gigabytes) at interactiveframes

(5{10 frames per second). These results demonstrate that our system is a cost-

e�ectiv e alternative to high-end machines, and can help bring visualization of large

datasetsto a broader group of people.

6

1.5 Outline of the Dissertation

The remainder of this dissertation is organizedas follows. Chapter 2 reviewsback-

ground material and previousworks related to ours. Chapter 3 describesthe out-of-

corealgorithms usedin the preprocessingphaseto build an octreefor a givendataset,

precomputevisibilit y coe�cien ts, and createlevelsof detail. Chapter 4 describesthe

out-of-core, multi-threaded algorithms used in the rendering phaseto compute vis-

ibilit y, managethe memory cache, and rasterize the dataset. Chapter 5 describes

the sort-�rst parallel extension of the rendering algorithms used to produce high-

resolution imagesof the dataset on a multi-tile screendriven by a cluster of PCs.

Finally, Chapter 6 presents conclusionsand discussesdirections for future work.

7

Chapter 2

Related Work

In this chapter wereviewbackgroundmaterial and previousworksrelatedto ours. We

start by discussingtechniquesrelated to management of large datasets,optimization

of the graphicspipeline, and parallel rendering. We then present a chart comparing

our systemto previous related systemsbasedon the set of techniquesthey use. We

�nish by discussingthe reasonswhy we chosethe techniqueswe use.

2.1 Managemen t of Large Datasets

The generalapproach to handle datasetslarger than main memory is to break the

dataset into manageablepieces,and bring the appropriate level of detail of each piece

of the dataset into memory on demand. Breaking the dataset into piecesis known

asspatialization. Precomputing levelsof detail is known assimpli�cation. Managing

what piecescomein and out of memory involvescaching and prefetching.

2.1.1 Spatialization

Spatialization is the processof creating a spatial subdivision for the geometricdata

of a given dataset. There are many di�eren t kinds of spatial data structures: octree,

8

k-d tree, BSP tree, hierarchy of boxes, hierarchy of spheres,and many others [119,

140]. Using thesedata structures,we canspeedup searchesand traversalsby pruning

entire subtreesof the dataset, thus avoiding unnecessarycomputation.

Spatial data structures have beenusedsuccessfullyin many commercialand aca-

demic graphicssystems. Octreeshave beenusedin innumerablecontexts, including

view-frustum culling [23], occlusion culling [56], ray tracing [71], and volume ren-

dering [76]. SGI's Optimizer [126] usesa hierarchy of boxes to spatialize the scene

graph. Id Software's Quake 3 game [134] usesa BSP tree. The QSplat system of

Rusinkiewiczand Levoy [113] usesa hierarchy of spheres.

Spatial data structures are particularly useful for visualization of datasetslarger

than main memory. If we have a spatial partitioning of the dataset, we can render

the entire dataset, one part at time, as long as each part is small enoughto �t in

main memory. But how do we createthe spatial partitioning in the �rst place?

The database literature usesthe term bulk loading to refer to the out-of-core

construction of spatial data structures. Agarwal et al. [2] and Arge et al. [8] present

bulk loading algorithms for many spatial data structures, including k-d tree, quad-

tree, and R-tree.

In Chapter 3 we present a fast and incremental out-of-corealgorithm to build an

octreewhoseleavescontain the geometryof a givendataset. The algorithm imposesa

limit on the number of geometricprimitiv esper leaf, and saveseach leaf in a separate

�le in a hierarchy of directories. The algorithm alsocreatesa small separate�le that

contains the overall structure of the octree. Our algorithm is similar to the algorithms

of Cignoni et al. [22] and Ueng et al. [141], but there are somedi�erences which we

will discussin Chapter 3.

9

2.1.2 Simpli�cation

Another technique to deal with large datasets is simpli�cation, which consists of

precomputing approximate versionsof the dataset known as levels of detail (LODs).

Levels of detail can be discrete,continuous,or view-dependent.

Systemsthat use discrete levels of detail (also known as static levels of detail)

precomputeseveral simpli�ed versionsof each object or partition of the dataset,and

at runtime display the most appropriate version basedon selectioncriteria such as

the distance to the viewer [23, 46, 49, 52, 112]. Static LODs may causedisturbing

artifacts when switching from one level to another, but they are easyto precompute

and imposevery little overheadat runtime.

Systemsthat usecontinuous(or progressive) levelsof detail precomputea contin-

uous-resolutionrepresentation of the dataset that allows smooth transition between

approximations [40, 44, 61, 83, 155]. ContinuousLODs take longer to compute,and

havehigher runtime overheadthan static LODs, but they produceimageswith higher

�delit y for a given polygon budget.

Systemsthat useview-dependent levels of detail alsousea continuous-resolution

representation of the dataset. In addition, thesesystemsallow a singleobject to have

multiple levelsof detail at the sametime, and selecthigher resolutionsfor parts closer

to the viewer and lower resolutionsfor parts farther from the viewer [45, 62, 86].

Recall that oneof the motivations to computesimpli�ed versionsof a largedataset

is to be able to display it on a machine with small memory. If we want to use the

samemachine to compute the simpli�ed versions,the simpli�cation algorithm itself

needsto be out-of-core[81, 84].

In our systemwe usestatic levelsof detail, precomputedusinga vertex clustering

technique similar to the oneof Rossignacand Borrel [16, 112, 122]. In Chapter 3 we

discussthis technique in more detail. For more information on LODs, we refer the

readerto the recent book by Luebke et al. [87]

10

2.1.3 Geometry Caching and Prefetc hing

A critical part of any systemfor visualization of datasetslarger than main memory

is, of course,the memory management subsystem. A simple and e�ectiv e approach

is to keep in main memory the least-recently used(LRU) piecesof geometry [137].

This approach is particularly e�ectiv e if the piecesof the dataset that are visible in

any given frame �t together in the cache, and there is locality of reference,i.e., the

changesin visibilit y from frame to frame are small.

Caching alone is typically not enoughto deliver smooth frame rates. Even small

changesin visibilit y may causethe systemto stall becauseof bursts of disk activit y.

The resulting frameratesmay be low and with high variance,which prevent a smooth

interaction with the dataset.

One technique to alleviate this problem is speculative prefetching, which tries to

bring into memory the piecesof geometry that will becomevisible \soon." What is

consideredsoon may be di�cult to de�ne. We want to have the pieceof the dataset

that we are interestedin ready in memorywhenwe needit, but we alsowant to avoid

polluting the cache with too many piecesthat will end up not being used[108].

Prefetching is not a novel idea, and has been used in operating systems for

decades[54]. In computer graphics, Funkhouser et al. [50] were one of the �rst

to incorporate prefetching into a visualization systemfor large datasets. Their sys-

tem partitioned the datasetinto cells,and precomputedthe cellsthat could be visible

from within each cell. Whenever a userentered a cell, all other cellspotentially visible

from that cell would be prefetched.

The systemwe present herealsoemploys prefetching, but we do not precompute

cell-to-cell visibilit y. Instead, we estimate which cells may becomevisible for each

position of the user at runtime. Our approach takes lesspreprocessingtime, and

producesa tighter estimate of the set of cells to be prefetched. We will discussin

more detail the di�erences betweenthesetwo approachesshortly.

11

Most visualization systemstry to insulate the high-level software layers of the

application from the low-level layers that perform databasemanagement. A prime

exampleof such an approach is the active data repository (ADR) of Kurc et al. [75].

The ADR framework managesthe dataset stored in oneor more disks, and provides

an application with modular servicesfor memory management, data retrieval, and

scheduling of processes.

2.2 Graphics Pip eline Optimization

Over the years,graphicsresearchershave accumulated a large number of techniques

to optimize rendering. Thesetechniquesinclude:

� back-faceculling

� view-frustum culling

� occlusionculling

� detail culling

� image-basedrendering

� point rendering

� hardware-assistedrendering

� computation reordering

The next subsectionsdiscusseach of thesetechniques. The discussionis intentionally

brief. The goal is not to explain each technique in detail, but to provide the minimum

background necessaryto understandthe techniqueswe choseto usein our system.

12

2.2.1 Back-Face Culling

Back-faceculling meansnot renderinggeometrythat facesaway from the user(avoid-

ing unnecessarycomputation). Implementing back-faceculling is trivial, and consists

of a simple dot product between the face normal and the viewing direction. The

OpenGL library [154] has a
ag to enableback-faceculling (GL CULL FACE). It is

alsopossibleto usespatial data structures to perform hierarchical back-faceculling.

2.2.2 View-F rustum Culling

View-frustum culling meansnot renderinggeometry that is outside the �eld of view

of the user'scamera(again, avoiding unnecessarycomputation). Implementing view-

frustum culling is pretty easyas well, and typically consistsof checking bounding

volumes(such asboxesor spheres)againstthe planesthat de�ne the viewing frustum.

M•oller and Haines[93] discussseveral algorithms for volume/frustum intersection.

We can use a hierarchical spatial partitioning of the dataset to speed up view-

frustum culling [23]. Whenever a node is totally outside (or totally inside) the view-

frustum, all of its descendants alsoare.

2.2.3 Occlusion Culling

Another technique to avoid unnecessarycomputation is occlusion culling, which

meansnot rendering geometry hidden by other geometry, or in other words, only

rendering the geometry that is visible. Unlike back-face culling and view-frustum

culling, occlusionculling is di�cult to implement. Visible surfacedetermination is a

hard problem that hasbeenstudied for decades[136].

In their survey on visibilit y algorithms, Cohen-Or et al. [24] classify visibilit y

algorithms accordingto several criteria. Here we brie
y summarizethe criteria that

are most relevant to this dissertation:

13

From-p oin t vs. from-region: Somealgorithms compute visibilit y from the eye-

point only, while others compute visibilit y from a region in space. Since the

user often stays for a while in the same region, the from-region algorithms

amortize the cost of visibilit y computations over a number of frames.

Precomputed vs. online: Many algorithms require an o�ine computation, while

others work on the
y . For example, from-region algorithms require a pre-

processingstep to divide the model in regionsand compute region visibilit y.

From-point algorithms typically computevisibilit y at runtime.

Ob ject space vs. image space: Somealgorithms (e.g., ray tracing) compute vis-

ibilit y in object space,using the 3D primitiv es. Others (e.g., Z-bu�er) operate

in imagespace,using the discreterasterization fragments of the primitiv es.

Conserv ativ e vs. appro ximate: Few visibilit y algorithms compute exact visibil-

it y. Most algorithms are conservative, and overestimatethe set of visible prim-

itiv es. Other algorithms compute approximate visibilit y, and do not guarantee

�nding all visible primitiv es.

The visibilit y algorithm most relevant to this dissertationis the prioritized-layered

projection (PLP) algorithm of Klosowski and Silva [73]. PLP is an approximate, from-

point, object-spacevisibilit y algorithm that requiresvery little preprocessing. The

preprocessingconsistsof building a spatial partitioning for the datasetand computing

simple statistics for each cell. At runtime PLP usesheuristics to estimatehow likely

it is for each cell to be visible, and adds cells to an approximate visible set up to

a user-de�ned budget of geometry to be renderedper frame. Klosowski and Silva

also developed cPLP [74], a conservative, image-spacealgorithm that usesPLP to

obtain an initial guess,and then augments the approximate visible set to make it

conservative. In Chapters3 and 4 we will discussPLP and cPLP in more detail, and

present the extensionswe have madeto thesealgorithms.

14

For a detailed and comprehensive survey on visibilit y algorithms, pleaseconsult

the article of Cohen-Oret al. [24] Herewe limit ourselvesto brie
y mentioning some

of thesealgorithms to illustrate the main di�erences betweenthem and PLP/cPLP .

Teller et al. [138] developed the from-regionvisibilit y algorithm that wasusedby

Funkhouseret al. [50] in their walkthrough system. The algorithm of Teller et al.

requires long preprocessingtimes, and assumesthat the models are made of axis-

alignedcells. In contrast, PLP and cPLP require very little preprocessing,and make

no assumptionsabout the geometryof the model.

Wonka et al. [152] presented a from-regionvisibilit y preprocessingalgorithm with

occluder fusion. Their algorithm used2 processorsto overlap visibilit y computation

and renderingat runtime (similarly to Garlick et al. [53]). The algorithm requiredlong

preprocessingtimes (9 hours for a model with 8 million triangles), and was limited

to 2.5D datasets. In later work, Wonka et al. [153] useda from-point approach that

neededlittle preprocessing,but they only reported results for in-core,2.5D datasets.

Durand et al. [41] presented a from-regionvisibilit y preprocessingalgorithm that

could handle 3D environments, as opposedto 2.5D [152], but the algorithm required

long preprocessingtimes (33 hours for a model with 6 million triangles). Schau-

er et al. [120] also presented a from-region 3D visibilit y preprocessingalgorithm,

but their largest test model had only 0.6 million triangles.

Chhugani et al. [20] developed a systemthat precomputesfrom-region visibilit y

and levelsof detail per region. Their systemfocuseson imageaccuracy, and is able to

interactively render large datasetswith lessthan one pixel of screen-spacedeviation

and correct visibilit y. Unfortunately, for a model with 13 million triangles, and using

a cluster of 16 PCs, the accuracyguarantee costs128hours of precomputation.

Hall-Holt and Rusinkiewicz [58] developed the visible zonealgorithm for conser-

vative visibilit y computation with incremental updates. Their algorithm is able to

achieve real-time frame rates for 2D and 2.5D datasets.

15

2.2.4 Detail Culling

Detail culling meansnot renderinggeometricdetails that are likely to beunimportant

to the �nal image. Detail culling relates to the generic strategy of computing an

answer for a problem at the lowest acceptableaccuracy. Detail culling is alsoknown

as level-of-detail (LOD) management.

As we have discussedabove, typically LOD data structures are precomputed.At

runtime, the renderingengineselectsthe appropriate level of detail. Funkhouserand

S�equin [49] described LOD management as an optimization problem that tries to

maximize image quality (bene�t) given the time and geometry constraints (costs).

Avila and Schroeder [9] and El-Sana and Chiang [42] also developed systemsfor

interactive out-of-corerenderingbasedon LOD management. And�ujar et al. [7] and

El-Sanaet al. [43] have combined level of detail management with occlusionculling

in in-core renderingsystems.

Continuousand view-dependent LODs tend to produceimageswith better quality

than static LODs, but static LODs are more appropriate for today's graphicshard-

ware. It is much faster to usedisplay lists or vertex arrays [154] to display a static

LOD than to loop through the individual triangles of a continuousLOD.

2.2.5 Image-Based Rendering

Image-basedrendering techniquesgeneratenew imagefrom precomputedsamplesof

the plenoptic function [1]. The plenoptic function is a 7D function that returns the

color visible from point (px ; py; pz) and direction (vx ; vy; vz) at time t. Becauseof its

high dimensionality, denselysampling this function is not feasible,and researchers

have investigatedusing sparsesamplingsof lower-dimensionslicesof this function.

The lumigraph [55] and the light �eld [77] data structures are samplingsof 4D

slicesof the plenoptic function. The lower dimensionality comesfrom �xing t and

limiting the userto look at a convex object from the outside. The concentric mosaics

16

data structure [131] is a samplingof a 3D sliceof the plenoptic function that con�nes

the viewing position on a planeand usesa singleangleto de�ne the viewing direction.

Precomputedimagesof synthetic modelsor photographsof real environments can

be combined with approximate geometryto generatea sampling of a 4D sliceof the

plenoptic function [36, 37, 72]. A singleimageusedfor texture mapping [149] can be

thought of as a samplingof a 2D sliceof the plenoptic function. Many systemshave

usedimageimpostors to replacegeometryand acceleraterendering [5, 6, 34, 38, 88,

91, 129, 130, 132]. Image impostorscan be thought of as a special caseof LOD.

Image-basedrenderingtechniqueshave the potential to simultaneouslyeasemod-

eling and speedup rendering. In particular, thesetechniquescan deliver very high

quality imagesat an almost constant cost per image. Unfortunately, preprocessing

requirements for image-basedrendering techniquesto handle large datasetsare very

high. Our systemdoesnot useany image-basedtechnique.

There is a largenumber of IBR techniques,covering a spectrum from pure geome-

try to pure imagery. A detailed survey of thesetechniquesis outsidethe scope of this

dissertation. For further information, we refer the reader to the SIGGRAPH course

noteson image-basedrendering [35].

2.2.6 Poin t Rendering

Large datasetsmay have many more polygonsthan the available screenhas pixels.

As a consequence,many triangles may have a projected areasmaller than a pixel. In

this case,it makessenseto renderpoint samplesinsteadof triangles. Recently, many

researchershave developed point-basedrenderingsystems[13, 57, 78, 104, 113, 121].

Among these systems,the QSplat system [113] and its extension for streaming

datasetsover a network [114] shareour goal of visualizing datasetslarger than main

memory on commodity hardware. Point rendering has also beenusedto render 3D

surfaces[33, 79] and fuzzy objects such as clouds, �re, and plants [15, 109, 133].

17

2.2.7 Hardw are-Assisted Rendering

As graphicsalgorithms mature, their implementations becomeavailable in hardware

through simple application programming interfaces(APIs) such as OpenGL [154].

Graphics cards are getting faster and more sophisticated at an amazing rate, and

exploiting the new algorithms available in hardware through OpenGL extensionsis

key to developingcompetitiv e systems.Two examplesof OpenGL extensionsthat we

exploit in our systemare vertex arrays and occlusionqueries.

The vertex array extensionusesblocks of vertices, colors, and normals to draw

primitiv es. The typesof primitiv esinclude points, lines, triangles, triangle fans, and

triangle strips. The vertex array extensionallows us to setup pointers to blocks of

data, and then call a singlefunction (glDrawElements) that takescareof transferring

the data from main memory to graphicscard memory, and then rendering it. Ren-

dering using glDrawElements is typically much faster than looping over the data and

calling the OpenGL functions for each vertex.

Thereareseveral typesof occlusionqueryextensions.The HP occlusiontest [124],

lets us senda pieceof geometry to the graphics hardware, and ask if that pieceof

geometry would have been visible. A more sophisticated extension, the NVIDIA

occlusionquery [110], lets ussendvariouspiecesof geometryto the graphicshardware

at the sametime, and get for each of them the number of pixels that would have been

a�ected. In Chapter 4 we describe how we exploit these extensionsto accelerate

conservative occlusionculling.

