
THE K-BUFFER AND ITS APPLICATIONS TO VOLUME

RENDERING

by

Steven Paul Callahan

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Engineering and Science

School of Computing

The University of Utah

August 2005

Copyright c© Steven Paul Callahan 2005

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Steven Paul Callahan

This thesis has been read by each member of the following supervisory committee and by majority vote
has been found to be satisfactory.

Chair: Cláudio T. Silva

Robert M. Kirby II

Peter Shirley

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Steven Paul Callahan in its final form and have found
that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative
materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory
to the Supervisory Committee and is ready for submission to The Graduate School.

Date Cláudio T. Silva
Chair: Supervisory Committee

Approved for the Major Department

Krzysztof Sikorski
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Harvesting the power of modern graphics hardware to solve the complex problem of

real-time rendering of large unstructured meshes is a major research goal in the volume

visualization community. Although for regular grids texture-based techniques are well suited

for current Graphics Processing Units (GPUs), the steps necessary for rendering unstructured

meshes are not so easily mapped to current hardware.

We propose a novel volume rendering technique that simplifies the Central Processing Unit

(CPU) processing and shifts much of the sorting burden to the GPU, where it can be performed

more efficiently. Our hardware-assisted visibility sorting algorithm is a hybrid technique that

operates in both object-space and image-space. In object-space, the algorithm performs a

partial sort of the three-dimensional (3D) primitives in preparation for rasterization. The goal

of the partial sort is to create a list of primitives that generate fragments in nearly sorted order.

In image-space, the fragment stream is incrementally sorted using thek-buffer, a fixed-depth

sorting network. In our algorithm, the object-space work is performed by the CPU and the

fragment-level sorting is done completely on the GPU. A prototype implementation of the

algorithm demonstrates that the fragment-level sorting achieves rendering rates of between

one and six million tetrahedral cells per second on an ATI Radeon 9800.

To further increase the interactivity of unstructured volume rendering, we describe a new

dynamic level-of-detail (LOD) technique that allows real-time rendering of large tetrahedral

meshes. Unlike approaches that require hierarchies of tetrahedra, our approach uses a subset

of the faces that compose the mesh. No connectivity is used for these faces so our technique

eliminates the need for topological information and hierarchical data structures. By operating

on a simple set of triangular faces, our algorithm allows a robust and straightforward graph-

ics hardware implementation. Because the subset of faces processed can be constrained to

arbitrary size, interactive rendering is possible for a wide range of data sets and hardware

configurations.

To Kristy, thanks for all the support and understanding.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . viii

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

2. PREVIOUS WORK . 6

3. K-BUFFER . 10

3.1 Nearly-Sorted Object-Space Visibility Ordering . 10
3.2 Thek-Buffer . 11

4. HARDWARE-ASSISTED VISIBILITY SORTING . 13

4.1 Volume Rendering Algorithm . 13
4.2 K-Buffer Hardware Implementation . 14
4.3 Experimental Results . 18

4.3.1 CPU Sorting . 18
4.3.2 k-Buffer Analysis . 20
4.3.3 Render Performance . 21
4.3.4 Comparison . 24

4.4 Discussion . 25

5. DYNAMIC LEVEL-OF-DETAIL . 27

5.1 A Sample-Based LOD Framework . 27
5.1.1 Face Subsampling . 29

5.2 Sampling Strategies . 30
5.2.1 Topology Sampling . 31
5.2.2 View-Aligned Sampling . 31
5.2.3 Field Sampling . 32
5.2.4 Area Sampling . 33

5.3 Implementation . 33
5.4 Results . 35
5.5 Discussion . 36

6. CONCLUSION . 41

APPENDICES

A. GPU CODE . 43

B. OTHER APPLICATIONS OF THE K-BUFFER . 48

REFERENCES . 52

vii

LIST OF FIGURES

1.1 Results of volume rendering the (a) fighter (b) blunt fin with the HAVS algorithm. 2

4.1 Overview of the hardware-assisted visibility sorting algorithm (HAVS). Only a
partial visibility ordering is performed on the CPU based on the face centroids.
On the GPU side, a fixed size A-buffer is used to complete the sort on a per-
fragment basis. 14

4.2 Psuedo-code for the partial sort performed on the CPU. 14

4.3 Example of thek-buffer withk = 3 (see also Section 4.2). (a) We start with the
incoming fragment and the currentk-buffer entries and (b) find the two entries
closest to the viewpoint. (c) Next, we use the scalar values (v1,v2) and view
distances (d1,d2) of the two closest entries to look up the corresponding color
and opacity in the pre-integrated table. (d) In the final stage, the resulting color
and opacity are composited into the framebuffer and the remaining three entries
are written back into thek-buffer. 15

4.4 Psuedo-code for a GPU fragment sorter using thek-buffer 16

4.5 Screen-space interpolation of texture coordinates. (a) The rasterizer interpo-
lates vertex attributes in perspective space, which is typically used to map a 2D
texture onto the faces of a 3D object. (b) Using the projected vertices of a prim-
itive as texture coordinates to perform a lookup in a screen-space buffer yields
incorrect results, unless the primitive is parallel with the screen. (c) Computing
the texture coordinates directly from the fragment window position or using
projective texture mapping results in the desired screen-space lookup. 17

4.6 Rendering artifacts resulting from the fragment level race condition when si-
multaneously reading and writing the same buffer. In our experience, it has
been quite hard to notice these artifacts. 17

4.7 Distribution ofk requirements for the (a) Torso and (b) Spx2 data sets. Regions
denotek size required to obtain a correct visibility sorting, fork> 6 (red), 2< k
≤ 6 (yellow), andk≤ 2 (green). 21

4.8 Results of rendering the (a) Torso (b) Spx (c) Kew and (d) Heart data sets with
the HAVS algorithm. 23

5.1 Classification of LOD simplification techniques in 2D represented by a mesh
and the function occurring at a rayr through the mesh. Undefined areas of
the volume are expressed as dashed lines. (a) The original mesh showing
the functiong(t) that rayr passes through. (b) The mesh after sample-based
simplification where the function approximation ¯g1(t) is computed by removing
samples from the original functiong(t). (c) The mesh after domain-based sim-
plification, where the approximating function ¯g2(t) is computed by resampling
the original domain. 29

5.2 A 2D example of sampling strategies for choosing internal faces. (a) A topology
sampling which calculates layers by peeling boundary tetrahedra. (b) A view-
dependent sampling that selects the faces most relevant to the current viewpoint.
(c) A field sampling which uses stratified sampling on a histogram of the scalar
values. (d) An area sampling which selects the faces by size. 30

5.3 Pseudocode for extracting the topology layers of a tetrahedral mesh. 32

5.4 Overview of the dynamic LOD algorithm. (a) The LOD algorithm samples
the faces and dynamically adjusts the number of faces to be drawn based on
previous frame rate. (b) The HAVS volume rendering algorithm sorts the faces
on the CPU and GPU and composites them into a final image. 34

5.5 Plot of the render time for the Spx2 (blue), Torso (red), and Fighter (black) at
different LODs. Approximately 3% LOD is the boundary only and 100% LOD
is a full quality image. 36

5.6 Error measurements of the different sampling strategies for 14 fixed viewpoints
on the Spx2, Torso, and Fighter data sets. Root mean squared error is used to
show the difference between the full quality rendering and the LOD rendering
at 10 fps. 37

5.7 Direct comparison of the different sampling strategies with a full quality ren-
dering of the Spx2 data set (800 K tetrahedra). Full quality is shown at 2.5 fps
and LOD methods are shown at 10 fps (3% LOD for area sampling and 10%
LOD on all other strategies). 38

5.8 The Fighter data set (1.4 million tetrahedra) shown in multiple views at full
quality on top (1.3 fps), 15% LOD (4.5 fps) in the middle, and at 5% LOD
(10.0 fps) on the bottom. The LOD visualizations use area-based sampling. . . . 40

B.1 2D lookup table for determining if two fragments contain an isosurface between
them at contour valuec. 49

B.2 The Spx data set with an isosurface generated using thek-buffer. The front
faces of the isosurface are shown in green and back faces of the isosurface are
shown in blue. 50

ix

LIST OF TABLES

4.1 Analysis of sorting algorithms . 19

4.2 k-buffer analysis . 20

4.3 Performance of the GPU sorting and drawing . 22

4.4 Total performance of HAVS . 22

4.5 Time comparison in milliseconds with other algorithms 25

5.1 Preprocessing time in seconds of the different sampling strategies 35

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Cláudio Silva for his time, effort,

and ideas without which this thesis would not have been possible. I would like to thank the

committee members who helped organize and compose this thesis: Cláudio Silva (chair),

Mike Kirby, and Peter Shirley. I also acknowledge those who co-authored the papers that

compose this thesis, namely Milan Ikits, João Comba, Peter Shirley and Cláudio Silva. Carlos

Scheidegger, Huy Vo, and Louis Bavoil provided invaluable code contributions. In particular,

Vo wrote the fast radix sort used in our system. I thank Fábio Bernardon for the use of his

HW Ray Caster code and Ricardo Farias for the ZSWEEP code. I thank Mark Segal from

ATI for his prompt answers to our questions and donated hardware. I am grateful to Patricia

Crossno, Shachar Fleishman, Nelson Max, and John Schreiner for helpful suggestions and

criticism. I also acknowledge Bruce Hopenfeld and Robert MacLeod (University of Utah)

for the Heart data set, Bruno Notrosso (Electricite de France) for the Spx data set, Hung and

Buning (NASA) for the Blunt Fin data set, Neely and Batina (NASA) for the Fighter data

set, and the Scientific Computing and Imaging Institute (University of Utah) for the Torso

data set. Steven P. Callahan is supported by the Department of Energy (DOE) under the

VIEWS program. This work was also partially supported by the National Science Foundation

under granst CCF-0401498, EIA-0323604, and OISE-0405402. Portions of Chapters 1–4

were published under the title Hardware-Assisted Visibility Sorting for Unstructured Volume

Rendering [4] by IEEE Computer Society with the Log Number TVCG-0131-1004.

CHAPTER 1

INTRODUCTION

Given a general scalar field inR3, a regular grid of samples can be used to represent the

field at grid points(λi ,λ j ,λk), for integersi, j,k and some scale factorλ ∈ R. One serious

drawback of this approach is that when the scalar field has highly nonuniform variation —

a situation that often arises in computational fluid dynamics and partial differential equation

solvers — the voxel size must be small enough to represent the smallest features in the field.

Unstructured grids with cells that are not necessarily uniform in size have been proposed as

an effective means for representing disparate field data.

In this thesis we are primarily interested in volume rendering unstructured scalar data sets.

In volume rendering, the scalar field is modeled as a cloud-like material that both emits and

attenuates light along the viewing direction [50]. To create an image, the equations for the

optical model must be integrated along the viewing ray for each pixel (see Figure 1.1). For

unstructured meshes, this requires computing a separate integral for the contribution of the ray

segment inside each cell. If the order of these segments is known, the individual contributions

can be accumulated using front-to-back or back-to-front compositing.

On a practical level, the whole computation amounts to sampling the volume along the

viewing rays, determining the contribution of each sample point, and accumulating the con-

tributions in proper order. Given the increasing size of volume data sets, performing these

operations in real-time requires the use of specialized hardware. Modern GPUs [2] are quite

effective at performing most of these tasks. By coupling the rasterization engine with texture-

based fragment processing, it is possible to perform very efficient volume sampling [59, 32].

However, generating the fragments in visibility order is still necessary.

For regular grids, generating the fragments in visibility order is straightforward. This is

often accomplished by rendering polygonsp1, p2, . . . , pn perpendicular to the view direction

at different depths. The polygons are used to slice the volume and generate the samples for

the cells that intersect them. The fact that the polygons are rendered in sorted order and are

parallel with each other guarantees that all the fragments generated by rasterizing polygonpi

2

(a)

(b)

Figure 1.1. Results of volume rendering the (a) fighter (b) blunt fin with the HAVS algorithm.

3

come before those forpi+1. In this case, compositing can be accomplished by blending the

fragments into the framebuffer in the order they are generated. For details on performing these

computations, see [33].

The sampling and compositing procedure for unstructured grids is considerably more com-

plicated. Although the intrinsic volume rendering computations are similar, the requirement of

generating fragments in visibility order makes the computations more expensive and difficult

to implement. The Projected Tetrahedra (PT) algorithm [63] was the first to show how to

render tetrahedral cells using the traditional 3D polygon-rendering pipeline. Given tetrahedra

T and a viewing directionv, the technique first classifies the faces ofT into front and back

faces with respect tov. Next, for correct fragment generation, the faces are subdivided into

regions of equal visibility. Note that the PT algorithm can properly handle only a single

tetrahedral cell. For rendering meshes, cells have to be projected in visibility order, which

can be accomplished using techniques such as the Meshed Polyhedra Visibility Ordering

(MPVO) algorithm [76]. For acyclic convex meshes, this is a powerful combination that

leads to a linear-time algorithm that is provably correct, i.e., it is guaranteed to produce the

right picture. When the mesh is not convex or contains cycles, MPVO requires modifications

that significantly complicate the algorithm and its implementation, leading to slower rendering

times [9, 65, 37, 10].

