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ABSTRACT

This research focuses on the generation of representational structure from unstruc-

tured inputs for model reconstruction to facilitate subsequent geometry processing. In

particular, the results include spline-based curve reconstruction of sharp features in point-

sampled geometry, and quadrilateral-only mesh processing and generation from polygonal

models. The challenges of model reconstruction, as well as the relationship between

continuous and discrete geometry, are important thematic elements of this research.

Virtual surface models are ubiquitous in computer graphics, representing fundamental

entities in visualization and modeling toolkits. Applications of surface geometry are as

diverse as the representational formats constructed to achieve these ends, each designed

with different characteristics and advantages. Translation between the assorted forms

is often necessitated by the allowable inputs of system implementations and desired

algorithms, and requires techniques to reconstruct the model with new geometry. Con-

sequently, model reconstruction algorithms are prevalent in most modeling pipelines,

used to augment the availability of applicable algorithms and to improve the robustness

and efficiency of subsequent geometry processing. In this work, my simplification and

reconstruction results are demonstrated on a variety of organic and mechanical models

whose original representations range from point clouds to unstructured and structured

triangle, quadrilateral, and hybrid meshes.



For my family, friends and teachers, who have been there throughout my journey.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quadrilateral Mesh Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Important Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Surface Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. BACKGROUND RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Surface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Mesh-based Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Point-Based Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Surface Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Parametric Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Planar Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Nonplanar Base Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Chart Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. ROBUST POINT BASED FEATURE EXTRACTION . . . . . . . . . . . . 15

3.1 Point Based Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Feature Extraction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Identifying Potential Edge Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Projecting Points to Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Propagating Feature Polylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Completing Feature Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Spline based Fitting and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Applications of Feature Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Surface Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Surface Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



3.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. QUADRILATERAL MESH SIMPLIFICATION . . . . . . . . . . . . . . . . . . 36

4.1 The Dual Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Global Quadrilateral Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Deletion Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1.1 Polychord Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1.2 Quadrilateral Vertex Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1.3 Doublet Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Prioritizing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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CHAPTER 1

INTRODUCTION

Surface remeshing is motivated by many computer-aided geometric design (CAGD)

challenges, including point- and polygonal based modeling and visualization, reverse

engineering, manufacturing and design, and other computer graphics applications. The

approximation of an input virtual model, potentially composed of heterogeneous rep-

resentational formats, as a single meshed structure is a fundamental component of the

geometry processing pipeline. The individual element quality of a mesh often determines

the robustness and efficiency of many subsequent geometric processing algorithms, ne-

cessitating a surface remeshing algorithm to augment the quality of the original model.

Similarly, surface remeshing generates watertight representations from scattered point

samples to allow reconstruction, processing and visualization of scanned data sets.

In the past, mesh based research has been dominated by triangle based surface repre-

sentations. As computing power increases, however, quadrilateral meshes are becoming an

attractive alternative. This popularity can be partially attributed to the quadrilateral’s

unique ability to naturally describe orthogonal vector fields, i.e., principal curvature

directions, as well as sharing a common domain with surface parametrization solutions.

These characteristics enable a number of important applications, including texturing,

certain types of finite element analysis, and modeling with Catmull-Clark subdivision or

splines. Furthermore, as support for tessellating tensor product parameteric surfaces in

GPU hardware becomes available [104], many graphical applications, i.e., visualization

systems currently relying on triangle based models, will prefer the use of quadrilateral

meshes.

While there exist many geometric processing techniques for triangle meshes, there are

few research results on automated algorithms targeting quadrilaterals, in part due to the

unique challenges associated with these elements. A potentially nonplanar, nonconvex,

bilinear element, the quadrilateral is fundamentally more complex than the triangle,

where both planarity and convexity are intrinsic. Unlike triangle based methods, the
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structural organization of the quadrilateral mesh imposes global constraints on the mesh

connectivity. This can be illustrated by noting that it is impossible to quadrangulate a

planar region bounded by a polyline with an odd number of vertices.

1.1 Quadrilateral Mesh Structure

Polygonal models are categorized as (semi) regular or irregular, according to structural

properties of the mesh connectivity. A regular mesh imposes very strict neighborhood

constraints, requiring that all internal vertices have valence 4 for quadrilateral meshes.

Defined as an ideal vertex, this connectivity facilitates the generation of orthogonal angles

and well shaped quadrilaterals. The regularity of the mesh structure facilitates many

algorithms that are often subsequently applied to the model. In particular, surface

parametrization including texturing [160] and spline based modeling [169], mesh sub-

division [28], Fourier- [122] and wavelet-based [166] computations, mesh compression [86]

and comparison [125] algorithms exploit the structure of the regular connectivity.

The onerous structure enforced by a regular mesh complicates the construction of such

models. In addition to challenges related to element distortions, this constraint is often

impossible to satisfy, for only genus 1 (toroidal) models can by described as a regular

quadrilateral mesh. In contrast, an irregular model sacrifices the strict connectivity

related constraints by allowing any number of extraordinary vertices (nonideal valence

4). This degree of freedom better accommodates the description of complex geometric

features, model deformations and tracking topological changes.

A semiregular mesh balances the advantages of the regular and irregular models

by allowing a limited number of extraordinary vertices. Tracing the mesh edges that

emminate from the extraordinary vertices forms boundary curves between them that

define a coarse segmentation of the model. Internally, each of the segmented regions

is described by a regular mesh. Semiregular meshes can describe surfaces of arbitrary

genus while exhibiting the structural regularity that facilitates many gemoetric processing

algorithms.

This research focuses on faithful reconstruction of manifold surface models with ar-

bitrary topology by automatically generating feature aligned, semiregular, quadrilateral-

only meshes. A manifold of arbitrary topology is an orientable surface without self-

intersections that can contain any number of handle elements. Analogous to a coffee

mug, a handle is a component of the model that forms a hole through the geometry.
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Feature alignment refers to the preservation of sharp edges on the original surface by

aligning mesh edges to these structures.

As illustrated in Figure 1.1, the feature aligned, semiregular, quadrilateral-only mesh

is a powerful representation. The extraordinary vertices define graph cuts that facilitate

surface parameterization. As a byproduct of the algorithms proposed in this research,

the surface parameterizations allow texturing, displacement mapping and spline based

modeling.

1.2 Research Tasks

The motivation of this research, an automated surface remeshing algorithm illustrated

in Figure 1.2, involves multiple subtasks to generate a faithful reconstruction of input

geometry. A faithful surface reconstruction is one that respects the input geometry,

recreating important feature information and surface geometry with low approximation

error. Developing semiregular, quadrilateral-only meshes requires a understanding of the

structural challenges associated with quadrilateral elements, as well as a understanding

of related challenges associated with surface parameterization.

The reconstruction pipeline depicted in Figure 1.2 shows the development of a feature

aligned, semiregular, quadrilateral-only mesh from a point-based model. The input data

may come from a variety of sources, including digital scanners or samplings of polygonal

meshes, implicit surfaces, and isosurfaces of volumetric data sets. This pipeline is able to

process a model that is composed of heterogeneous inputs, frequently addressed by reverse

engineering applications, by sampling each component to define a coherent point-based

representation.

This dissertation describes techniques that bridge the gap between discrete and contin-

uous geometry by introducing structure to unstructured data. The work stresses robust,

connectivity based methods for quadrilateral-only mesh processing. The following subsec-

tions outline a series of subtasks affiliated with the overarching research goal, providing

insight for the specific challenges addressed by each chapter, as well as presenting the

layout of the dissertation.

1.2.1 Important Geometry

Defining important structural components over a three-dimensional (3D) model en-

hances the understanding of the surface and aids geometric processing and computer

graphics applications. In the conventional sense, this refers to geometry based details,
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1.1: A semiregular quadrilateral mesh contains a small number of extraordinary (nonva-
lence 4) vertices, aligned to describe a coarse segmentation that facilitates texturing,
displacement mapping and spline based modeling applications, in addition to other
geometry processing.

such as principal curvature information and sharp feature edges; however, it may also

extend to attribute based information, including color and material properties. It has

been well articulated in previous research and further addressed in Chapter 2, that

respecting the model’s geometry and associated attributes is important during surface

processing. Consequently, identifying and preserving prominent structures on the model

is a reoccurring theme throughout this work.

Chapter 3 addresses the reconstruction of sharp features from point-based geometry.

Point sets, a dense collection of 3D point locations, typically do not include normals and

connectivity information, so geometry processing of these structures may not be straight-

forward. Robust to noise common in point-based geometry, the associated algorithms

reconstruct neighborhood information while generating an enhanced understanding of

the point set surface and the affiliated important structures. Feature curves improve an

existing surface reconstruction algorithm by introducing structural information to the

unstructured data sets that leads attribute aware remeshes.
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1.2: This model reconstruction pipeline motivates this research. Given a dense col-
lection of points representing an input surface, the pipeline processes the unconnected
discrete data identifying important features, remeshes the input geometry with enhanced
knowledge gained from the structural feature entities, then generates quadrilaterals from
the polygonal model through subdivision and simplification to construct a semiregular,
quadrilateral-only representation of the original surface. The contributions of this
dissertation are highlighted by the drop shadow.

1.2.2 Surface Simplification

Surface simplification, used as a building block by many higher-level algorithms,

is an instrumental operator within computer graphics and geometric modeling. The

goal of mesh simplification, analogous to down-sampling in digital signal processing, is

to gracefully remove elements while maintaining mesh fidelity. Surface simplification

methods describe a top-down approach in the construction of a mesh hierarchy of varying

levels-of-detail, reducing the number of elements during each iteration.

Chapter 4 investigates methods for quadrilateral-only mesh coarsening. This sim-

plification research addresses challenges associated with the structural constraints of

quadrilateral elements while generating high quality, attribute aware mesh hierarchies.

The utility of mesh simplification is further motivated in this chapter by applying the

developed techniques to robustly generate quadrilateral-only meshes.

1.2.3 Surface Reconstruction

The design of surface reconstruction algorithms, specifically polygonal based remesh-

ing, is motivated by two prominent factors, namely model conversion and mesh improve-

ment. Consisting of the controlled resampling and generation of new connectivity over the

original surface, model conversion produces useful polygonal meshes from other virtual

model representations, i.e., point-based geometry acquired from range scanners. Mesh
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improvement does not change the representational format of the original surface, instead

modifying existing connectivity information to augment the mesh quality. In either case,

the purpose of surface reconstruction is to generate high quality polygonal elements and

mesh structure that is critical for the efficiency and robustness of subsequent geometry

processing algorithms.

Chapter 5 addresses surface reconstruction and parameterization by constructing

semiregular, quadrilateral-only meshes. The approach relies on connectivity based op-

erators, simplification and refinement techniques, to produce quality reconstructions.

This chapter includes discussion of approximation error and statistical evaluations aimed

at measuring quadrilateral mesh quality. Lastly, Chapter 6 further motivates the use

of connectivity based operators introduced throughout the dissertation, by building an

interactive framework for quadrilateral mesh improvement.

1.3 Thesis Statement

Feature-aligned, semiregular, quadrilateral-only meshes that simultaneously define

discrete, piecewise bilinear surfaces and higher order, continuous geometry offer many

advantages for modeling systems and facilitate the error-bounded conversion between

representational formats for surface models of arbitrary topology. This work develops

automated processing and generation methods of the aforementioned quadrilateral meshes

that explores the faithful reconstruction of important surface geometry and attribute data.