2.2.8 Computation Reordering

Sometimesa given computation consistsof independent operations, and the �nal

result does not depend on the order in which the operations are executed. In this

case, it may be possible to reschedule the execution of the operations to exploit

coherenceand obtain substantial performanceimprovements.

18

Pharr et al. [105] developed a ray tracing systemfor datasetslarger than memory

that employed computation reordering. They achieved large rendering speedupsby

rescheduling the ray intersectioncomputations. Our systemis di�eren t from theirs in

someaspects: they focus on photorealism,while we focus on interactivit y; and they

usea regular grid to spatialize the dataset, while we usean octree. But our systems

sharea basic idea: do as much computation as possiblewith the data currently in

memory, and delay computationsthat needdata currently on disk. In particular, our

rasterizationphasedoesnot rasterizethe visible octreenodesin a �xed order. Instead,

the nodesin memory are rasterized�rst, while nodeson disk are being fetched to be

rasterizedlater. The �nal imageis una�ected by the out-of-order execution,because

the Z-bu�er algorithm sorts the primitiv esat the pixel level.

Another way improverenderingperformanceis by doingattribute clustering. Typ-

ically, the renderingenginekeepstrack of a renderingstate, which includesattributes

such asthe current material (for example,that is how OpenGL works [154]). If many

primitiv es share the sameattributes, it is usually faster to render them together,

becausewe then save time that would be wastedon context switches.

A similar technique is mode sorting. Supposethat someprimitiv esin the dataset

are to be rendered as polygons, and other primitiv es are to be rendered as lines.

Switching from polygon rendering mode to line rendering mode takes time. If we

reorderthe traversalof the primitiv esto avoid modechanges,renderingwill be faster.

2.3 Parallel Rendering

Researcheshave investigatedthe useof parallel machines for computer graphics for

decades. In 1983, Ullner [142] presented a ray tracing machine. In 1990, Gar-

lick et al. [53] presented the idea of exploiting multipro cessorworkstations to overlap

visibilit y computations with rendering.

19

Many other approachesto parallel rendering have beenproposedover the years.

Molnar et al. [94] classifyparallelization strategiesin three categoriesbasedon where

in the renderingpipelinesorting for visible-surfacedetermination takesplace. Sorting

may happen during geometry preprocessing,between geometry preprocessingand

rasterization,or during rasterization. The threecategoriesof parallelization strategies

are sort-�rst, sort-middle, and sort-last:

Sort-�rst algorithms [66, 99, 117, 118] distribute raw primitiv es (with unknown

screen-spacecoordinates)during geometrypreprocessing.Theseapproachesdi-

vide the 2D screeninto disjoint regions(or tiles), and assigneach region to a

di�eren t processor,which is responsible for all of the rendering in its region.

For each frame, a pre-transformation step determinesthe regionsin which each

primitiv e falls. Then a redistribution step transfers the primitiv es to the ap-

propriate renderers. Sort-�rst approaches take advantage of frame-to-frame

coherencewell, sincefew primitiv estend to move betweentiles from oneframe

to the next. Sort-�rst algorithms can also useany rendering algorithm, since

each processorhasall the information it needsto do a completerendering. Fur-

thermore, as rendering algorithms advance,sort-�rst approachescan take full

advantage of them. One disadvantage of sort-�rst is that primitiv esmay clus-

ter into regions,causingload balancing problemsbetweenrenderers. Another

disadvantage is that more than onerenderermay processthe sameprimitiv e if

it overlapsscreenregion boundaries.

Sort-middle algorithms [4, 47, 96] distribute screen-spaceprimitiv es between the

geometry preprocessingand rasterization stages. Sort-middle approaches as-

signan arbitrary subsetof primitiv esto each geometryprocessor,and a portion

of the screento each rasterizer. A geometryprocessortransformsand lights its

primitiv es,and then sendsthem to the appropriate rasterizers. Until recently,

this approach has been the most popular due to the availabilit y of high-end

20

graphicsmachines. One disadvantage of sort-middle approachesis that primi-

tiv esmay be distributed unevenly over the screen,causingload imbalancebe-

tweenrasterizers. Sort-middle also requireshigh bandwidth for the transfer of

data betweenthe geometryprocessingand rasterization stages.

Sort-last approaches [59, 95, 148] distribute pixels during rasterization. They as-

sign an arbitrary subsetof the primitiv es to each renderer. A renderer com-

putes pixel valuesfor its subset,no matter where they fall in the screen,and

then transfer thesepixels (color and depth values) to compositing processors.

Sort-last approachesscalewell with respect to the number of primitiv es,since

they render each primitiv e exactly once. On the other hand, they needa high

bandwidth network to handle all the pixel transfers. Another disadvantage of

sort-last approachesis that they only determinethe �nal depth of a pixel during

the composition phase,and thereforemake it di�cult (if not impossible)to use

certain renderingalgorithms, e.g., transparencyand anti-aliasing.

Here we will focus on recent parallel rendering systems,especially on systems

gearedtowardsusingclustersof commodity PCs and renderingon multi-tile displays.

Samanta et al. [117, 118] developed a sort-�rst renderingsystemusing a network

of commodity PCs. The main focusof their work wason load balancingthe geometry

processingand rasterization work doneon each of the PCs, rather than on handling

very largemodels. To achieve a well balancedsystem,they developeddynamic screen

partitioning schemesthat predict the rendering costsof groups of triangles and at-

tempt to minimize the amount of overlap betweentriangles and screenpartitions. A

limitation of their systemwasthat in somecasesthe screenpartitioning schemecould

becomethe bottleneck. Another limitation was the lack of scalability with respect

to model size, as the model had to be replicated in main memory on each of the

renderingnodesof their cluster.

21

In subsequent work, Samanta et al. [116] developed a hybrid sort-�rst/sort-last

parallel rendering algorithm, which scaledbetter with processorcount and screen

resolution. Their new approach performs dynamic, view-dependent partitioning of

both the 3D model and the 2D screen. The objectives that they are addressingare

balancing the rendering load on the nodes as well as minimizing the screenspace

overlaps which require the subsequent pixel transfer and compositing step. Once

again, the geometryis replicated on each of the nodes,and the dynamic partitioning

phasecould becomea bottleneck and limit the frame rate.

In morerecent work, Samanta et al. [115] addressthe replication problem, storing

(in main memory) copiesof the model only in k of the available n nodes,wherek < n.

Still, neither the preprocessingphasenor the renderingphasewould be able to handle

a model larger than main memory. The systemwe present herecanhandlearbitrarily

large models (limited only by the sizeof the available secondarymemory).

Mueller [99, 100] hasperformedextensive experiments using a sort-�rst rendering

system. He emphasizesthat sort-�rst has an advantage over sort-middle, becauseit

canexploit the frame-to-framecoherenceinherent in interactive applications. He also

points out that sort-�rst hasan advantage over sort-last, becauseit doesnot require

high communication bandwidth for pixel tra�c. Part of Mueller's work was on the

load-balancingproblem. He designeda dynamic schemefor partitioning the screen

so that each processorhas a balancedrendering load. His algorithm is the basisfor

the work of Samanta et al. [117]. Mueller also worked on the databasemanagement

problem, focusingon retained-mode databasesthat �t in the memoryof the graphics

hardware. In contrast, we focus our work on immediate-mode databasesthat are

larger than the main memory of the host hardware.

WireGL [18, 65, 66, 67] is a systemthat allows the output resolution of an un-

modi�ed graphics application to be scaledto the resolution of a tiled display, with

little or no loss in performance. WireGL replacesthe OpenGL driver on the client

22

machine, intercepts the OpenGL calls, and sendsthe calls over a high-speednetwork

to serverswhich render the geometry. WireGL includesan e�cien t network protocol,

a geometrybucketing scheme,and an OpenGL state tracking algorithm. WireGL is

able to sustain rendering performanceof over 70 million triangles per secondon a

32-node cluster. It assumes,however, that the entire model �ts in the main memory

of the client machine. Another limitation is that the geometrybucketing algorithm

assumesthat the geometryprimitiv esthat are closeto each other in the GL stream

are alsoclosetogether spatially, which may not be the case.

Chromium [68] is a systemthat, as WireGL, replacesthe OpenGL driver. Chro-

mium is much more
exible than WireGL, and lets a programmercreateapplications

using stream processingunits (SPUs). For example, a \pack" SPU on the client

side intercepts the OpenGL calls, packs the OpenGL stream into buckets, and sends

the buckets over the network to a renderingserver. The renderingserver unpacks the

OpenGL streamfrom the network, and usesa \render" SPU to generatepixels. SPUs

are free to changethe OpenGL stream, and can be chained. For example,there are

SPUsto invert the colors,or add alpha blending, or display hidden lines.

Chromium has been used to re-implement WireGL, and implement other sort-

�rst and sort-last systems[14]. One disadvantage of Chromium is that it does not

have built-in support for large datasets.Although it is conceivable to useChromium

to build an out-of-corerenderingsystem,such a systemdoesnot yet exist. Another

disadvantageof Chromium is that if the client application doesnot (or cannot) exploit

display lists, the application performancewill su�er. In our experience,even when

Chromium is running on the client machine (making the network overheaddisappear),

an immediatemodeapplication typically achievesonly 10%of its native performance.

Lombeyda et al. [85] developed a parallel system for interactive volume render-

ing using commodity hardware. Zhang et al. [157] employed a cluster of PCs for

visualization of isosurfaceof massive datasets.

23

2.4 Related Systems

Is this sectionwe compareour systemto previously publishedsystems.When evalu-

ating a system,we asked the following questions:

� Can it handle large datasets?

� Doesit run on commodity PCs?

� Is the preprocessingfast?

� Doesit useocclusionculling?

� Is occlusionculling from-point?

� Doesit support LODs?

� Doesit useimageimpostors?

� Doesit useprefetching?

� Doesit exploit hardware support?

� Doesit render in high resolution?

� Can it handle arbitrary 3D models?

� Can it handle dynamic geometry?

� Doesit run unmodi�ed programs?

Table 2.1 summarizesthe answers to thesequestionsfor the systemsmost related to

ours. We now brie
y review each of the systemsin Table 2.1 in chronologicalorder.

Clark [23] proposedback in 1976many of the major techniquesstill usedtoday by

renderingsystems.His ideasincluded hierarchical view frustum culling, hierarchical

simpli�cation and LOD management, hierarchical occlusionculling, and working set

management (on-demandloading and least-recently-used replacement). It is unclear,

however, whether or not Clark had a working systemthat implemented all his ideas.

Airey et al. [3] described a systemthat combined LOD management with the idea

of precomputingvisibilit y information for modelsmadeof axis-alignedpolygons.

Funkhouseret al. [50] were the �rst to publish a systemthat supported models

larger than main memory and performed speculative prefetching. Their approach

relied on the from-regionvisibilit y algorithm of Teller et al. [138], which requireslong

24

Year System La
rg

e
da

ta
se

ts
PC

s
Fa

st
pr

ep
ro

ce
ss

in
g

O
cc

lu
si

on
cu

llin
g

Fr
om

-p
oi

nt
oc

cl
us

io
n

LO
D

Im
ag

e
im

po
st

or
s

Pr
ef

et
ch

in
g

H
ar

dw
ar

e
su

pp
or

t

H
ig

h
re

so
lu

tio
n

Ar
bi

tra
ry

3D
ge

om
et

ry

D
yn

am
ic

ge
om

et
ry

U
nm

od
i�e

d
pr

og
ra

m

1976 Clark's � � � �

1990 Airey's � � �

1993 Funkhouser's � � � � �

1996 VTK � � � � �

1997 Cox's � � � � �

1998 Optimizer � � � � � � � � �

1999 MMR � � � � � � �

2000 Prince's � � � � � � �

2000 QSplat � � � � � � � �

2001 Jupiter � � � � � � �

2001 Moreland's � � � � � � �

2001 Samanta's � � � � �

2001 Wald's � � � � � �

2002 Chromium � � � � � � �

2002 GigaWalk � � � � �

2002 OpenSG � � � � � �

2002 Varadhan's � � � � �

2002 XFastMesh � � � � � �

2003 Lindstrom's � � � � � �

2003 Wald's � � � � � �

2003 Yoon's � � � � � �

2003 iWalk (ours) � � � � � � � � � �

Table 2.1: Comparisonof systemsrelated to ours.

25

preprocessingtimes, and assumesthat the modelsare madeof axis-alignedcells. Our

approach is basedon the from-point visibilit y algorithm of Klosowski and Silva [73],

which requiresvery little preprocessing,and handlesarbitrary 3D geometry.

The visualization toolkit (VTK) [123] is a genericcollection of libraries and tools

for development of renderingsystems.Many systemshave beenbuilt on top of VTK,

but VTK haslittle support out-of-corerendering,thread-safety, and occlusionculling.

Cox [32] presented a pagedsegment systemto managethe scenedatabasecache.

Cox showed that an application that controls paging itself achievesmuch better per-

formancethan an application that relies on the operating system'smanagement of

virtual memory.

The OpenGL Optimizer [125, 126] is a commercial package available from SGI

that provides an application programming interface (API) for visualization of large

models. There is a large overlap in goals between our system and Optimizer, but

our methods di�er. Unfortunately, Optimizer is expensive, gearedtowards high-end

hardware, and it is not available for Linux. Optimizer is being discontinued and

replacedby Performer [127], which is available for Linux, and we hope will eventually

support all the featuresof Optimizer on commodity hardware. A similar product is

TGS's commercialversionof Open Inventor [139].

Aliaga et al. [5] developed the massive model rendering (MMR) system. MMR

employeda largenumber of accelerationtechniques,including replacingdistant geom-

etry with imageimpostors,managinglevelsof detail, and culling occludedgeometry.

MMR wasperhapsthe �rst publishedsystemto handlemodelswith tensof millions of

polygonsat interactive frame rates. On the other hand, MMR requiredweeksof pre-

processingtime and expensive high-end graphicsworkstations. Our systemrequires

much lesspreprocessingtime, and runs on commodity PCs.

Prince [107] presented an out-of-core extension for the progressive meshesdata

structure [61]. Prince useda regular grid to spatialize the dataset, and did not use

26

occlusionculling. His systemrelied on systemcalls of the Windows API to manage

virtual memory, and was limited to datasetsof at most 2GB on 32-bit machines. It

is unclear how Prince implemented prefetching, becausehis systemdid not support

asynchronous data loading. It is also unclear how well his system would perform

for truly large datasets,becausePrince only reported results for datasetsthat were

smaller than the memory of the test machine.

Rusinkiewiczand Levoy [113] developed QSplat, a point-basedrendering system

for massive meshes.QSplat employs all the accelerationtechniquesour systemem-

ploys, exceptfor occlusionculling. QSplat is able to renderbillion-triangle meshesat

interactive frame rates with very acceptableimage quality. An extensionof QSplat

supports streamingmassive meshesover a slow network connection[114].

Bartz et al. [11] presented the Jupiter toolkit for visualization of large datasets.

Jupiter is a joint e�ort between HP and the University of T•ubingen. The toolkit

supports occlusionculling and level-of-detail management. Out-of-core and parallel

renderingare currently being added.

Morelandet al. [98] presented a sort-last parallel renderingsystemfor visualization

of large datasetson a display wall driven by a cluster of PCs. Their system scales

very well with data size,and is able to generate12-megapixelimagesof a model with

half a billion triangles at almost interactive frame rates.

Samanta et al. [115, 116, 117, 118] developeda parallel renderingsystemfor display

walls driven by a cluster of PCs. As we have mentioned, the focus of their research

was on load balancingalgorithms, not on out-of-corerendering.

Wald et al. [146] developed a ray tracing systemfor out-of-corerenderingof large

models on a cluster of PCs. A key di�erence between our work and theirs is that

they useray tracing, and we usethe Z-bu�er. Although ray tracing allows them to

usemore sophisticatedrenderingalgorithms, the Z-bu�er allows us to exploit better

hardware support and producehigher resolution images.

27

Humphreyset al. [68] developed Chromium, which we have discussedin the pre-

vious section. We mention it here again to emphasizethat Chromium's goal is to

provide mechanisms,not algorithms. It is alsoimportant to note that Chromium can

scalethe resolution of an unmodi�e d client application. This feature is important if

the client application is only available in binary format, or if the application requires

a commerciallicenseper renderingnode.

Baxter et al. [12] developed GigaWalk, an in-core rendering systemfor high-end

machines that usedmultiple threads to combine occlusion culling with hierarchical

level-of-detail management.

Reiners et al. [111] developed the OpenSG scenegraph system. The OpenSG

project sharesmany of our goals,and the system is similar in spirit to other scene

graph systemssuch asPerformer [127] and Jupiter [11]. Vo� et al. [144] have recently

addedmulti-threading and clustering support to OpenSG.

Varadhan and Manocha [143] described a system for out-of-core rendering that

combined hierarchical LODs [46] and prefetching, but their systemdoesnot perform

occlusionculling, and their preprocessingstep is in-core.

DeCoro and Pajarola [39] developed XFastMesh,a systemfor interactive out-of-

corerenderingof large datasetsThe systemsupports view-dependent levelsof detail,

but doesnot support occlusionculling, and dependson an in-corepreprocessingstep.

Lindstrom [82] developed a systemfor out-of-corebuilding and renderingof mul-

tiresolution surfaces.His systemsupports view-dependent levels of detail, but does

not support occlusionculling.

In more recent work, Wald et al. [145] developed a parallel ray tracer capableof

interactively rendering dynamic geometry, but they only report results for models

smaller than main memory.

Yoon et al. [156] presented an in-core rendering system for high-end PCs that

combinesview-dependent level of details and occlusionculling.

28

The last row in Table 2.1 shows the featuressupported by our system,which we

have namediW alk . No other systemsupports all the featuresthat iWalk supports.

On the other hand, iWalk doesnot support a fewfeaturessupported by other systems.

Among thesesystems,MMR is the only onethat supports imageimpostors. Although

imageimpostorsmay allow MMR to generateimageswith higher �delit y at the lowest

levelsof details, imageimpostorsrequire long preprocessingtimes and a largeamount

of storage. Another feature not supported by iWalk is dynamic geometry. Only

Chromium [68] and the recent in-core systemof Wald et al. [145] support dynamic

geometry. Finally, only Chromium is able to run unmodi�ed applications.