The necessity of explicit fragment sorting for unstructured grids is the main cause of the

rendering-speed dichotomy between regular and unstructured grids. For regular grids, we are

exploiting the fact that we can sort in object space (implicit in the order of the planes being

rendered) and avoid sorting in image space (i.e., sorting fragments). Thus, on modern GPUs,

it is possible to render regular volumes at very high frame rates. Unfortunately, performing

visibility ordering for unstructured grids completely in image space has turned out to be quite

expensive and complex [10, 71, 73].

These approaches are typically too slow for interactivity when full resolution meshes are

rendered. Thus, level-of-detail (LOD) techniques are an attractive way to trade off rendering

quality for rendering speed. However, unlike for rectilinear volumes, it is not well studied how

LOD techniques should be applied to unstructured meshes.

There have been two basic approaches to LOD for unstructured meshes, typically for the

special case of tetrahedral meshes. The first has been employed in ray casting where the scalar

field along the ray is sparsely sampled to improve speed. The second is to simplify the mesh

into a hierarchy of new meshes, each with fewer tetrahedra than its parent mesh. The ray

4

tracing approach has the advantage of simplicity and robustness, and the mesh simplification

approach has the advantage that it can be easily used in a graphics hardware (GPU) imple-

mentation.

This thesis describes an LOD technique that attempts to capture the simplicity of the ray

sampling method while still allowing a natural GPU implementation. This is accomplished

by sparsely sampling the faces between tetrahedra in the mesh without creating an explicit

hierarchy of LODs. The GPU is used to perform ray integration between these sparsely

sampled faces without the need for connectivity information. This avoids the complexity

of the mesh simplification methods, but still allows a GPU implementation, which makes a

fast and robust LOD rendering system possible.

In this thesis we build on the previous work of Farias et al. [22], Carpenter [5], and Danskin

and Hanrahan [15], and propose a new volume rendering algorithm with dynamic LOD. Our

main contributions are:

• We introduce thek-buffer, a fixed depth A-buffer for sorting in image space.

• We present a new algorithm for rendering unstructured volumetric data that simplifies

the CPU-based processing and shifts much of the sorting burden to the GPU, where

it can be performed more efficiently. The basic idea of our algorithm is to separate

visibility sorting into two phases. First, we perform a partial visibility ordering of

primitives in object-space using the CPU. Note that this first phase does not guarantee

an exact visibility order of the fragments during rasterization. In the second phase we

use thek-buffer to sort the fragments in exact order on the GPU.

• We show how to efficiently implement thek-buffer using the programmable functional-

ity of existing GPUs.

• We perform a detailed experimental analysis to evaluate the performance of our algo-

rithm using several data sets, the largest of which has over 1.4 million cells. The ex-

periments show that our algorithm can handle general nonconvex meshes with very low

memory overhead, and requires only a light and completely automatic preprocessing

step. Data size limitations are bounded by the available main memory on the system.

The achieved rendering rates of over six million cells per second are, to our knowledge,

thefastestreported results for volume rendering of unstructured data sets.

5

• We provide a detailed comparison of our algorithm with existing methods for rendering

unstructured volumetric data. This includes render rates performed using optimized

implementations of these algorithms using uniform test cases on the same machine.

• We propose a new sample-based LOD framework for rendering unstructured grids that

can be implemented by simply using a subset of mesh faces.

• We examine several strategies for deciding which faces to draw when using dyanamic

LOD, and discuss their relative merits.

• We provide an efficient implementation of our LOD sampling techniques, and show that

they can be applied to generate high-quality renderings of large unstructured grids.

The remainder of this thesis is organized as follows. We summarize related work in Chapter 2.

In Chapter 3, we describe thek-buffer, definek-nearly sorted sequences, and provide further

details on the functionality of thek-buffer. In Chapter 4, we show how to efficiently implement

thek-buffer using the programmable features of current GPU hardware. Chapter 5 describes

our dynamic LOD algorithm and introduces our sample-based simplification technique. Fi-

nally, in Chapter 6, we provide concluding remarks and directions for future work.

CHAPTER 2

PREVIOUS WORK

The volume rendering literature is vast and we do not attempt a comprehensive review

here. Interested readers can find a more complete discussion of previous work in [31, 49,

10, 33, 23]. We limit our coverage to the most directly related work in the area of visibility

ordering using both software and hardware techniques and level-of-detail (LOD) approaches

for unstructured grids.

In computer graphics, work on visibility ordering was pioneered by Schumacker et al. and

is later reviewed in [68]. An early solution to computing a visibility order given by Newell,

Newell, and Sancha (NNS) [55] continues to be the basis for more recent techniques [67].

The NNS algorithm starts by partially ordering the primitives according to their depth. Then,

for each primitive, the algorithm improves the ordering by checking whether other primitives

precede it or not.

Fuchs, Kedem, and Naylor [27] developed the Binary Space Partitioning tree (BSP-tree) —

a data structure that represents a hierarchical convex decomposition of a given space (typically,

R3). Each nodeν of a BSP-treeT corresponds to a convex polyhedral region,P(ν)⊂R3, and

the root node corresponds to all ofR3. Each nonleaf nodeν is defined by a hyperplane,h(ν)

that partitionsP(ν) into two half-spaces,P(ν+) = h+(ν)∩P(ν) andP(ν−) = h−(ν)∩P(ν),

corresponding to the two children,ν+ andν− of ν . Here,h+(ν) (h−(ν)) is the half-space

of points above (below) the planeh(ν). Fuchs et al. [27] demonstrated that BSP-trees can be

used for obtaining a visibility ordering of a set of objects or, more precisely, an ordering of

the fragments into which the objects are cut by the partitioning planes. The key observation

is that the structure of the BSP-tree permits a simple recursive algorithm for rendering the

object fragments in back-to-front order. Thus, if the viewpoint lies in the positive half-space

h+(ν), we can recursively draw the fragments stored in the leaves of the subtree rooted atν−,

followed by the object fragmentsS(ν) ⊂ h(ν). Finally, we recursively draw the fragments

stored in the leaves of the subtree rooted atν+. Note that the BSP-tree does not actually

generate a visibility order for the original primitives, but forfragmentsof them.

7

The methods presented above operate inobject-space, i.e., they operate on the primitives

before rasterization by the graphics hardware [2]. Carpenter [5] proposed the A-buffer — a

technique that operates on pixel fragments instead of object fragments. The basic idea is to

rasterize all the objects into sets of pixel fragments, then save those fragments in per-pixel

linked lists. Each fragment stores its depth, which can be used to sort the lists after all the ob-

jects have been rasterized. A nice property of the A-buffer is that the objects can be rasterized

in any order, and thus, do not require any object-space ordering. A main shortcoming of the

A-buffer is that the memory requirements are substantial. Recently, there have been proposals

for implementing the A-buffer in hardware. The R-buffer [77] is a pointerless A-buffer

hardware architecture that implements a method similar to a software algorithm described

in [47] for sorting transparent fragments in front of the front-most opaque fragment. Current

hardware implementations of this technique require multiple passes through the polygons in

the scene [20, 38]. In contrast, the R-buffer works by scan-converting all polygons only once

and saving the not yet composited or rejected fragments in a large unordered recirculating

fragment buffer on the graphics card, from which multiple depth comparison passes can be

made. TheZ3 hardware [34] is an alternative design that uses sparse supersampling and screen

door transparency with a fixed amount of storage per pixel. When there are more fragments

generated for a pixel than what the available memory can hold,Z3 merges the extra fragments.

Because of recent advances in programmable graphics hardware, techniques have been

developed that shift much of the computation to the GPU for increased performance. Kipfer et

al. [35] introduce a fast sorting network for particles. This algorithm orders the particles using

a Bitonic sort that is performed entirely on the GPU. Unstructured volume rendering has also

seen a number of recent advances. Roettger and Ertl [58] demonstrate the efficiency of the

GPU for compositing the ray integrals of arbitrary unstructured polyhedra. Their method

uses an emissive optical model, which does not require any ordering. Their technique is

similar to our algorithm without the need for sorting. Recently, Wylie et al. have shown

how to implement the Shirley-Tuchman tetrahedron projection directly on the GPU [78]. As

mentioned before, the PT projection sorts fragments for a single tetrahedron only and still

requires that the cells are sent to the GPU in sorted order. An alternative approach is to perform

pixel-level fragment sorting via ray-casting. This has been shown possible by Weiler et al. for

convex meshes [71] and more recently for nonconvex meshes [73].

Roughly speaking, all of the techniques described above perform sortingeither in object-

spaceor in image-space exclusively, where we consider ray casting as sorting in image-space,

8

and cell projection as sorting in object-space. There are also hybrid techniques that sort both in

image-space and object-space. For instance, the ZSWEEP [22] algorithm works by perform-

ing a partial ordering of primitives in object-space followed by an exact pixel-level ordering

of the fragments generated by rasterizing the objects. Depending on several factors, including

average object size, accuracy and speed of the partial sort, and cost of the fragment-level

sorting, hybrid techniques can be more efficient than either pure object-space or image-space

algorithms. Another hybrid approach is presented in [1], where the authors show how to

improve the efficiency of the R-buffer by shifting some of the work from image-space to

object-space.

Because the size of the unstructured grids continues to increase faster than our visual-

ization techniques can handle them, other research has focused on approximately rendering

unstructured grids to maintain interactivity [24, 8, 42, 53]. The two main techniques have

been to use LOD representations of the data [66, 6, 7, 29], or to sparsely sample viewing rays.

The approximate rendering was first done by sampling sparsely along viewing rays [15].

This idea can work for unstructured meshes as well, provided there is a mechanism for

skipping cells entirely (e.g., [56]). Alternatively, a multiresolution approach is commonly

used to increase the rendering speed of triangle meshes [45]. They often work by dynamically

selecting a set of triangles to approximate the surfaces to within some error bound, or to meet

some target frame rate [28, 44].

For structured grids, computing and dynamically rendering multiple LODs is relatively

straightforward. This can be accomplished by using hardware-accelerated techniques that

involve slicing the volume with view-aligned texture hierarchies [74, 41]. Because the data

are structured, the view-aligned slices can be computed quickly and compositing can be

accomplished by blending the fragments into the framebuffer in the order in which they are

generated.

For unstructured meshes the problem is not as well studied. One way to speed up the

rendering is to statically simplify the mesh in a preprocessing step to a mesh small enough

for the volume renderer to handle [7, 29, 6]. However, this approach only provides a static

approximation of the original mesh and does not allow for dynamic changes to the level of

detail. This way, the user cannot easily refine features of interest, or dynamically adapt the

LOD to the capabilities of the hardware being used. Dynamic LOD approaches are preferable

and have been shown to be useful by Museth and Lombeyda [53] even if the pictures generated

are of a more limited type than full-blown volume renderings. To our knowledge, the only two

9

approaches that describe dynamic LOD volume rendering for unstructured meshes are the

recent works by Cignoni et al. [8] and Leven et al. [42].

Cignoni et al. [8] propose a technique based on creating a progressive hierarchy of tetra-

hedra that is stored in a multitriangulation data structure [25] that is dynamically updated

to achieve interactive results. Their algorithm is quite clever (and involved), as an efficient

implementation requires the use of compression of the topology and hierarchical information

to be practical. Leven et al. [42] convert the unstructured grid into a hierarchy of regular grids

that are stored in an octree, and can be rendered using LOD technique for regular grids. Their

experiments show that the resulting LOD hierarchy is over two orders of magnitude larger than

the original data. Both of these techniques require some form of hierarchical data structures,

fairly involved preprocessing, and relatively complex implementations.

Many methods have simplified triangle meshes into smaller sets of textured polygons (e.g.,

[46, 17]). Another approach is to use compression schemes to minimize the bandwidth of the

geometry [18]. Of these, our method is most similar in spirit to the randomized Z-buffer [69],

where a subset of all the geometry is drawn. It is also related to the sampling work of Danskin

and Hanrahan [15]. Some of our sampling strategies are reminiscent of Monte Carlo rendering

(e.g., [14, 11]).