CHAPTER 2

BACKGROUND RESEARCH

The focus of this research is quadrilateral mesh reconstruction that is intended for

spline-based segmentation and parameterization of two-manifold surface models. An

n-dimensional manifold is a topological space in which the neighborhood surrounding

every point is homeomorphic to the open unit ball in Rn. In other words, a two-manifold

is a well-behaved surface in which every point has a local neighborhood topollogically

equivalent to a disc so that the surface model does not contain boundaries or self-

intersections. The remainder of this chapter discusses two-manifold geometry processing

algorithms, including surface feature extraction, geometric- and attribute-based simplifi-

cation, generation and parameterization, and describes their releveance to faithful surface

reconstruction.

2.1 Surface Features

An important aspect of surface reconstruction is the faithful recovery or preservation

of surface features, defined as any prominent geometry or attribute component on the

original model. For example, manufactured models, especially machined parts, typically

exhibit sharp edges formed by the intersection of two surfaces that describes an important

discontinuity in the surface normals. In addition to geometric feature extraction, on which

a majority of related algorithms focus, this section discusses attributes, like color and

material properties, which may be related to the surface geometry, as well as attribute

conscience geometric processing and image processing algorithms.

2.1.1 Mesh-based Feature Extraction

Several techniques have investigated the identification of feature edges of polygonal

models. Hubeli et al. [75] create a multiresolution framework with normal-based classifi-

cation operators to define a set of edges from which a thinning process extracts feature

lines. Watanabe et al. [171] use discrete differential geometry operators to compute
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approximations of the mean and Gaussian curvatures. Whereas, Hildebrandt et al. [69]

use anisotropic filtering on discrete differential geometric approximations of third order

derivatives of the surface mesh. Both techniques [171, 69] build a set of feature edges from

the extrema triangles. Attene et al. [13] identify chamfer triangles to reconstruct sharp

features on meshes. They insert new vertices on the edges and faces of these triangles

and project the points to the intersection of planes fit to the surrounding surfaces.

The underlying assumption of connectivity and normals associated with the vertices

of the mesh is not appropriate for point-based models. To extract feature lines from

point clouds using these techniques, a connectivity construction method (surface recon-

struction) must be applied in a preprocessing step. The construction of connectivity is

nontrivial, computationally expensive, and moreover, the success of feature extraction

relies on the ability of the polygonal meshing procedure to accurately build the sharp

edges.

2.1.2 Point-Based Feature Extraction

Geometric processing of point-based models is not straightforward in the absence of

connectivity and normal information. For geometric reconstruction of surfaces defined by

point cloud data, statistical-based methods describe more accurate continuous surfaces

than averaging techniques. Moving Least Squares (MLS) surfaces [97, 4], locally com-

putes a weighted least squares fit polynomial function to a finite neighborhood of points

surrounding a query point. The Robust MLS (RMLS) variant [52] employs principles

of robust statistics to segment the neighborhood into distinct groups to define multiple

surface fits in regions of sharp corners. The radial basis function approach [26] assigns

a finite region of influence to each point over which it affects the surface computation

with a smoothly dissipating strength as a function of distance. Statistical point geometry

method [80] introduces a hierarchical method of point-based modeling relying on a prin-

cipal component analysis (PCA) neighborhood grouping scheme that is based on higher

dimensional data for attribute information.

The generation of sharp geometric features from point-based geometry typically results

from trees built over a subset of points flagged as potentially lying on the model’s features.

Pauly et al. [121] use covariance analysis of the distance-driven local neighborhoods to

flag potential feature points. By varying the radius of the neighborhoods, they develop

a multiresolution scheme capable of processing noisy input data. Gumhold et al. [66]
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construct a Riemann graph over local neighborhoods and use covariance analysis to

compute weights that flag points as potential creases, boundaries or corners. Both

techniques [66, 121] connect the flagged points using a minimum spanning tree and

fit curves to approximate sharp edges. Demarsin et al. [36] compute point normals

using principal component analysis (PCA) and segment the points into groups based

on the normal variation in local neighborhoods. A minimum spanning tree is constructed

between the boundary points of the assorted clusters, which is used to build the final

feature curves.

While these techniques are capable of extracting features on point clouds by connecting

existing points, their accuracy depends on the sampling quality of the input model. In

contrast to their work, the feature extraction algorithm proposed in this document lever-

ages projection methods to accurately sample the sharp edges and yield more accurate

approximations of geometric surface features.

Jenke et al. [76] identify sharp features to improve their Bayesian statistic-based

reconstruction algorithm. Their method uses a curvature test to identify potential edge

regions, but their classification method limits identification to complete edges and is

unable to extract darts or dissipating edges.

There are many related algorithms and techniques based on feature edge detection

in the realm of image processing [25] that may extend to geometry processing. Exam-

ples of this cross-pollination exist that uses fuzzy clustering analysis [176] and explores

ways in which image processing [23, 72] can be applied to geometry processing for the

decomposition of the given geometry [83, 155]. As image processing methods have

focused on the extraction of important features and edge detection their extension to

geometry-based methods may be fruitful. Locally (or globally) flattening the input

geometry and applying traditional image-based methods to the MLS-based residuals or

other associated attributes of the point-based model can extract feature information from

the model. For a survey of image segmentation techniques, including thresholding [128],

watershedding [139], and edge-based [82, 132] approaches, I refer the reader to related

surveys [119, 106].

2.2 Surface Reconstruction

Surface reconstruction algorithms are dominanted by triangular-based techniques;

however, there is a growing number of quadrilateral-based remeshing methods. This dis-
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cussion focuses the review of related techniques for polygonal remeshing to quadrilateral-

based techniques and their overlap with surface parameterization problems. In the

following section, the assorted methods are categorized as connectivity operators, com-

putational shape, advancing front, resampling, deformations, voxelization, and numerical

integration techniques. For each genre, the basic approach is outlined as well as detailing

the associated advantages and disadvantages.

Arguably the most straightforward approach to mesh generation is to convert existing

mesh connectivity to describe triangles from quadrilaterals or vice-versa. The triangu-

lation of each element of a polygonal mesh will intuitively generate triangular-based

surfaces from other polygonal inputs. Similarly, a single iteration of Catmull-Clark

subdivision [28] converts arbitrary polygonal surfaces into a quadrilateral-only meshes.

The
√

3-subdivision scheme [88] and complete pairing methods [92] that merge two adja-

cent triangles into a single quadrilateral to generate quadrilateral meshes from triangles.

Conversion schemes that rely on subdivision or other splitting schemes generally result

in an explosion of mesh elements. Additionally, these techniques have little control over

the nodal valence of the final meshes that results in many extraordinary, nonideal valence

vertices, and may lose important feature edges and alignment.

Mesh improvement techniques employ localized operators to modify the existing vertex

locations and mesh connectivity. For instance, mesh smoothing [177, 78, 50, 181, 154]

and fairing [38] describe iterative algorithms that relax vertex locations to improve local

element shape while smoothing high frequency noise from the surface. Edge-sharpening

[13], similarly modifies vertex location, but for the purpose of reconstructing sharp

geometric features on the mesh. While these methods may greatly improve mean quality

of the triangle and/or quadrilateral elements, their power is limited by the connectivity

of the input mesh, i.e., the nodal valence, that places a ceilings on worst case results.

To further improve the mesh quality, reconfiguration methods introduce modifications to

the connectivity. Local reconfiguration methods, i.e., edge swap methods, for triangle

meshes [71] and quadrilateral meshes [87, 154, 118], sometimes considering semiglobal

methods such as wandering edges [168, 156, 157, 22], can greatly improve vertex valences

to augment the effects of smoothing methods.

The relationship between the Voronoi diagram and Delaunay triangulations has been

exploited by many geometry processing algorithms. For instance, both Voronoi-based

techniques [8, 44, 11, 9, 10, 110], and Delaunay triangulations [61, 29, 127, 113, 30, 19]
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can be used to reconstruct mesh geometry from unstructured point sets. Additional

computational shape-based processing techniques include Voronoi- [50, 181] and Lloyd-

based [103, 156, 157, 22] smoothing methods to improve element quality. Typically these

techniques successfully apply to triangles; however, their generalization for quadrilateral

meshes is not necessarily straightforward. Instead, examples of quadrilateral remeshing

built on computational geometry methods are often coupled with conversion schemes,

i.e., complete pairing, to generate quadrilateral meshes [92, 146, 148, 167].

Wavefront propagation methods expand a front over the model while defining a

faceted surface mesh in its wake. Many techniques exist for triangle surfaces [14, 163],

including ball pivoting [16], Delaunay-based methods [61, 30] and projection schemes

[134], from which conversion schemes can generate quadrilateral models. In constrast,

the Q-morph algorithm [118] and the paving method [18] with its variants [173, 27]

construct quadrilateral elements directly.

Advancing wavefronts are advantageous because they can place guarantees on topolog-

ical correctness and are highly parallizable. By controlling the size of elements along the

wavefront-based on geodesic [123, 149] or curvature guidance fields [136, 137], these meth-

ods attain high quality, attribute-aware elements and construct error bounded remeshes.

However, tracking and resolution of wavefront collisions can be difficult and interfere with

the threshold element quality [60].

Surface resampling methods are globalized techniques that evenly distribute points

over the input surface model. Attraction and repulsion functions [164] represented as

charged particles [112, 111, 174, 158] or elliptical bubble packing [145, 147], and com-

putational techniques, including farthest point method [49], Delaunay-based methods

[29, 127, 113], and sink insertion [48], are coupled with Delaunay triangulation algorithms

[41] to generate triangle meshes. Extensions of bubble packing methods, using rectangular

bundled force equations [167, 146, 148], has led to quad-dominant reconstructions with

adaptive elements. These techniques generate similar high quality elements, in compari-

son to advancing wavefronts, without the degeneracies related to wavefront collisions.

Deformable models, based on image processing edge-detection schemes [82, 109], use

shrink wrapping [77, 89] or ballooning [140] schemes to evolve a shape to the original

geometry. These techniques have proven useful in describing complex geometry and

arbitrary genus models using connectivity-based operators to generate quality elements.

However, their application to quadrilateral meshing is complicated by a reliance on
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localized refinement schemes. Without allowing T-junctions [100, 138, 68] on the mesh,

refinement of a single element may propogate to many elements over the model.

Voxel-based techniques, targeting triangular- and quadrilateral-based reconstructions,

constitute some of the most robust remeshing algorithms. The widely popular Marching

Cubes algorithm [105], and its variants [116, 143], evaluate functional values at the nodes

of a grid, then generate triangular-based representations of an iso-surface by applying

special case triangulations to the voxels containing the desired iso-value. While some

efforts have experimented with the control of the final element sizes [15], the resulting

triangles are often poorly shaped.

Surface grafting [151, 144] is a similar voxel-based technique for quadrilateral meshes.

A surface model is embedded inside a gridded region and all nodes of the grid identified

as outside the surface model are culled. The remaining boundary nodes of the grid

are projected to the surface to create a structured hexahedral model whose boundary

corresponds to a quadrilateral surface mesh. This technique generates many (in practice

near 50%) extraordinary vertices, nonvalence four nodes, especially where the mesh is

not axis-aligned by creating aliased boundaries after the culling procedure, observed by

[24]. Furthermore, similar to Marching Cubes, reconstruction of nonaxis aligned features

is nontrivial, the output mesh is dependent on the input mesh alignment, and topological

correctness is not guaranteed.

Quadrilateral reconstruction schemes leverage orthogonal frames computed over the

surface [81], stemming from the observation that streamlines traced through such vector

fields constructs quadrilateral elements. Numerical integration methods trace curves

through the two fields seeded at critical points of the vector fields, defining the edges of

a quadrilateral mesh. While any orthogonal vector field is applicable, principal curvature

directions have proven a very useful means of defining orthogonal frames [7, 107, 126].