To concludethis section, let us make it clear that the comparisonin Table 2.1 is

intentionally incomplete. We have ignored many factors that are not critical to us,

but may be important in other contexts. Thesefactors include:

� vendor support

� community support

� platform availabilit y

� user interface

� documentation

� code maturit y

� code license

� view-dependent LODs

� volume rendering

� photorealismlevel

� load balancing

� collision detection

2.5 Discussion

During the development stagesof our system, we kept two main design goals in

mind: we wanted all the steps,including preprocessing,to work on a PC with small

memory, and we wanted to deliver interactive frame rates. Guided by thesegoals,

for each stageof the pipelinewe developed techniquesthat work out-of-coreand that

29

favor interactivit y over imagequality. Becauseof the hugedi�erence in performance

between main memory and disk, a major focus of the design of these techniques

was trying to save memory for the geometry cache and avoid disk accesses.The

combination of these techniques is a system that is simple, practical, scalable,and

that strikes a good balance between interactivit y and image quality. The system

works around the weaknessesand exploits the strengthsof current PC hardware.

The algorithms we choseto usefor each step of the pipeline are appropriate for

the speci�c task we are interestedin, i.e., using commodity PCs to visualizedatasets

larger than main memory. Thesechoicesmay not be appropriate for a systemthat

can a�ord to keep the entire dataset in memory, or for a system whosegoal is to

generatephotorealistic images. Similarly, techniquesappropriate for those systems

would not be the best for our goalsand constraints.

For the spatialization data structure, we chosean octree. Although a regular grid

would have been simpler, an octree allows us to perform hierarchical view-frustum

culling. A hierarchy of boxesor a hierarchy of sphereswould have beengood choices

as well, but our visibilit y algorithms assumethat the leavesof the hierarchy form a

spatial decomposition.

For the visibilit y algorithms, we chosePLP and cPLP. BecausePLP is an ap-

proximate algorithm, it might produce objectionable artifacts if used alone by the

rendering thread. Thus, we also use cPLP (implemented using the new OpenGL

occlusionquery extensions)in combination with LODs in the rendering thread. On

the other hand, PLP is perfect for the prefetching thread. Becauseprefetching is

speculative, an approximate visible set is good enough. In addition, becausePLP

does not need to accessthe disk or the graphics card, the prefetching thread runs

without disturbing the other threads.

Another advantage of PLP and cPLP is that they are from-point algorithms. If

memoryis plentiful, from-regionvisibilit y may bea better alternative than from-point

30

visibilit y. But if memory is at a premium, from-point visibilit y is more indicated, be-

causeit givesa smaller visible set, which in turn takes lessspacein the cache, and

requiresfewer disk accesses.In addition, from-point algorithms require lessprepro-

cessingtime than from-regionalgorithms.

For the renderingprimitiv es,we choseto usetriangles, becausethey are the com-

mon denominatorof higherorder primitiv es,and current graphicscardsareoptimized

to rasterizetriangles. Another good choicewould havebeenusingpoints asprimitiv es.

We chosenot to usedisplay lists. Rendering is fastest in current graphicscards

if the geometry is stored in display lists, but displays lists take up a lot memory. A

display list must make a copy of all data it requiresto recreatethe call sequencethat

created it. The OpenGL implementation also needssomeextra memory to manage

the display lists of a given context. If the dataset is small, this memory overhead

may not be a problem. But if the dataset is large, display lists may actually hurt

performance,becausethey could causememory thrashing. [103]

We choseto use static LODs. Although continuous and view-dependent LODs

producesmooth transitions betweenapproximations, static LODs arebetter suited for

today's graphicscards. Each static LOD canbestoredand renderedasa vertex array,

fully utilizing the potential of the graphics card. Continuous and view-dependent

LODs tend be CPU-bound, and leave the graphicscard under-utilized.

For the parallel extensionof our system,we chosea simple sort �rst architecture,

mainly becausesort-�rst allows each rendererto run the entire graphicspipeline for

the primitiv esin its tile. A sort-middle approach requiresfast accessto the interme-

diate resultsbetweenthe geometryprocessingand rasterization stagesof the graphics

pipeline,which current PC graphicscardsdo not provide. A sort-last approach would

have prevented us from using occlusionculling basedon image-spacequeries.

Early results of this work have beenpublished elsewhere[26, 27, 28, 29, 30, 31].

In this dissertation we present new results and techniques. Sincethe publication of

31

those papers, we have addressedsomeof the issueslisted there as future work. In

particular, we have addedlevel-of-detail management and fast conservative occlusion

culling to the system. In addition, we have tested our system using much larger

datasets. Finally, we have updated the numbers for the experiments presented in

thosepapers to re
ect our current hardware.

The large number of recent publications on out-of-core rendering indicates that

visualization of large datasetsis far from being a solved problem. We hope to show

that the techniqueswepresent herearesimple,yet usefulandpowerful, andcontribute

to the advancement of this �eld.

32

Chapter 3

Out-Of-Core Prepro cessing

Recall that one of our goals is to visualize datasets that are larger than the main

memory available in an inexpensive PC. Our approach is to keep the bulk of the

dataseton disk, and load on demandfrom disk into a memorycache the visible parts

of the dataset at the appropriate level of detail. Is this chapter, we describe the

preprocessingalgorithms that partition the model, computecoe�cien ts that are used

for visibilit y estimation, and createthe levels of details for each part of the dataset.

3.1 Partitioning the Dataset Using an Octree

The �rst preprocessingstep is to build an octree [119] that partitions the dataset

into manageablepieces. A brute-force, in-core algorithm to build the octree would

needa machine with large enoughmemory to hold the entire dataset. We avoid this

brute-force approach, becausewe do not want to usea separateexpensive machine

with large memory just to build the octree. The out-of-core algorithm we present

herebuilds the octree directly on a machine with small memory.

The algorithm �rst breaks the model in sections that �t in main memory, and

then incrementally builds the octree on disk, one passfor each section, keeping in

memory only the sectionbeing processed.

33

node
structure

hierarchy
structure

file

node
contents

files
node

contents

... ...

id
min point
max point
octant
depth
is leaf

primitives
vertices vertex normals

indices

vertices

vertex colors

vertices
vertex normals
vertex colors
primitives

Figure 3.1: The layout of an octree on disk. The out-of-corespatialization algorithm
builds an octree for a dataset, saving the skeleton of the octree in the hierarchy
structure (HS) �le, and the geometriccontents of each node in a separate�le.

To store the octree on disk, our algorithm saves the geometriccontents of each

octreenode in a separate�le, and createsa hierarchy structure (HS) �le (Figure 3.1).

The HS �le has information about the spatial relationship of the nodes in the hi-

erarchy, and for each node it contains the node's bounding box and auxiliary data

usedfor visibilit y culling. The HS �le is the main data structure that our rendering

approach usesto control the
o w of data. A key assumption we make is that the

HS �le �ts in memory. That is usually a trivial assumption. For example,the sizeof

the HS �le for the Boeing 777dataset (Figure 3.2) is only 1.2 MB.

Figure 3.3 shows the high-level view of the out-of-core algorithm to build an

octree for a given dataset given a maximum number of vertices per leaf. We begin

by breaking the dataset into sections,which is very simple. Let N be the number of

primitiv esin the dataset, and n the number of primitiv esthat the machine can hold

in memory (typically, N is much larger than n). We can createdN=ne sectionsof at

most n primitiv eseach, without bringing the entire dataset into memory, by reading

at most n primitiv esat a time, and writing them to a separate�le. Chiang et al. [21]

34

(a) exterior view (b) interior view

(c) another interior view (d) octree

Figure 3.2: The Boeing 777datasetwith 352million triangles (7.5 GB of data). The
sizeof the octree using at most 480,000verticesper leaf is only 1.2 MB.

35

octree_build(dataset, max_vertices_per_leaf)
{

break dataset in sections that fit in memory;
compute dataset bounding box b;
create empty octree with b and max_vertices_per_leaf;
save octree structure;
for (each section) {

octree_insert_section(octree.root, section);
}

}

Figure 3.3: Pseudocode for building an octree.

proposea technique that splits the dataset in spatially coherent sections.Many CAD

modelsand datasetsresulting from simulations already comeasa set of small pieces,

so this step may not be necessary.

In the next step,we createan empty octreeusing the bounding box of the dataset

and the given maximum number of verticesper leaf. If the datasetwasalready given

as a set of sections,we can compute the bounding box with a single passover the

dataset,bringing into memoryonesectionat a time. Otherwise,we can computethe

bounding box while breaking the dataset into sections.

Before proceeding,we save the structure of the octree on disk. This allows us

to make the insertion of a section completely self-contained, and the whole process

incremental. In particular, if we add new sectionsto the dataset in the future, we

do not have to recomputethe octree from scratch. The necessity for this incremental

approach becameevident when we were building octrees for models of real-world

environments acquiredby multiple passesof 3D scanning.

In the �nal high-level step, we insert the sectionsof the dataset into the octree

oneat a time. Figure 3.4 shows the pseudocode for inserting a sectioninto an octree.

We begin by loading the structure of the octree and the data for the section. Note

that we do not load the data inside the previously existing octree nodes. We only

load the structure �le, which as we have mentioned, is very small.

36

octree_insert_section(octree, section)
{

load octree structure;
load section;
for (each primitive in section) {

octree_route_primitive(octree.root, primitive);
}
octree_save_data(octree);
save octree structure;
free section;

}

Figure 3.4: Pseudocode for inserting a sectioninto an octree.

For each primitiv e of the section,we route the primitiv e, i.e., we �nd the octree

leaf that should store the primitiv e. Figure 3.5 shows the pseudocode for routing

a primitiv e. We recursively search for the leaf that intersects the primitiv e. If the

primitiv e intersectsmultiple leaves,we replicate the primitiv e in all intersectedleaves.

When we reach a leaf, we check if it is full, i.e., if the number of vertices in the leaf

has reached the speci�ed maximum. If the leaf is not full, we insert the primitiv e

there. Otherwise, we create eight children nodes for the leaf, making it an internal

node, and redistribute its data amongits children.

Finally, we save the data �les of the octree nodesa�ected by the insertions. Fig-

ure 3.6 shows the pseudocode for saving the octree data. For each octree node that

usedto be a leaf beforethe insertion of the current section,we perform the following

steps. If the node is still a leaf, we mergethe new data with the old data (if any). If

the result of the mergeexceedsthe allowed maximum number of vertices per node,

we redistribute the data, which will make the leaf into an internal node. Then, we

write the data �les of the current subtree. If the node usedto be a leaf and now is

an internal node, we check if the node usedto have data. If it did, we mergeall the

new data of the current subtree with the old data, redistribute the data, and write

the data �les. If the node usedto be empty, we just write the data �les for the new

data in the current subtree.

37

octree_route_primitive(node, primitive)
{

if (node is leaf) {
if (node is not full) {

insert primitive into node;
} else {

create eight children for node;
distribute data amongchildren;

}
} else {

for (each child) {
if (primitive intersects child) {

octree_route_primitive(child, primitive)
}

}
}

}

Figure 3.5: Pseudocode for routing a primitiv e.

The �nal leavesmay have di�eren t numbers of primitiv esand volumes,but each

leaf will contain at most the prede�ned number of vertices. The important point is

that all insertions are local to a leaf, and therefore never require reading from disk

more than oneoctree node of a �xed maximum size.

If we are building a dataset incrementally, a new section may not �t inside the

bounding box of the original dataset. In this case,to avoid rebuilding the octree

for the entire dataset, we grow the octree toward the new section. We create seven

siblings for the current root node, and a new root that will be the parent of the

old root and its new siblings. We repeat this until the octree doescontain the new

section,and then proceedwith the insertion as before.

The �nal number of �les corresponding to the leavesof the octree may be large

(e.g., tens of thousands). If we save all the �les in the samedirectory, opening a

�le might involve a linear search on the �le name. To avoid this problem, we save

the octree leaves in a hierarchy of directories, whereeach directory storesat most a

certain number of �les (typically 25).

38

octree_save_data(octree)
{

for (each node that used to be a leaf) {
if (node is leaf) {

if (node has new data) {
if (node had old data) {

read old data;
merge with new data;
free old data;
remove old data file;

}
if (new data is too big) {

split node;
redistribute data;

}
write data files in this subtree;

}
} else {

if (node had old data) {
merge new data of this subtree;
read old data;
merge with new data;
free old data;
remove old data file;
redistribute data;
write data files in this subtree;

} else {
write data files in this subtree;

}
}

}
}

Figure 3.6: Pseudocode for saving the octree data.

39

Our spatialization algorithm has three important features:

� It is an out-of-corealgorithm. When adding a section, we only needmemory

for the section itself, the hierarchy structure �le, and the contents of one leaf.

The section�ts in memoryby construction, the sizeof HS �le is negligible,and

the sizeof the contents of a leaf is limited by the maximum number of vertices

per leaf. Thus, we can createoctreesfor extremely large data.

� It is an incremental algorithm. If new objects are added to the dataset, only

the spatial regionstouched by thoseobjects needto be updated, asopposedto

rebuilding the entire hierarchy. This is particularly useful for applications that

build models incrementally, such as 3D scanning.

� It is fast. For each section, the algorithm only reads a modi�ed node once,

doing the insertion in the most e�cien t way.

Someresearchers have developed similar algorithms. Ueng et al. [141] presented

an out-of-corealgorithm to build an on-disk octree for largeunstructured tetrahedral

meshes.Both their algorithm and ours save the structure (or skeleton) of the octree

in a �le, and the contents of the octree nodesin separate�les. Also, both algorithms

enforcea maximum amount of data per octree node. The main di�erence is that,

when adding a new section to an existing octree, their algorithm may needto read

the samenode multiple times, while our algorithm only needsto read an a�ected

node at most onceper section.

Cignoni et al. [22] developed an out-of-core algorithm for simpli�cation of large

datasets.Their algorithm �rst builds a raw (not indexed)octree-basedexternal mem-

ory mesh (OEMM), and then traversesthe raw OEMM twice to build an indexed

OEMM. Our preprocessingalgorithm is similar to the �rst phaseof their simpli�ca-

tion algorithm. The main di�erence is that they build the octree starting from the

leavesat a prede�ned depth, and then mergeadjacent leaveswith few primitiv es. We

40

build the octreestarting from the root, and then split leaveswith too many primitiv es.

We expect our algorithm and theirs to have similar running times.

Many other researchers have developed spatialization algorithms with the same

goal,but di�eren t implementations. The algorithm of Wald et al. [146] createsa BSP

tree for the dataset. Pharr et al. [105] and Prince [107] usea regular grid.

McMains et al. [90] have developed an out-of-core technique to build a topolog-

ical data structure for a large dataset of unorderedpolygons. Their data structure

supports much more functionality than we need. The extra connectivity information

is not useful to us. We are only interested in interactive rendering. Using a simple

octree allows us to have very fast preprocessingtimes.

3.2 Computing Visibilit y Coe�cien ts

The next preprocessingstep is computing visibilit y coe�cien ts for each octree leaf.

As we will seein more detail in Chapter 4, these visibilit y coe�cien ts are used at

runtime by the prioritized-layered projection (PLP) [73] algorithm to estimate the

octreenodesthat arevisible from the current viewpoint. The basicideais to compute

a value that estimateshow likely it is for a node to block the light passingthrough

it. In their original paper, Klosowski and Silva estimatedthis likelihood basedon the

number of primitiv esin the leaf.

We improve upon Klosowski and Silva's approach by precomputinga set of view-

dependent valuesbasedon the screencoverageof the primitiv es in a node relative

to the screencoverageof the node's bounding box. For each octree leaf, we place

an arbitrary number of sample viewpoints around the octree leaf. We pick each

viewpoint so that when we look from the viewpoint towards the center of the node

we are able to seethe entire node, and we maximize the projected screenareaof the

node's bounding box.

41

For each sampleviewpoint, we rasterize the node's bounding box in green and

then the node's contents in red over a black background, without depth tests. We

then read back the frame bu�er, and count the number of greenand red pixels, ng

and nr . We approximate the probability of the node blocking light from this viewing

direction by the ratio of red pixels to lit pixels, nr =(nr + ng).

We typically store 20 of such coe�cien ts per node. At runtime, we pick the

coe�cien t whosecorresponding sampling direction is closestto the current viewing

direction. Thesecoe�cien ts are fast to precompute, cheap to store, and give us a

more accurateestimate of visibilit y at runtime than other simpler statistics such as

the number of primitiv esin the node.

3.3 Creating Levels of Detail

The �nal preprocessingstep is precomputinglevelsof detail. For each octreenode,we

computea small setof static levelsof detail. Weusethe vertex clusteringalgorithm of

RossignacandBorrel [112]. Typically weprecompute3 to 5 successiveapproximations

of the data in each octree node. Each approximation has roughly 1/4 of data of the

previousapproximation. At runtime, the appropriate level of detail is selectedbased

on the expectedcontribution of the octree node to the quality of the image.

Rossignacand Borrel [112] use two factors to grade a vertex: the length of the

longest edgeincident to the vertex, and the maximum angle between the edgesin-

cident to the vertex. Unfortunately, thesefactors may be misleading if the dataset

has beentriangulated already [87]. Sincemost of our test datasetswere already tri-

angulated when we obtained them, we searched for a di�eren t metric to grade the

vertices. We found that we obtained better-looking simpli�ed versionsof the dataset

by ignoring the angle between the edges,and weighting a vertex by the maximum

areaof the facesincident to the vertex.

42

There are many reasonswhy we choseto usesimple vertex clustering instead of

more sophisticatedsimpli�cation approaches:

� Vertex clustering is very simple and very robust. In particular, it makes no

assumptionsabout the original geometry.

� Vertex clustering is very fast. Simplifying a node after it is in memory is faster

than reading the node from disk.

� Vertex clustering only needsto traversethe data once,which is important for

us, becausewe are I/O bound.

� The quality of the approximations producedby vertex clustering is good enough

for an interactive previewer such as we want, and not much worsethan that of

more complicated,slower methods.

� The error introducedby the simpli�cation is bounded(in the Hausdor� distance

sense)by an intuitiv e, user-controlled accuracydial.

� Vertex clustering doesnot require the construction of a topological adjacency

graph betweenfaces,edges,and vertices.

� Vertex clustering producesstatic LODs, which are better suited for current

hardware than dynamic LODs.