CHAPTER 3

K-BUFFER

3.1 Nearly-Sorted Object-Space Visibility Ordering

Visibility ordering algorithms (e.g., Extended Meshed Polyhedra Visibility Ordering [65])

sort 3D primitives with respect to a given viewpointv in exactorder, which allows for direct

compositing of the rasterized fragments. In our work, we differentiate between the sorting

of the 3D primitives and the sorting of the rasterized fragments to utilize faster object-space

sorting algorithms.

To precisely define what we mean by nearly-sorted object-space visibility ordering, we first

introduce some notation. Given a sequenceSof real values{s1,s2, . . . ,sn}, we call the tuple of

distinct integer values(a1,a2, . . . ,an) theExactly Sorted Sequenceof S(or ESS(S)) if eachai is

the position ofsi in an ascending or descending order of the elements inS. For instance, for the

sequenceS= {0.6,0.2,0.3,0.5,0.4} the corresponding exactly sorted sequence is ESS(S)=

(5,1,2,4,3). Extensions to allow for duplicated values in the sequence are easy to incorporate

and are not discussed here. Similarly, we call a tuple(b1,b2, . . . ,bn) of distinct integer values a

k-Nearly Sorted Sequenceof S (ork-NSS(S)) if the maximum element of the pairwise absolute

difference of elements in ESS(S) andk-NSS(S) isk, i.e., max(|a1− b1|, |a2− b2|, . . . |an−

bn|)) = k. For instance, the tuple(4,2,1,5,3) is a 1-NSS(S) (i.e.max(|5− 4|, |1− 2|, |2−

1|, |4−5|, |3−3|) = 1), while the tuple(3,1,4,5,2) is a 2-NSS(S). In this work, we process

sequences of fragment distances from the viewpoint. We relax the requirement of having

exactly sorted sequences, which allows for faster object-space sorting, but leads to nearly

sorted sequences that need to be sorted exactly during the fragment processing stage.

There are many techniques that implicitly generate nearly sorted sequences. For exam-

ple, several hierarchical spatial data structures provide mechanisms for simple and efficient

back-to-front traversal [60]. A simple way of generating nearly-sorted object-space visibility

ordering of a collection of 3D primitives is to use a BSP-tree, which has been shown to cause

near-linear primitive growth from cutting [9]. The goal is to ensure that after rasterization,

pixel fragments are at mostk positions out of order. In a preprocessing step, we can hierar-

11

chically build a BSP-tree such that no leaf of the BSP-tree has more thank elements. Note

that this potentially splits the original primitives into multiple ones. To generate the actual

ordering of the primitives, we can use the well-known algorithm for back-to-front traversal

of a BSP-tree and render the set ofk primitives in the leaf nodes in any order. Since it is not

strictly necessary to implement this approach, simpler sorting techniques are used in our work.

In practice, most data sets are quite well behaved and even simple techniques, such as sorting

primitives by their centroid, or even by their first vertex, are often sufficient to generate nearly

sorted geometry. This was previously exploited in the ZSWEEP algorithm [22]. In ZSWEEP,

primitives are sorted by considering a sweep plane parallel to the viewing plane. As the sweep

plane touches a vertex of a face, the face is rasterized and the generated fragments are added

to an A-buffer using insertion sort. It was experimentally observed that the insertion sort had

nearly linear complexity, because fragments were in almost sorted order. To avoid a memory

space explosion in the A-buffer, ZSWEEP uses aconservativetechnique for compositing

samples [22]. In our approach, we apply a moreaggressivetechnique for managing the

A-buffer.

3.2 Thek-Buffer

The original A-buffer [5] stores all incoming fragments in a list, which requires a poten-

tially unbounded amount of memory. Ourk-buffer approach stores only a fixed number of

fragments and works by combining the current fragments and discarding some of them as new

fragments arrive. This technique reduces the memory requirement and is simple enough to be

implemented on existing graphics architectures (see Section 4.2).

Thek-buffer is afragment stream sorterthat works as follows. For each pixel, thek-buffer

stores a constantk number of entries〈 f1, f2, . . . , fk〉. Each entry contains the distance of the

fragment from the viewpoint, which is used for sorting the fragments in increasing order for

front-to-back compositing and in decreasing order for back-to-front compositing. For front-

to-back compositing, each time a new fragmentfnew is inserted in thek-buffer, it dislodges

the first entry (f1). Note that boundary cases need to be handled properly and thatfnew may

be inserted at the beginning of the buffer if it is closer to the viewpoint than all the other

fragments or at the end if it is further. A key property of thek-buffer is that given a sequence

of fragments such that each fragment is withink positions from its position in the sorted order,

it will output the fragments in the correct order. Thus, with a smallk, the k-buffer can be

used to sort ak-nearly sorted sequence ofn fragments inO(n) time. Note that to composite a

12

k-nearly sorted sequence of fragments,k+1 entries are required, because both the closest and

second closest fragments must be available for the pre-integrated table lookup. In practice, the

hardware implementation is simplified by keeping thek-buffer entries unsorted.

Compared to ZSWEEP, thek-buffer offers a less conservative fragment sorting scheme.

Since onlyk entries are considered at a time, if the incoming sequence is highly out of

order, the output will be incorrect, which may be noticeable in the images. As shown in

Section 4.3, even simple and inexpensive object-space ordering leads to fragments that are

almost completely sorted.

CHAPTER 4

HARDWARE-ASSISTED VISIBILITY SORTING

The hardware-assisted visibility sorting algorithm (HAVS) is a hybrid technique that oper-

ates in both object-space and image-space. In object-space, HAVS performs a partial sorting of

the 3D primitives in preparation for rasterization; the goal here is to generate a list of primitives

that cause the fragments to be generated innearly sorted order. In image-space, the fragment

stream is incrementally sorted by the use of a fixed-depth sorting network. HAVSconcurrently

exploits both the available CPU and GPU on current hardware, where the object-space work

is performed by the CPU while the fragment-level sorting is implemented completely on the

GPU (see Figure 4.1). Depending on the relative speed of the CPU and the GPU, it is possible

to shift work from one processor to the other by varying the accuracy of the two sorting

phases, i.e., by increasing the depth of the fragment sorting network, we can use a less accurate

object-space sorting algorithm. As shown in Section 4.2, our current implementation uses very

simple data structures that require essentially no topological information leading to a very low

memory overhead. In the following sections, we present further details on the two phases of

HAVS.

4.1 Volume Rendering Algorithm

The volume rendering algorithm is built upon the machinery presented above. First, we

sort thefacesof the tetrahedral cells of the unstructured mesh on the CPU based on the face

centroids using the floating point radix sort algorithm. To properly handle boundaries, the

vertices are marked whether they are internal or boundary vertices of the mesh. Next, the

faces are rasterized by the GPU, which completes the sort using thek-buffer and composites

the accumulated color and opacity into the framebuffer (see Figure 4.1). The complete pseudo-

code for our algorithm is given in Figure 4.2.

14

Figure 4.1. Overview of the hardware-assisted visibility sorting algorithm (HAVS). Only a
partial visibility ordering is performed on the CPU based on the face centroids. On the GPU
side, a fixed size A-buffer is used to complete the sort on a per-fragment basis.

CPU-SORT
Perform sort on face centroids
for eachsorted faces f

Sends f to GPU for rasterization

Figure 4.2. Psuedo-code for the partial sort performed on the CPU.

4.2 K-Buffer Hardware Implementation

Thek-buffer can be efficiently implemented using themultiple render targetcapability of

the latest generation of ATI graphics cards. Our implementation uses theATI draw buffers

OpenGL extension, which allows writing into up to four floating-point RGBA buffers in the

fragment shader. One of the buffers is used as the framebuffer and contains the accumulated

color and opacity of the fragments that have already left thek-buffer. The remaining buffers

are used to store thek-buffer entries. In the simplest case, each entry consists of the scalar data

valuev and the distanced of the fragment from the eye. This arrangement allows us to sort up

to seven fragments in a single pass (six entries from thek-buffer plus the incoming fragment).

The fragment program comprises three stages (see Figure 4.3 and the source code in

Appendix A). First, the program reads the accumulated color and opacity from the frame-

15

Figure 4.3. Example of thek-buffer with k = 3 (see also Section 4.2). (a) We start with
the incoming fragment and the currentk-buffer entries and (b) find the two entries closest to
the viewpoint. (c) Next, we use the scalar values (v1,v2) and view distances (d1,d2) of the
two closest entries to look up the corresponding color and opacity in the pre-integrated table.
(d) In the final stage, the resulting color and opacity are composited into the framebuffer and
the remaining three entries are written back into thek-buffer.

buffer. Program execution is terminated if the opacity is above a given threshold (early ray

termination). Next, the program fetches the currentk-buffer entries from the associated RGBA

buffers and finds the two closest fragments to the eye by sorting the entries based on the stored

distanced. For the incoming fragment,d is computed from its view-space position, which is

calculated in a vertex program and passed to the fragment stage in one of the texture coordinate

registers. The scalar values of the two closest entries and their distance is used to obtain the

color and opacity of the ray segment defined by the two entries from the 3D pre-integrated

texture. Finally, the resulting color and opacity are composited with the color and opacity

from the framebuffer, the closest fragment is discarded, and the remaining entries are written

back into thek-buffer (see also Figure 4.3). The complete pseudo-code for our GPU fragment

sorter (k = 3) is given in Figure 4.4

Several important details have to be considered for the hardware implementation of the

algorithm. First, to look up values in a screen-space buffer, e.g., when compositing a prim-

itive into a pixel buffer, previous implementations of volume rendering algorithms used the

technique of projecting the vertices of the primitive to the screen, from which 2D texture

coordinates are computed [36, 39]. This approach produces incorrect results, unless the

16

GPU-SORT
for each fragmentfnew

Read colorc1 from framebuffer
if c1 is opaquethen

RETURN
Read fragmentsf1, f2, and f3 from k-buffer
n1← closest fragmentfnew, f1, f2, or f3
(r1, r2, r3)← remaining fragments
n2← closest fragmentr1, r2, or r3

d1← depth ofn1, d2← depth ofn2

v1← scalar ofn1, v2← scalar ofn2

∆d← d2−d1

Readc2 from pre-integrated table
usingv1, v2, and∆d

Compositec1 andc2 into framebuffer
Write r1, r2, andr3 back intok-buffer

Figure 4.4. Psuedo-code for a GPU fragment sorter using thek-buffer

primitive is aligned with the screen, which happens only when view-aligned slicing is used

to sample the volume (see Figure 4.5). The reason for this problem is that the rasterization

stage performs perspective-correct texture coordinate interpolation, which cannot be disabled

on ATI cards [2]. Even if perspective-correct interpolation could be disabled, other quantities,

e.g., the scalar data value, still would need to be interpolated in perspective space. Thus, to

achieve the desired screen space lookup, one has to compute the texture coordinates from the

fragment window position or use projective texture mapping [62]. Since projective texturing

requires a division in the texture fetch stage of the pipeline, we decided to use the former

solution in our implementation.

Second, strictly speaking, the result of simultaneously reading and writing a buffer is

undefined when primitives are composited on top of each other in the same rendering pass.

The reason for the undefined output is that there is no memory access synchronization between

primitives; therefore a fragment in an early pipeline stage may not be able to access the result

of a fragment at a later stage. Thus, when reading from a buffer for compositing, the result

of the previous compositing step may not be in the buffer yet. Our experience is that the

read-write race condition is not a problem as long as there is sufficient distance between

fragments in the pipeline, which happens, e.g., when compositing slices in texture-based

volume rendering applications [33]. Unfortunately, compositing triangles of varying sizes can

yield artifacts, as shown by Figure 4.6. One way to remedy this problem is to draw triangles

17

(a) (b) (c)

Figure 4.5. Screen-space interpolation of texture coordinates. (a) The rasterizer interpolates
vertex attributes in perspective space, which is typically used to map a 2D texture onto the
faces of a 3D object. (b) Using the projected vertices of a primitive as texture coordinates
to perform a lookup in a screen-space buffer yields incorrect results, unless the primitive is
parallel with the screen. (c) Computing the texture coordinates directly from the fragment
window position or using projective texture mapping results in the desired screen-space
lookup.

Figure 4.6. Rendering artifacts resulting from the fragment level race condition when simul-
taneously reading and writing the same buffer. In our experience, it has been quite hard to
notice these artifacts.

18

in an order that maximizes the distance between fragments of overlapping primitives in the

pipeline, e.g., by drawing the triangles in equidistant layers from the viewpoint. We advocate

the addition of simultaneous read/write buffer access on future generation hardware to resolve

this problem. We believe this feature will prove useful to a wide variety of GPU algorithms.