Their attractive attributes include high quality quadrilaterals and, naturally, curvature

aligned elements. However, in isotropic or flat regions these methods are not well defined.

2.3 Surface Parameterization

To this point, the reviewed polygonal reconstruction algorithms have not focused

on the construction of structured meshes. A structured mesh is defined as having an

ideal valence at all interior vertices; for instance, triangle meshes desire valence six

vertices and valence four vertices are preferred for quadrilaterals. A semistructured,
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or semiregular, mesh, is one that contains a minimal number of extraordinary vertices

which are characterized has having nonideal valences. As illustrated in Figure 1.1, it is

preferable to have the extraordinary vertices align so that they describe the boundaries

of a coarse segmentation of the model that facilitates parameterization solutions.

Given a parameterization of a model, it is straightforward to develop a structured

quadrilateral remesh of the original model by appropriately sampling the well-known

parametric domain. It is in this manner that spline-based models are automatically

generated; potentially segmenting a model, parameterizing the individual regions, then

resampling structured quadrilateral meshes to guide spline interpolation or fitting algo-

rithms. Due to the relationship with quadrilateral meshing, I review multiple surface

parameterization challenges and algorithms.

2.3.1 Parametric Distortion

Parametric distortions are inherent in surface parameterization solutions, typically

mapping a polygonal mesh to a well-known domain, except in special cases. A parametric

solution will focus on minimizing the error associated with either angle or area distortion

depending on the driving application. Angle preservation, a conformal mapping, is

achieved if the angle between any two intersecting curves on the surface model have

an identical angle to their preimage in the parameter domain. Area preservation, an

equiareal mapping, implies that any region of the surface will have an equal area as its

image on the parameter domain. Length preservation, an isometric mapping, is both

conformal and equiareal, where any curve traced on the surface is identical in length to

its mapped image on the well-known parameter domain.

2.3.2 Planar Parameterization

Early surface parameterization techniques map the 3D surface model homeomorphic

to the disc to a planar domain, useful for manifolds with a boundary or requiring graph

cuts to segment the model into one or more patches. Typically, the boundary vertices of

a mesh are mapped to the boundary of a 2D convex region, typically circular, then the

remaining interior vertices obtained by minimizing an error metric in the form of a linear

system. Planar-based parameterization methods have been addressed in many research

papers, originally introduced using uniform weights by [165], extended via new weighting

schemes for angle preservation in [45, 53, 54].

However, planar parameterization techniques that require a fixed boundary only per-
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form well when the boundary of the model is convex and does not vary greatly from that

of the planar domain. In comparison, unconstrained boundary solutions further reduce

parametric distortions by allowing the boundary vertices to float to a minimal energy

state. These techniques are achieved through insertion of virtual boundary elements [96],

explicit computation of the free-boundary [99, 37], relaxation of a fixed boundary map

[73, 179], and other techniques [141, 130, 84].

2.3.3 Nonplanar Base Domains

Models without boundaries require graph cuts to segment the surface so that it

is homeomorphic to a disc. Instead, many algorithms have opted to map genus-zero

models to a spherical domain [2, 62, 124, 102, 93], for a seamless parameterization. For

higher genus models or surfaces with large undulations, more complex base domains are

generated [45, 67] potentially derived through simplification [46, 159, 94], or using ray

casting to shrink wrap semiregular meshes onto the original surface [90, 77].

Many of these techniques are developed for triangle-based reconstructions; however,

their extension to quadrilateral remeshing is straightforward, as observed by geometry

images [63, 131], polycubes maps [160, 101] and polycube splines [169]. The complexity of

surface mapping approaches lies in the construction of a base domain and developing the

mapping between it and the original surface; however, typically the related parametric

distortions are significantly reduced in comparison to planar mappings.

2.3.4 Chart Segmentation

To reduce parametric distortions and to handle arbitrary topological models, charting

methods segment a model into multiple regions homeomorphic to the disc. Following

the success of user defined segmentation boundaries [91, 162], automated techniques

implement Morse boundary cuts [115, 43, 42, 74] or use variational shape approxima-

tion [155, 59, 108] segmentation methods. Chart segmentation has been particularly

useful in defining continuous manifold spline surfaces [65, 64, 68] and the extensions to

polycube-based splines [160, 169]. For further discussion on the complexities of surface

parameterizations and minimization of parametric distortions, I direct the reader to the

survey [55, 142].



CHAPTER 3

ROBUST POINT BASED FEATURE

EXTRACTION

Digital scanner technology has become more affordable and accurate, increasing its

popularity and utility. These scanners collect a dense sampling of points, with mechanical

probes or lasers, to generate a virtual representation of a physical form. Consequently,

geometric processing of point clouds is becoming increasingly important.

The preservation of sharp features is a primary concern for many geometric com-

putations and modeling applications. In this context, a feature is described as the

discontinuity in the surface normals evaluated on the model, where the G1 continuity

is not maintained. Identification of these edges facilitates a better understanding of the

model improving filtering [39, 177], reconstruction [134, 33], resampling [13], simplifica-

tion [58, 70], smoothing [52, 78], and visualization [5] methods.

Features can be computed through the investigation of changes in the normals of neigh-

boring discrete surface data, i.e., polygonal facets or vertices. The most simple method

is to implement a threshold test that identifies potential feature edges where normals

differ above some tolerance level across adjacent samples. However, the implementation

of such detection techniques is not straightforward, since in most cases, normals and

connectivity are not provided in point data sets and their reconstruction is a nontrivial

problem, especially when sharp features must be preserved.

Digital scanner technology has become more affordable and accurate, increasing its

popularity and utility. These scanners collect a dense sampling of points, with mechanical

probes or lasers, to generate a virtual representation of a physical form. Consequently,

geometric processing of point clouds is becoming increasingly important. However, the

noise inherent in scanned models presents a major challenge to feature edge extraction

in point clouds. The identification of feature lines is complicated in the presence of noise

due to the fact that the large surface gradients appearing in regions with sharp features

are similar to those found in noisy areas.
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This chapter presents an algorithm to define a set of curves that are aligned along

the feature edges of a point cloud [34]. The pipeline, illustrated in Figure 3.1, extends

an earlier technique [33] by improving accuracy and reducing noise within the extracted

curves near acute feature edges and on low quality point clouds. Additionally, the updated

approach uses an iterative least square fitting of B-spline curves to perform smoothing in

place of the previous principal component analysis (PCA) based relaxation, that describes

continuous curves rather than discrete, piecewise linear polylines.

The algorithm is based upon the framework of Robust Moving Least Squares (RMLS)

surfaces [52]. A number of potential feature points are selected, identified by the RMLS

operator to be near to possible features. One issue with the RMLS is the inability to

reconstruct smooth features. The projection method produces jagged edges that cannot

be used without further processing to construct smooth feature curves. Therefore, a

feature growing strategy constructs polylines used to parameterize and guide the creation

of spline curves smoothly fit to the RMLS projected edge points. This research accounts

for poor sampling quality, due to noise or low point densities, by connecting the created

polylines across gaps to construct a set of complete feature splines.

The advantage of the following feature extraction research is that, in contrast to other

feature extraction work [69], the input data consist of a set of unorganized points (possibly

affected by noise) that approximate the original surface. No assumptions are made of

associated attribute information, e.g., normal vectors, given apriori. In the presence of

closed loops, the feature edges define a segmentation of the point based model based on

complete feature loops. Leveraging this segmentation scheme improves the performance

of previously developed point based algorithms, including model compression and surface

meshing.

3.1 Point Based Computing

The input data are an unorganized set of points P = {(x, y, z)T } ⊂ R3 that sample

some original surface S. The algorithm does not rely on attributes, such as associated

point normal vectors or connectivity information. Given P, one computes S to be the

Moving Least Squares (MLS) surface defined by a projection operator Ψ that is applied

to an arbitrary point p ∈ R3 in order to project it onto the surface, Ψ(p) ∈ S. Each point

on the surface projects onto itself, S = {p | p = Ψ(p)}.

There are several options of selecting the projection operator Ψ, originally proposed
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3.1: The feature extraction pipeline (left to right) for a given point cloud, projects
candidate points, identified near potential features, to the intersection of locally fit RMLS
surfaces. Approximating polylines are grown through the projected data and guide the
creation of arc length parameterized B-spline feature curves.

by Levin [98] and more recently modified by [3, 6, 12, 52]. Most variants implement

the projection of a point p ∈ R3 through finding a plane H that approximates a local

neighborhood around p in the set P. Specifically, the plane H is defined by a point q ∈ R3

and a normal n, H = H(n, q) = {x ∈ R3 | 〈x− q, n〉 = 0, ‖n‖ = 1}, and found, such that

the sum of weighted squared distances of points in P to the plane H, is minimized:

(n, q) = arg min
(n,q)

∑
p∈P

〈n, p− q〉2θ(‖p− q‖), (3.1)

where θ(·) is an exponentially decreasing weighting function, e.g., θ(s) = e−s2/h2
, which

assigns larger weights to points near q. The parameter h defines the spatial scale of θ.

Once H is found, it serves as a reference for a local Cartesian coordinate system with

origin in q and two span vectors that are orthogonal to n. Then, a bivariate polynomial

g of a given degree is fit in order to find the projected point Ψ(x), which is above q and

on the surface S. This polynomial fitting corresponds to finding

arg min
g

∑
p∈P

‖p− pg‖2θ(‖p− q‖), (3.2)

where pg denotes the projection of p onto the polynomial g in direction of the plane

normal n, and θ(·) is the previously defined weighting function.

The MLS projection relies on the minimization of Equations 3.1 and 3.2, which

includes Gaussian weighting of points in the local neighborhoods. This weighting leads
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to a smoothing effect that corrects noise and outliers in the set P, but simultaneously

removes sharp features. The RMLS variant [52] was developed to solve this problem

by considering iteratively constructed neighborhoods based on statistical analyzes of the

corresponding point distributions. In particular, they use least median of squares, which

is a regression method to minimize the median of absolute residuals between the point

set and the fit. Their forward search algorithm grows multiple MLS neighborhoods in

order to find smooth, flat, and outlier free regions (subneighborhoods) for the final MLS

projection.

This approach is inherently capable of detecting noise by disregarding outliers during

the surface fitting phase, and defines sharp features. Moreover, it reduces the smoothing

effect of the traditional MLS projection and improves numerical stability. However, the

drawback is that the clustering is computed independently for all points, which may lead

to situations where nearby points do not grow to identical subneighborhoods, a two-

dimensional example is diagrammed in Figure 3.2, that results in different configurations

of the surface feature. Figure 3.3 highlights the RMLS generated jagged edges while

upsampling a scalloped cube model.

To overcome this problem, this extraction research injects additional information into

the point based model by constructing a set of feature curves that accurately approximate

RMLS created feature edges. The goal is to generate continuous and complete spline

curves to smoothly annotate the important features on the model. It is important for

subsequent geometric processing algorithms that the curves faithfully, within tolerable

distances, reconstruct the geometric features of the point set surface while ironing out

noise acquired during model creation and RMLS projection.

3.2 Feature Extraction Algorithm

The following chapter describes in detail the five-step algorithm illustrated in Figure

3.1. First, Section 3.2.1 extracts points from P that are near potential features, offering

user tuning inputs to taylor the sensitivity of the algorithm to define the feature detail

to be reconstructed. Next, in Section 3.2.2, RMLS fits multiple surfaces to the local

neighborhoods of each point and projects the candidate points to the nearest intersection

between the RMLS surfaces, approximating initial feature information. Third, a set of

feature polylines are constructed through the projected point cloud in Section 3.2.3; that

guide the reconstruction of corners and the completion of gaps in Section 3.2.4. Lastly,
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3.2: RMLS segmentation may construct different subneighborhoods for nearby points,
causing disparities in the intersecting surfaces and feature locations.