Originally, we usedto employ Popinet's implementation [106] of Lindstrom's algo-

rithm [81, 84] to computeLODs. But the computation of adjacencyinformation was

proving to be too time consumingfor very large datasets. When we started experi-

menting with a 473-million triangle dataset,we realizedwe had to sacri�ce �delit y to

achieve practical preprocessingtimes.

Ho et al. [60] also use vertex clustering in their mesh compressionsystem. To

compressmesheslarger than main memory, Ho et al. advocate automatically parti-

tioning the meshinto sub-meshesthat �t in memory, and compressthem separately,

43

ignoring intersectionsbetweenneighboring regionsof the partition. Ho et al. point

out that this approach is advantageous, becauseit is simple and allows them to

leverageexisting in-core simpli�cation techniques for each region. Hoppe [63] and

Bernardini et al. [13] also partition the input dataset into piecessmall enoughto �t

in memory, and then simplify them individually.

Isenburg and Gumhold [69] have developed an out-of-corecompressiontechnique

that converts massive meshesinto a streamablerepresentation. Their focusis on one-

passdecodersthat allow for streamingdecompressionthat can start producing mesh

triangles assoon asthe �rst few bytes becomeavailable. They are more interestedin

compressionratio than framerates. For example,the executiontime of their rendering

system was bound by the computation of triangle normals, which they could have

precomputed,but they chosenot to.

Isenburg and Gumhold [69] point out that they dislike the approach of simplifying

piecesof the datasetseparately, becauseof the discontinuities that may be introduced

betweenregions. We do not mind the discontinuities. In practice they are not too

disturbing, and they can be easily �xed, if necessary[63].

3.4 Exp erimen tal Results

In this sectionwe report on the performanceof our preprocessingalgorithms. One of

our goalswas to evaluate the time necessaryto preprocessa dataset. For the system

to be practical, the preprocessingstep needsto be automatic and reasonablyfast. A

few minutesor evena coupleof hoursmay be acceptable,but days would be too long.

Another goal of theseexperiments was to study the tradeo� betweenthe granu-

larit y of the spatialization, i.e., the choice of the maximum number vmax of vertices

per leaf, and the size of resulting octree. Finer granularit y (small vmax) allows for

morepreciseview-frustum and occlusionculling, potentially reducingthe load on the

44

graphics card. But small granularit y also increasesthe chanceof primitiv e replica-

tion, and increasesthe traversal load on the CPU. Coarsergranularit y (large vmax)

reducesthe traversaltime, and decreasesthe chancesof replication, but increasesthe

chancesof fetching and rendering invisible geometry. Choosing the right granularit y

can a�ect the running time by a factor greater than ten [125].

Yet another goal of theseexperiments was to assessthe quality of the levels of

detail producedby vertex clustering. A commoncriticism towards vertex clustering

is that it may produce poor approximations of the dataset. We will se below that

the quality of the approximations is good enoughfor an interactive previewer. If the

needfor better approximations arises,we can useany other simpli�cation algorithm,

becausethe simpli�cation step is orthogonal to the rest of the system.

We ran experiments with two datasets.The �rst dataset is the UNC power plant

model [147], which contains 13 million triangles (Figures 3.7{3.9). This is a chal-

lengingmodel, becauseof its high depth complexity, which calls for occlusionculling.

View-frustum culling, even if combined with LOD management, would render many

invisible triangles unnecessarily. Another reasonwhy we ran tests with the power

plant model is that many previous systemshave used it, which allows us to make

more objective comparisons.

The seconddataset is the LawrenceLivermoreNational Laboratory (LLNL) iso-

surfacedataset [97], which contains 473 million triangles (Figure 3.10). This is a

truly massive dataset whoseoriginal size is 8.3 GB. After converting the dataset to

our own format, the sizewent up to 9.8 GB, mainly becausethe original dataset did

not have vertex colors. We assignedto each vertex a color that indicates its height.

We ran the preprocessingtests on a 2.4 GHz Pentium IV computer with 512MB

of RAM and a 250 GB IDE disk. The computer was equipped with a NVIDIA

GeForce Quadro FX 500 graphicscard. The computer's operating systemwas Red

Hat Linux 8.0. The total cost of this machine is about US$1,000.

45

Figure 3.7: An exterior view of the UNC power plant [147] with 13 million triangles.

46

Figure 3.8: An interior view of the UNC power plant model [147].

47

Figure 3.9: Another interior view of the UNC power plant model [147].

48

Figure 3.10: The LLNL isosurfacedataset [97] with 473million triangles.

49

Max vert/leaf Build time Size(MB) Depth Leaves Nodes Triangles
3750 10m 03s 1052 11 72,416 82,761 30,461,154
7500 7m 51s 833 11 33,944 38,793 25,985,206

15000 6m 24s 671 10 15,177 17,345 22,073,219
30000 5m 17s 578 9 6,847 7,825 20,088,458
60000 4m 45s 510 9 3,354 3,833 18,301,106

120000 4m 16s 465 8 1,744 1,993 17,509,750
240000 3m 57s 426 8 701 801 16,215,938

Table 3.1: Building the octree for the power plant model.

3.4.1 UNC Power Plan t Results

Building the Octree

The power plant model consistsof 21 sections,each of which �ts in the main memory

of the test machine. We used our out-of-core incremental spatialization algorithm

to build the octree for the entire model, one sectionat a time. Table 3.1 shows the

results for the construction of the octree for the power plant model. We varied the

maximum number of verticesper leaf from 3,750to 240,000.The �ner the granularit y,

the longer it took to build the octree. The running time is in the order of minutes,

and it is dominated by disk readsand writes. Other researchers report much longer

running times to spatialize this model [5, 146].

Becauseof triangle replication, the �ner the granularit y, the larger the size of

the octree. Figure 3.11 shows a chart with the total octree size plotted versusthe

maximum number of vertices per leaf. Basedon this chart, and runtime trial and

error, we chose15,000verticesper leaf for the rest of experiments with this model.

Figure 3.12 shows the power plant model from another angle with the structure

of the octreesuperimposed.The octreeshown is the onecreatedusing120,000asthe

maximum number of verticesper leaf. Note that the grid is irregular, i.e., somenodes

are larger (in volume) than others,which re
ects the di�eren t density of triangles per

volume of di�eren t regionsof the model.

50

·

·

·
·

·
·

·

Max vertices per leaf

O
ct

re
e

si
ze

 (
M

B
)

0 50000 100000 150000 200000

0
20

0
40

0
60

0
80

0
10

00

Figure 3.11: Octree sizeversusmaximum number of verticesper leaf.

Computing Visibilit y Coe�cien ts

We rasterizedeach octree node on a 64� 64-pixel window, and used20 sampleview-

points. The total running time to compute the visibilit y coe�cien ts was 2 minutes

and 36 seconds.The total sizeof the visibilit y coe�cien ts was 711 KB. Thus, both

the time and storagerequirements for the visibilit y coe�cien ts are negligible.

Creating Levels of Detail

We createdat most 5 levels of detail for each octree node: the original data plus 4

approximations starting with a grid of 128voxels per axis. Each approximation had

roughly 1/4 of the data of the precedinglevel of detail. The total running time to

createthe level of detailswas8 minutesand 5 seconds.The total sizeof the additional

data was 268 MB. Figure 3.13 shows closeupviews of several levels of detail of the

powerplant model. Vertex clustering doesa good job at preservingthe overall shape

of the model, even for very low polygonalcounts, especially if we considerhow simple

and fast the algorithm is. Figure 3.14shows thosesamelevelsof detail using regular

views, i.e., from the distancethat they would be seenat runtime. In theseviews, the

artifacts createdby vertex clustering are much lessnoticeable.

51

Figure 3.12: The UNC power plant model [147] with the octree superimposed.

52

(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.13: Closeupview of several levels of detail of the power plant.

53

(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.14: Regular view of several levels of detail of the powerplant.

54

3.4.2 LLNL Isosurface Results

Building the Octree

To build the octree for the LLNL isosurface,we usedthe limit of 480,000verticesper

leaf. The original dataset has473million triangles, and its size(after adding colors)

is 9.8 GB. The resulting octree has 561 million triangles (becauseof replication of

triangles that intersect multiple nodes), and its size is 10 GB. The octree has 7,393

nodes, 6,469 leaves, and the maximum depth is 5. The construction of the octree

took 1 hour and 24 minutes. The sizeof the hierarchy structure �le for this octree is

1.3 MB. Figure 3.15shows a screenshotof the structure of this massive octree.

Computing Visibilit y Coe�cien ts

To compute the visibilit y coe�cien ts for the LLNL isosurface,we used the same

approach we usedfor the power plant model. The total running time to computethe

visibilit y coe�cien ts was 25 minutes and 46 seconds.The total sizeof the visibilit y

coe�cien ts was 303KB.

Creating Levels of Detail

To create the levels of detail for the LLNL isosurface,we created at most 4 ap-

proximations of the original data starting from a grid of 128 voxels per axis. Each

approximation had at most 1/4 of the data of the previousapproximation. The total

running time to create the levels of detail was 1 hour and 16 minutes, and the total

sizeof the approximations was 2.3 GB.

Figure 3.16shows closeupviews of several levels of detail of the LLNL isosurface

dataset. Figure 3.17 shows those samelevels of detail using regular views. Once

again, the quality of the approximations produced by vertex clustering seemsgood

enoughfor our purposes.

55

Figure 3.15: The structure of the octree for the LLNL isosurface.

56

(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.16: Closeupview of several levels of detail of the LLNL isosurface.

57

(a) original (b) 1/4 of the original

(c) 1/16 of the original (d) 1/64 of the original

Figure 3.17: Regular view of several levels of detail of the LLNL isosurface.

58

3.4.3 Summary of the Prepro cessing Results

Our systemwas able to spatialize the UNC power plant model in about 6 minutes.

The system was also able to spatialize the LLNL isosurfacedataset, which is 20

times larger than the main memory of our test machine, in about 1.5 hours, which is

fast enoughto be practical. The computation time and storagerequirements for the

visibilit y coe�cien ts werenegligible. The computation time and storagerequirements

for the levels of detail were low, and the quality of the approximations producedby

vertex clustering was good enoughfor an interactive previewer.

The best numberswe know for automatic, out-of-corespatialization of the power

plant model are from Wald et al. [146]: roughly 30 minutes. The actual number they

publishedin 2001is 2.5 hours,but we areestimating that our test machine is roughly

5 times faster than the one they used then. Thus, keeping in mind that our data

structures are di�eren t (we usean octree,and they usea BSP tree), it is perhapsfair

to say that our spatialization algorithm is 5 times faster than theirs.

For the LLNL isosurface,weareunawareof any out-of-corepreprocessingnumbers

on low-endPCs. Lindstrom [82] reports 2 hoursand40minutesfor an isosurfaceabout

half the size of the one we used. We cannot make a direct comparison,however,

becausehis algorithm is more sophisticated (it creates view-dependent LODs, as

opposedto static LODs), and his test machine was a high-endSGI Onyx2.

59

Chapter 4

Out-Of-Core Rendering

This chapter presents our approach to render datasetslarger than main memory. So

far we have shown how to break the dataset into manageablepieces,and how to

precomputevisibilit y information and levels of detail for each piece. Now we show

how to render the piecesat runtime. We start with an overview or the rendering

approach, followed by a review of the PLP and cPLP visibilit y algorithms. Then,

we describe our extensionsto PLP and cPLP, and present our cache management

techniques,including our novel prefetching algorithm.

4.1 Overview of the Rendering Approac h

We namedour rendering systemiWalk. Figure 4.1 shows a diagram of iWalk's ren-

dering approach. The user interface (a) keepstrack of the position, orientation, and

�eld-of-view of the user'scamera.For each newset of cameraparameters,the system

computes the visible set | the set of octree nodes that the user sees. According

to the user's choice, the system can compute an approximate visible set (b), or a

conservative visible set (c). To compute an approximate visible set, iWalk usesthe

prioritized-layeredprojection (PLP) algorithm [73]. To compute a conservative visi-

ble set, iWalk usescPLP [74], a conservative extensionof PLP. (We will review PLP

60

approximate
visible set conservative

visible set

fetch
request

nodes to
render

nodes to
render

approximate
visible set

approximate
visibility: PLP

(h)

geometry
cache

(i)

visibility
query
results

front

camera image

read request

geometry

geometry

user
interface

(a)

approximate
visibility: PLP

(b)

conservative
visibility: cPLP

(c)

rendering
(d)

graphics
card
(e)

disk
(j)

display
(f)

fetch request

prefetch request

predicted camera

prefetching
(g)

Figure 4.1: The multi-threaded out-of-corerenderingapproach of the iWalk system.
For each newcamera(a), the system�nds the setof visible nodesusingeither approx-
imate visibilit y (b), or conservative visibilit y (c). For each visible node, the rendering
thread (d) sendsa fetch requestto the geometrycache (i), and then sendsthe node
to the graphics card (e). The prefetching thread (g) predicts future cameras,esti-
matesthe nodesthat the userwould seethen (h), and sendsprefetch requeststo the
geometrycache (i).

and cPLP shortly.) For each node in the visible set, the rendering thread (d) sends

a fetch request to the geometry cache (i), which will read the node from disk (j)

into memory. The rendering thread then sendsthe node to the graphicscard (e) for

display (f). To avoid bursts of disk operations, the prefetching thread (g) predicts

where the user's camerais likely to be in the next few frames. For each predicted

camera, the prefetching thread usesPLP (h) to estimate the visible set, and then

sendsprefetch requeststo the geometrycache (i).

4.2 Review of the PLP and cPLP Algorithms

To better understand the rendering approach, we needto review the visibilit y algo-

rithms that iWalk uses.When iWalk is running in approximate mode, the rendering

thread usesthe prioritized-layered projection (PLP) algorithm [73]. In conserva-

tiv e mode, the rendering thread usesthe cPLP algorithm [74]. In either mode, the

prefetching thread usesPLP.

61

PLP is an approximate, from-point visibilit y algorithm that may bethought of asa

setof modi�cations to the traditional hierarchical view frustum culling algorithm [23].

First, insteadof traversingthe model hierarchy in a prede�ned order, PLP keepsthe

hierarchy leaf nodes in a priorit y queue called the front, and traversesthe nodes

from highest to lowest priorit y. The front is initialized with the leaf closestto the

viewpoint. When PLP visits a node, it adds it to the visible set, removesit from the

front, and adds the unvisited neighbors of the node to the front. Second,instead of

traversingthe entire hierarchy, PLP works on a budget, stopping the traversalafter a

certain number of primitiv eshave beenaddedto the visible set. Finally, PLP requires

each node to know not only its children, but alsoall of its neighbors.

An implementation of PLP may be simple or sophisticated, depending on the

heuristic to assignpriorities to each node. Several heuristics precompute for each

node an opacity value between 0.0 and 1.0 that estimates how likely it is for the

node to occludean object behind it. At run time, the priorit y of a node is found by

initializing it to 1.0, and attenuating it basedon the opacity of the nodesfound along

the traversal path to the node (Figure 4.2). In the next sectionwe describe how we

usethe precomputedview-dependent visibilit y coe�cien ts as opacity values.

In addition to being time-critical, another key feature of PLP that iWalk exploits

is that PLP can generatean approximate visible set basedon just the information

stored in the hierarchy structure �le createdat preprocessingtime (Figure 3.1). In

other words, PLP can estimate the visible set without accessto the actual scene

geometry, thus allowing us to keepinvisible geometryon disk.

PLP doesnot guarantee imagequality, and someframesmay show objectionable

artifacts. To avoid this problem, the system may use cPLP [74], a conservative

extensionof PLP that guarantees100%accurateimages.However, cPLP cannot �nd

the visible set from the HS �le only, and needsto read the geometryof all potentially

visible nodes. The additional disk operationsmay makecPLP much slower than PLP.

62

Figure 4.2: A section of the Soda Hall model. At runtime, the iWalk system uses
the prioritized-layeredprojection (PLP) algorithm to estimate the nodespotentially
visible from the current view frustum (outlined in yellow). The color of each node
indicates the projection priorit y of the node. Model courtesyof UC Berkeley.

4.3 Extensions to PLP and cPLP

In this sectionwe present our extensionsto the PLP and cPLP. We �rst show how to

improve the accuracyof the approximate visible set returned by PLP. Then we show

how to exploit new OpenGL extensionsto improve the running time of cPLP.

4.3.1 Impro ving the Accuracy of PLP

In their original paper, Klosowski and Silva [73] computed the opacity of an octree

node basedon the number of primitiv es inside the node. One problem with this

heuristic is that the number of primitiv es may not correlate well with visibilit y. A

node with many small triangles clusteredtogether may be lesslikely to occludeother

nodesthan a node with a single large triangle.

A better way to estimate the opacity of an octree node is to usethe ratio of the

projected area of the geometry inside the node relative to the projected area of the

node's bounding box. We usethe term visibilit y coe�cien t to refer to this ratio. Of

course,the visibilit y coe�cien ts dependon the current viewing direction. Computing

63

thesecoe�cien ts for each viewing direction at runtime would be too expensive, and

it would prevent us from achieving interactive frame rates. To avoid this problem, we

pick a number of sampleviewing directions (typically 20), and precomputethe coe�-

cients for thesedirections(Chapter 3). At runtime, wedeterminethe sampledirection

that is closestto the current viewing direction, and usethe coe�cien t precomputed

for that direction to approximate the opacity of an octree node.

Instead of using a single view-dependent sample to approximate the opacity of

a node, we could interpolate between a certain number of closestsample viewing

directions. In their image-basedrendering system,Debevec et al. [37] usethe three

closestsampleviewing directions to �nd the weights to blend precomputedimages.

We experimented with this idea,but found that the additional running time cost was

not worth the marginal gain in accuracy.

To further improve PLP's accuracy, we alsomodify the way to computea node's

projection priorit y (used in the PLP front). Klosowski and Silva [73] compute pro-

jection priorities basedon the number of primitiv es in each node, the normal of the

face shared by two nodes, and a penalty factor for adjacenciesthat are not star-

shaped. The number of primitiv esmay not correlate well with visibilit y, and taking

into account sharedfacesand star-shaped adjacenciescreatesspecial cases.