Third, to properly handle holes (concavities) in the data, vertices need to be tagged whether

they belong to the boundary or not. Ray segments with both vertices on the boundary are

assigned zero color and opacity. Unfortunately, this approach removes cells on the edges of

the boundary as well. To solve this problem, a second tag is required that indicates whether

a k-buffer entry is internal or external. This classification information is dynamically updated

at every step such that when the two closest entries are internal and the second closest entry

is on the boundary, allk-buffer entries are marked external. When two external fragments are

chosen as closest, thek-buffer entries are reversed to internal and the color and opacity from

the pre-integrated table is replaced with zero. Fortunately, these two tags can be stored as

the signs of the scalar data valuev and view distanced in thek-buffer. A further advantage

of tagging fragments is that the classification allows for initializing and flushing thek-buffer

by drawing screen aligned rectangles. Unfortunately, the number of instructions required to

implement the logic for the two tags, and to initialize and flush the buffer, exceeds current

hardware capabilities. Thus, currently we use only a single tag in our implementation for

initializing the k-buffer and do not handle holes in the data properly. Since the algorithm

described above can handle holes properly, complete handling of holes will be added once

next generation hardware becomes available.

4.3 Experimental Results

Our implementation was tested on a PC with a 3.2 GHz Pentium 4 processor and 2048

MB RAM running Windows XP. We used OpenGL in combination with an ATI Radeon 9800

Pro with 256 MB RAM. To assess the quality of our implementation, we ran extensive tests

on several data sets to measure both the image quality and the interactive rendering rates.

4.3.1 CPU Sorting

We tested several commonly used sorting algorithms described in [12, 61] for generating

nearly sorted sequences. Table 4.1 shows the performance results of various routines that

sort an array of one million floating-point numbers. Given slight changes in the viewing

direction, one approach would be to use an algorithm optimized for re-sorting previously

19

Table 4.1. Analysis of sorting algorithms

Algorithm Time

shellsort 584 ms
heapsort 507 ms
quicksort 281 ms
radixsort 64 ms

sorted sequences (e.g., mergesort). We found, however, that re-sorting the face centroids using

a faster sort is more efficient in practice, because the ordering can change significantly from

frame to frame.

In our implementation, we used an out-of-place sorting algorithm that achieves linear

time complexity at the expense of auxiliary memory. The algorithm chosen was the Least

Significant Digit (LSD) radix sort [61], which sorts numbers at individual digits one at time,

from the least to the most significant one. As described, the algorithm does not work for

floating-point numbers. However, floating-point numbers using the IEEE 754 standard (ex-

cluding NAN-values) are properly ordered if represented as signed magnitude integers. In

order to use integer comparisons, a transformation is applied such that negative numbers are

correctly handled. Discussion on the topic and several valid transformations are described

in [70]. We used the following C++ function to convert floating-point numbers into 32-bit

unsigned integers:

inline unsigned int float2fint(unsigned int f) {
return f ^ ((-(f >> 31)) | 0x80000000);

}

Instead of performing radix sort individually at each bit, we worked on four blocks of 8

bits each. Sorting within each block uses a counting sort algorithm [61] that starts by counting

the occurrences of the 256 different numbers in each 8-bit block. A single pass through the

input suffices to count and store the ocurrences for all four blocks. The radix sort performs

four passes through the input, each pass sorting numbers within a single block. Starting from

the LSD block (0-7 bits), the counting results for that block are used to correctly position

each number in an auxiliary array with the same size as the input. Once this block is sorted,

a similar pass is issued to sort bits 8-15, this time using the auxiliary array as input, and the

original input array as output. Finally, two additional counting sorts are used to sort bits 16-23

20

and 24-31. Overall, five passes through the array are necessary to correctly sort the input,

establishing the linear complexity.

Our code was written in C++ without any machine-level work; thus improvements can

potentially be made to increase the performance of CPU sorting even further. In any case, our

current sorting technique can sort upwards of 15 million faces per second.

4.3.2 k-Buffer Analysis

As a measure of image quality, we implemented a software version of our algorithm that

uses an A-buffer to compute the correct visibility order. As incoming fragments are processed,

we insert them into the ordered A-buffer and record how deep the insertion was. This gives us

ak size that is needed for the data set to produce accurate results. We also gain insight on how

well our hardware implementation will behave for givenk sizes. This analysis is shown in

Table 4.2. For each data set, we show the number of total fragments generated when rendering

them at 5122 resolution, the maximum length of any A-buffer pixel list, the maximumk (i.e.,

the number of positions any fragment had to move to its correct position in the sorted order

minus one for compositing), and the number of pixels that requirek to be larger than two or

six, which are the values currently supported by the hardware used. These results represent

themaximumvalues computed from 14 fixed viewpoints on each data set.

Further analysis provides insight into the source of the problem. In particular, by generat-

ing an image for each fixed viewpoint of the data sets that reflect the distribution of the degen-

eracies, we can consider the distribution of the areas in which a smallk size is not sufficient.

Figure 4.7 contains a sample of these images. This analysis shows that the problematic areas

are usually caused by sliver cells, those that are large but thin (i.e., have a bad aspect ratio).

This problem can be solved by finding the degenerate cells and subdividing them into smaller,

more symmetric cells. Inspired by the regularity of Delaunay tetrahedralizations [19, Chapter

5], we tried to isolate these bad cells by analyzing how much they “differ” locally from a DT

Table 4.2. k-buffer analysis

Data set Fragments Max A Max k k > 2 k > 6

F117 2,517,674 481 15 7632 71
Kew 2,813,532 481 3 0 0
Spx2 6,615,778 476 22 10,626 512
Torso 7,223,435 649 15 43,317 1683
Fighter 5,414,884 904 3 1 0

21

(a) (b)

Figure 4.7. Distribution ofk requirements for the (a) Torso and (b) Spx2 data sets. Regions
denotek size required to obtain a correct visibility sorting, fork > 6 (red), 2< k≤ 6 (yellow),
andk≤ 2 (green).

in the following sense. A basic property that characterizes DT is the fact that a tetrahedron

belongs to the DT of a point set if the circumsphere passing through the four vertices is empty,

meaning no other point lies inside the circumsphere. By finding the degenerate cells of a data

set that digress most from this optimal property, and subdividing them, we can thereby lower

the maximumk needed to accomplish a correct visibility ordering. Another approach is to

perform mesh smoothing [26] operations on the data set. These operations attempt to eliminate

cells with bad shape without creating additional tetrahedra. In our preliminary experiments,

we were able to reduce the maximumk required to correctly render the f117 data set from 15

to 6 using these techniques.

Note that the artifacts caused by a limitedk size in the implementation are hard to notice.

First, they are less pronounced when a transparent transfer function is used. Also, even in

our worst example (Torso), only 0.6% of the pixelscould be incorrect. For a pixel to be

truly incorrect, a somewhat complex combination of events needs to happen, it is not simply

enough that thek-buffer ordering fails. Thus, users normally do not notice any artifacts when

interacting with our system.

4.3.3 Render Performance

Table 4.3 and Table 4.4 show the performance of our hardware-assisted visibility sorting

algorithm on several data sets using the average values of 14 fixed viewpoints. Table 4.3 shows

22

Table 4.3. Performance of the GPU sorting and drawing

k = 2 k = 6
Data set Cells Fps Tets/sec Fps Tets/sec

F117 240,122 9.71 2331 K 4.42 1062 K
Kew 416,926 5.45 2267 K 3.75 1561 K
Spx2 827,904 2.07 1712 K 1.70 1407 K
Torso 1,082,723 3.13 3390 K 1.86 1977 K
Fighter 1,403,504 2.41 3387 K 1.56 2190 K

Table 4.4. Total performance of HAVS

Data set CPU GPU Total Fps Tets/sec

F117 45 ms 103 ms 148 ms 6.8 1622 K
Kew 79 ms 188 ms 267 ms 3.7 1562 K
Spx2 160 ms 368 ms 528 ms 1.9 1568 K
Torso 210 ms 390 ms 600 ms 1.7 1805 K
Fighter 268 ms 505 ms 773 ms 1.3 1816 K

only the GPU portion of the algorithm, which includes the time required to rasterize all the

faces, run the fragment and vertex programs, composite the final image, and draw it to the

screen usingglFinish. Table 4.4 includes the time required to sort the faces on the CPU as

well as the GPU withk = 2. This represents the rendering rates achieved while interactively

rotating and redrawing the data set. All rendering was done with a 5122 viewport and a 1283

8-bit RGBA pre-integrated table. In addition, a low opacity colormap was used and early ray

termination was disabled. Thus every fragment is rasterized to give more accurate timings.

With early ray termination enabled, we have been able to achieve over six million cells per

second with the Fighter data set using a high opacity colormap due to the speedup in fragment

processing.

Our technique requires no preprocessing, and it can be used for handling time-varying data.

In addition, our implementation allows interactive changes to the transfer function. These

operations are only dependent on the GPU for sorting and rendering (see Table 4.3). Therefore

the CPU portion of the algorithm is not performed. The user interface consists of a direct

manipulation widget that displays the user specified opacity map together with the currently

loaded colormap (see Figure 4.8 and Figure 1.1). Modifying the opacity or loading a new

colormap triggers a pre-integrated table update, which renders the data set using the GPU

23

(a) (b)

(c) (d)

Figure 4.8. Results of rendering the (a) Torso (b) Spx (c) Kew and (d) Heart data sets with
the HAVS algorithm.

24

sort only. We found that in general, a 1283 pre-integrated table is sufficient for high quality

rendering.

4.3.4 Comparison

Table 4.5 compares the timing results of our algorithm with those of other methods. All

results were generated using 14 fixed viewpoints and reflect the total time to sort and draw

the data sets in a 5122 window. We used an optimized version of the Shirley-Tuchman PT

algorithm [63] implemented by Nelson Max, Peter Williams and Cláudio Silva that uses the

MPVO with nonconvexities (MPVONC) algorithm for visibility ordering[76]. The bottleneck

of the PT algorithm is the time required to compute the polygonal decomposition necessary for

rendering the tetrahedra. Another limitation is that the vertex information needs to be dynam-

ically transferred to the GPU with every frame. We avoid this problem in our method because

we can store the vertices in a vertex array on the GPU. This difference results in similar

GPU timings with the two methods even though we are using vertex and fragment programs.

Wylie et al. [78] describe a GPU implementation of the PT algorithm called GPU Accelerated

Tetrahedra Rendering (GATOR), in which the tetrahedral decomposition is accomplished

using a vertex shader. However, the complexity of this vertex shader limits the performance on

current GPUs. The results generated for the GATOR method were accomplished using their

code, which orders the tetrahedra using the MPVONC algorithm. Our rendering rates are

much faster then these PT methods, while producing higher quality images through the use of

a 3D pre-integrated table. Another recent technique is the GPU-based ray casting of Weiler et

al. [72, 73]. The image quality of this technique is similar to that of our work, but the algorithm

has certain limitations on the size of the data sets that make it less general than cell-projection

techniques. In fact, the Fighter data set we used for comparison could not be loaded properly

due to hardware memory limitations. The results for this algorithm were generated using

a DirectX-based ray caster described in Bernardon et al. [3], which is approximately twice

as fast as the original technique reported by Weiler. The ZSWEEP method [22] uses a

hybrid image- and object-space sorting approach similar to our sorting network, but does not

leverage the GPU for better performance. The code that was used in this portion of our timing

results was provided by Ricardo Farias. All of these approaches require a substantial amount

of connectivity information for rendering, resulting in a higher memory overhead than our

work. Another advantage of our algorithm is the simplicity of implementation in software and

hardware. The software techniques described above (PT and ZSWEEP) require a substantial

25

Table 4.5. Time comparison in milliseconds with other algorithms

F117 Spx2 Fighter
Algorithm CPU GPU Total CPU GPU Total CPU GPU Total

HAVS 45 103 148 160 368 528 268 505 773
HW RC N/A 498 498 N/A 1410 1410 N/A N/A N/A
PT 195 103 298 655 326 981 1799 664 2463
GATOR 85 185 270 276 702 978 861 1314 2175
ZSWEEP 3278 N/A 3278 10119 N/A 10119 12556 N/A 12556

amount of code for sorting and cell projection. Implementations of the hardware techniques

(GATOR and HW Ray Caster) involve developing long and complex fragment and vertex

programs, which can be difficult to write and debug.

4.4 Discussion

When we started this work, we were quite skeptical about the possibility of implementing

the k-buffer on current GPUs. There were several hurdles to overcome. First, given the

potentially unbounded size of pixel lists, it was less than obvious to us that small values ofk

would suffice for large data sets. Another major problem was the fact that reading and writing

to the same texture is not a well-defined operation on current GPUs. We were pleasantly

surprised to find that even on current hardware, we get only minor artifacts. Finally, we

thought that the GPU would be the main bottleneck during rendering. Hence, in our prototype

implementation, we did not spend as much time optimizing the CPU sorting algorithm.