3.3: Disparities in the RMLS subneighborhoods of nearby points results in jagged edges
when projecting individual points to the point set surface.

Section 3.2.5 defines an arc-length parameterization over the projected points based on

the initial feature polylines to which spline curves can be fit. The remainder of this

section further discusses the algorithmic details of each of the five steps.

3.2.1 Identifying Potential Edge Regions

The identification of potential edge regions, culling away points from the model to

reveal candidate feature points, is an extension of the RMLS based residual computation

[52]. Given a point p ∈ P, they consider the neighborhood N (p) ⊂ P that is used for the

polynomial fit of the MLS projection. Considering the polynomial f over the reference

plane H that is defined by point q and normal n, they evaluate the maximum polynomial
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residual r in a neighborhood around p,

r(p) = max
x∈N (p)

‖x− xf‖,

where xf corresponds to the projection of x onto f in direction of the plane normal n of

H, see the diagram in Figure 3.4.

For sharp features, r becomes reasonably large because many point sampled along the

sharp edge lift away from the polynomial. Based on this observation, they straightfor-

wardly define any point p ∈ P to be a potential feature point, if r(p) > τ for some user

defined threshold τ . Note that strong outliers will also record large r; however, they are

eliminated during the RMLS projection stage (discussed in Section 3.2.2).

The identification of potential feature points relies on an appropriate selection of

the threshold τ . This research extends the RMLS residual based method by using an

automatic computation method, which produces an adaptive threshold. In particular,

setting τ to the mean residual value taken over all points in P, τ = 1
|P|

∑
p∈P r(p), leads

to good results. Moreover, the user is able to modify τ manually, using an interactive

tool. Figure 3.5 shows the Fandisk model after identifying potential feature points using

different values for the threshold τ . The output of the identification procedure is a set of

potential feature points, i.e., F = {p ∈ P | r(p) > τ}.

3.2.2 Projecting Points to Edges

By coupling the RMLS projection procedure with a Newton’s root finding method,

the points p ∈ F are projected onto the surface features, returning a feature edge cloud E .

The RMLS projection method fits a number of surfaces to the points in the neighborhood

around p. This number of surfaces is used to classify the feature type of the projected

points in E .

If RMLS returns a single surface, then this implies that no feature was detected and

the high residual is assumed to be the byproduct of outliers due to noisy sampling data.

In contrast, two or more surfaces indicate the presence of a sharp feature. Newton’s

method, as used in [121], is able to iteratively project a point p onto the intersection of

the two RMLS surfaces closest to p. This process yields an edge point e that may be

inserted into the edge cloud E corresponding to p ∈ F .

If the distance between the original point p and its candidate projection point e,

‖p − e‖, is less than the radius of the RMLS neighborhood, then e is added to E . The

culling process reduces noise within the set of projected points E , especially near acute
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3.4: The residual r(p) is computed as the maximum distance between the points N (p) in
the neighborhood around p and the polynomial fit f in direction of the reference plane,
H, normal.

features or on noisy models. The purpose is to keep only the projected points whose

feature is well defined by the neighborhood of the original point.

However, in practice, due to irregular sampling in F and the conditional point inser-

tions, there often exist regions in E with low sample densities. This becomes problematic

during the feature approximation stage, Section 3.2.3, by creating large gaps between

extracted polylines. To accommodate for the lost points additional points are inserted

into E , upsampling the projected feature edge point cloud. This upsampling occurs

by adding points along the eigenvector v0 that corresponds to the largest eigenvalue of

the neighborhood of e, N ∈ E , e ± α · v0. The scalar value α is based on the growth

step size defined in Section 3.2.3. Upsampled points are computed only if the computed

eigenvectors v0, v1 and v2, with associated eigenvalues λ0 ≥ λ1 ≥ λ2, are highly correlated,

λ0/(λ0 + λ1 + λ2) > β. This analysis is adapted from a surface variation computational

technique [120], used to approximate the local curvature information. The models and

results presented in this paper experienced good results with α = 0.75 and β = 0.7.

3.2.3 Propagating Feature Polylines

The set of projected feature points E is unorganized and contains no topological in-

formation; however, in many practical applications continuous feature curves are desired.

The goal of the feature polyline propagation is to approximate E with a set of polylines.

Because these polylines will guide the future parameterization of E and iterative spline

curve fitting, they are not expected to be smooth; instead, relying on the spline curves

to smooth noise in E .
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3.5: Potential feature points are identified based on r(p), using the threshold τ , for
the Fandisk model with automatically computed (τ = 0.057) and manually adjusted
thresholds (τ = 0.014). The arrow indicates a region with an increased number of
potential feature points due to a lower τ value.

Polylines are generated through E by adapting a curve reconstruction technique from

unstructured point sets [95]. A user-defined maximum allowable segment length smax

controls the coarseness of the feature polylines. The propagation is initialized at a random

seed point p, where the PCA for points in its neighborhood N (p) ⊂ E with radius smax

is computed, illustrated in Figure 3.6(a). All points pi ∈ N (p) are projected onto the

line defined by the eigenvector of N (p) with the largest eigenvalue through p, yielding

points p′i. The growing scheme attaches the two points pj , pk ∈ N (p) with the furthest

corresponding projections p′j and p′k in opposite directions from p.

Extending this curve growing scheme in order to produce smoother approximating

polylines, the propagation method computes a step vector vc as the weighted average of

neighborhood points:

vc =
∑
i=0

θ(‖p′i − p‖) · pi − p

‖pi − p‖
.

The points are weighted inversely based on their projected distance along the eigenvector,

θ(s) = e−s2/s2
max , and the final step vector vc is normalized. A new polyline vertex is added

to the feature at pj = p+smax ·vc, illustrated in Figure 3.6(b). The procedure is repeated

at the pj , Figure 3.6(c), until no points remain in the growth direction. The process can

be simultaneously executed in the opposite growth direction 3.6(d).

An additional termination condition is introduced to further reduce noise in the grown

polylines and prevent corner rounding, occuring when a single polyline wraps over a corner
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3.6: Feature edge propagation is seeded at a point, projects all neighborhood points
within a user specified radius to the major eigenvector, computes the step direction and
adds a new point to the approximating polyline. The processed points are removed and
the method is repeated until no further points remain in the growth direction.

region to define multiple feature edges. Considering historical information, a growth

vector vg stores the average direction of previous step vectors. To commit a new point

pj , the angle between the current step vector vc and the growth vector vg must be below

a defined threshold, 〈vg, vc〉 ≤ cos(α). In practice, α = 30◦ provides an adequate angle

threshold. After the point is committed to the feature polyline, the growth vector vg is

updated, accumulating the step vectors vg = 1
2(vg + vc).

In practice, starting the feature growing procedure at edge points with highly corre-

lated neighborhood eigenvectors achieves the best results. The implementation maintains

a priority queue that sorts all edge points p ∈ E according to their eigenvector correlation.

Given eigenvalues λ0 ≥ λ1 ≥ λ2, the correlation term for a point is computed as

λ0/(λ0 + λ1 + λ2). This sorting term seeds the feature growth at points furthest away

from corner regions in E where the correlation term will be computed as a low value.

A feature line is created by seeding the propagation algorithm described above at the

point on the top of the queue. After the feature points are connected and the propagation

terminates, the elements that correspond to points within the neighborhoods N (p) of

processed points p are removed from the queue. As long as the queue is not empty, there

are unvisited feature points remaining thus continuing feature line creation. The polyline

growing scheme approximates the projected cloud E ; however, it is not yet complete due

to gaps that occur in regions with poor sample quality. The fourth stage of the feature

extraction pipeline will clean up the grown polylines to produce a set of complete feature
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curves.

3.2.4 Completing Feature Curves

In this stage, clean up operations merge and split the feature polylines to describe a

complete set of approximating line segments through the RMLS project cloud E . The

feature completion method is driven by a directional search approach, illustrated in Figure

3.7, that inspects the regions between the polylines to determine if multiple features can

be combined or new corners are necessary. The operations are guided by tangent vectors

evaluated at the end points of each feature, computed by fitting a cubic polynomial to

the last four points of the polyline. An alternative approach evaluates the direction of

the last segment of the curve; however, in practice the cubic fit smooths perturbations

for better results.

For each end point p, the method searches for other feature points, within the cone

formed by the tangent vector at p and a predefined aperture angle, that satisfy one of the

three completion operations illustrated in Figure 3.7: gap completion, corner creation,

and edge splitting. Gap completion is necessitated by poor sampling quality, i.e. the

distance between two end points is larger than smax. To resolve these configurations,

any two polylines with end points that are within αsmax distance of each other and

have corresponding tangent vectors that point to opposing directions within the aperture

angle are merged into a single feature polyline. The corner creation results when multiple

feature polylines are detected within the search cone. For three feature lines fi,j,k with end

points pi,j,k within the search cone and converging tangents, a corner point is evaluated

using the RMLS surfaces fit to the neighborhood of the midpoint, (pi + pj + pk)/3. This

midpoint is projected to the corner using Newton’s method to evaluate the intersection

of three RMLS defined surfaces. Each feature polyline fi,j,k is connected to the newly

computed corner point. The final completion operator, edge splitting occurs if the end

point of a feature polyline fi projects to an interior point p of another feature line fj .

The feature fj is split into two feature polylines, fk and fl, at p and a corner point c is

identified within the region using Newton’s method on the RMLS defined surfaces. The

three feature polylines fi, fk, and fl are joined at the corner point c. This case resolves

situations where a single polyline grew onto multiple features despite the growth vector

termination case.

The search algorithm finds the closest vertices of the feature polylines that exists
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3.7: A final pass completes the feature edge propogation, constucting a set of complete
feature polylines by bridging gaps (left), creating new corners (middle) and splitting
existing polylines (right).

within the volume of the search cone bounded by the distance αsmax. This search is

repeated multiple times for every feature endpoint, iteratively increasing α over the range

(0, 1.5] to accommodate for the poor sampling quality in E . If no vertices of feature lines

are found during the this time, then the endpoint is assumed to belong to a dissipating

feature edge (or dart), and no connection operation is performed. After the end points

have been resolved, the feature curves are considered complete and ready to guide the

spline based fitting procedure.

3.2.5 Spline based Fitting and Smoothing

The output of the feature extraction algorithm is a set of continuous spline curves fit

to E guided by the approximating feature polylines. To this point a set of feature polylines

F = {fi} approximate RMLS feature edges through a projected point cloud E . The spline

fitting procedure segments E based on proximity of feature polylines, assigns parameter

values to the segmented points, then uses a iterative least squares fitting procedure to

define the spline curves.

The segmentation of E into multiple subclouds is based on the user defined neigh-

borhood size smax, used earlier as a step size for the polyline growth. A point e ∈ E is

projected to each feature polyline fi, yielding the point e′i. The point e is inserted into

the subcloud Ẽi if:

1. the distance between e and e′i is less than the specified distance, ‖e− e′i‖ < smax,

2. e′i is the nearest projected point to e, ∀j, ‖e′j − e‖ > ‖e′i − e‖.
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After, the points within each segmented subcloud Ẽi are assigned parameter values in

order to fit spline feature curves. A point e ∈ Ẽi is assigned a parameter value based on

the ratio of the arc-length distance of its projection on fi, e′i, along the feature polyline

and the overall length of fi. In this manner, all computed parameter values are bounded

between [0, 1].