Our approach to compute the node's projection priorit y is basedon sparseray

tracing. We trace a certain number of rays (typically 0.1% of the total number of

pixels) from the viewpoint to the scene.Each ray hasa contribution value initialized

to 1. When a ray hits a node, we assignthe ray contribution to the node'sprojection

priorit y. If multiple rays hit a node,weaveragetheir contributions. After a ray passes

through a node, we attenuate the ray's contribution by a factor basedon the opacity

of the node and the distance traveled by the ray inside the node. We terminate a

ray if its contribution falls below a certain threshold (typically 0.01). The projection

priorit y of a node not hit by any ray is 0.

64

Figure 4.3illustrates how the useof precomputedvisibilit y coe�cien ts andruntime

sparseray tracing improvesthe computation of projection priorities. The �gure shows

a sectionof the Soda Hall model seenby the user'sview frustum outlined in yellow.

The color of each octree node encodesthe projection priorit y of the node using the

same scale used in Figure 4.2. Figure 4.3a shows the priorities computed by the

original heuristic. Notice how the priorities decreasesmoothly from node to node.

Figure 4.3b shows the rays traced from the user's point of view. Figure 4.3c shows

the priorities computed by the improved heuristic, which are more accurate. Notice

the sharp decreasesin priorities from visible nodesto occludednodes.

The improved visibilit y heuristic helps the systemin many ways:

Better images in appro ximate mo de: If the system is running in approximate

mode, the imagesgeneratedusing the improved heuristic will be more accurate

than the imagesgeneratedusing the original heuristic.

Better frame rates in conservation mo de: If the systemis running in conserva-

tiv e mode, frame rates will tend to improve, becausethe initial guessof the

visible set will be more accurate,and cPLP will needfewer operations to com-

pute a conservative visible set.

Better prefetc hing: Using the improved heuristic, the prefetching thread will have

a better guessof what nodes to bring from disk into memory, which reduces

cache pollution, and avoids stalls due to cache misses.

Better LOD selection: Our systemusesthe estimate of the visibilit y of an octree

node as a hint for what level of detail to use for the node. A better visibilit y

estimate allows us to use lower levels of detail for nodes that are likely to be

occluded,which in turn improvescache and disk bandwidth usage.

65

(a) priorities using original heuristic

(b) using ray tracing to improve heuristic

(c) priorities using improved heuristic

Figure 4.3: Improving the accuracyof PLP.

66

4.3.2 Impro ving the Running Time of cPLP

The cPLP algorithm [74] augments the approximate visible set found by PLP to make

it a conservative one. The basic idea is to keepprojecting visible nodesand adding

their potentially visible neighbors (that have not beenvisited yet) to the front until

the front is empty. Klosowski and Silva prove that when the front is empty, all the

potentially visible nodeshave beenfound.

Klosowski and Silva alsoshow how to implement cPLP usingimage-spacevisibilit y

queries. One approach that they present (and that we implement in our system) is

using an item-bu�er. First, the geometry of the visible set found so far is rendered

on the Z-bu�er. Then, the bounding boxes of the nodes currently in the front are

renderedon the color bu�er with a color that encodesthe nodenumber. To determine

the visible nodes,the color bu�er is read back and searched for node numbers. This

approach is portable to any systemthat supports OpenGL, but readingback the color

bu�er is still a slow operation on current graphicscards.

Another approach presented by Klosowski and Silva (and reimplemented by us) is

to usethe HP occlusiontest [124]. The HP test allows us to senda pieceof geometry

to the graphicspipeline,and then askthe graphicscard whetheror not that geometry

was visible. The HP test is typically much faster than reading back the color bu�er.

Unfortunately, the HP test only allows us to have oneocclusionquery at a time, and

the result of the query is a singlebooleanvalue.

Recently, NVIDIA solved the limitations of the HP occlusiontest, and gave us the

capability we needto implement cPLP very e�cien tly. The newer NVIDIA graphics

cardshavean occlusionquery extension[110] that allowsus to askabout the visibilit y

of multiple piecesof geometryin parallel. In addition, the result of each query is not

just a boolean
ag, but a count of the number of visible pixels for the corresponding

geometry. The NVIDIA occlusionqueriesalso run faster than the HP tests, because

they avoid pipeline stalls by running multiple queriesin parallel.

67

Our implementation of cPLP using the NVIDIA occlusion query extension is

roughly 3 times faster than the implementation that reads back the color bu�er,

and roughly 50% faster than then implementation using HP tests. Becausewe as-

sume that the dataset is static, we can create an occlusion query per octree node

when the program starts, and delete the occlusion querieswhen the program exits.

For bestperformance,insteadof repeatedly issuinga visibilit y query and then getting

its result, we issuemultiple visible queries,and later get their results. This decoupling

hidesthe latency of the visibilit y tests performedby the graphicscard.

Another useof the NVIDIA occlusionquery extensionis in LOD selection. The

count of visible pixelsreturned by the occlusionqueryof a nodegivesusa hint of what

level of detail to usefor the node. Wecouldalsoget this hint from the implementation

using an item-bu�er, but not from the implementation using the HP test.

4.4 The Geometry Cache

To render a model larger than main memory, the iWalk system keepson disk an

octree-basedrepresentation for the model (Figure 3.1), and loads on demand the

contents of the octree nodesthat the usersees.Becausenodesthat are visible in one

frame tend to be visible in the next frame (frame-to-framecoherence),iWalk tries to

reducethe number of disk operations by maintaining a geometrycache (Figure 4.1i)

with the contents of the most recently usednodes.

As the userwalks through a model, the conservativevisibilit y thread (Figure 4.1c)

and the rendering thread (Figure 4.1d) send fetch requeststo the geometry cache

(Figure 4.1i). A fetch request contains the identi�cation of an octree node whose

contents will be rendered. The geometry cache puts the fetch requestsin a queue,

and a set of fetch threads processthe requests. (Butenhof [19] usesthe term work

queueto refer to a set of threads that acceptwork requestsfrom a commonqueue,

68

processingthem potentially in parallel.) Each fetch thread pops a requestfrom the

fetch queue,and checks whether the contents of the requestednode is in memory (a

hit) or not (a miss). In the caseof a miss, the fetch thread allocatesmemory for the

contents of the requestednode, and readsit from disk (Figure 4.1j). If the cache is

full, the least recently usednodesare evicted from memory. Finally, the fetch thread

puts the requestednode in a queuefor nodesthat are ready to be rendered.

Sincethe cost of disk read operations is high, most systemstry to overlap these

operationswith other computationsby running several processeson a multipro cessor

machine [5, 48, 53], or on a network of machines [146, 153]. Along thesesamelines,

our systemusesthreadson a singleprocessormachine to overlap disk operationswith

visibilit y computations and rendering.

The user can con�gure the number of threads that processthe requestsin the

fetch queue. One advantage of using multiple fetch threads is that it avoids stalls in

the renderingpipeline: if a fetch thread processesa miss, that thread will wait until

the requestednode is read from disk, but the fetch threads that processhits will put

the requestednodes in the ready queue,keeping the graphics card busy. Another

advantage of using multiple fetch threads is that it givesthe operating systemkernel

a chanceto better schedulethe read operations when there are concurrent misses.

The geometry cache usesa locking mechanism to prevent multiple threads from

modifying or deleting the samenode at the sametime. The locking mechanism is

similar to the one usedby the UNIX operating systemin its bu�er cache [10]. The

main di�erence is that the UNIX bu�er cache usesmultiple processesfor parallelism

and signals for synchronization, and we use threads and condition variables [19].

Another di�erence is that the UNIX bu�er cache usesbu�ers of �xed size, and we

usebu�ers of variable size.

69

4.5 The From-P oin t Prefetc hing Metho d

The idea behind prefetching is to predict a set of nodesthat the user is likely to see

next, andbring them to memoryaheadof time. Ideally, by the time the userseesthose

nodes,they will bealreadyin the cache,and the framerateswill not bea�ected by the

disk latency. Systemsresearchershave studied prefetching strategiesfor decades[54,

108], and many renderingsystems[5, 48, 50, 143] have usedprefetching successfully.

To our knowledge, all previous prefetching methods that employ occlusion culling

have been basedon from-region visibilit y algorithms, and were designedto run on

multipro cessormachines. Our prefetching method works with from-point visibilit y

algorithms, and runs as a separatethread in a uniprocessormachine.

Our prefetching method exploits the fact that PLP can very quickly compute

an approximate visible set. Given the current camera (Figure 4.1a), the prefetch-

ing thread (Figure 4.1g) predicts the next cameraposition by simply extrapolating

the current position and the camera'slinear and angular speeds.More sophisticated

prediction schemescould consideraccelerationsand several prior cameralocations.

For each predicted camera, the prefetching thread usesPLP (Figure 4.1h) to de-

termine which nodes the predicted camerais likely to see. For each node likely to

be visible, the prefetching thread sendsa prefetch request to the geometry cache

(Figure 4.1i). The geometry cache puts the prefetch requestsin a queueand a set

of prefetch threads processthe requests. If there are no fetch requestspending, and

if the maximum amount of geometrythat can be prefetched per frame has not been

reached, a prefetch thread will pop a requestfrom the prefetch queue,and read the

requestednode from disk (if necessary)(Figure 4.1j).

Figures4.4{4.6 show the pseudo-code for the main routines run by the threads in

the cache. When a client makesa fetch request,a thread executesthe fetch routine

(and similarly for a prefetch request). When the client is done using that node, it

must call the releaseroutine. Theseroutines have to be very careful about sharing

70

fetch(node, ready_queue)
{

lock cache;
while (node is busy) {

wait until node is free;
}
mark node as busy;
if (node is valid) {

miss = false;
update node position;

} else {
miss = true;
allocate memory;

}
unlock cache;

if (miss) {
read node;

}

lock cache;
if (miss) {

add node to cache;
}
if (no fetches pending) {

broadcast no fetches pending;
}
unlock cache;
add node to ready_queue;

}

Figure 4.4: Pseudo-code for the fetch routine.

71

prefetch(node, ready_queue)
{

lock cache;
while (there are fetch requests pending) {

wait until no fetch requests pending;
}
while (node is busy) {

wait until node is free;
}
mark node as busy;
if ((node is valid)

|| (reached max prefetch amount per frame)
|| (reached max prefetch request age)) {
can_read = false;

} else {
can_read = true;
allocate memory;

}
unlock cache;

if (can_read) {
read node;
lock cache;
add node to cache;
unlock cache;

}
add node to ready_queue;

}

Figure 4.5: Pseudo-code for the prefetch routine.

release(node)
{

lock cache;
mark node as free;
if (node is valid) {

broadcast memoryavailable;
}
broadcast node is free;
unlock cache;

}

Figure 4.6: Pseudo-code for the releaseroutine.

72

(a) user's view (b) cache view

Figure 4.7: A sampleframe inside the power plant model. (a) The image that the
usersees.(b) The state of the nodesin the geometrycache.

the cache data structures. To guarantee mutual exclusion, there is a lock to access

the cache, and each node hasa
ag indicating whether it is freeor busy. This scheme

is similar to the one used in the UNIX bu�er cache [10]. Figure 4.7a shows the

user'sview of the UNC power plant model [147] during a walkthrough session,and

Figure 4.7b shows the state of the octree nodesin the geometrycache.

Unlike our from-point prefetching method, from-region prefetching methods de-

composethe model into cells, and precompute for each cell the geometry that the

userwould seefrom any point in the cell. At runtime, from-regionmethods guessin

which cell the user will be next, and load the geometryvisible from that cell ahead

of time. Our from-point prefetching method hasseveral advantagesover from-region

prefetching methods. First, from-regionmethods typically require long preprocessing

times (tens of hours), while our from-point method requires little preprocessing(a

few minutes). Second,the set of nodesvisible from a single point is typically much

smaller than the set of nodesvisible from any point in a region. Thus, our from-point

prefetching method avoidsunnecessarydisk operations,and hasa better chancethan

73

a from-region method of prefetching nodesthat actually will be visible soon. Third,

somefrom-region methods require that cells coincide with axis-alignedpolygons in

the model. Our from-point method imposesno restriction on the model's geometry.

Finally, the nodesvisible from a cell may be very di�eren t from the nodesvisible from

a neighbor of that cell. Thus, a from-region method may causebursts of disk activ-

it y when the usercrossescell boundaries,while a from-point method better exploits

frame-to-framecoherence.

4.6 Exp erimen tal Results

In this sectionwe report on the performanceof our systemat runtime. Our main goal

was to verify whether we could achieve interactive frame rates and acceptableimage

quality. Another goal was to study how the many con�guration parametersof the

system interact, and how they a�ect the performanceperceived by the user. More

speci�cally, there were several questionswe wanted tp answer. What is the e�ect

of multi-threading and prefetching on frame rates? What is the impact of frame-

to-frame coherenceon frame rates? How much better is the approximate visible set

computedby PLP when using sparseray tracing and visibilit y coe�cien ts?

For the runtime tests, we usedthe samedatasetswe usedfor the preprocessing

tests in Chapter 3. Our test machine wasdi�eren t, however. For the runtime testswe

useda 2.8 GHz Pentium IV computer with 512MB of main memory, a 35 GB SCSI

disk, and a NVIDIA Quadro 980XGL graphicscard. This machine is slightly better

than the machine we used for the preprocessingtests, but it is still an inexpensive

PC. This machine also ran Red Hat Linux 8.0.

The usercan con�gure many parametersin our system,including geometrycache

size, number of fetch threads, number of prefetch threads, maximum amount of

prefetched geometry per frame, primitiv e budget for approximate visibilit y, target

74

frame rate, and image resolution. Theseparametersdepend mainly on the triangle

throughput of the graphicscard and the disk bandwidth. For our test machine, we

found that the following con�guration worked well: 256 MB of geometry cache, 8

fetch threads, 1 prefetch thread, a maximum of 2 MB of prefetched geometry per

frame, a budget of 280,000triangles per frame for approximate visibilit y, a target

frame rate of 10 fps, and imageresolution of 1024� 768.

4.6.1 UNC Power Plan t Results

To analyze the overall performance of our system, we measuredthe frame rates

achieved whenwalking through the power plant model alongseveral prede�ned paths

(which enabledrepeatableconditions for our experiments). Note that our algorithms

madeno assumptionson the paths being known beforehand;completecamerainter-

activit y is always available to the user. The �rst path usedhas 36,432viewpoints,

visits almost every part of the model, and requiresfetching a total of 900MB of data

from disk. Using the above con�guration, our systemrenderedthe framesalong that

path in 74 minutes. Only 95 frames(0.26%) causedthe systemto achieve lessthan

1 fps. The meanframe rate was 9.2 fps, and the median frame rate was 9.3 fps.

To analyzethe detailedperformanceof our system,it is easierto useshorterpaths.

For this purpose,we useda 500-framepath which required210MB of data to be read

from disk. If fetched independently, the maximum amount of memory necessaryto

render any given frame in approximate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran tests using three

di�eren t con�gurations. The �rst con�guration is entirely sequential: a singlethread

is responsiblefor computingvisibilit y, performingdisk operations,and rendering. The

secondcon�guration adds asynchronous fetching to the �rst con�guration, allowing

up to 8 fetch threads. The third con�guration adds an extra thread for speculative

prefetching to the secondcon�guration, allowing up to 2 MB of geometry to be

75

prefetched per frame. Figure 4.8 shows the frame rates achieved by these three

con�gurations for the 500-framepath. For the purely sequential con�guration, we

seemany downward spikesthat correspond to abrupt drops in frame rates,which are

causedby the latency of the disk operations, and spoil the user's experience. The

�rst spike happensbecausethe cache is initially empty. When we add asynchronous

fetching, many of the downward spikes disappear, but too many still remain. The

user'sexperienceis much better, but the frame rate drops are still disturbing. When

we add speculative prefetching, all signi�cant downward spikes disappear, and the

user experienceis smooth. Note that the gain in interactivit y comesentirely from

overlapping the independent operations. The three con�gurations achieve exactly the

sameimageaccuracy(Figure 4.9).

Figure 4.10shows why prefetching improvesthe frame rates. The charts compare

the amount of geometrythat the systemreadsfrom disk per framefor the secondand

third con�gurations described above. Prefetching greatly reducesthe needto fetch

large amounts of geometry in a single frame, and thus helps the systemto maintain

higher and smoother frame rates.

Figure 4.11shows that the userspeedis another important parameter in the sys-

tem, and has to be adjusted to the disk bandwidth. When the user speedincreases,

the changesin the visible set are larger. In other words, as the frame-to-frameco-

herencedecreases,the amount of data the systemneedsto read per frame increases.

Thus, caching and prefetching are more e�ectiv e if the usermovesat speedscompat-

ible with the disk bandwidth. The �gure also indicates that higher disk bandwidth

should improve frame rates.

The frame rates reported above were obtained when the systemwas running in

approximate mode and with LOD management turned o�. In conservative mode,

to obtain similar frame rates we need to turn on LOD management, otherwise the

frame rates are not interactive. When using LODs, the frame rates in conservative

76

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500
2

4
6

8
10

(a) sequential fetching and rendering

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(b) concurrent fetching and rendering

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) concurrent fetching, rendering, and prefetching

Figure 4.8: Using multiple threads to improve frame rates.

77

frame number

ac
cu

ra
cy

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.9: Image accuracyfor a 500-framewalkthrough of the power plant model
whenusingapproximate visibilit y. The vertical axis represents the fraction of correct
pixels in the approximate images in comparison to the conservative images. The
minimum accuracywas 89%,and the median accuracywas 98%.

mode are almost the sameas the frame rates in approximate mode. The di�erence

betweenthesecon�gurations is the quality of the imagesgenerated.The combination

of conservative visibilit y with LOD management tends to producebetter �nal images

than approximate visibilit y, especially for exterior views of the model.

When usingapproximate visibilit y without LODs, the nodesdeemedto be visible

are renderedin full resolution, and the nodesdeemedto be over the primitiv e budget

are not renderedat all. The �nal imagehasareaswith no error and areaswith large

error. In contrast, when using conservative visibilit y with LODs, few areashave no

error, but no areahas large error. The total number of wrong pixels may be similar

betweenthesetwo approaches,but the imagesproducedby the secondapproach are

more pleasingto the user.

Figure 4.12shows an interior view of the power plant model. Becausethis model

has very high depth complexity, the visible set is very small when the user is inside

the model. In this case,the original PLP heuristic is enoughto producevery accurate

images. On the other hand, Figure 4.13 shows that for exterior views the improved

heuristic producesapproximate imagesmuch closerto the conservative images.