There are several issues that we have not studied in depth. The most important goal is to

develop techniques that can refine data sets to respect a givenk. Currently, our experiments

show that when thek-buffer is not large enough, a few pixels are rendered incorrectly. So

far, we have found that most of our computational data sets are well behaved and the wrong

pixels have no major effect on image quality. In a practical implementation, one could consider

raising the value ofk or increasing the accuracy of the object-space visibility sorting algorithm,

once the user stops rotating the model. Using the smallest possiblek is required for efficiency.

Some of our speed limitations originate from limitations of current GPUs. In particular,

the lack of real conditionals forces us to make a large number of texture lookups that we can

potentially avoid when next generation hardware is released. Furthermore, the limit on the

instruction count has forced us into an incorrect hole handling method. With more instructions

we could also incorporate shaded isosurface rendering without much difficulty.

26

Finally, there is plenty of interesting theoretical work remaining to be done. It would

be advantageous to develop input and output sensitive algorithms for determining the object-

space ordering and estimation of the minimumk size for a given data set. We have preliminary

evidence that by making the primitives more uniform in size,k can be lowered. We believe it

might be possible to formalize these notions and perform proofs along the lines of the work of

Mitchell et al. [52] and de Berg et al. [16].

CHAPTER 5

DYNAMIC LEVEL-OF-DETAIL

5.1 A Sample-Based LOD Framework

In scientific computing, it is common to represent a scalar functionf : D ⊆ R3→ R as

sampled data by defining it over a domainD, which is represented by a tetrahedral mesh. For

visualization purposes, we define the functionf as linear inside each tetrahedron of the mesh.

In this case, the function is completely defined by assigning values at each vertexvi(x,y,z), and

is piecewise-linear over the whole domain. The domainD becomes a 3D simplicial complex

defined by a collection of simplicesci . It is important to distinguish the domainD from the

scalar fieldf . The purpose of visualization techniques, such as isosurface generation [43] and

direct volume rendering [48] are to study intrinsic properties of the scalar fieldf . The time

and space complexity of these techniques are heavily dependent on the size and shape of the

domainD.

For large data sets, it is not possible to achieve interactive visualization without using an

approximation. In these cases, it is often useful to generate a reduced-resolution scalar field

f̄ : D̄⊆ R3→ R, such that:

• the new scalar field̄f approximatesf in some natural way, i.e.,| f̄ − f | ≤ ε;

• the new domain̄D is smaller thanD.

LOD techniques attempt to compute multiple approximationsf̄i from f at decreasing resolu-

tions for interactive visualization. Recently, techniques have been proposed that hierarchically

simplify the tetrahedral mesh by using edge collapses (see [8]). These techniques work

similarly to triangle based simplification and use connectivity information to incrementally

cull simplicesci from the domainD, i.e., when a 1-simplex is collapsed, several 2- and

3-simplices become degenerate and can be removed from the mesh. Most techniques order the

collapses using some type of error criterion, stopping when the size of the domain|D̄| reaches

the desired LOD.̄f computed in this way for LOD can can be considered as adomain-based

simplificationof f because the domainD is being resampled with fewer vertices.

28

An alternative approach for computinḡf is sample-based simplification. If we consider

a ray r that leaves the view point and passes through screen-space pixel(x,y) then enters

the scalar fieldf , a continuous functiong(t) is formed forr whereg(t) = f (r0 + trd). In

the domainD, represented by a tetrahedral mesh, this functiong(t) is piecewise-linear and

defined by the set of pointsP = {pi
x,y}. An approximation ¯g(t) can be created by using a

subsetP̄ of P. In other words, by removing some of the samples that defineg(t), we obtain an

approximating function ¯g(t). This subsampling can occur on the tetrahedral mesh using any

of the 2- or 3-simplices.

The key difference between domain and sample-based simplification is that they approxi-

mate the domainD in different ways with respect to the volume integral. If you consider the

ray r passing through a medium represented byD, the volume rendering integral is computed

at each 2-simplex intersection withinD (see Max [50]). Domain-based simplification approx-

imates the domainD, then computes an exact volume integral over the approximate geometry.

Sample-based simplification uses the original geometry to representD, then computes an

approximate volume integral over the original geometry. Figure 5.1 shows a 2D example

of the functiong(t) and approximate functions ¯g1(t) andḡ2(t) using these two approaches as

the rayr passes throughD. It is important to emphasize that sample-based simplification pro-

vides different, though not necessarily better, results than domain-based simplification. The

advantage of this approach is the simplicity of the simplification method and data structures

necessary to perform dynamic LOD.

Because we want̄f to be a good approximation off , when using sample-based simplifica-

tion it is necessary to ensure that each rayr passing through̄f encounters at least two samples

to avoid holes in the resulting image. Furthermore, by removing geometry without constraint

in a non-convex mesh, we could possibly be computing the volume integral over undefined

regions outside ofD. This problem can easily be resolved by always guaranteeing that the

boundaryB̄ of f̄ is always sampled (see Figure 5.1).

This problem is similar to importance sampling where the integral can be approximated

using probabilistic sampling or Monte Carlo techniques [14, 64]. However, this is a much

more difficult problem when considering the entire space of functions that occur because of

the infinite number of viewpoints. Therefore, sampling strategies that attempt to optimize the

coverage of the functions from all viewpoints become necessary.

29

Figure 5.1. Classification of LOD simplification techniques in 2D represented by a mesh
and the function occurring at a rayr through the mesh. Undefined areas of the volume are
expressed as dashed lines. (a) The original mesh showing the functiong(t) that rayr passes
through. (b) The mesh after sample-based simplification where the function approximation
ḡ1(t) is computed by removing samples from the original functiong(t). (c) The mesh
after domain-based simplification, where the approximating function ¯g2(t) is computed by
resampling the original domain.

5.1.1 Face Subsampling

The sample-based simplification strategy described above operates on the existing geo-

metric representation of the mesh. In principle, the sampling could be done on any of the

simplices that compose the mesh. We choose to sample by the faces (triangles) that make up

the tetrahedra. This is due to the flexibility and speed of the sampling that it allows.

If we consider the topology of the mesh as a collection of triangles (2-simplices) embedded

in R3, f̄i can be computed at each LODi by selectively sampling a portion of the faces. Thus,

by removing one triangle, we are effectively removing one sample of the functiong(t) that

representsf along the rayr . The advantage of this technique is that it provides a natural

representation for traversing the different LODs.

Given a set of unique facesF in a tetrahedral mesh, boundary facesB and internal faces

I can be extracted such thatB∪ I = F . SinceB gives a minimum set of faces that bound

the domainD of the mesh,B should remain constant. By adding and removing faces from

I , we get an approximation of the mesh whereB∪ I ⊆ F . This leads to a simple formula for

determining the number of faces inI that need to be selected in each pass:

|I | =
|I |×TargetTime

RenderTime
,

whereTargetTimeis the amount of time you would like each frame to take for interactive

viewing, i.e., 0.01 seconds, andRenderTimeis the time that the previous frame required to

render. This allows the system to adapt the LOD to the current view and render complexity.

30

It also allows an easy return to the full quality mesh by selecting all the internal faces to be

drawn with the boundary faces.

5.2 Sampling Strategies

To minimize visual error the faces should be chosen while accounting for both transfer

function and viewpoint. However, to maximize visual smoothness when the viewpoint or the

transfer function change, the faces should be based only on mesh geometry and scalar field

values. This conflict between accuracy and ability to change viewpoint and transfer function

easily indicates that the best sampling strategy will depend on user goals and properties of the

data. For this reason we provide a variety of sampling strategies.

We described the steps that are required to achieve interactive rates given an internal face

list. However, the heuristics that are incorporated to assign importance to the faces are just

as important. We describe four methods that operate on different properties of the mesh:

topology sampling, view-dependent sampling, field sampling, and area sampling strategies

(Figure 5.2). The first two strategies are deterministic. The second two strategies are ran-

domized, each rewarding different data attributes. We also implemented a naive randomized

Figure 5.2. A 2D example of sampling strategies for choosing internal faces. (a) A topology
sampling which calculates layers by peeling boundary tetrahedra. (b) A view-dependent
sampling that selects the faces most relevant to the current viewpoint. (c) A field sampling
which uses stratified sampling on a histogram of the scalar values. (d) An area sampling
which selects the faces by size.

31

algorithm that selected a uniformly random subset of faces, but these results were poor for the

same reason unstratified sampling is poor when sampling pixels: clumping and holes [51].

5.2.1 Topology Sampling

The first sampling method that we employ is based on the topology of the initial tetrahedral

mesh. This approach assigns layers to some of the faces in an attempt to select faces that are

connected, resulting in an image that looks more continuous. Similar work has been done

for determining a sequence of nonconvex hulls on a point set [21]. This approach requires a

preprocessing step in which we extract the boundary, remove the tetrahedra on the boundary,

and repeat until all the tetrahedra have beenpeeledfrom the mesh. A new layer value is

assigned to the faces on the boundary at each step in the algorithm and separated into the

boundary face list (layer zero) and the internal face list (all other faces). The preprocessing

layer extraction algorithm is given in Figure 5.3.

This algorithm assigns layers to some of the faces, but not all of them. In practice, it uses

enough of the faces for a good image. However, when all of the layer faces cannot be drawn

because they exceed the limit of internal faces allowed for interactive rendering, a subset of

the layers are rendered. This is done by picking an even distribution of the layers throughout

the mesh until the target internal face count is reached.

5.2.2 View-Aligned Sampling

The second sampling strategy that we use is view-dependent sampling. The intuition to

this approach is that the faces perpendicular to the viewing direction are the most visible ones.

Therefore, by selecting the internal faces that are more closely aligned to the current view,

we can optimize the screen-space coverage. A simple approach would be to perform a dot

product between each internal face normal and the viewing direction to order the faces in the

internal face list. However, this approach is costly because it requires processing on every face

independent of the LOD. Instead, we use a simple technique based on the work of Kumar et

al. [40] and Zhang and Hoff [79] for back-face culling. In a preprocessing step, the faces

are clustered by their normals. The clusters are computed by fitting a bounding box to a unit

sphere and subdividing the faces of the box into regions. This grid is then projected onto the

sphere, and the internal faces are clustered based on their normal’s location in the distribution.

Clearly, this is not a uniform distribution, but in practice it produces good results. We used a

4x4 grid for each of the faces of the bounding box, which results in 96 normal clusters. This

32

EXTRACT LAYERS
CurrentLayer← 0
for each tetrahedrat

Peeled[t] ← false
while there existst such thatPeeled[t] = false

for each face f
f ← External

Sets= /0
for each tetrahedrat such thatPeeled[t] = false

for each face f in t
if f is already ins

s(f)← Internal
elseinsert f into s

for each face f such thatf = External
f ←CurrentLayer
for each tetrahedrat such thatf andt share a vertex

Peeled[t] = true
CurrentLayer←CurrentLayer+1

Figure 5.3. Pseudocode for extracting the topology layers of a tetrahedral mesh.

allows us to detect view-aligned faces based on their cluster instead of individually, which

significantly increases the performance of the algorithm.

5.2.3 Field Sampling

Our third approach for sampling internal faces is based on the field values of the tetrahedral

mesh. In most cases this is represented as a scalar at each vertex in the mesh. This technique

assigns importance to a face based on the average scalar value at its vertices. In a preprocessing

step, a histogram is built using the normalized scalar values, which shows the distribution

of the field. Using an approach similar to stratified sampling in Monte Carlo integration,

we divide this histogram into evenly spaced intervals (we use 128), then randomly pick the

same number of faces from each interval to be rendered. Unlike Monte Carlo integration,

which provides the underlying theory for randomly sampling to approximate a function, we

are randomly sampling over the entire space of functions. The internal face list is filled with

these random samples, so that no extra computation is required for each viewpoint or change

in LOD.

33

5.2.4 Area Sampling

Our fourth strategy recognizes that if the removal of a triangle causes an error of a certain

magnitude at a given pixel, then the total error magnitude for all pixels is proportional to the

area of that triangle. Thus we could prioritize based on area. An easy way to do this while

preserving the possibility of choosing small faces is to prioritize based onAi ∗ ξi whereAi is

the area inR3 of theith face andξi is a uniform random number. This randomizes the selected

triangles, but still favors the larger ones being drawn. As with field sampling, this list does not

need to be rebuilt for new viewpoints or number of faces to be drawn.

5.3 Implementation

The algorithm for dynamic LOD builds on the Hardware-Assisted Visibility Sorting vol-

ume rendering system (HAVS) proposed in Chapter 4. Figure 5.4 shows an overview of how

the sampling interacts with the volume renderer.