The spline curves are created for each segmented subcloud using an iterative approach

that refines the defining knot vector until the curve is within bounded distance tolerances.

For a subcloud Ẽi with associated parameter values Ui, a spline curve S with the knot

vector k = {ki}N
i=0 is defined using a least squares fit. The fitting procedure is initialized

with the minimal uniform closed knot vector describing a cubic B-spline curve, k =

{0, 0, 0, 0, 1, 1, 1, 1}. Iterative refinement of the final curve is determined by comparing

measured distances between Ẽi and S, made at the nodal values. For a cubic spline

curve, the nodal vector is defined as k̃ = {k̃i}N−3
i=0 and a node values are computed as

k̃i = (ki + ki+1 + ki+2 + ki+3)/4.

Distance comparisons are made by evaluating the two points pe and ps at the param-

eter values between each consecutive pair of nodal values, u = (k̃i + k̃i+1)/2 on Ẽi and

S respectively. While evaluation of ps is well defined through B-spline evaluation, the

approximation of Ẽi(u) is the weighted average of the subcloud points,

pe =

∑
j θ(|uij − u|) · eij∑

j θ(|uij − u|)
,

where, the weighting function is θ(x) = e−x2/α2
and α is a user defined fall-off term. If

the distance between pe and ps is greater than a defined tolerance, ‖pe − ps‖ ≥ smax, the

step size used during the polyline growth, then the nodal value is inserted into a new knot

vector knew. The spline curve is re-fit to the subcloud using the new knot vector after all

distance comparisons are evaluated. This iterative refinement is terminated when no new

parameters are inserted into knew. The refinement of the spline curve converges towards

a locally weighted average of the RMLS projected point cloud E ; which, in practice

accurately annotates the feature edges.

3.3 Applications of Feature Curves

The feature extraction algorithm outputs a set of continuous geometric curves that

identify the sharp features of a point set surface. The generated curves highlight im-

portant components of the unstructured cloud, facilitating a better understanding of the
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underlying model. This section illustrates the benefits of applying the feature extraction

algorithm as a preprocess for several subsequent point based geometry processing tech-

niques, including surface segmentation, compression and reconstruction. The effectiveness

of the feature extraction algorithm is demonstrated on machine parts, where the sharp

edges are well-defined, and all data sets consist only of a set of 3D points, without

associated normal vectors and connectivity information.

3.3.1 Surface Segmentation

Surface segmentation algorithms dissect a model into multiple regions that each

describe a common component section, and describe a useful geometric processing tool.

While several techniques exist, specifically for point based models [175, 178], this approach

differs in that it does not require the computation of surface approximations, normals, nor

other differential properties. In contrast, this segmentation algorithm divides the model

into multiple feature-aligned components using only Euclidean distance computations.

The method operates in three stages: (1) identify boundary points based on proximity to

input feature curves, (2) iteratively run a region growing algorithm to segment the cloud

into multiple groups, (3) merge boundary points into the nearest segmented groups.

For a given point cloud P, the algorithm begins by flagging all points p ∈ P within a

given radius r of a feature spline curve. The radius r can be user specified or automatically

computed for each model based on the sample density, i.e., the average sphere radius

needed to describe k points. The points of P can be divided into two groups classified

as boundary (flagged) B and unvisited U points. The following algorithm will organize B

and U into multiple feature-aligned visited point groups Vi that define the segmentation

of the model.

The segmentation process seeds an advancing front region growing technique at a

random point p ∈ U ⊂ P. A queue,W, representing the advancing wavefront, is initialized

with the neighborhood points of p within the distance r. The growth of the region occurs

by processing the top point of W, pt, until no more points remain within the wavefront.

If the point pt is classified as unvisited, pt is removed from U and inserted into the

new segmenting region Vi. The unvisited neighborhood points of pt, within distance r,

N (pt) ∈ U , are appended to W. When the wavefront W is exhausted, no new unvisited

neighbors exist for the segmenting region. The advancing front algorithm is re-seeded at

a new unvisited point until U is empty. Following the segmentation of U into multiple
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visited groups Vi, the method resolves boundary points in B. Each boundary point b is

inserted into the group Vi that contains the closest visited point to b.

Using the precomputed feature curves, this point based algorithm is able to generate

feature-aligned segmentations of the input cloud. These results are illustrated for multiple

models in Figure 3.8, where the splats are oriented using MLS based normals evaluated

for each segmented region Vi as if it were an individual point cloud. In this way, the

MLS projected points and associated normals no longer smooth sharp edges, instead

reconstructing the feature normals. In addition to feature-aware visualizations and MLS

based projections, the surface segmentation results aid in the several applications for

point based, including compression and surface reconstruction.

3.3.2 Surface Compression

Surface compression is an elementary problem in geometry processing, the goal of

which is to represent 3D models compactly for the purpose of space efficient storage and

fast transmission. The task of the encoder is to transform a specific surface representation

into a compact bit stream, which can be decoded at the receiver side in order to reobtain

the original model or an approximation of it, if the encoding is lossy. While polygonal

meshes may compress point locations and connectivity data, point based models contain

reduced information, being only a collection of connectionless 3D data points.

Point based compression schemes must cleverly encode the point locations, for in-

stance, by using indicators to aid in the prediction of new 3D locations. For instance,

it is possible to approximate the original model by an iteratively refined base data set;

where, at each step, the position of the inserted point is guided by a local displacement

normal vector that is encoded by a single scalar [51]. A second approach constructs

a binary tree structure for the point set that is utilized to predict point positions at

each level of the tree based on previous levels [170]. The residuals are encoded using a

one-dimensional (1D) variant of the set partitioning in hierarchical trees (SPIHT) encoder

[129].

A highly successful sheme, [117], compresses point based models by decomposing

the input surface into a number of patches that are parameterized as height fields over

a planar reference plane and resampled on regular grids. The resulting images with

arbitrary regions of support are encoded using state-of-the-art wavelet compression of

shaped images. In this method, the surface segmentation is based on a split-merge

partitioning scheme: first, recursively subdividing the surface until all patches meet a
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3.8: The segmentation algorithm divides the point-based model into multiple feature
aligned regions. MLS projected splats upsample each region independently to reconstruct
sharp feature normals on the model.

prescribed flatness constraint, then merging adjacent patches that maintain height field

properties.

Although this method yields a high rate-distortion performance, the approximation

quality largely depends on partition structure. As illustrated in Figure 3.9, the partition-

ing scheme, especially on models with sharp features, constructs segments of the model

that contain features rather than identify these important structures as region boundaries.

The drawback of this behavior is that sharp features within a patch corresponds to

high frequency components in the corresponding wavelet signal that is hard to encode.

To overcome this problem, the original partitioning procedure may be guided by the

previously discussed segmentation results of Section 3.3.1. The encoder receives the input

point based model with the pre-partition information that had been generated using the

the feature edges. The splitting phase in [117] is performed on each individual patch of

the pre-partition, while the merge operations occur in their usual setting. By guiding the

partitioning scheme, the resulting segmentation is feature aligned where the individual

patches show an improved structure and more regular boundaries, as illustrated in Figure

3.9.

The compression performance for the Fandisk and Quarter Piston models are illus-

trated in Figure 3.10 with results shown in Figure 3.11, each with 2 · 105 points. The

original models are shown, followed by two decoded models at different bit rates. For

the fandsik model heavy compression artifacts are only observed at extremely low bit

rates (0.08 bits per point (bpp)), and slightly increasing the bit rate leads to significantly

improved geometric reconstruction quality. The quarter piston model requires more bits

(0.26 bpp) to achieve adequate reconstruction quality, due in part to the more complex
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3.9: A comparison of the traditional segmentation method for an existing point based
compression method and guided results using extracted feature curves for the Quarter
Piston model.

geometric features of this model. An increased bit rate (0.48 bpp) yields a reconstruction

that is close to the original model.

3.3.3 Surface Reconstruction

Triangle meshes are a popular representational form of surface models that are com-

monly used in geometry processing. The related algorithms are able to leverage the

additional information inherent in mesh models as compared to point set surfaces, i.e.,

connectivity, to compute discrete differential operations. The robustness and efficiency

of these algorithms are dependent on the quality of the input mesh, there is a demand

for high quality mesh structures that motivates surface construction and remeshing algo-

rithms.

In previous reconstruction research, [137], extending [134, 136], an advancing-front

algorithm is shown to produce high quality remeshes from many different types of source

models, including point-set surfaces. This approach is based on defining a guidance field,

constructed using local curvature information that determines the size of the output

triangles. Precomputing a specific guidance field allows the triangulation scheme to adapt

to areas of high curvature, shrinking the allowable triangle size as the advancing fronts

grow towards such regions. However, because the algorithm uses MLS for curvature

computations and projections of the remesh vertices, the method adaptively shrinks the

triangle sizes near sharp features and produces rounded edges. Extending the projection

and guidance field computations by using RMLS enables reconstructions with sharp



31

3.10: The guided partitioning improves rate-distortion performance of the compression
method as compared to the traditional segmentation for the Fandisk and Piston; the error
is measured as the root-mean-square (RMS).

features; however, as previously discussed, this creates jagged edges with expensive

computational costs.

In response to this problem, observe that the inclusion of the feature curve information

enhances the understanding of the point set surface’s underlying structure to facilitate

feature-aware reconstructions, illustrated in Figure 3.12. The extracted feature curves,

with corresponding RMLS-defined feature normals, are used as the initial advancing

fronts for the remeshing system. Without any modifications to the original algorithm,

the method [137] is able to reconstruct sharp features. Furthermore, because the orig-

inal projection routines and other computations remain unaffected, the computational

performance is equivalent.

It is important to note that the feature-guided segmentation process is able to improve

the computation of a better guidance field. Previously sharp features compute large MLS

based curvature values that resulting in many small elements within these regions (Figure

3.12). In contrast, the new guidance fields may be computed over the segmented regions

indepdently, so that the elements remain large near the sharp features. Consequently, the

surface reconstruction results are greatly improved by leveraging the knowledge gained

from the extracted feature curves, obtaining both feature-alignment and reduced element

counts.
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3.11: The guided partitioning compression results of the Fandisk and Piston models at
several levels of compression; the error is measured as the root-mean-square (RMS).

3.4 Experimental Results and Analysis

The robustness to noise, accuracy of the extracted curves, and run time efficiency of

the feature extraction method are further analyzed in this section. Figure 3.13 illustrates

extracted feature lines for the piston and chess piece models at different noise levels. In

this image, uniform noise is applied to a quasi-uniform point sampling of a triangle mesh,

shifting each point p by a random vector δ(p) of restricted length, ‖δ(p)‖ ≤ l. The length l

is the noise level, expressed in units of the bounding box diagonal length dB of the original

model. A ground truth representation of the sharp feature edges is constructed using a

thresholding test to compare a user-tuned tolerance angle with the angle of separation

between normals of the triangles adjacent to each mesh edge.

For low levels of uniform noise, the feature extraction procedure successfully defines

smooth feature curves, as illustrated in Figure 3.13. Despite introducing a 0.02dB uniform

noise on the two models, the algorithm extracts a majority of feature curves within error

tolerances of the true sharp edges. For higher levels of noise, 0.05dB, differentiation

between the uniform noise and feature edges becomes difficult, and weak features, with
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3.12: Results obtained by applying an advancing front remeshing technique to several
point set surfaces. The left half of each model illustrates the original method [137], and
the right half shows results guided by the extracted feature curves.

near planar defining surfaces, are not clearly extracted by the algorithm.