78

frame number

si
ze

 (
K

B
)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(a) without prefetching

frame number

si
ze

 (
K

B
)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(b) with prefetching

Figure 4.10: Using prefetching to amortize the cost of disk operations. We measured
the amount of geometryfetched per frame without prefetching (a) and with prefetch-
ing (b). Prefetching amortizesthe cost of bursts of disk operations over frameswith
fewdisk operations,thuseliminating or alleviating most framerate drops. The system
was con�gured to prefetch at most 2 MB per frame.

79

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 20 40 60 80 100 120

0
2

4
6

8
10

(a) very high user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 50 100 150 200 250

0
2

4
6

8
10

(b) high user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) normal user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 200 400 600 800 1000

0
2

4
6

8
10

(d) low user speed

Figure 4.11: Adjusting the userspeedto the disk bandwidth. We measuredthe frame
rates along a camerapath inside the power plant model for di�eren t userspeeds(or
equivalently, for di�eren t number of framesin the path). If the user movestoo fast,
the frame rates are not smooth. The faster the usermoves,the larger the changesin
occlusion,and thereforethe larger the number of disk operations.

80

(a) user's view

(b) bird's eye view

(c) bird's eye view with octree

Figure 4.12: Interior view of the power plant model.

81

(a) using original approximate visibilit y

(b) using improved approximate visibilit y

(c) using conservative visibilit y

Figure 4.13: Exterior view of the power plant model.

82

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500 600

2
4

6
8

Figure 4.14: Frame rates for the LLNL isosurfacedataset.

4.6.2 LLNL Isosurface Results

For the LLNL isosurfacedataset,wemeasuredthe frameratesachievedby our system

usinga 615-framecamerapath. This path wasrecordedin a sessionin which the user

starts by inspecting the entire model from the outside, rotating it around. The user

then movescloseto a particular areaof the surface,and �nally movesback to seethe

entire model again.

Becauseof the hugesizeof this model, approximate visibilit y alone, i.e., without

LOD management, is not accuratefor outsideviews. When we combine approximate

visibilit y with LOD management, the imagesare more accurate, but still far from

correct. If we use conservative visibilit y alone, the frame rates are too low (up to

several minutes per frame). The only con�guration able to handle this model at in-

teractive frame ratesand acceptableimagequality is the combination of conservative

visibilit y and LOD management.

Figure 4.14shows the frame rates achieved using conservative visibilit y combined

with LOD management. The overall mean frame rate was 3 fps. The frame rates

when the user gets closerto a particular area are higher becausea large part of the

model is not visible then.

83

4.6.3 Summary of Rendering Results

Using an inexpensive PC, our systemwas able to render both the UNC power plant

and the LLNL isosurfaceat interactive frameratesand acceptableimagequality. The

use of multiple threads for asynchronous fetching and prefetching greatly improves

the frame rates,but the performanceof the systemis heavily dependent on frame-to-

frame coherence.The useof sparseray tracing and visibilit y coe�cien ts signi�cantly

increasesthe accuracyof the approximate visible set estimatedby PLP. With better

visibilit y estimation, the systemdeliversbetter imageswhen running in approximate

mode and better frame rates in conservative mode. The system brings to memory

data that is morelikely to bevisible, and hasa better hint (than distanceor projected

area) for LOD selection.

For the UNC power plant model, the bestpreviouslypublishedout-of-corerender-

ing results are from the ray tracing systemof Wald et al. [146]. Our systemachieves

higher frame rates than theirs, but their systemdeliversbetter imagequality.

For the LLNL dataset, the best out-of-core rendering results are from Lind-

strom [82]. Despite not using occlusion culling, his system is able to deliver frame

rates similar to the onesachieved by our systemon similar hardware.

84

Chapter 5

Out-Of-Core Parallel Rendering

Chapter 4 described the out-of-core rendering approach of the iWalk system. Al-

though iWalk is able to handle models larger than main memory, it only produces

low-resolution (1024� 768) imagesat interactive frame rates. This chapter describes

a parallel system that usesiWalk as a building block, and delivers high-resolution

(4096� 3072) imagesat the sameframe rates or faster.

5.1 Cho osing the Hardw are

A traditional approach to parallel renderinghas beento usea high-endparallel ma-

chine. More recently, with the explosive growth in power of inexpensive graphics

cardsfor PCs, and the availabilit y of high-speednetworks, using a cluster of PCs for

parallel renderinghasbecomean attractiv e alternative, for many reasons[80, 116]:

Lower cost A cluster of commodity PCs, each costing a few thousanddollars, typ-

ically has a better price/performanceratio than a high-end, highly-specialized

supercomputer that may cost up to millions of dollars.

Technology trac king High-volume o�-the-shelf parts typically improve at faster

rates than special-purposehardware. We can upgrade a cluster of PCs much

85

more frequently than a high-endsystem,asnew inexpensive PC graphicscards

becomeavailable every 6-12months.

Mo dularit y and
exibilit y We can easily add or remove machines from the clus-

ter, and even mix machines of di�eren t kinds. We can also usethe cluster for

tasks other than rendering.

Scalable capacit y The aggregatecomputing, storage,and bandwidth capacity of a

PC cluster grows linearly with the number of machines in the cluster.

Thus we have chosento usea cluster of PCs to drive a multi-pro jector tiled display

to createhigh resolution images.

5.2 Cho osing the Parallelization Strategy

As we have discussedin Chapter 2, there are three categoriesof parallelization strate-

gies: sort-�rst, sort-middle, and sort-last [94]. Sort-�rst approachesdivide the screen

into tiles, and assigneach tile to a di�eren t processor,which is responsible for all

of the rendering in its tile. Sort-middle approaches assignan arbitrary subset of

primitiv esto each geometryprocessor,and a tile of the screento each rasterizer. A

geometryprocessortransforms and lights its primitiv es,and then sendsthem to the

appropriate rasterizers. Sort-last approachesassignan arbitrary subsetof the prim-

itiv es to each renderer. A renderer computespixel values for its subset, and then

transfer thesepixels to compositing processors.

Given our goal and constraints, we have chosena sort-�rst approach for two main

reasons.First, sort-�rst processorsimplement the entire pipeline for a portion of the

screen[94], which is exactly the casefor which PC graphicscardsareoptimized. And

second,interactive applications tend to exhibit high frame-to-framecoherence,which

sort-�rst approachesexploit well.

86

We rejected sort-middle approachesbecausethey require a tight integration be-

tween the geometry processingand rasterization stages,which is only available on

high-endgraphicsmachines[4, 47, 96]. On PC graphicscards,there is no fast access

to the results of the geometryprocessing[116].

We rejectedsort-last approachesfor two main reasons.First, sort-last approaches

require very high bandwidth for pixel compositing [94]. For example,supposeeach

tile of our screenhas1280� 1024pixels,and that westore7 bytesper pixel (4 for color

and 3 for depth). If our target frame rate is 10 frames per second,each rendering

server would need 87.5 MB/s of network bandwidth just to transfer pixels. Some

researchers have addressedthis problem by designingspecializedhardware for pixel

compositing [92, 135], but these machines are expensive. The other reason why

we rejected sort-last approaches is that they would prevent us from implementing

occlusionculling basedon image-spacequeries.

5.3 The Parallel Rendering System

To implement a sort-�rst approach, the main challenge is to handle the redistri-

bution step [100]. During the geometry processing,after a pre-transformation step

determinesinto which screentiles each primitiv e falls, the primitiv es must become

available in main memory at the renderersresponsiblefor thosetiles. To get around

the redistribution step, somesystemssimply replicate in main memory the entire

model on each renderer. This approach, of course,does not scalewith respect to

model size. More sophisticatedsystemsreplicate the model only on a subsetof the

renderers[115]. Our systemkeepsa hierarchical partitioning of the model on disk,

and each renderer loads the visible parts of the model into its memory cache on de-

mand. Sincethe disk where we keepthe model may be a sharednetwork disk or a

local disk, this approach imposesvirtually no limit on the model size.

87

rendering
server

rendering
server

projector projector projector

rendering
server

client
file

server

user
input

�� ���� ��� �

	

	

	

	

image image

...

...

image

geometry

Figure 5.1: The out-of-coresort-�rst architecture.

Figure 5.1 shows a diagram of our system. A client machine is responsible for

processinguser interface events. For each display tile there is a dedicatedrendering

server. At each frame,the client sendsthe current viewingparametersto the rendering

servers. Note that the client does almost no work. The rendering servers run the

sequential rendering algorithms (from iWalk) that we presented in Chapter 4, with

a few modi�cations that we will discussbelow. Each renderer reads the parts of

the model it needsfrom a shared network disk in the �le server, and sendsthe

resulting imageto oneof the display projectors. Optionally, each renderermay read

its primitiv es from a local copy of the model. Note that this copy is on disk, not in

main memory. Sincedisk spaceis cheap, having a local copy of the model on disk

might not hurt the scalability of the system.

Each renderingserver is an MPI task and runs basically the samecode that iWalk

runs, with a few di�erences. First, sinceeach rendereris responsiblefor a tile of the

display wall, it performs occlusion culling using only the part of view frustum that

belongsto it. Second,each renderer receives input events from the client through

socket communication, instead of directly from the user. Finally, to synchronize the

renderers, we add an MPI barrier at the end of the rendering loop, right before

swapping front and back bu�ers.

88

We only useMPI to start and synchronizethe servers. The client doesnot needto

havean MPI implementation available. The client machine only transmits the current

viewing parametersto the rendering servers, and may thereforebe as lightweight as

a handheld computer. Somesystemsperform load balancing computations on the

client machine, in which casethe client may becomea bottleneck [118].

Our approach to synchronize the renderingservers is to rely on the MPI barrier,

which has a non-trivial latency. An alternative would be using multi-pip e graphics

cards with inter-pipe synchronization (genlock). Somenew PC graphicscards such

as the NVIDIA FX 3000G[102] provide genlock, but their price is still prohibitiv e.

5.4 Exp erimen tal Results

In this sectionwe report the results of the performanceand scalability experiments

we ran for our parallel renderingsystem. The main goal of theseexperiments was to

study how the systemscaleswith the number of processorsand imageresolution. We

alsowanted to comparethe performanceof the systemwhen the renderersread data

from a shared�le server versusfrom a copy on a local disk. We report results for two

di�eren t clusters. The �rst cluster is about three yearsold, and the secondcluster is

about oneyear old.

5.4.1 Results for the Old Cluster

The old cluster consistedof 16 rendering servers and a �le server. Each rendering

server was a 900 MHz AMD Athlon with 512 MB of main memory, an NVIDIA

GeForce2graphics card, and an IDE hard disk. The �le server was a 400 GB disk

array composed of eight SCSI disks con�gured as two 200 GB striped disks. As

we have discussed,the client machine does very little processing,and therefore its

hardwaredetails arenot important. In thesetests, the client machine wasa 700MHz

89

Pentium II I. All the machineswereconnectedby switched gigabit ethernet, and ran

RedHat Linux 7.2. The serversran MPI/Pro 1.6.3over TCP/IP for synchronization.

For the old cluster,weonly ran experiments with the UNC power plant model [147]

(Figure 3.7). We ran tests on clusters of 1, 2, 4, 8, and 16 rendering servers. We

useda pre-recordedcamerapath of 500frames,and for each cluster sizewe collected

statistics for both approximate visibilit y mode(using PLP) and conservativevisibilit y

mode(using cPLP). In both cases,LOD management wasturned o�. For each cluster

size,we �rst ran the tests reading the model from the �le server, and then reading

the model from copieson the local disks.

PLP Results

Herewe report the results of the experiments we ran in approximate visibilit y mode,

i.e., using PLP to estimate the visible geometry. In typical use, we con�gure the

system according to the triangle throughput of the graphics cards, the bandwidth

of the disks, the desired frame rate, and the desired image accuracy. When using

a cluster of 16 rendering servers, we usually give each renderer a budget of 70,000

triangles per frame and a geometrycache of 256MB. This con�guration allows us to

generate12-megapixelimagesof the power plant with a median accuracyof 99.3%

at a median frame rate of 10.8 fps. For the scalability analysisthat follows, we used

insteada total budgetof 400K trianglesper frame,sothat the systemwould beusable

even when con�gured with only onerenderingserver.

When werun our systemin approximate modeon a singlemachine, the framerates

depend mostly on the number of triangles renderedand the number of disk accesses;

the imageresolutionhasa smaller in
uence. As we add moremachinesto the cluster,

the total resolution increases,but the resolution of each rendererremains�xed. The

total triangle budget per frame for PLP also remains�xed, thus the triangle budget

of each rendererdecreases.

90

Ideally, if we doubled the number of machines in the cluster, we would get twice

the frame rate and the sameimage quality. In practice, several factors prevent us

from achieving that. First, there is duplication of e�ort. In sort-�rst, if a primitiv e

overlapsmultiple tiles, it is fetchedand renderedmultiple times. Sincethe chancesof

overlap increaseas we add processors,the demandsfor I/O bandwidth and triangle

throughput also increase.There are additional communications costsaswell. At the

end of each frame, there is an MPI barrier to synchronizeall the servers. Finally, the

likelihood of load imbalanceincreasesas the number of processorsincreases,which

may have a negative e�ect on both the frame rate and the imageaccuracy.

Figure 5.2 shows the frame rates achieved by our system when using PLP, as

we vary the cluster size (1, 2, 4, 8, and 16 PCs) and the type of disk (network or

local). 1 For these small clusters, the median frame rates (the horizontal lines in

the interior of the boxes) improved substantially with the number of PCs. On the

other hand, the spreadof the frame rates (the height of the boxes) increased.For all

con�gurations, there were very few stalls (the horizontal lines outside the whiskers).

A surprising fact is that the disk type has almost no in
uence on the frame rates.

The bandwidth of our network disk, measuredusing the Bonnie benchmark [17] from

a rendering server, is 7.8 MB/s. The similarit y betweenthe frame rates for network

and local disks indicates that the total bandwidth required by the rendering servers

is usually lessthan the bandwidth of the network disk. We believe the bandwidth

requirement is solow becauseour caching and prefetching schemesareexploiting well

the frame-to-framecoherencein our test paths.

1How to read the box plots. (From the S-Plus user's guide [89].) The horizontal line in the
interior of the box is located at the median of the data, and estimatesthe center of the distribution
for the data. The height of the box is equal to the interquartile distance, or IQD, which is the
di�erence between the third quartile of the data and the �rst quartile, and indicates the spread of
the distribution for the data. The whiskers (the dotted lines extending from the top and bottom
of the box) extend to the extreme values of the data or a distance of 1.5 � IQD from the center,
whichever is less. For data having a Gaussiandistribution, approximately 99.3% of the data falls
inside the whiskers. Data points that fall outside the whiskers may be outliers and so they are
indicated by horizontal lines.

91

0
5

10
15

20
25

30

net1 local1 net2 local2 net4 local4 net8 local8 net16 local16

cluster configuration (disk type and number of PCs)

fr
am

e
ra

te
 (

fr
am

es
/s

)

Figure 5.2: Framerates for PLP in the old cluster aswe vary the cluster sizeand the
disk type. We ran tests on clustersof 1, 2, 4, 8, and 16 PCs, for both network and
local disks. The median frame rates improve substantially with the number of PCs,
and the disk type makesalmost no di�erence.

We measuredthe accuracyachieved by our systemfor the tests above by compar-

ing the pixels in the imagesproducedby PLP and the pixels in the correct images.

For this particular camerapath, which was inside the power plant, in an area with

high depth-complexity, PLP estimatesthe visible set very well. For a singlemachine,

PLP achievesa medianaccuracyof 99.6%. If the triangleswereuniformly distributed

acrossthe screen,for a constant total triangle budget B , a cluster with P > 1 ren-

dering servers,each of which with a triangle budget of B=P to render its screentile,

would achieve the sameaccuracyas a singlemachine. But typically the distribution

of the triangles is not uniform, and B=P triangles may be too few for someservers

and too many for others. For paths inside the model, this load imbalanceis usually

92

small, and the accuracydrops slowly with the cluster size. For the test path, the

median accuracyachieved by the cluster with 16 serverswas 93%,which is high and

typical for paths inside the model. For paths outside the model, the accuracymay

be much lower, unlesswe turn on level-of-detail management.

cPLP Results

Herewe report the results of the experiments we ran in conservative visibilit y mode,

i.e., using cPLP to estimate the visible geometry. Conservative visibilit y introduces

anotherobstaclefor ideal scalability. Recall that there is a one-to-onecorrespondence

betweenservers and projectors. Thus, when we increasethe number of servers, al-

though each server becomesresponsible for a smaller part of the view frustum, that

part will be renderedat higher resolution. As a result, the amount of geometryvisi-

ble through that part of the view frustum that we needto fetch and render may not

decrease.In theory, it could even increase.Sincethe sizeof the problem may grow

with the cluster size,we cannot expect linear scalability. Turning on level-of-detail

management allows us to get almost linear scalability in frame rates, at the cost of

somelossin imageaccuracy.

Figure 5.3 shows the frame rates achieved by our systemwhen using cPLP, aswe

vary the cluster sizeand the type of disk. Recall that PLP can estimatea visible set

basedonly on the hierarchy structure �le created at preprocessingtime, but cPLP

needsto read the actual scenegeometry. Thus, without LOD management, cPLP

needsto perform many more disk accessesthan PLP, and the frame rates for cPLP

aremuch lower than thosefor PLP. In terms of scalability, even though the maximum

frame rates increasesubstantially with cluster size, the median frame rates remain

roughly the same. In terms of disk type, the network disk was able to match once

again the performanceof the local disks, which indicates that making local copiesof

the model on each server may be unnecessary.

93

0
2

4
6

8

net1 local1 net2 local2 net4 local4 net8 local8 net16 local16

cluster configuration (disk type and number of PCs)

fr
am

e
ra

te
 (

fr
am

es
/s

)

Figure 5.3: Frame rates for cPLP in the old cluster as we vary the cluster sizeand
the disk type. We ran tests on clusters of 1, 2, 4, 8, and 16 PCs, for both network
and local disks. The median frame rates stay roughly the same,and the disk type
makesalmost no di�erence.

5.4.2 Results for the New Cluster

The newcluster consistsof 8 renderingserversand a �le server. Each renderingserver

is a 2.8 GHz Pentium IV computer with 512 MB of main memory, a 35 GB SCSI

disk, and a NVIDIA Quadro 980XGL graphicscard. The �le server is similar, but in

addition it hasa 200GB SCSIdisk. The client machine is identical to the rendering

servers. The newcluster alsousesgigabit ethernet for connectivity. All machinesrun

Red Hat Linux 8.0. The serversuseMPICH 1.2.5for synchronization.