In a preprocessing step, the boundary faces are separated from the internal faces and each

is put in a list. Each internal face contains a neighboring face with the same vertices and

scalar values. To avoid the redundancy of computing a zero-length interval, these duplicate

faces are removed. The internal face list is reordered from most important to least important

based on one of sampling strategies previously described. This allows us to dynamically adjust

the number of faces that are being drawn by passing the first|I | faces to the volume renderer

along with the boundary faces. For full quality images, which are shown when the user is not

interactively viewing the mesh, the entire internal face list is used.

Once the proper subset of faces has been selected, the HAVS algorithm prepares the faces

for rasterization by sorting them by their centroids. This provides only a partial order of the

faces in object-space since the mesh may contain faces of varying size or even visibility cycles.

Upon rasterization, the fragments undergo an image-space sort via thek-buffer, which has

been implemented using fragment shaders. Thek-buffer keeps a fixed number of fragments

(k) in each pixel of the framebuffer. As a new fragment is rasterized, it is compared with the

other entries in thek-buffer, the two entries closest to the viewpoint (for front-to-back) are

used to find the color and opacity for the fragment using a lookup table which contains the

pre-integrated volume integral. The color and opacity are composited in the framebuffer, and

the remaining fragments are written back to thek-buffer (see Chapter 4 for more detail).

For dynamic LOD, we are interested in the time that each frame requires to render so we

can adjust accordingly. Therefore, we track the render time at each pass and use it to adjust the

34

Figure 5.4. Overview of the dynamic LOD algorithm. (a) The LOD algorithm samples the
faces and dynamically adjusts the number of faces to be drawn based on previous frame
rate. (b) The HAVS volume rendering algorithm sorts the faces on the CPU and GPU and
composites them into a final image.

number of internal faces that are sent to the rasterizer in the next step. This is very important

when you are interacting with the system. Since the bottleneck of the volume renderer is

rasterization, by zooming in or out, the frame rate can increase or decrease depending on the

size of the faces being drawn. Dynamically adjusting the LOD ensures that frame rates remain

constant. We use 10 frames per second as a target frame rate for a good balance in interactivity

and quality.

As described above, HAVS requires a pre-integrated lookup table to composite the image-

space fragments. This table is represented as a 3D texture that looks up a front fragment scalar,

a back fragment scalar, and the distance between the fragments. Unfortunately, we remove

samples, thereby introducing intervals that are larger than the maximum edge length from

which the lookup table is built. In a software implementation, this problem could be resolved

by repeatedly compositing the fragment until the gap has been filled similar to Danskin and

Hanrahan [15]. However, this repetition does not map to current hardware. To solve this issue

we create a separate lookup table, which is scaled to handle rays that span the entire bounding

box of the mesh. This secondary lookup table is used during the dynamic LOD where the

quality difference is not as noticeable and is replaced by the original table when rendering full

quality images.

35

5.4 Results

Our experiments were run on a PC with a 3.2 GHz Pentium 4 processor and 2,048 MB

RAM. The code was written in C++ with OpenGL and uses an ATI Radeon X800 Pro graphics

processor with 256 MB RAM. The Spx2, Torso, and Fighter data sets were used to measure

performance and to compare the sampling strategies.

An important consideration with LOD techniques is the preprocessing time to create the

data structures necessary for interactive rendering. Table 5.1 shows the three data sets with

their sizes and the time required to preprocess the original mesh into static LODs using the

different sampling strategies. The results show that all strategies can be preprocessed quickly,

which is important in real-world use.

Rendering a tetrahedral mesh using sample-based LOD dynamically is based on the fun-

damental assumption that the render time decreases proportionally to the number of faces that

are sampled. The performance of our volume renderering system is based on the number of

fragments that are processed at each frame. This roughly corresponds to the number of faces

that are rasterized. In our experiments we computed the time required to render a data set

with different sample increments. Figure 5.5 shows the performance of the volume rendering

system as number of sampled faces increases. The almost linear scale factor provides a good

estimate of the number of faces that would be required to render a data set at a specific frame

rate.

Another important aspect of sample-based LOD is choosing a sampling strategy that gives

the best approximation of your original mesh. To measure the effectiveness of our sampling

strategies, we generated images of each data set at 14 fixed viewpoints using all the sam-

pling strategies and compared the results with full quality results from the same viewpoints.

Unfortunately there are not yet accepted methods for accurately predicting magnitude of the

difference between two images (as opposed to whether images are perceived as identical where

good methods do exist [54]). In the absense of such an ideal method, we compare images with

root mean square error (RMSE). These measurements should only be used as a subjective tool

Table 5.1. Preprocessing time in seconds of the different sampling strategies

Data Set Tetrahedra Topology View Field Area

Spx2 828 K 17.8 5.3 4.5 13.9
Torso 1,084 K 87.2 11.6 10.5 11.2
Fighter 1,403 K 75.6 15.3 13.9 15.3

36

Figure 5.5. Plot of the render time for the Spx2 (blue), Torso (red), and Fighter (black)
at different LODs. Approximately 3% LOD is the boundary only and 100% LOD is a full
quality image.

for where the images differ as opposed to any quality ranking for LOD strategies. Figure 5.6

shows the three data sets at the different viewpoints and the error measured between each LOD

sampling strategy and a full quality image. Notice that no sampling strategy is superior in all

cases, but they all provide a good approximation.

To provide a more qualitative analysis of the sampling strategies, we also show images of

the different techniques on the same data set. Figure 5.7 shows a direct comparison of the

strategies with a full quality rendering.

5.5 Discussion

Our algorithm is designed to meet a speed goal while maintaining what visual quality is

possible and in this sense it is oriented toward time-critical systems such asTetSplat[53].

Unlike TetSplat, our method aims to do direct volume rendering with transfer functions rather

than surface rendering with castaways. Our method also has the advantage that it requires very

little additional storage beyond the original mesh. Approaches that sample the unstructured

37

Figure 5.6. Error measurements of the different sampling strategies for 14 fixed viewpoints on
the Spx2, Torso, and Fighter data sets. Root mean squared error is used to show the difference
between the full quality rendering and the LOD rendering at 10 fps.

38

Figure 5.7. Direct comparison of the different sampling strategies with a full quality rendering
of the Spx2 data set (800 K tetrahedra). Full quality is shown at 2.5 fps and LOD methods are
shown at 10 fps (3% LOD for area sampling and 10% LOD on all other strategies).

39

mesh on a regular grid [42] increase the original data size substantially and require extensive

preprocessing.

Our method is an alternative to rendering explicit hierarchical meshes [8]. While explicit

hierarchies are elegant and provide excellent visual quality, they require more preprocessing

than our technique, are difficult to implement, and they do not easily allow for continuous

LOD. The main advantage of explicit hierarchies over our technique is that they can provide

smoother imagery that may be a better visual match to an exact rendering. However, our

subjective impression is that our approximate rendering is more than accurate enough for

interaction with volume data, and what objective visual accuracy is needed for visualization

tasks is an interesting and open question (see Figure 5.8).

A key characteristic of our algorithm is that it operates on mesh faces rather than mesh

cells. This results in fewer rasterizations than methods that render cells by breaking them into

polygons (e.g., [63, 75]). For example, givenn tetrahedra, Projected tetrahedra algorithms

render 3.4n triangles, while HAVS renders only 2n. Furthermore, the set of all possible mesh

faces to be rendered do not change with viewpoint, so we can leave them in memory on the

GPU for better efficiency. Another advantage of our system is that it works with perspective or

parallel projections with no additional computation. Most importantly, a face-based method

allows faces to be dropped without major errors in opacity because the HAVS method is

aware of adjacent faces visible through a pixel, whereas dropping cells in cell-based methods

leads to undesirable accumulation of empty space which causes the volume to gradually grow

more and more transparent as cells are dropped. So for cells, unlike faces, some explicit

simplification hierarchy is required.

Our four sampling strategies each select a subset on the set of mesh cell faces. View-

aligned sampling attempts to choose a subset based on view directions, and this emphasizes

the quality of individual frames at the expense of coherence between frames. The other three

methods choose a subset independent of viewpoint and thus do not have flickering artifacts.

Topology sampling builds a set of shells for its subsets and produces images without obvious

holes, but does so at the expense of correlated regions in the image. Field sampling uses

a randomized algorithm over binned densities to choose a subset. This is a robust strategy

but because it completely ignores connectivity it has obvious discontinuities in intensity.

Area sampling rewards larger faces and also achieves robustness via randomization. While

rewarding larger faces does seem to lower visual error, it also lowers the number of triangles

40

Figure 5.8. The Fighter data set (1.4 million tetrahedra) shown in multiple views at full quality
on top (1.3 fps), 15% LOD (4.5 fps) in the middle, and at 5% LOD (10.0 fps) on the bottom.
The LOD visualizations use area-based sampling.

that are rasterized because of the larger fill requirements. Overall, each method has its merits

and we expect the best choice to be data and application dependent.

CHAPTER 6

CONCLUSION

In this thesis we presented a novel algorithm for volume rendering unstructured data sets

with dynamic LOD. Our algorithm exploits the CPU and GPU for sorting both in object-space

and image-space. We use the CPU to compute a partial ordering of the primitives for gener-

ating a nearly sorted fragment stream. We then use thek-buffer, a fragment-stream sorter of

constant depth, on the GPU for complete sorting on a per-fragment basis. Despite limitations

of current GPUs, we show how to implement thek-buffer efficiently on an ATI Radeon 9800.

We also show how this system can be extended to interactively render large data sets using

dynamic LOD.

Our technique can handle arbitrary nonconvex meshes with very low memory overhead.

Similar to the HW-based ray caster, we use a floating-point based framebuffer that minimizes

rendering artifacts, and we can easily handle both parallel and perspective projections. But

unlike those techniques, the maximum data size is bounded by the available main memory of

the system. In this thesis, we provide a comparison of our technique with previous algorithms

for rendering unstructured volumetric data and enumerate the advantages in speed, ease of

implementation, and adaptability that our work provides.

Our dynamic LOD technique is based on an alternative solution to the subsampling prob-

lem needed for LOD rendering. Instead of using adomain-based approach, which maintains

different versions of a valid unstructured mesh in a hierarchical data structure oursample-

based approachis based on rendering with a subset of the mesh faces. These faces correspond

to the intersection points of the underlying unstructured grid with rays going through the center

of the screen-space pixels. In effect, our technique directly subsamples the volume rendering

integral as it is computed. We have shown this to be effective in interactive visualization of

unstructured meshes too large for approximation-free rendering. This effectiveness is largely

because our technique is particularly well-suited to our volume rendering algorithm.

Last, we would like to re-emphasize the simplicity of our technique. At the same time

that our technique is shown to be faster and more general than others, the implementation is

42

very compact and easy to code. In fact, the rendering code in our system consists of less than

200 lines. We believe these qualities are likely to make it the method of choice for rendering

unstructured volumetric data.

There are several interesting areas for future work. Further experiments and code op-

timization are necessary for achieving even faster rendering rates. In particular, we hope

that next-generation hardware will ease some of the current limitations and will allow us to

implement sorting networks with largerk sizes. Real fragment program conditionals will

allow us to reduce the effective number of texture lookups. On next generation hardware we

will also be able to implement a more efficient early ray termination strategy. In the future it

would be useful to do user studies to determine what types of visual error are detrimental to

success in visualization tasks to validate the effectiveness of our LOD approach. Such studies

could guide which sampling strategies are best. It would also be interesting to see whether our

face sampling method would be useful in ray tracing volume renderers as the data reduction

might benefit them as well. Another area of future work is to extend our system to handle data

sets too large for main memory through the use of compression techniques similar to [18] or

out-of-core storage of the data set as in [13]. We would also like to extend our algorithm to

handle hexahedron, which should involve either using quadrilaterals directly or splitting them

into triangles for efficiency. Another interesting area for future research is rendering dynamic

meshes. We intend to explore techniques that do not require any preprocessing and can be

used for handling dynamic data. Finally, we would like to devise a theoretical framework for

analyzing the direct trade-off between the amount of time spent sorting in object-space and

image-space.