Further accuracy measurements are presented in Table 3.1 for the models shown

throughout this chapter. Ground truth feature edges are semiautomatically constructed

from mesh models used to generate the experimental point clouds. The analysis computes

the mean and max distance information for the feature extraction results by projecting

the extracted feature points onto the nearest ground truth feature curves. On average,

the distance between the extracted features and ground truth is very small (≤ 0.5%

of the bounding box diagonal dB). The percentage of extracted feature curves is also

reported within Table 3.1, emphasizing the success of the feature extraction algorithm

to properly annotate a majority of the sharp edges on the point set surfaces. This

percentage is computed by measuring the ratio of ground truth feature curve segments

with an extracted feature curve within a distance of 0.01dB.

The total time required to construct the polylines is determined by the number of

potential feature points in data set. Implemented in C++ on a 2.16 GHz Intel Core 2

Duo with 2GB memory, the feature extraction run times are reported for each algorithmic

stage in Table 3.1. These results process half a million points within a few minutes, where

the major computational cost is attributed to the RMLS projection procedure (stage 2)

that is highly parallelizable.
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3.13: Feature extraction from the chess piece and piston models; features extracted
from the original model, and models with progressively increased uniform noise (‖δ(p)‖ ≤
0.02dB and ‖δ(p)‖ ≤ 0.05dB, where dB is the length of the model bounding box diagonal).

3.1: Run time performance of the feature extraction algorithm for models (some with
specified uniform noise, each containing 5 · 105 points). The pipeline stages correspond
to: point identification (1), point projection (2), curve propagation (3), curve completion
(4), and spline fitting (5). The analysis includes the mean and max distance from the
extracted features to a ground truth, as well as the percent of the features extracted.

Model (τ , |F|) Run Time [seconds] Analysis
(‖δ(p)‖) (1) (2) (3) (4) (5) Dist. (Mean, Max) Extract
Fandisk (0.013, 55.7k) 191 192 11.5 0.8 0.0 (0.0013dB , 0.0089dB) 99%
Hook (0.006, 49.6k) 207 196 0.7 0.6 2.3 (0.0005dB , 0.0049dB) 100%
Piston (0.006, 80.3k) 146 207 0.3 0.7 9.9 (0.012dB , 0.19dB) 99%

(≤ 0.02dB) (0.017, 97.9k) 196 698 1.3 0.7 68 (0.0044dB , 0.25dB) 97%
(≤ 0.04dB) (0.030, 82.2k) 169 552 18.9 1.9 29 (0.0049dB , 0.18dB) 90%

Ra (0.012, 40.8k) 159 116 1.0 0.0 1.6 (0.0013dB , 0.025dB) 99%
Rook (0.011, 99.6k) 216 471 5.8 3.0 8.8 (0.0022dB , 0.046dB) 99%

(≤ 0.02dB) (0.030, 112k) 250 840 21.7 12 19 (0.0025dB , 0.055dB) 97%
(≤ 0.04dB) (0.034, 124k) 296 1337 19.0 18 23 (0.0042dB , 0.057dB) 92%

S-Cube (0.0175, 33.6k) 186 324 2.5 0.3 5.6 (0.0025dB , 0.025dB) 100%
Knuckle (0.0095, 70.1k) 176 348 10.3 1.3 7.5 (0.0010dB , 0.026dB) 98%

3.5 Discussion and Limitations

This chapter presents an algorithm for extraction of feature curves from point-sampled

surfaces, leveraging the robust statistical methods of RMLS to project points to all

possible features. The resulting curves are accurate and do not require the point based

acquiring techniques to explicitly sample the sharp features. Illustrated in Figure 3.14 are

extracted feature curves and corresponding RMLS-defined surface normals for multiple

point based models with varying feature types.

The robust feature extraction produces smooth results, it is limited by extremely poor
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3.14: The feature extraction results for multiple point based models.

sampling quality and by time constraints. High noise levels or sparse sampling worsens

the performance of the method because the distinction between sharp features and noisy

regions becomes ambiguous. The RMLS projection routine is computationally expensive,

restricting the utility of this feature extraction method as a preprocess.

Feature identification proves valuable, as the generated curves augment the perfor-

mance of subsequent geometric processing algorithms. Most relevant to the over-arching

theme of this dissertation, the feature curves facilitate feature-aligned surface recon-

structions. Furthermore, the defined spline based curves constructed from the point

based model address a thematic research topic that re-occurs throughout this dissertation

related to the interaction between continuous and discrete geometry.



CHAPTER 4

QUADRILATERAL MESH

SIMPLIFICATION

Mesh simplification is an important geometry processing operation that has been used

as a building block for many higher level processing steps, including mesh compression,

rendering, progressive transmission, editing operations, smoothing, parameterization, and

shape reconstruction. It is for this reason that triangle mesh simplification techniques

have been some of the most useful operations developed.

A major challenge associated with quadrilateral simplification, unlike triangle-based

techniques, is the consideration of the structured nature of the quadrilateral elements

that force global constraints on the mesh connectivity. For triangle meshes it is possible

to limit the attention to local operations, that is, to collapse an edge in a triangle mesh,

one only needs to consider the triangles in its one-neighborhood. In contrast, the deletion

of a single quadrilateral element may require more global consideration by removing a

larger collection of elements in order to maintain highly structured results [35, 152, 40].

This chapter details important observations pertaining to the quadrilateral-based sim-

plification while addressing the challenging problems of maintaining the all-quadrilateral

connectivity and mesh topology, illustrated in Figure 4.1. This discussion describes a pro-

gression of quadrilateral-based simplification techniques from deletion methods designed

to operate on the dual representation to localized operators that adapt vertex sample

densities in a controlled manner, comparing the advantages of the different algorithms in

terms of semiregular and irregular quadrilateral mesh inputs. The simplification results

are applied to remeshing polygonal models into quadrilateral-only meshes, demonstrating

an effective and robust connectivity-based approach to reconstruction.

4.1 The Dual Representation

The dual representation is an important structure of a quadrilateral mesh [21] that

is useful in mesh analysis and processing. The dual representation is defined to have the
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4.1: The simplification algorithm can be used to generate a pure quadrilateral level-of-
detail hierarchy. The algorithm preserves topology during simplification, and attempts to
optimize geometric fidelity and quadrilateral structure (vertex valences near 4) through-
out the process.

following components: the dual of a quadrilateral is its centroid; the dual of a quadrilateral

edge is the chord that connects the centroids of the neighboring quadrilaterals; the dual

of a vertex is the polygon formed by connecting the centroids, in a cyclic order, of the

neighboring quadrilaterals.

An important higher order structure is the polychord, a polyline whose adjacent

segments are chords that meet at a common centroid and are dual to opposing edges

in that quadrilateral. On a closed quadrilateral mesh without boundaries, the polychords

always form closed loops. That is, starting at a single edge on a closed quadrilateral mesh

and traversing opposite edges on adjacent quadrilaterals, the traversal will always end at

the starting edge. The polychord is a generalization of the ring structure constructed in

related quadrilateral-based research [24, 40], and is related to the dual sheet associated

with hexahedral-based meshing [151] for which the looping property is proven.

In order to sharpen our intuition, consider the dual structure of the two different

quad representations of a torus shown in Figure 4.2. A high quality quadrilateral mesh

of a torus (shown on the left) with all vertices having valence four has a similar dual

structure with chords that tend to meet at approximately right angles and polychordal

loops that exhibit low curvature, and polygons that are dual to the vertices are generally

rectangular (i.e., four-sided). The lower quality quad mesh (shown on the right) has

chords intersecting with nonright angles, polychordal loops that exhibit higher curvature,

and the polygons that are dual to the vertices of the mesh are typically nonrectangular

(i.e., typically, are not four-sided).

The dual representation is a powerful tool, useful in assessing well-behaved quadrilat-

eral mesh surfaces in addition to assisting geometric processing. In addition to polychord
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4.2: The dual structure of a highly structured mesh is itself highly structured with
low geodesic curvature (left); whereas, a nonstructured mesh contains a complex dual
representation, nonquadrilateral dual faces and high curvature polychords (right).

curvature observations, the dual structure can identify well-behaved surface models. For

instance, as illustrated in Figure 4.3 each quadrilateral of a closed (without boundaries)

two-manifold will have exactly four unique dual chords. This property implies that every

pair of adjacent quadrilaterals will have at most one chord connecting their centroids, thus

sharing at most one edge. Furthermore, this property prevents nonmanifold edges, where

more than two quadrilaterals share a common edge, as these elements would contain

additional chords.

4.2 Global Quadrilateral Simplification

Many simplification techniques for triangle meshes are based on edge-collapse opera-

tions. Unfortunately, if an edge is collapsed in a quad structure, triangles are introduced

and structure is lost. This research adapts ideas proposed in [144] that observed, in the

context of hexahedral mesh generation, that the quality of a hexahedral mesh is related

to properties of its dual structure. As related to mesh simplification, the dual structure

is used as a tool for designing deletion operators.

4.2.1 Deletion Operators

The following discussion outlines a set of deletion templates used to modify the dual

structure of the quadrilateral mesh in order to improve its overall quality during mesh

coarsening. The polychord collapse describes a global operator, simultaneously removing

multiple quadrilaterals during each execution, while the quadrilateral vertex merge and

doublet removal induce modification of the dual structure through localized deletions.
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4.3: The dual structure is useful in mesh analysis: a well-behaved quadrilateral-only
mesh defines four unique chords with each face primitive (left), while nonmanifold edges
are detected by additional dual chords (right).

4.2.1.1 Polychord Collapse

Removal of a polychord from the dual representation simultaneously deletes all quadri-

laterals through which it passes by merging the vertices of each edge dual to the selected

polychord, as illustrated in Figure 4.4. A polychord, as it is related to hexahedral

meshing, is equivalent to the intersection of a hexahedral dual sheet [114] with the

boundary surface. Because removal of hexahedral sheets has been shown to preserve

the hexahedral connectivity during mesh improvement [21], it follows that the lower

dimensional equivalent, polychord deletions, preserve quadrilateral-only surface elements.

4.2.1.2 Quadrilateral Vertex Merge

The quadrilateral vertex merge (qvMerge) is a localized deletion operator that re-

moves a selected element by merging diagonally opposing vertices (also described as

a quadrilateral close [87]), illustrated in Figure 4.5. By imagining the quadrilateral

as two virtual triangle elements connected by an edge between the merging vertices,

observe that the described qvMerge is a generalization of the triangle edge collapse. The

elements modified by a qvMerge are limited to a local neighborhood and maintain the

quadrilateral-only constraint. Note the modifications that result to the connectivity

of the dual polychords, observing that the deletion operation describes a swap in the

connectivity of two polychords.
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4.4: The original mesh and its dual representation (a), the chosen polychord (b) and the
resulting mesh after the polychord collapse (c).

4.5: The original mesh and its dual representation (a), the chosen quadrilateral (b)
and the resulting mesh after the quadrilateral-vertex merge (qvMerge) (c). The qvMerge
describes a swap in the underlying dual polychords, highlighted above.

4.2.1.3 Doublet Removal

Doublets, identified as neighboring quadrilaterals that share two consecutive edges,

are removed from the quadrilateral mesh following each collapse operation. The valence 2

doublet vertex describes a degenerate extraordindary point, associated with a degenerate

dual polygon. Under normal circumstances, a doublet is removed by merging the two

faces into a single quadrilateral element modifying the connectivity of the highlighted dual

chords, illustrated in Figure 4.6. The removal of a doublet may generate new doublets,

requiring additional deletions, and, similar to the quadrilateral collapse, modifies the

structure of two polychords.