For the newcluster,weran experiments for both the UNC power plant model [147]

(Figure 3.7) and the LLNL isosurfacedataset (Figure 3.10). We ran tests on clusters

of 1, 2, 4, and 8 rendering servers. All tests for the new cluster used conservative

94

visibilit y in combination with LOD management. As we did for the old cluster, for

each cluster size we ran the tests �rst reading data from the �le server, and then

reading data from copieson the local disks.

For both datasets,the meanframe rates improved substantially with the number

of PCs, and onceagain the disk type makesalmost no di�erence. In practice, instead

of getting higher mean frame rates with higher variance, we prefer to put a cap on

the frame rates (typically 10 fps), and obtain lower variance. For framesthat could

be renderedfaster, the rendering thread waits for the frame time. Meanwhile, the

prefetching thread has a better chance to be allowed to bring data from disk into

memory, which reducesstalls due to cache misses,and lowers frame rate variance.

When using 8 renderingservers,each renderinga 1280by 1024tile, we wereable

to render the UNC power plant model at 10 framesper secondon average,with very

little variance. For the LLNL isosurface,we could sustain 4{5 framesper secondfor

exterior views and 8{10 framesper secondfor interior views.

5.4.3 Summary of Parallel Rendering Results

The sort-�rst parallel rendering extensionof our systemallows us to scalethe reso-

lution of an application without any lossin performance.On the other hand, unlike

Chromium [68], our parallel architecture requireschangesin the application source

code. The best parallel rendering systemsfor clusters we know are the ray tracing

system of Wald et al. [146] and the sort-last system of Moreland et al. [98]. The

systemof Wald et al. producesmore photorealistic images,while our systemdeliv-

ers higher frame rates and higher image resolution. Our system and the system of

Moreland et al. achieve similar results on similar hardware for the LLNL isosurface

dataset. Becausetheir system usesa sort-last approach, it scalesbetter than ours

with model size. On the other hand, becausewe use a sort-�rst approach, we can

take advantage of image-spaceocclusionqueries.

95

Chapter 6

Conclusions

This chapter endsthe dissertation. Herewe summarizeour work, point out our most

important research contributions, and discusspossibledirections for future work. We

end by showing how to obtain the sourcecode for our system.

6.1 Summary

Wehave presented iWalk, a systemfor interactive and high-resolutionvisualization of

largedatasetson commodity PCs with small memory. To handledatasetslarger than

main memory, the system usesa new set of out-of-core preprocessingand runtime

algorithms. The preprocessingalgorithms break the dataset into manageablepieces

using an octree, and precomputevisibilit y information and levels of detail for each

octree node. The runtime algorithms keepthe bulk of the dataseton disk, and bring

octree nodes into a memory cache on demand. To achieve interactive and smooth

frame rates, the systemcombines level-of-detail management with occlusionculling,

and usesmultiple threads to overlap visibilit y computation, rasterization, fetching,

and prefetching. In addition, the systemexploits recent OpenGL extensionssuch as

vertex arrays and occlusionqueries. To produce high resolution images,a sort-�rst

parallel extensionof the systemusesa cluster of PCs to drive a multi-tile display.

96

The out-of-core preprocessingand runtime algorithms are simple, e�cien t, and

make no assumption about the datasets. The combination of these algorithms is

a practical and scalablesystem that allows us to use inexpensive PCs to visualize

datasetsthat until recently would require expensive high-endgraphicsworkstations.

By being able to run on inexpensive hardware, our systemcan help to bring visual-

ization of large datasetsto a broader audience.

6.2 Con tributions

The main research contributions of our work are:

An out-of-core algorithm to build an octree. Our algorithm is fast and auto-

matic, i.e., it needsno user intervention. In addition, it is incremental, i.e., it

allows us to add new data to an existing octree, which is important for some

applications (e.g., 3D scanning).

Extensions of the PLP visibilit y algorithm. Our ray-tracing basedheuristic for

PLP providesmore accurateapproximate visible setsat little extra preprocess-

ing and runtime cost. Our hardware-assistedextensionof cPLP, combined with

level-of-detail management, requiresvery little preprocessing,and makes con-

servative occlusionculling practical on commodity hardware.

An out-of-core, from-p oin t prefetc hing algorithm. Our prefetching algorithm

exploits PLP's abilit y to estimatea visible set without having to readgeometry

from the disk or usethe graphicscard. The algorithm runs whenthe CPU is idle

waiting for the disk, the graphicscard, or the next frame. Thus, a substantial

improvement in frame rates comesat almost no additional preprocessingor

runtime costs. Webelieveour systemis the �rst to employ a prefetching method

basedon a from-point visibilit y algorithm.

97

An out-of-core sort-�rst parallel rendering architecture. The architecture is

a simple and yet e�ectiv e way for an application to increasethe resolution of

the output images,and obtain the sameor faster frame rates. The architecture

keepsthe data on diskson the server side, thus avoiding a potential bottleneck

on the client, and better utilizing the renderingpower of the servers.

A system that in tegrates these techniques. We prove that our techniques are

practical by integrating them in a systemthat can handle datasetswith hun-

dredsof millions of triangles. In addition, we make our systemopen source,so

other researcherscan study it, extend it, or compareit with their own systems.

6.3 Future Work

There are many possibleavenuesfor future work. The following list is in increasing

order of estimateddi�cult y to implement:

Add geometry and app earance quan tization. The systemcurrently requires19

bytesper vertex (12 bytes for position, 3 bytes for normal, and 4 bytes for color).

We could quantize thesegeometry and appearanceattributes to save storage.

This changewould reducethe amount of data transferedfrom the CPU to the

graphicscard, and would free up spacein the cache for more octree nodes.

Eliminate geometry replication. If a triangle intersects multiple octree nodes,

the system currently replicates the triangle in all the intersectednodes. Ge-

ometry replication can easily double the size of the dataset, especially when

the spatialization granularit y is �ne. Eliminating this problem would be a very

welcomechangeto our system.

Add supp ort for textures. The systemcurrently doesnot support texture map-

ping. Adding this featurehasthe potential to improve the imagequality signif-

98

icantly. Although graphicscardshave support for texture mapping, they have

very small texture memory. Thus, adding this feature should be simple, but

may not be trivial,

Finish supp ort for volumes. The system already has some support for volume

rendering[70]. By usingan out-of-coreextensionof a well-known cell-projection

volumerenderingalgorithm [150], the systemis able to handlearbitrarily large

volumes,but the frame rates are not interactive yet.

Add load balancing. The major disadvantage of a sort-�rst architecture is the po-

tential for load imbalanceamongthe renderingservers if the geometryclusters

on regionsof the screen.Mueller [99] and Samanta [116, 117, 118] have devel-

oped techniquesto resizethe screentiles dynamically. Although thesedynamic

techniquespromote better balancing, they do not improve frame rates neces-

sarily, becausethey createa bottleneck on the client. We would like to compare

these techniques with a simple static approach in which tiles are subdivided

into a number of sub-tiles equal to the number of renderingservers.

Extract and publish API. We would like to encapsulateour techniques in a li-

brary with an application programming interfacethat could be reusedby other

systems. Sourcesof inspiration comefrom the Gang of Four [51], VTK [123],

and Optimizer [126].

Supp ort dynamic scenes. The systemassumesthat the dataset is static, i.e., the

geometry does not changeover time. We would like to extend the system to

handledynamic geometry. The generalcasein which the wholedatasetchanges

may be too di�cult. But the special caseof localizedchanges,such as the ones

typical of a CAD modeling package,seemsmuch easierto solve, although still

very challenging.

99

Dev elop an analytic mo del for the system. There aremany internal and exter-

nal parametersthat a�ect the performanceof the system. Internal parameters

include the maximum number of verticesper octree node, the sizeof the geom-

etry cache, the geometrybudget for approximate visibilit y, and the prefetching

limit per frame, to name a few. External parametersinclude the CPU speed,

the triangle throughput of the graphicscard, and the bandwidths and latencies

of the disks and network connections.A model that predicted the systemper-

formancegiven these parameterswould be helpful to guide the con�guration

and optimization of the system.

Optimize system parameters automatically . If we manageto describe the be-

havior of the systemaccurately with an analytical model, the next step would

be to implement an optimization procedureto �nd the best parametersfor the

systemwithout any programmerintervention.

6.4 Speculation

Today's graphicscardsare designedto support the Z-bu�er algorithm. A revolution-

ary changein computer graphicswill comewhen ray tracing becomessupported in

commodity graphicscards. The simplicity and power of the ray tracing algorithm are

just beautiful. Ray tracing hasalmost \built-in" occlusionculling and level-of-detail,

and producesvery photorealistic images. In addition, ray tracing is a member of

the classof so-called\embarrassinglyparallel" algorithms, becausethe color of each

pixel can be computed completely independently of the color of other pixels. If we

had a cluster of onemillion machines,we could allocatea machine to each pixel of our

screen. If graphicshardware continuesto advanceat the current pace,soon enough

a graphics card with one million ray processorswill be available on gameconsoles.

The recent vertex program extensionto OpenGL is a step in the right direction.

100

6.5 Getting the Source Code

The iWalk systemis open sourceand is part of the GTB suite of graphicstools [25].

From the GTB sourceforgeweb site, you candownload the sourcecode for iWalk and

other systemsbasedon GTB. GTB is licensedunder the GNU public license.

101

Bibliograph y

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of

early vision. In M. Landy and J. A. Movshon, editors, Computational Models

of Visual Processing, chapter 1. MIT Press,Cambridge, MA, 1991.

[2] P. Agarwal, L. Arge, O. Procopiuc, and J. Vitter. A framework for index

bulk loading and dynamization. In International Colloquium on Automata,

Languages,and Programming, pages115{127,2001.

[3] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with

interactive update rates in complexvirtual building environments. 1990ACM

Symposium on Interactive 3D Graphics, pages41{50, 1990.

[4] K. Akeley. RealityEngine graphics. In ACM SIGGRAPH 93, pages109{116,

1993.

[5] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Ho�, T. Hudson,

W. St•urzlinger, E. Baker, R. Bastos,M. Whitton, F. Brooks,and D. Manocha.

MMR: An interactive massive model rendering system using geometric and

image-basedacceleration. 1999 ACM Symposium on Interactive 3D Graphics,

pages199{206,1999.

[6] D. G. Aliaga and A. Lastra. Automatic imageplacement to provide a guaran-

teed frame rate. In ACM SIGGRAPH 99, pages307{316,1999.

102

[7] C. And�ujar, C. Saona-V�azquez,I. Navazo,and P. Brunet. Integrating occlusion

culling and levels of detail through hardly-visible sets. Computer Graphics

Forum, 19(3):499{506,2000.

[8] L. Arge, K. Hinrichs, J. Vahrenhold,and J. Vitter. E�cien t bulk operationson

dynamic R-trees. In Proceedingsof Workshopon Algorithm Engineering, pages

104{128,1999.

[9] L. S. Avila and W. Schroeder. Interactive visualization of aircraft and power

generationengines.In IEEE Visualization 97, pages483{486,1997.

[10] M. J. Bach. The Designof the UNIX Operating System. Prentice Hall, 1986.

[11] D. Bartz, D. Staneker, W. Stra�er, B. Cripe, T. Gaskins,K. Orton, M. Carter,

A. Johannsen,and J. Trom. Jupiter: A toolkit for interactive largemodel visu-

alization. In 2001 IEEE Symposium on Parallel and Large-DataVisualization

and Graphics, pages129{134,2001.

[12] W. Baxter, A. Sud, N. Govindaraju, and D. Manocha. GigaWalk: Interac-

tiv e walkthrough of complex environments. In 2002 Eurographics Rendering

Workshop, 2002.

[13] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier,and G. Taubin. Building

a digital model of Michelangelo'sFlorentine Piet�a. IEEE Computer Graphics

& Applications, 22(1):59{67,2002.

[14] E. W. Bethel, G. Humphreys, B. Paul, and J. D. Brederson. Sort-�rst, dis-

tributed memoryparallel visualization and rendering.In 2003IEEE Symposium

on Parallel and Large-DataVisualization and Graphics, pages41{50, 2003.

[15] J. F. Blinn. Light re
ection functions for simulation of clouds and dusty sur-

faces.In ACM SIGGRAPH 82, pages21{29, 1992.

103

[16] P. Borrel, K. Cheng,P. Darmon, P. Kirchner, J. Lipscomb, J. Menon, J. Mit-

tleman, J. Rossignac,B.-O. Schneider, and B. Wolfe. The IBM 3D interaction

accelerator(3DIX). Technical report, IBM, 1995.

[17] T. Bray. The Bonnie �le system benchmark. http://www.textualit y.com/-

bonnie.

[18] I. Buck, G. Humphreys,andP. Hanrahan.Tracking graphicsstate for networked

rendering. 2000 Eurographics Workshopon Graphics Hardware, pages87{96,

2000.

[19] D. R. Butenhof. Programming with POSIX Threads. Addison Wesley, 1997.

[20] J. Chhugani, B. Purnomo, S. Krishnan, J. Cohen, S. Venkatasubramanian,

D. Johnson,and S. Kumar. vLOD: A systemfor high-�delit y walkthroughs of

large virtual environments. Manuscript available at http://www.cs.jh u.edu/-

~jatinch/Research, 2003.

[21] Y.-J. Chiang,C. T. Silva, andW. J. Schroeder.Interactiveout-of-coreisosurface

extraction. IEEE Visualization 98, pages167{174,1998.

[22] P. Cignoni, C. Rocchini, C. Montani, and R. Scopigno.External memory man-

agement and simpli�cation of hugemeshes.IEEE Transactionson Visualization

and Computer Graphics, 9(4):525{537,2003.

[23] J. H. Clark. Hierarchical geometricmodelsfor visible surfacealgorithms. Com-

munications of the ACM, 19(10):547{554,Oct. 1976.

[24] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A survey of vis-

ibilit y for walkthrough applications. IEEE Transactionson Visualization and

Computer Graphics, 9(3):412{431,2003.

[25] W. T. Corrêa. GTB: The graphicstoolbox. http://gtb.sourceforge.net/.

104

[26] W. T. Corrêa,S. Fleishman,and C. T. Silva. Towards point-basedacquisition

and rendering of large real-world environments. In XV Brazilian Symposium

on Computer Graphicsand Image Processing, pages59{66, 2002.

[27] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Fast and simple occlusion

culling. In Game Programming Gems3, pages353{358.CharlesRiver Media,

2002.

[28] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. iWalk: Interactive out-of-core

rendering of large models. Technical Report TR-653-02,Princeton University,

2002.

[29] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Out-of-core sort-�rst parallel

rendering for cluster-basedtiled displays. In 2002 Eurographics Workshopon

Parallel Graphicsand Visualization, pages89{96, 2002.

[30] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Out-of-core sort-�rst parallel

rendering for cluster-basedtiled displays. Parallel Computing, 29(3):325{338,

Mar. 2003.

[31] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Visibilit y-basedprefetching

for interactive out-of-corerendering. In 2003IEEE Symposium on Parallel and

Large-DataVisualization and Graphics, pages1{8, 2003.

[32] M. B. Cox and D. Ellsworth. Application-controlled demandpaging for out-of-

corevisualization. IEEE Visualization 97, pages235{244,1997.

[33] C. Csuri, R. Hackathorn, R. Parent, W. E. Carlson, and M. Howard. Towards

an interactive high visual complexity animation system. In ACM SIGGRAPH

79, pages289{299,1979.

105

[34] L. Darsa, B. C. Silva, and A. Varshney. Navigating static environments us-

ing image-spacesimpli�cation and morphing. In 1997 ACM Symposium on

Interactive 3D Graphics, pages25{34, 1997.

[35] P. Debevec and S. Gortler. Image-basedmodeling and rendering. In SIG-

GRAPH 98 CourseNotes. ACM SIGGRAPH, 1998.

[36] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture

from photographs: A hybrid geometry- and image-basedapproach. In ACM

SIGGRAPH 96, pages11{20, 1996.

[37] P. E. Debevec, Y. Yu, and G. D. Borshukov. E�cien t view-dependent image-

basedrenderingwith projective texture-mapping. 1998EurographicsRendering

Workshop, pages105{116,1998.

[38] X. Decoret,F. Sillion, G. Schau
er, and J. Dorsey. Multi-la yeredimpostorsfor

acceleratedrendering. Computer GraphicsForum, 18(3):61{73,1999.

[39] C. DeCoro and R. Pajarola. XFastMesh: Fast view-dependent meshingfrom

external memory. In IEEE Visualization 2002, pages363{370,2002.

[40] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and

M. B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting

meshes.In IEEE Visualization 97, pages81{88, 1997.

[41] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibilit y

preprocessingusing extended projections. In ACM SIGGRAPH 2000, pages

239{248,2000.

[42] J. El-Sanaand Y.-J. Chiang. External memory view-dependent simpli�cation.

Computer GraphicsForum, 19(3):139{150,Aug. 2000.

106

[43] J. El-Sana,N. Sokolovsky, and C. T. Silva. Integrating occlusionculling with

view-dependent rendering. In IEEE Visualization 2001, pages371{378,2001.

[44] J. El-Sana and A. Varshney. Topology simpli�cation for polygonal virtual

environments. IEEE Transaction on Visualization and Computer Graphics,

4(2):133{144,1998.

[45] J. El-Sana and A. Varshney. Generalizedview-dependent simpli�cation. In

Eurographics99, pages83{94, 1999.

[46] C. Erikson, D. Manocha, and W. V. Baxter I I I. HLODs for faster display of

largestatic and dynamicenvironments. In 2001ACM Symposiumon Interactive

3D Graphics, pages111{120,2001.

[47] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,D. Ellsworth, S. Mol-

nar, G. Turk, B. Tebbs,and L. Israel. Pixel-planes5: A heterogeneousmulti-

processorgraphicssystemusing processor-enhancedmemories. In ACM SIG-

GRAPH 89, pages79{88, 1989.

[48] T. A. Funkhouser.Databasemanagement for interactive display of large archi-

tectural models. GraphicsInterface 96, pages1{8, 1996.