APPENDIX A

GPU CODE

A.1 Vertex Program for HAVS
!!ARBvp1.0

Vertex program for Transactions on Visualization and Computer Graphics:
"Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering"
(C) 2005 Steven Callahan, Milan Ikits, Joao Comba, Claudio Silva

ATTRIB iPos = vertex.position;
ATTRIB iTex0 = vertex.texcoord[0];
PARAM mvp[4] = { state.matrix.mvp };
PARAM mv[4] = { state.matrix.modelview };
OUTPUT oPos = result.position;
OUTPUT oTex0 = result.texcoord[0];
OUTPUT oTex1 = result.texcoord[1];

transform vertex to clip coordinates
DP4 oPos.x, mvp[0], iPos;
DP4 oPos.y, mvp[1], iPos;
DP4 oPos.z, mvp[2], iPos;
DP4 oPos.w, mvp[3], iPos;

transform vertex to eye coordinates
DP4 oTex1.x, mv[0], iPos;
DP4 oTex1.y, mv[1], iPos;
DP4 oTex1.z, mv[2], iPos;

texcoord 0 contains the scalar data value
MOV oTex0, iTex0;

END

A.2 Fragment Program for HAVS
!!ARBfp1.0

Fragment program for Transactions on Visualization and Computer Graphics:

44

"Hardware-Assisted Visibility Sorting for Unstructured Volume Rendering"
(C) 2005 Steven Callahan, Milan Ikits, Joao Comba, Claudio Silva

#
The program consists of the following steps:
#
1. Find the first and second entries in the fixed size k-buffer list
sorted by d (6+1 entries)
2. Perform a 3D pre-integrated transfer function lookup using front and
back scalar data values + the segment length computed from the
distance values of the first and second entries from the k-buffer.
3. Composite the color and opacity from the transfer funcion with the
color and opacity from the framebuffer. Discard winning k-buffer
entry, write the remaining k-buffer entries.
#
The following textures are used:
#
Tex 0: framebuffer (pbuffer, 2D RGBA 16/32 bpp float)
Tex 1: k-buffer entry 1 and 2(same)
Tex 2: k-buffer entry 3 and 4(same)
Tex 3: k-buffer entry 5 and 6(same)
Tex 4: transfer function (regular, 3D RGBA 8/16 bpp int)
#

use the ATI_draw_buffers extension
OPTION ATI_draw_buffers;
this does not matter now, but will matter on future hardware
OPTION ARB_precision_hint_nicest;

input and temporaries
ATTRIB p = fragment.position; # fragment position in screen space
ATTRIB v = fragment.texcoord[0]; # v.x = scalar value
ATTRIB e = fragment.texcoord[1]; # fragment position in eye space
PARAM sz = program.local[0]; # scale and bias parameters

{1/pw, 1/ph, (1-1/z_size)/max_len,
1/(2*z_size)}

TEMP a0, a1, a2, a3, a4, a5, a6; # k-buffer entries
TEMP r0, r1, r2, r3, r4, r5, r6, r7; # sorted results
TEMP c, c0; # color and opacity
TEMP t; # temporary (boolean flag for min/max, dependent texture

coordinate, pbuffer texture coordinate, fragment to eye distance)

compute texture coordinates from window position so that it is not
interpolated perspective correct. Then look up the color and opacity
from the framebuffer
MUL t, p, sz; # t.xy = p.xy * sz.xy, only x and y are used for tex lookup
TEX c0, t, texture[0], 2D; # framebuffer color

45

Check opacity and kill fragment if it is greater than a const tolerance
SUB t.w, 0.99, c0.w;
KIL t.w;

set up the k-buffer entries a0, a1, a2, a3, a4, a5, a6
each k-buffer entry contains the scalar data value in x or z
and the distance value in y or w
TEX a1, t, texture[1], 2D; # k-buffer entry 1
TEX a3, t, texture[2], 2D; # k-buffer entry 3
TEX a5, t, texture[3], 2D; # k-buffer entry 5
MOV a2, a1.zwzw; # k-buffer entry 2
MOV a4, a3.zwzw; # k-buffer entry 4
MOV a6, a5.zwzw; # k-buffer entry 6

compute fragment to eye distance
DP3 t, e, e;
RSQ t.y, t.y;
MUL a0.y, t.x, t.y; # fragment to eye distance
MOV a0.x, v.x; # scalar data value

find fragment with minimum d (r0), save the rest to r1, r2, r3, r4, r5

r0 = min_z(a0.y, a1.y); r1 = max_z(a0.y, a1.y);
SUB t.w, a0.y, a1.y; # t.w < 0 iff a0.y < a1.y
CMP r1, t.w, a1, a0; # r1 = (a0.y < a1.y ? a1 : a0)
CMP r0, t.w, a0, a1; # r0 = (a0.y < a1.y ? a0 : a1)

r0 = min_z(r0.y, a2.y); r2 = max_z(r0.y, a2.y)
SUB t.w, r0.y, a2.y; # t.w < 0 iff r0.y < a2.y
CMP r2, t.w, a2, r0; # r2 = (r0.y < a2.y ? a2 : r0);
CMP r0, t.w, r0, a2; # r0 = (r0.y < a2.y ? r0 : a2);

r0 = min_z(r0.y, a3.y); r3 = max_z(r0.y, a3.y)
SUB t.w, r0.y, a3.y; # t.w < 0 iff r0.y < a3.y
CMP r3, t.w, a3, r0; # r3 = (r0.y < a3.y ? a3 : r0)
CMP r0, t.w, r0, a3; # r0 = (r0.y < a3.y ? r0 : a3);

r0 = min_z(r0.y, a4.y); r4 = max_z(r0.y, a4.y)
SUB t.w, r0.y, a4.y; # t.w < 0 iff r0.y < a4.y
CMP r4, t.w, a4, r0; # r4 = (r0.y < a4.y ? a4 : r0);
CMP r0, t.w, r0, a4; # r0 = (r0.y < a4.y ? r0 : a4);

r0 = min_z(r0.y, a5.y); r5 = max_z(r0.y, a5.y)
SUB t.w, r0.y, a5.y; # t.w < 0 iff r0.y < a5.y
CMP r5, t.w, a5, r0; # r5 = (r0.y < a5.y ? a5 : r0);

46

CMP r0, t.w, r0, a5; # r0 = (r0.y < a5.y ? r0 : a5);

r0 = min_z(r0.y, a6.y); r6 = max_z(r0.y, a6.y)
SUB t.w, r0.y, a6.y; # t.w < 0 iff r0.y < a6.y
CMP r6, t.w, a6, r0; # r6 = (r0.y < a6.y ? a6 : r0);
CMP r0, t.w, r0, a6; # r0 = (r0.y < a6.y ? r0 : a6);

find fragment with minimum d (r7) from r1, r2

r7 = min_z(r1.y, r2.y);
SUB t.w, r1.y, r2.y; # t.w < 0 iff r1.y < r2.y
CMP r7, t.w, r1, r2; # r7 = (r1.y < r2.y ? r1 : r2);

r7 = min_z(r7.y, r3.y);
SUB t.w, r7.y, r3.y; # t.w < 0 iff r7.y < r3.y
CMP r7, t.w, r7, r3; # r7 = (r7.y < r3.y ? r7 : r3);

r7 = min_z(r7.y, r4.y);
SUB t.w, r7.y, r4.y; # t.w < 0 iff r7.y < r4.y
CMP r7, t.w, r7, r4; # r7 = (r7.y < r4.y ? r7 : r4);

r7 = min_z(r7.y, r5.y);
SUB t.w, r7.y, r5.y; # t.w < 0 iff r7.y < r5.y
CMP r7, t.w, r7, r5; # r7 = (r7.y < r5.y ? r7 : r5);

r7 = min_z(r7.y, r6.y);
SUB t.w, r7.y, r6.y; # t.w < 0 iff r7.y < r6.y
CMP r7, t.w, r7, r6; # r7 = (r7.y < r6.y ? r7 : r6);

set up texture coordinates for transfer function lookup

MOV t.x, r0.x; # front scalar
MOV t.y, r7.x; # back scalar
SUB t.z, r7.y, r0.y; # distance between front and back fragment
MAD t.z, t.z, sz.z, sz.w; # normalization scale and bias

transfer function lookup

TEX c, t, texture[4], 3D; # look up pre-integrated color and opacity

nullify winning entry if the scalar value < 0

CMP c, r0.x, 0.0, c;

composite color with the color from the framebuffer !!!front to back!!!

47

SUB t.w, 1.0, c0.w;
MAD result.color[0], c, t.w, c0;

write remaining k-buffer entries

MOV r1.zw, r2.xxxy;
MOV r3.zw, r4.xxxy;
MOV r5.zw, r6.xxxy;
MOV result.color[1], r1;
MOV result.color[2], r3;
MOV result.color[3], r5;

END

APPENDIX B

OTHER APPLICATIONS OF THE K-BUFFER

B.1 Isosurfaces

A common approach to visualizing unstructured grids is to use isosurfaces that represent

the scalar field for a given contour value. Traditional methods for generating an isosurface

involve marching through the tetrahedra in the volume and using linear interpolation on the

scalar values at the vertices to create triangles [43]. Recently, Pascucci [57] proposed a

hardware-accelerated technique for computing isosurfaces using programmable graphics hard-

ware. This is done by extracting the isosurface in a vertex program. We use a similar approach,

except that our isosurface computation occurs at the fragment level, which we show to be more

flexible for rendering multiple isosurfaces.

The HAVS algorithm operates by roughly sorting geometry in objects space, then final-

izing the sort in image space (i.e., on the fragments). This has been shown to be a simple,

fast, and extensible approach to volume rendering (see Chapter 4). It also provides a simple

framework for isosurface extraction. The general idea of the extracting isosurfaces is to use

a 2D lookup table for the isosurface instead of the 3D pre-integrated volume integral table

used for volume rendering. This isosurface lookup table is precomputed to represent the front

scalar value (v1) and the back scalar value (v2) of two fragments and stored on the GPU in a

texture (see [59]). The table is regenerated with every contour value changec to provide a

simple boolean test, which returns a 1 ifv1 ≤ c≤ v2 or v1 ≥ c≥ v2 and 0 otherwise. Thus

for every fragment that is rasterized,v1 andv2 are determined from thek-buffer and used to

test if there is an isosurface that passes between the fragments which is given by(v1,v2) in the

lookup table (see Figure B.1).

As described, this algorithm provides a simple way to compute a flat shaded isosurface.

However, it is often desirable to use direct lighting on the surface of the isosurface. This can

be done by computing a normal for each vertexv in the mesh in a preprocessing step using

the gradient of the volume. Ourk entries are expanded to include a normal for each fragment

by storing the normal’sx andy components. Thezcomponent of the normal can be computed

49

Figure B.1. 2D lookup table for determining if two fragments contain an isosurface between
them at contour valuec.

from x andy, thus onek entry can be condensed to four values(x,y,v,d). Lighting can then

be performed by interpolating the normals fromk-buffer fragment entriesf1 and f2 and using

the lighting equations on that normal. This representation allows a maximum of threek-buffer

entries (k = 3), which is sufficient in the case of isosurfaces as the number of fragments that

the contour value crosses are much more likely to be in visibility order than all the fragments.

Figure B.2 shows the results of ourk-buffer isosurfacing algorithm on the Spx data set.

The advantage of this algorithm over one that uses a vertex program is that with a simple

extension, multiple isosurfaces can be visualized with transparency. Multiple isosurfaces

are drawn by encoding the lookup table to use a different isosurface perRBGAchannel.

Transparency can easily be handled since the fragments are sorted in visibility order and can

be composited correctly in the same manner that HAVS composites the volume integral.

B.2 Transparency

Rendering general transparent polygons has been the topic of much research due to the

added complexity that compositing requires the geometry to be in visibility order. Everett [20]

shows how this can be performed using multiple passes through the scene andpeelingaway

50

Figure B.2. The Spx data set with an isosurface generated using thek-buffer. The front faces
of the isosurface are shown in green and back faces of the isosurface are shown in blue.

the front-most polygons at each pass. Krishnan et al. [38] use a similar approach at the

fragment level. TheZ3 algorithm [34] uses a fixed amount of storage per pixel to composite the

fragments correctly. More recently, Govindaraju et al. [30] describe an algorithm for sorting

in image space using the GPU that requires several passes over the data.

Similarly, thek-buffer can be used as a means of compositing transparent geometry in

the scene. This is accomplished in the same manner that HAVS sorts fragments for volume

rendering. To render transparent geometry, each fragment is sorted using thek-buffer and

composited into the framebuffer. The color and opacity for each fragment can be stored in

a texture similar to the one used for the pre-integrated lookup table in HAVS. Since triangle

meshes generally have a much lower depth complexity than tetrahedral meshes, performance

improvements can be made to avoid redundant sorting. Since thek-buffer can successfully

composite anyk nearly-sorted sequence of the geometry, if we know the depth complexity of

an object in the scene is less thank, then no sorting is required in object-space. Instead, the

scene can be sorted in object-space by a collection of triangles instead of by each triangle.

Using thek-buffer for rendering transparent geometry requires only one pass and thus

provides an efficient algorithm for handling this complex problem. We would like to explore

51

this problem further because it introduces interesting challenges to try to optimize the sorting

for complex transparent scenes.