4.2.2 Prioritizing Operations

To improve the mesh connectivity and maintain geometric fidelity, it is important

that the algorithm selects the elements for deletion intelligently. The prioritization of
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4.6: The original mesh and its dual representation (a), the chosen doublet (b) and the
resulting mesh after the doublet collapse (c). When the doublet edge is an annotated
feature (d), the doublet quadrilaterals (d) are simultaneously merged to preserve the
feature edge (f). Similar to the qvMerge, the doublet collapses describe swaps in the dual
polychord structure.

the collapse operations is achieved by queuing the elements based on the impact of the

deletion on the resulting mesh. A combination of factors is considered by the weighting

scheme, including the quality of the final vertex valences, the geometric loss, and the

area distortion associated with each collapse operator. Consequently, the prioritization

scheme is able to reduce the accumulated geometric error while improving the element

quality during sequential deletions.

The polychord collapse is a more complicated operator than the quadrilateral deletion

so the weighting scheme discussion focuses on this operator. The error metric E assigned

to a polychord p is

E(p) = αq(1− e−Eq(p)) + αd(1− e−Ed(p)) + αv(1− e−Ev(p))

where αs are user defined positive scalars that sum to 1. This function considers multiple

contributors, written as 1 − ex to scale the terms to the range (0, 1] with a Gamma-

like distribution, that weigh the impact of the deletion with a purpose similar to [150].

Deletions that evaluate with a maximum E, equal to 1, are given priority over lower

values. While other types of distributions and functions have been tested, this priority

metric yielded the most improved results in simplification experiments, measured as the
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percentage of ideal vertices. The user defined α’s allow control of the influence of each

term.

The function Eq(p) returns the worst case QEM error over all of the groups of merging

vertices for the polychord p, representing an upper bound on the geometric impact of the

collapse. QEM matrices are computed for the mesh vertices by virtually subdividing each

quadrilateral into four triangular elements connected at the quadrilateral centroid. This

allows for a hinging effect to accommodate for nonplanar quadrilaterals while accumulat-

ing the planar equations for the original mesh vertices using the established triangle-based

QEM scheme. The function Ed(p) evaluates the length of the longest edge collapse (or

group of edges) due to the collapse of the polychord p. The purpose of Ed is to prioritize

collapses in order to construct square elements.

The final weighting term, Ev(p), measures the change in vertex valences from the

ideal 4 and penalizes polychord collapses that deteriorate the valences of neighboring

vertices. The polychord p is decomposed into multiple vertex groups {Vi = {vi,j}Ni
j=0}M

i=0

that merge to a single new vertex ṽi, illustrated in Figure 4.4(b). The valence weighting

term sums the worst created valence with the average,

Ev(p) = max
i

max
j

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

+ 1/M

M∑
i=0

1/Ni

Ni∑
j=0

βi,j(|ν(vi,j)− 4| − |ν(ṽi)− 4|))

βi,j =

{
0, if |ν(vi,j)− 4| ≤ |ν(ṽi)− 4|
1, otherwise

where ν(v) returns the valence of v. Thus, Ev penalizes polychord collapses that result

in nonideal vertices while sorting the deletions with equivalent worst cases based on their

average created valence.

The weighting metric assigned to each quadrilateral element for the quadrilateral

collapse is computed similarly as E(p), allowing the user to vary the influence of the

geometric-, area-, and valence-based functions. For a quadrilateral q with vertices (in

counter clockwise order) a, b, c, d, the QEM measurement Eq(q) associated with a quadri-

lateral collapse is based on the loss of shape fidelity induced by merging the chosen

opposing vertices, for example, merging a and c to ṽac. The area term Ed(q) measures

the distance between the two merging vertices of q.
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4.7: A single polychord is highlighted for the above models. Some semiregular meshes
(a) and irregular models (b) exhibit a polychord structure that lends itself to deletions.
However, for many other semiregular (c) and irregular meshes (d), the polychords form
complex knots over a significant portion of the mesh, complicating, and often invalidating,
their collapse.

The final weighting term, Ev(q), measures the difference between the current vertex

valences and the new configuration and is biased to favor collapses that improve the

local connectivity. The valence term sums the difference of the created valences from the

originals,

Ev(q) = βa(|ν(a)− 4| − |ν(ṽac)− 4|) + δb(|ν(b)− 5| − |ν(b)− 4|)

+ βc(|ν(c)− 4| − |ν(ṽac)− 4|) + δd(|ν(d)− 5| − |ν(d)− 4|)

βi =

{
0, if |ν(i)− 4| ≤ |ν(ṽ)− 4|
1, otherwise

δi =

{
0, if |ν(i)− 5| ≤ |ν(i)− 4|
1, otherwise

Thus, Ev penalizes quadrilateral collapses that lower the quality of the local vertex

valences. Note that for a given quadrilateral two collapse configurations exist, each with

distinct metrics. Finally, doublets are given the highest priority and collapsed when

detected.
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4.2.3 Näıve Simplification

The repeated iteration of any single collapse operator, while ideal in some circum-

stances, proves inadequate when applied to a broader spectrum of quadrilateral mesh

connectivity. The polychord simplification scheme creates an ideal reduction of some

semiregular meshes, further discussed in Section 4.2.6, that maintains high quality ele-

ments at all levels of detail. However, for irregular, and some semiregular meshes, where

the polychords are not well structured, their deletions create too many high valence

vertices and poorly shaped quadrilaterals. Furthermore, simplification that relies solely

on polychord deletions may terminate early, unable to generate lower resolution models,

because of structural complexities. As illustrated in Figure 4.7, even for well structured

models, dominated by ideal vertices, the polychords may exhibit a knotting effect, winding

over a significant portion of the model, that prohibits further deletions.

On the other hand, näıve simplification using on the qvMerge operator is not im-

peded by the dependence on the dual structure. Given irregular meshes, the weighting

scheme prioritizes the collapses such that the number of ideal vertices significantly im-

proves through simplification, further discussed in Section 4.2.6. However, this technique

increases the number of nonideal valence vertices undesirably during simplification of

(semi)regular quadrilateral meshes.

4.2.4 Simplification Algorithm

4.8: The QMS state diagram.
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The novel quadrilateral mesh simplification algorithm, coined QMS, balances the

global polychord and local qvMerge operators to achieve a flexibility that generates high

quality results independent of the structure of the mesh connectivity. As shown in the

state diagram, illustrated in Figure 4.8, the algorithm favors the polychord collapse,

iteratively choosing the deletion that best improves the mesh’s connectivity while least

affecting its geometry (looping over state transitions a and b). When no further poly-

chord collapses are available, bounded by threshold tolerances, the algorithm selects a

quadrilateral element for deletion (state transition c). The qvMerge modifies the local

neighborhood’s adjacencies and alters the dual polychord structure. Consequently, the

algorithm returns to the polychord collapse state (via state transitions d and b), to inspect

the deletion eligibility of the newly configured polychords. Doublets are removed after

each collapse (state transitions a and d), as opposed to implementing a final pass, because

experiments indicated a better control over the element count and quality of the final

mesh.

The state transition from the polychord collapse to the qvMerge enables the adaptive

nature of QMS. This approach relies on the qvMerge to unwind complex knots that prevent

polychord collapses, illustrated in Figure 4.7, to continue simplification. Furthermore,

given irregular meshes, the algorithm quickly transitions to the qvMerge to avoid the

poor quality results associated with polychord deletions.

4.2.4.1 Alpha Terms

For the simplification results shown throughout this chapter, mesh connectivity is

the dominant factor of the sorting metrics (αv = 0.9, αq, αd = 0.05). With these

settings, the collapses are sorted primarily by the quality of the valences created during

the deletion, greedily selecting the best possible vertex valence configuration after each

iteration. The small weights given to the QEM and area metrics allow similar valence

generating collapses to be sorted based on their geometric impact.

The weighting factors of the prioritizing function offer the user some control to allow

tuning of the simplification performance, necessary in pathological cases. For instance,

illustrated in Figure 4.9, the rook model is defined by rotating a curve about an axis,

resulting in a latitude-longitude based connectivity with two polar points. For this model,

the valence-based weighting scheme described earlier deletes all longitudinal polychords

prior to any of the latitude oriented polychords, due to high errors associated with the
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4.9: The rook model is defined by rotating a curve about an axis, resulting in two
polar points. The default weights, emphasizing the valence term αv = 0.9, αq = αd =
0.05 (consistent with all other simplification results) generates a poorly simplified mesh.
Instead, user tuning the weights for such pathological cases, αv = 0.05, αq = αd = 0.475,
constructs a better simplification hierarchy.

polar points. This creates many elongated rectangles, encouraging, instead, a weighting

scheme that evenly splits the QEM and area terms with little or no emphasis on the

valence information (αv = 0.05, αq, αd = 0.475).

4.2.4.2 Quadric Error Metrics

To preserve geometric fidelity, QMS extends the well known quadric error metric

(QEM) to assist in relocating simplified vertices to reduce the error incurred by each

operation. The initial QEM matrices are computed for the original mesh vertices by

virtually splitting each quad into four triangles emanating from the dual centroid. In

this manner, this extension accommodates for the nonplanarity of quads while using the

existing triangle-based QEM computations. The initial collapse vertices are computed by

minimizing the QEM metric to reduce geometric error.

4.2.4.3 Mesh Smoothing

The QEM computations associated with each collapse are used primarily to influence

the new vertex locations to better maintain the surface geometry. However, as illustrated

in Figure 4.10, these vertex locations may not create high quality quadrilaterals. To

improve element quality, a posteriori smoothing procedure described by [180] modifies

vertex locations applied after the simplification has finished. The mesh vertices are

perturbed in the normal direction to reduce mesh noise while preserving the mesh volume;
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4.10: The original model, 22k quadrilaterals with 50% ideal vertices, is reduced to 5k
quadrilaterals with 96% ideal vertices. The diagrams compare angle distributions (ideal
90◦) before and after the smoothing process.

simultaneously, a tangential movement is included to improve the quad aspect ratios.

Note that one reason to prioritize valence 4 vertices in the alpha parameters is that it

augments element quality obtained through smoothing.

4.2.4.4 Topology Preservation

To preserve the topology of the manifold mesh, the quadrilateral mesh may be virtually

defined as a simplicial mesh to use the Link condition [47]. In the neighborhood of a

quadrilateral collapse, the quadrilaterals are divided into two triangles by inserting a cross

diagonal edge radiating from the merging vertices, equating its link condition discussion

to that of the triangular edge collapse. Because the polychord collapse consists of multiple

simultaneous edge contractions, the discussion is more complicated.

Deletion of the polychord p executes multiple edge collapses simultaneously, merging
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the vertex pairs Vi into the new vertices ṽi for each mesh edge dual to p. Where the

polychord is adjacent to itself or self intersects, illustrated in Figure 4.4, multiple vertex

pairs Vi will merge into a single vertex; however, for this discussion, each edge is inspected

individually. While inspecting a vertex pair Vi, the remaining vertex pairs are temporarily

replaced with their collapse vertex Vk = ṽk,∀k, k 6= i, to account for the multiple edge

collapses occurring. The remaining quadrilaterals sharing the vertices in Vi are virtually

divided into two triangles by inserting the cross diagonal edge originating from one of the

vertices in Vi. The mesh topology is preserved during polychord deletions by comparing

the intersection of Link conditions associated with the one-neighborhoods of the vertices in

Vi to the union of those associated with the one-neighborhood of the mesh edge connecting

Vi. For further details, we refer the reader to [47].