[49] T. A. Funkhouserand C. H. S�equin. Adaptive display algorithm for interactive

frame rates during visualization of complex virtual environments. In ACM

SIGGRAPH 93, pages247{254,1993.

[50] T. A. Funkhouser,C. H. S�equin,and S.J. Teller. Management of largeamounts

of data in interactive building walkthroughs. 1992ACM Symposium on Inter-

active 3D Graphics, pages11{20, 1992.

[51] E. Gamma,R. Helm, R. Johnson,and J. Vlissides. DesignPatterns: Elements

of ReusableObject-Oriented Software. Addison-Wesley, 1995.

107

[52] M. Garland and P. Heckbert. Surfacesimpli�cation usingquadric error metrics.

In ACM SIGGRAPH 97, pages209{216,1997.

[53] B. Garlick, D. R. Baum, and J. M. Winget. Interactive viewing of large geo-

metric databasesusing multipro cessorgraphics workstations. In SIGGRAPH

90 CourseNotes (Parallel Algorithms and Architectures for 3D ImageGenera-

tion) , pages239{245.ACM SIGGRAPH, 1990.

[54] B. S. Gindele. Bu�er block prefetching method. IBM Technical Disclosure

Bulletin, 20(2):696{697,1977.

[55] S. J. Gortler, R. Grzeszczuk,R. Szeliski,and M. F. Cohen. The lumigraph. In

ACM SIGGRAPH 96, pages43{54, 1996.

[56] N. Greene,M. Kass, and G. Miller. Hierarchical z-bu�er visibilit y. In ACM

SIGGRAPH 93, pages231{238,1993.

[57] J. Grossmanand W. J. Dally. Point samplerendering. In 1998 Eurographics

RenderingWorkshop, pages181{192,1998.

[58] O. Hall-Holt and S. Rusinkiewicz. Visible zonemaintenancefor real-time oc-

clusion culling. Manuscript, 2003.

[59] A. Heirich and L. Moll. Scalabledistributed visualization using o�-the-shelf

components. 1999 IEEE Symposium on Parallel Visualization and Graphics,

pages55{59, 1999.

[60] J. Ho, K.-C. Lee, and D. Kriegman. Compressinglarge polygonal models. In

IEEE Visualization 2001, pages357{362,2001.

[61] H. Hoppe. Progressive meshes.In ACM SIGGRAPH 96, pages99{108, 1996.

[62] H. Hoppe. View-dependent re�nement of progressive meshes. In ACM SIG-

GRAPH 97, pages189{198,1997.

108

[63] H. Hoppe. Smooth view-dependent level-of-detail control and its application to

terrain rendering. In IEEE Visualization 98, pages35{42, 1998.

[64] D. Howe. The free on-line dictionary of computing. http://www.foldo c.org.

[65] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan. Distributed rendering

for scalabledisplays. In 2000IEEE Supercomputing, 2000.

[66] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.

WireGL: A scalablegraphicssystemfor clusters. In ACM SIGGRAPH 2001,

pages129{140,2001.

[67] G. Humphreysand P. Hanrahan. A distributed graphicssystemfor large tiled

displays. In IEEE Visualization 99, pages215{223,1999.

[68] G. Humphreys, M. Houston, Y.-R. Ng, R. Frank, S. Ahern, P. Kirchner, and

J. T. Klosowski. Chromium: A stream processingframework for interactive

graphicson clusters. In ACM SIGGRAPH 2002, pages693{702,2002.

[69] M. Isenburg and S. Gumhold. Out-of-core compressionfor gigantic polygon

meshes.In ACM SIGGRAPH 2003, pages935{942,2003.

[70] W. H. Jim�enez,W. T. Corrêa, A. Baptista, and C. Silva. Visualizing spatial

and temporal variabilit y in coastalobservatories. In IEEE Visualization 2003,

2003.

[71] T. L. Kay and J. T. Kajiya. Ray tracing complexscenes.In ACM SIGGRAPH

86, pages269{278,1986.

[72] A. W. Klein, W. Li, M. M. Kazhdan, W. T. Corrêa, A. Finkelstein, and T. A.

Funkhouser. Non-photorealistic virtual environments. In ACM SIGGRAPH

2000, pages527{534,2000.

109

[73] J. T. Klosowski and C. T. Silva. The prioritized-layered projection algorithm

for visible set estimation. IEEE Transactionson Visualization and Computer

Graphics, 6(2):108{123,Apr. 2000.

[74] J. T. Klosowski and C. T. Silva. E�cien t conservativevisibilit y culling usingthe

prioritized-layered projection algorithm. IEEE Transactionson Visualization

and Computer Graphics, 7(4):365{379,Oct. 2001.

[75] T. Kurc, U. Catalyurek, C. Chang, A. Sussman,and J. Saltz. Exploration

and visualization of very large datasetswith the active data repository. IEEE

Computer Graphics& Applications, 21(4):24{33,2001.

[76] M. Levoy. E�cien t ray tracing of volumedata. ACM Transactionson Graphics,

9(3):245{261,1990.

[77] M. Levoy and P. Hanrahan. Light �eld rendering. In ACM SIGGRAPH 96,

pages31{42, 1996.

[78] M. Levoy, K. Pulli, B. Curless,S. Rusinkiewicz,D. Koller, L. Pereira,M. Ginz-

ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,and D. Fulk. The digital

Michelangeloproject: 3D scanningof largestatues. In ACM SIGGRAPH 2000,

pages131{144,2000.

[79] M. Levoy and T. Whitted. The useof points as a display primitiv e. Technical

Report TR 85-022,The University of North Carolina at Chapel Hill, Depart-

ment of Computer Science,1985.

[80] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,

A. Finkelstein, T. Funkhouser, T. Housel, A. Klein, Z. Liu, E. Praun,

R. Samanta, B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng. Early ex-

periencesand challengesin building and using a scalabledisplay wall system.

IEEE Computer Graphicsand Applications, 25(4):671{680,2000.

110

[81] P. Lindstrom. Out-of-core simpli�cation of large polygonal models. In ACM

SIGGRAPH 2000, pages259{262,2000.

[82] P. Lindstrom. Out-of-core construction and visualization of multiresolution

surfaces. In 2003 ACM SIGGRAPH Symposium on Interactive 3D Graphics,

pages93{102,239,2003.

[83] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes,N. Faust, and G. Turner.

Real-time, continuous level of detail rendering of height �elds. In ACM SIG-

GRAPH 96, pages109{118,1996.

[84] P. Lindstrom and C. T. Silva. A memory insensitive technique for large model

simpli�cation. In IEEE Visualization 2001, pages121{126,2001.

[85] S.Lombeyda,L. Moll, M. Shand,D. Breen,and A. Heirich. Scalableinteractive

volumerenderingusing o�-the-shelf components. In 2001IEEE Symposium on

Parallel and Large-DataVisualization and Graphics, pages115{121,2001.

[86] D. LuebkeandC. Erikson. View-dependent simpli�cation of arbitrary polygonal

environments. In ACM SIGGRAPH 97, pages199{208,1997.

[87] D. Luebke, M. Reddy, J. D. Cohen,A. Varshney, B. Watson, and R. Huebner.

Levelof Detail for 3D Graphics. Morgan Kaufmann, 2002.

[88] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using

textured clusters. In 1995ACM Symposium on Interactive 3D Graphics, pages

95{102, 1995.

[89] MathSoft, Data Analysis Products Division. S-Plus 5 for UNIX User's Guide,

1998.

111

[90] S. McMains, J. Hellerstein, and C. Sequin. Out-of-core build of a topological

data structure from polygonsoup. In Proceedingsof Solid Modeling2001, pages

171{182,2001.

[91] L. McMillan and G. Bishop. Plenoptic modeling: An image-basedrendering

system. In ACM SIGGRAPH 95, pages39{46, 1995.

[92] L. Moll, A. Heirich, and M. Shand. Sepia: scalable3D compositing using PCI

Pamette. In IEEE Symposium on FPGAs for Custom Computing Machines,

pages146{155,1999.

[93] T. M•oller and E. Haines. Real-Time Rendering. A K Peters,1999.

[94] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classi�cation of

parallel rendering. IEEE Computer Graphics and Applications, 14(4):23{32,

1994.

[95] S. Molnar, J. Eyles, and J. Poulton. Pixel
o w: High-speed rendering using

imagecomposition. In ACM SIGGRAPH 92, pages231{240,1992.

[96] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. In�niteRealit y:

A real-time graphicssystem. In ACM SIGGRAPH 97, pages293{302,1997.

[97] K. Moreland and R. Frank. The Lawrence Livermore National Laboratory

(LLNL) isosurfacedataset. Personalcommunication. 473million triangles.

[98] K. Moreland,B. Wylie, and C. Pavlakos.Sort-last parallel renderingfor viewing

extremely largedata setson tile displays. In 2001IEEE Symposium on Parallel

and Large-DataVisualization and Graphics, pages85{92, 2001.

[99] C. Mueller. The sort-�rst renderingarchitecture for high-performancegraphics.

1995ACM Symposium on Interactive 3D Graphics, pages75{84, 1995.

112

[100] C. Mueller. Hierarchical graphicsdatabasesin sort-�rst. In 1997IEEE Sympo-

sium on Parallel Rendering, pages49{58, 1997.

[101] J. Noble and D. B. Charles Weir and. Small Memory Software: Patterns for

Systemswith Limited Memory. Addison-Wesley, 2000.

[102] nVIDIA. The nVIDIA FX 3000G. http://www.n vidia.com/object/vis.html,

2003.

[103] OpenGL.org. OpenGL FAQ: Display lists and vertex arrays. http://-

www.opengl.org/developers/faqs/technical/displaylist.htm.

[104] H. P�ster, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surfaceelements

as renderingprimitiv es. In ACM SIGGRAPH 2000, pages335{342,2000.

[105] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Renderingcomplexscenes

with memory-coherent ray tracing. In ACM SIGGRAPH 97, pages101{108,

1997.

[106] S. Popinet. GTS: The GNU triangulated surface library. Available at

http://gts.sourceforge.net/.

[107] C. Prince. Progressive meshesfor large modelsof arbitrary topology. Master's

thesis,University of Washington,2000.

[108] S. A. Przybylski. Cache and Memory Hierarchy Design: A Performance-

Directed Approach. Morgan Kaufmann, 1990.

[109] W. T. Reeves. Particle systems| a technique for modeling a classof fuzzy

objects. ACM Transactionson Graphics, 2(2):91{108,Apr. 1983.

[110] A. Rege. Occlusion extensions. http://dev eloper.nvidia.com/docs/IO/2645/-

ATT/GDC2002 occlusion.pdf, 2002.

113

[111] D. Reiners,G. Vo�, J. Behr, M. Roth, and A. Zieringer. The OpenSGscene

graph system. http://www.op ensg.org/,1999.

[112] J. Rossignacand P. Borrel. Multi-resolution 3D approximations for rendering

complexscenes.In Geometric Modeling in Computer Graphics, pages455{465.

SpringerVerlag, 1993.

[113] S. Rusinkiewiczand M. Levoy. QSplat: A multiresolution point renderingsys-

tem for large meshes.In ACM SIGGRAPH 2000, pages343{352,2000.

[114] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer for networked

visualization of large, densemodels. In 2001 ACM Symposium on Interactive

3D Graphics, 2001.

[115] R. Samanta, T. Funkhouser,and K. Li. Parallel renderingwith k-way replica-

tion. In 2001 IEEE Symposium on Parallel and Large-DataVisualization and

Graphics, pages75{84, 2001.

[116] R. Samanta, T. Funkhouser,K. Li, and J. P. Singh. Hybrid sort-�rst and sort-

last parallel rendering with a cluster of PCs. In 2000 Eurographics Workshop

on GraphicsHardware, pages97{108, 2000.

[117] R. Samanta, T. Funkhouser,K. Li, and J. P. Singh. Sort-�rst parallel rendering

with a cluster of PCs. In Sketchesand Applications, SIGGRAPH 2000, page

260,2000.

[118] R. Samanta, J. Zheng,T. Funkhouser,K. Li, andJ. P. Singh.Load balancingfor

multi-pro jector renderingsystems.In 1999EurographicsWorkshopon Graphics

Hardware, pages107{116,1999.

[119] H. Samet.The Designand Analysisof Spatial Data Structures. Addison-Wesley,

1990.

114

[120] G. Schau
er, J. Dorsey, X. Decoret,and F. X. Sillion. Conservative volumetric

visibilit y with occluderfusion. In ACM SIGGRAPH 2000, pages229{238,2000.

[121] G. Schau
er and H. W. Jensen.Ray tracing point sampledgeometry. In 2000

EurographicsRenderingWorkshop, pages319{328,2000.

[122] B.-O. Schneider,P. Borrel, J. Menon, J. Mittleman, and J. Rossignac.BRUSH

as a walkthrough systemfor architectural models. In 1995 EurographicsRen-

dering Workshop, pages389{399,1995.

[123] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An

Object-Oriented Approach to 3D Graphics. Prentic Hall, 1996.

[124] K. Severson. VISUALIZE workstation graphicsfor Windows NT. HP product

literature, 1999.

[125] SGI. OpenGL Optimizer Programmer'sGuide: An Open API for Large-Model

Visualization, 1998. Available online.

[126] SGI. OpenGL optimizer. http://www.sgi.com/soft ware/optimizer, 2003.

[127] SGI. OpenGL performer. http://www.sgi.com/soft ware/performer, 2003.

[128] SGI. The Silicon Graphics Onyx4 UltimateVision. http://www.sgi.com/-

visualization/onyx4, 2003.

[129] J. Shade,S. Gortler, L. He, and R. Szeliski. Layered depth images. In ACM

SIGGRAPH 98, pages231{242,1998.

[130] J. Shade,D. Lischinski, D. H. Salesin,T. DeRose,and J. Snyder. Hierarchical

imagecaching for acceleratedwalkthroughs of complexenvironments. In ACM

SIGGRAPH 96, pages75{82, 1996.

115

[131] H.-Y. Shum and L.-W. He. Renderingwith concentric mosaics.In ACM SIG-

GRAPH 99, pages299{306,1999.

[132] F. Sillion, G. Drettakis, and B. Bodelet. E�cien t impostor manipulation for

real-time visualization of urban scenery. Computer Graphics Forum, 16:207{

218,1997.

[133] A. R. Smith. Plants, fractals and formal languages.In ACM SIGGRAPH 84,

pages1{10, 1984.

[134] I. Software. Quake 3. http://www.idsoft ware.com/games/quake/, 2003.

[135] G. Stoll, M. Eldridge, D. Patterson,A. Webb,S.Berman,R. Levy, C. Caywood,

M. Taveira, S.Hunt, andP. Hanrahan.Lightning-2: A high-performancedisplay

subsystemfor pc clusters. In ACM SIGGRAPH 2001, pages141{148,2001.

[136] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of

ten hidden-surfacealgorithms. ACM Computing Surveys, 6(1):1{55, 1974.

[137] A. S. Tanenbaum and A. S. Woodhull. Operating Systems:Designand Imple-

mentation. Prentice Hall, 2nd edition, 1997.

[138] S. J. Teller and C. H. S�equin. Visibilit y preprocessingfor interactive walk-

throughs. In ACM SIGGRAPH 91, pages61{69, 1991.

[139] TGS. Open inventor 4.0. http://www.tgs.com/pro div/oiv main.htm, 2003.

[140] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary

spacepartitioning trees. In ACM SIGGRAPH 87, pages153{162,1987.

[141] S.-K. Ueng,C. Sikorski, and K.-L. Ma. Out-of-corestreamlinevisualization on

largeunstructured meshes.IEEE Transactionson Visualization and Computer

Graphics, 3(4):370{380,Oct. 1997.

116

[142] M. K. Ullner. Parallel machinesfor computer graphics. PhD thesis,California

Institute of Technology, Pasadena,California, 1983.

[143] G. Varadhan and D. Manocha. Out-of-core rendering of massive geometrci

environments. In IEEE Visualization 2002, pages69{76, 2002.

[144] G. Vo�, J. Behr, D. Reiners,and M. Roth. A multi-thread safefoundation for

scenegraphsand its extensionto clusters. In 2002EurographicsWorkshopon

Parallel Graphicsand Visualization, pages33{37, 2002.

[145] I. Wald, C. Benthin, and P. Slusallek. Distributed interactive ray tracing of

dynamic scenes.In 2003IEEE Symposium on Parallel and Large-DataVisual-

ization and Graphics, pages77{86, 2003.

[146] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed ray tracing of

highly complexmodels. RenderingTechniques2001, pages277{288,2001.

[147] Walkthru Project at UNC Chapel Hill. The power plant model. http://-

www.cs.unc.edu/~geom/Powerplant.

[148] B. Wei, D. W. Clark, E. W. Felten, K. Li, and G. Stoll. Performanceissuesof a

distributed frame bu�er on a multicomputer. 1998EurographicsWorkshopon

GraphicsHardware, pages87{96, 1998.

[149] L. Williams. Pyramidal parametrics. In ACM SIGGRAPH 83, pages1{11,

1983.

[150] P. L. Williams. Visibilit y-ordering meshedpolyhedra. ACM Transactionson

Graphics, 11(2):103{126,1992.

[151] P. Wilson, S. Kaplan, and Y. Smaragdakis. The casefor compressedcaching

in virtual memory systems. In Proceedings of the USENIX Annual Technical

Conference, pages6{11, 1999.

117

[152] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibilit y preprocessingwith oc-

cluder fusion for urban walkthroughs. In Rendering Techniques2000, pages

71{82, 2000.

[153] P. Wonka, M. Wimmer, and F. Sillion. Instant visibilit y. Computer Graphics

Forum, 20(3):411{421,2001.

[154] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide:

The O�cial Guide to Learning OpenGL, Version 1.2. Addison-Wesley, 3rd

edition edition, 1999.

[155] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based

rendering for polygonal models. IEEE Transactionon Visualization and Com-

puter Graphics, 3(2):171{183,1997.

[156] S.-E. Yoon, B. Salomon, and D. Manocha. Interactive view-dependent ren-

dering with conservative occlusion culling in complex environments. In IEEE

Visualization 2003, 2003.

[157] X. Zhang,C. Bajaj, W. Blanke, and D. Fussell.Scalableisosurfacevisualization

of massive datasetson COTS clusters. In 2001 IEEE Symposium on Parallel

and Large-DataVisualization and Graphics, pages51{58, 2001.

118