REFERENCES

[1] T. Aila, V. Miettinen, and P. Nordlund. Delay streams for graphics hardware.ACM
Transactions on Graphics, 22(3):792–800, July 2003.

[2] ATI. Radeon 9500/9600/9700/9800 OpenGL programming and optimization guide,
2003.http://www.ati.com.

[3] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva. GPU-based tile ray casting
using depth peeling. Technical Report UUSCI-2004-006, SCI Institute, 2004.

[4] S. P. Callahan, M. Ikits, J. L. Comba, and C. T. Silva. Hardware-assisted visibility
ordering for unstructured volume rendering.IEEE Transactions on Visualization and
Computer Graphics, 11(3):285–295, 2005.

[5] L. Carpenter. The A-buffer, an antialiased hidden surface method. InComputer
Graphics (Proceedings of ACM SIGGRAPH), volume 18, pages 103–108, July 1984.

[6] Y.-J. Chiang and X. Lu. Progressive simplification of tetrahedral meshes preserving all
isosurface topologies.Computer Graphics Forum, 22(3):493–504, 2003.

[7] P. Chopra and J. Meyer. Tetfusion: an algorithm for rapid tetrahedral mesh simplifica-
tion. In Proceedings of IEEE Visualization, pages 133–140, 2002.

[8] P. Cignoni, L. D. Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selective refinement
queries for volume visualization of unstructured tetrahedral meshes.IEEE Transactions
on Visualization and Computer Graphics, 10(1):29–45, 2004.

[9] J. Comba, J. T. Klosowski, N. Max, J. S. B. Mitchell, C. T. Silva, and P. L. Williams.
Fast polyhedral cell sorting for interactive rendering of unstructured grids.Computer
Graphics Forum, 18(3):369–376, Sept. 1999.

[10] R. Cook, N. Max, C. T. Silva, and P. Williams. Efficient, exact visibility ordering
of unstructured meshes.IEEE Transactions on Visualization and Computer Graphics,
10(6):695–707, 2004.

[11] R. L. Cook. Stochastic sampling in computer graphics.ACM Transactions on Graphics,
5(1):51–72, 1986.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction To Algorithms,
pages 40,127–173. McGraw–Hill, second edition, 2001.

[13] W. T. Corr̂ea, J. T. Klosowski, and C. T. Silva. iWalk: Interactive out-of-core rendering
of large models. Technical Report TR-653-02, Princeton University, 2002.

[14] B. Csebfalvi. Interactive transfer function control for monte carlo volume rendering. In
Proceedings of IEEE Symposium on Volume Visualization and Graphics, pages 33–38,
2004.

53

[15] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. InProceedings of
Workshop on Volume Visualization, pages 91–98, 1992.

[16] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models
for geometric algorithms. InProceedings of Annual Symposium on Computational
Geometry, pages 294–303, 1997.

[17] X. Décoret, F. Durand, F. Sillion, and J. Dorsey. Billboard clouds for extreme model
simplification.ACM Transactions on Graphics, 22(3):689–696, 2003.

[18] O. Devillers and P.-M. Gandoin. Geometric compression for interactive transmission.
In Proceedings of IEEE Visualization, pages 319–326, Los Alamitos, CA, USA, 2000.
IEEE Computer Society Press.

[19] H. Edelsbrunner.Geometry and Topology for Mesh Generation. Cambridge University
Press, 2001.

[20] C. Everitt. Interactive order-independent transparency. Technical report, NVIDIA, 2001.
http://developer.nvidia.com.

[21] M. J. Fadili, M. Melkemi, and A. ElMoataz. Non-convex onion-peeling using a shape
hull algorithm.Pattern Recognition Letters, 25(14):1577–1585, 2004.

[22] R. Farias, J. Mitchell, and C. Silva. ZSWEEP: An efficient and exact projection algo-
rithm for unstructured volume rendering. InProceedings of IEEE Volume Visualization
and Graphics Symposium, pages 91–99, 2000.

[23] R. Farias and C. T. Silva. Out-of-core rendering of large, unstructured grids.IEEE
Computer Graphics and Applications, 21(4):42–51, 2001.

[24] R. C. Farias, J. S. B. Mitchell, C. T. Silva, and B. Wylie. Time-critical rendering of
irregular grids. InProceedings of the 13th Brazilian Symposium on Computer Graphics
and Image Processing, pages 243–250, 2000.

[25] L. D. Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-
triangulations. InProceedings of IEEE Visualization, pages 43–50, 1998.

[26] L. Freitag, P. Knupp, T. Munson, and S. Shontz. A comparison of optimization soft-
ware for mesh shape-quality improvement problems. InProceedings of the Eleventh
International Meshing Roundtable, pages 29–40, 2002.

[27] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree
structures. InComputer Graphics (Proceedings of ACM SIGGRAPH), volume 14, pages
124–133, July 1980.

[28] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for interactive frame
rates during visualization of complex virtual environments. InProceedings of ACM
SIGGRAPH, pages 247–254, 1993.

[29] M. Garland and Y. Zhou. Quadric-based simplification in any dimension.ACM Trans-
actions on Graphics, 24(2), Apr. 2005.

[30] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha. Interactive visibility
ordering and transparency computations among geometric primitives in complex envi-
ronments. InProceedings of Symposium on Interactive 3D Graphics and Games, pages
49–56, New York, NY, USA, 2005. ACM Press.

54

[31] L. Guibas. Computational geometry and visualization: Problems at the interface. In
N.M.Patrikalakis, editor,Scientific Visualization of Physical Phenomena, pages 45–59.
Springer-Verlag, 1991.

[32] S. Guthe, S. Roettger, A. Schieber, W. Straßer, and T. Ertl. High-quality unstructured
volume rendering on the pc platform. InProceedings of ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 119–126, Sept. 2002.

[33] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen.GPU Gems: Programming Techniques,
Tips, and Tricks for Real-Time Graphics, chapter Volume Rendering Techniques, pages
667–692. Addison Wesley, 2004.

[34] N. P. Jouppi and C.-F. Chang. Z3: an economical hardware technique for high-quality
antialiasing and transparency. InProcceedings of ACM SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 85–93, Aug. 1999.

[35] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A GPU-based particle engine. In
Eurographics Symposium Proceedings Graphics Hardware, pages 115–122, 2004.

[36] J. M. Kniss, S. Premǒze, C. D. Hansen, P. Shirley, and A. McPherson. A model for
volume lighting and modeling. IEEE Transactions on Visualization and Computer
Graphics, 9(2):150–162, 2003.

[37] M. Kraus and T. Ertl. Cell-projection of cyclic meshes. InProceedings of IEEE
Visualization, pages 215–222, Oct. 2001.

[38] S. Krishnan, C. T. Silva, and B. Wei. A hardware-assisted visibility-ordering algorithm
with applications to volume rendering of unstructured grids, 2001.

[39] J. Krüger and R. Westermann. Acceleration techniques for GPU-based volume render-
ing. In Proceedings of IEEE Visualization, pages 287–292, 2003.

[40] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical back-face computation. In
Proceedings of Eurographics Workshop on Rendering techniques, pages 235–ff., 1996.

[41] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interative texture-
based volume visualization. InProceedings of IEEE Visualization, 1999.

[42] J. Leven, J. Corso, J. D. Cohen, and S. Kumar. Interactive visualization of unstructured
grids using hierarchical 3d textures. InProceedings of IEEE Symposium on Volume
Visualization and Graphics, pages 37–44, 2002.

[43] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. InProceedings of ACM SIGGRAPH, pages 163–169, 1987.

[44] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal envi-
ronments. InProceedings of ACM SIGGRAPH, pages 199–208, Aug. 1997.

[45] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner.Level of
Detail for 3D Graphics. Morgan-Kaufmann Publishers, 2002.

[46] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using textured
clusters. InSymposium on Interactive 3D Graphics, pages 95–102, 1995.

[47] A. Mammen. Transparency and antialiasing algorithms implemented with the virtual
pixel maps technique.IEEE Computer Graphics and Applications, 9:43–55, July 1984.

55

[48] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for efficient visual-
ization of 3D scalar functions.Computer Graphics (Proceedings of ACM SIGGRAPH),
24(5):27–33, 1990.

[49] N. L. Max. Sorting for polyhedron compositing. InFocus on Scientific Visualization,
pages 259–268. Springer-Verlag, 1993.

[50] N. L. Max. Optical models for direct volume rendering.IEEE Transactions on Visual-
ization and Computer Graphics, 1(2):99–108, June 1995.

[51] D. P. Mitchell. Consequences of stratified sampling in graphics. InProceedings of ACM
SIGGRAPH, pages 277–280, 1996.

[52] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting.International
Journal of Computational Geometry and Applications, 7(4):317–347, Aug. 1997.

[53] K. Museth and S. Lombeyda. Tetsplat: Real-time rendering and volume clipping of large
unstructured tetrahedral meshes. InProceedings of IEEE Visualization, pages 433–440,
2004.

[54] K. Myszkowski. The visible differences predictor: Applications to global illumination
problems. InEurographics Rendering Workshop, pages 223–236, 1998.

[55] M. Newell, R. Newell, and T. Sancha. A solution to the hidden surface problem. In
Proceedings of ACM Annual Conference, pages 443–450, 1972.

[56] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley. Interactive ray
tracing for volume visualization.IEEE Transactions on Visualization and Computer
Graphics, 5(3):238–250, 1999.

[57] V. Pascucci. Isosurface computation made simple: Hardware acceleration, adaptive
refinement and tetrahedral stripping. InProceedings of IEEE TVCG Symposium on
Visualization, pages 293–300, 2004.

[58] S. Roettger and T. Ertl. Cell projection of convex polyhedra. InProceedings of
Eurographics/IEEE TVCG Workshop on Volume Graphics 2003, pages 103–107, 2003.

[59] S. Roettger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface render-
ing based on cell-projection. InProceedings of IEEE Visualization, pages 109–116, Oct.
2000.

[60] H. Samet. The quadtree and related hierarchical data structures.ACM Computing
Surveys, 16(2):187–260, 1984.

[61] R. Sedgewick. Algorithms In C, pages 298–301,403–437. Addison-Wesley, third
edition, 1998.

[62] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli. Fast shadows and
lighting effects using texture mapping. InProceedings of ACM SIGGRAPH, pages 249–
252, July 1992.

[63] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume render-
ing. Proceedings of San Diego Workshop on Volume Visualization, 24(5):63–70, Nov.
1990.

56

[64] P. S. Shirley. Time complexity of monte carlo radiosity. InProceedings of Eurographics,
pages 459–465, 1991.

[65] C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact interactive time visibility
ordering algorithm for polyhedral cell complexes. InProceedings of IEEE Symposium
on Volume Visualization, pages 87–94, Oct. 1998.

[66] O. G. Staadt and M. H. Gross. Progressive tetrahedralizations. InProceedings of IEEE
Visualization, pages 397–402, 1998.

[67] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering for volume
visualization. InProceedings of IEEE Symposium on Volume Visualization, pages 83–89,
Oct. 1994.

[68] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of ten hidden-
surface algorithms.ACM Computing Surveys, 6(1):1–55, Mar. 1974.

[69] M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer. The randomized
Z-buffer algorithm: Interactive rendering of highly complex scenes. InProceedings of
ACM SIGGRAPH, pages 361–370, 2001.

[70] H. Warren-Jr.Hacker’s Delight, pages 261–265. Addison-Wesley, 2002.

[71] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting for tetrahedral
meshes. InProceedings of IEEE Visualization, pages 333–340, Oct. 2003.

[72] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based view-independent cell
projection.IEEE Transactions on Visualization and Computer Graphics, 9(2):163–175,
2003.

[73] M. Weiler, P. N. Malĺon, M. Kraus, and T. Ertl. Texture-Encoded Tetrahedral Strips. In
Proceedings of Symposium on Volume Visualization, pages 71–78. IEEE, 2004.

[74] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-of-detail
volume rendering view 3d textures. InProceedings of IEEE Volume Visualization, 2000.

[75] J. Wilhelms and A. V. Gelder. A coherent projection approach for direct volume
rendering. InProceedings of ACM SIGGRAPH, pages 275–284, 1991.

[76] P. L. Williams. Visibility-ordering meshed polyhedra.ACM Transactions on Graphics,
11(2):103–126, Apr. 1992.

[77] C. Wittenbrink. R-Buffer: A pointerless a-buffer hardware architecture. InProceedings
of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 73–80,
2001.

[78] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral projection using
vertex shaders. InProceedings of IEEE/ACM Symposium on Volume Graphics and
Visualization, pages 7–12, 2002.

[79] H. Zhang and I. Kenneth E. Hoff. Fast backface culling using normal masks. In
Proceedings of Symposium on Interactive 3D Graphics, pages 103–106, 1997.