4.2.4.5 Complexity

The complexity of a single call to the various operators differ. While quadrilateral and

doublet collapse operators take Θ(1), a single polychord operation can take Θ(n). Still,

it is not hard to use amortized analysis to show that the overall cost of each operation is

still Θ(1). The argument is based on the fact that once an element is deleted, it is not

touched again.

4.2.4.6 Sharp Features

In some applications, the preservation of user annotated feature edges is important.

For this reason, QMS considers annotated edge sequences, maintaining their topology

during simplification. Feature preservation is illustrated in Figure 4.11 for two manu-

facturable models containing user annotated features aligned to the sharp edges of these

meshes.

The QMS implementation ensures that the simplified feature edges are homeomorphic

to their original counterparts. Conceptually, triangular facets are created by connecting

each feature edge to a temporary transition vertex. In this way, the feature edges belong

to three polygonal faces, thus defining degree three edges. The remaining edges of the two-

manifold quadrilateral mesh are degree-two, shared by only two quadrilateral elements.

The Link condition supports the preservation of the non-two-manifold edges to ensure

topological isomorphism of the annotated features.

The preservation of feature edges defines additional constraints that restrict the sim-

plification operators and invalidate some potential collapses. While this is terminal for the
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4.11: The QMS algorithm generates controlled level-of-detail representations for
quadrilateral-only models while preserving the topology of the mesh and annotated
features.

polychord and quadrilateral collapse operators, we define a special case to handle doublet

deletions along feature edges. Illustrated in Figure 4.6(d-f), when the shared edges of a

doublet are annotated as part of a feature edge, the two quadrilaterals are simultaneously

collapsed. If the synchronized quadrilateral collapse special case maintains the topology

of the mesh and features edges, the doublet is removed from the mesh.

4.2.5 Experimental Results

The QMS algorithm, as described in the previous section, is implemented in C++.

This code is written with flexibility in mind, with no particular effort given to optimiza-
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tions for speed at this time. The running times reported in this section were performed

on a dual core AMD Opteron 2.21 GHz processor with 4GB memory. The code is robust,

and the implementation has been tested on a large of quadrilateral meshes, including

those shown in this paper.

In addition to the visual quality of the simplified models as shown in Figure 4.11,

Table 4.1 measures several metrics to assess the quality final simplification results of a

variety of quadrilateral meshes, including the connectivity of the simplified meshes as

well as the quality of the quadrilateral elements. An ideal vertex, important in finite

element meshing, is valence 4. Nonideal vertices are extraordinary points that complicate

parameterization solutions and geometric computations. Included in Table 4.1 is the

percentage of ideal vertices, the number of extraordinary points, and the worst case

valence for each mesh.

To further investigate the quality of the quadrilateral elements, Figure 4.12 plots a

histogram of the original and simplified element angles and scaled Jacobians of the models

examined by the table. The scaled Jacobian is a metric equal to 1.0 for a rectangular

element, 0.0 if three vertices (of the four) are colinear, and negative if the quadrilateral

is not convex. Ideally, the angles of a quadrilateral mesh are near 90◦ and the scaled

Jacobians near 1.0, corresponding to orthogonal corners in the mesh.

As shown in Table 4.1, the QMS algorithm generates high quality connectivity, main-

taining low worst case valences and reducing the number of extraordinary points. For

irregular quadrilateral models, i.e., the bumpy torus and the Pensatore2, the simplifi-

cation results significantly improve the percent of ideal valence vertices. Simplification

of semiregular quadrilateral models, i.e., the Pensatore1 (Figure 4.13) and Ra models

(Figure 4.11), generates high quality results. Observe that in some cases, the number

of extraordinay points increases on the semiregular models, i.e., the Bimba and casting

models. This is due to a number of quadrilateral collapses executed in order to unwind

complex polychords (Figure 4.7).

The improved connectivity augments the quality of the corresponding quadrilateral

elements, plotted in Figure 4.12. Despite the quality of the input models, the QMS

algorithm results in simplified meshes with good quality angles and scaled Jacobians.

Some degradation is inherent, similar to the geometric error incurred during the deletions.

Importantly, the element quality of the two models with poor original distributions

in Figure 4.12, corresponding to the bumpy torus (used as a remeshing example in
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4.1: Performance and vertex valence analysis (percentage of ideal vertices, number of
extraordinary vertices, and worst case valence) of models shown throughout the paper:
the semiregular and irregular pensatores (1,2 respectively), bimba, wooden fish, casting,
ra, and the bumpy torus models.

Time Vertex Valences Time Vertex Valences
|Quads| (sec) (% Ideal, |Ex|, Worst) |Quads| (sec) (% Ideal, |Ex|, Worst)
Pensatore1 (Figure 4.13) Pensatore2 (Figure 4.14)

44k n/a (99.9%, 8, 3) 46k n/a (50%, 23k, 10)
5.2k 52 (99.9%, 8, 3) 5.7k 157 (76%, 1.3k, 7)
2.5k 53 (99.9%, 8, 3) 2.9k 160 (80%, 556, 6)

Bimba (Figure 4.11) Fish (Figure 4.11)
62.8k n/a (98%, 726, 6) 32.4k n/a (97%, 876, 6)
15.5k 479 (94%, 898, 6) 8k 115 (91%, 678, 6)
7.8k 500 (92%, 600, 6) 4k 119 (88%, 475, 6)
3.9k 505 (89%, 398, 7) 2k 120 (84%, 314, 6)
970 506 (80%, 189, 6) 490 121 (73%, 131, 6)

Casting (Figure 4.11) Ra Model (Figure 4.11)
20.8k n/a (98%, 405, 6) 3.9k n/a (98%, 52, 5)
5.1k 30 (90%, 491, 6) 925 1 (94%, 52, 5)
2.6k 31 (86%, 344, 6) 450 1 (90%, 44, 5)
1.3k 32 (79%, 259, 6) 190 1 (81%, 36, 5)
630 32 (67%, 205, 6) 95 1 (69%, 28, 5)

Bumpy Torus (Figure 4.24)
95k n/a (50%, 47.6k, 13)
4k 908 (69%, 1808, 6)
24k n/a (92%, 1808, 6)

Section 4.5) and the irregular Pensatore2 (Figure 4.14), are improved through the QMS

processing. There are no similarly bad distributions evident in the simplified histograms.

The low quality mesh angles and corresponding scaled Jacobians are attributed to the

preservation of feature edges, i.e., the casting and Ra models (Figure 4.11), discussed in

the following subsection.

4.2.6 Discussion and Limitations

The QMS algorithm balances polychord and qvMerge operators to generate quality

meshes independent of the underlying mesh structure. As illustrated in Figures 4.13 and

4.14, QMS is an improved approach over any single operation type. For semiregular

meshes, QMS behaves similarly to the polychord simplification method, better maintain-

ing mesh regularity with a minimal number of critical points and near orthogonal edges.

However, where the polychord collapse performs poorly, terminating early on the irregular

mesh, QMS instead mimics the results of the qvMerge-based simplification scheme. The
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4.12: A comparison of the angle distributions and scaled Jacobians measured on the
original and QMS simplified meshes shown throughout this paper, analyzed in Table 4.1.
The QMS algorithm produces angles near 90◦ and scaled Jacobians near 1.0 despite the
input distributions.

assorted deletion types enable a flexibility within the QMS algorithm, generating quality

LOD meshes for arbitrary mesh structures.

Quadric error metrics are used to reduce the loss of geometric fidelity experienced

during the simplification process. Consequently, even when the weighting metrics used to

sort the simplification operators heavily emphasize connectivity improvement, the reduced

meshes maintain high shape fidelity. Illustrated in Figure 4.11 are several organic and

machined models simplified using the QMS algorithm, weighing the deletions solely based



53

4.13: Simplification results for a semiregular mesh using the polychord-, qvMerge-based
and QMS algorithms. The QMS algorithm behaves similarly to the polychord collapses,
maintaining the high quality mesh structure in comparison to the qvMerge-based simpli-
fication.

on connectivity.

The QMS algorithm is unable to discern when too many elements have been deleted

from constrained regions surrounding the user annotated feature edges. In practice,

simplification to coarse representations generates low quality edge angles, evident in

Figure 4.12, sometimes resulting in negative scaled Jacobians, indicating inverted ele-

ments. These poorly shaped elements typically occur in regions around the constrained

feature edges. While the mesh topology is preserved, the inverted elements may inhibit

computations and visualization of the mesh.

When compared to triangle simplification (Figure 4.15), it is harder to maintain small

detailed features like the scales of the dragon because of the global nature of the polychord

collapses. Furthermore, a motivating factor for the use of quadrilateral elements is

based on their natural ability to align to important geometric attributes, i.e., principal

curvature directions; yet, the QMS prioritization metrics disregard related information

during simplification. The remainder of this chapter investigates a localized simplification

method aimed at improving adaptive sampling and mesh alignment based on surface

geometry and associated user specified attribute data while developing simplification

hierarchies with high quality mesh structures.
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4.14: Simplification results for an irregular mesh using polychord-, qvMerge-based
and QMS algorithms. The QMS algorithm mimics the results of the qvMerge-based
simplification, improving the mesh structure and element quality of irregular meshes. The
polychord simplification is unable to complete due to the complex polychord structures.

4.3 Local Quadrilateral Simplification

It has been well articulated that the polychord collapse is instrumental in developing

and maintaining high quality quad meshes. As such, operations related to this dual

structure have been useful in quadrilateral-based geometric processing [35, 24, 152].

Unfortunately, when the polychord spans a significant portion of the mesh, its deletion,

as described in the previous section, has a global effect.

Globalized coarsening operations have adverse effects on element sizing and preser-

vation of surface attributes, illustrated in Figure 4.15. An important challenge of mesh

simplification is the controlled degradation of elements to achieve an adaptive sampling

that respects important surface features. In the conventional sense, this translates to the

preservation of important surface geometry [56], but also extends to appearance attributes

[57, 70], i.e., color and material properties. In contrast to triangle mesh approaches, quad

mesh algorithms may also have the added complexity of achieving element alignment

to orthogonal vector fields defined over the surface, i.e., principal curvature directions.

However, to my knowledge, no quadrilateral-based simplification scheme considers these

properties.

The remainder of this section introduces an algorithm that simultaneously addresses

the challenging problem of developing attribute aware meshes while producing high
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4.15: The QMS algorithm generates controlled level-of-detail representations. The figure
above provides a visual comparison between QEM-based triangle mesh simplification and
my method for a dragon model with 150k elements (left) at 37.5k (middle) and 9.4k
elements (right).

quality quadrilateral-only connectivity at all levels-of-detail, illustrated in Figure 4.16.

In this image, the wooden fish model is coarsened based on the associated importance

map attributes, where darker elements correspond to lower weights. The mesh hierarchy

contains well shaped elements, with few extraordinary vertices, and vertex sample density

and mesh edge alignment based on the input attribute data.

4.3.1 Deletion Operations

In addition to the previously described qvMerge (Section 4.2.1.2) and the doublet re-

moval (Section 4.2.1.3), the localized quadrilateral mesh simplification method introduces

a novel deletion template. The purpose of this deletion operator is to locally reproduce

the effects of the polychord collapse. Discussed in more detail in Section 4.4, this set of

localized deletion operators better enables attribute aware mesh simplification hierarchies,

with quality results on both irregular and (semi)regular quadrilateral meshes.

4.3.1.1 Quadrilateral Edge Merge

The quadrilateral edge merge operator (qeMerge) merges two adjacent quads to their

shared edge then remeshes neighboring elements to maintain quadrilateral-only connectiv-

ity. Merging two quads to a shared edge generates an even number of triangular elements

(either 0, 2 or 4). The remeshing phase, illustrated in Figure 4.17, is able to remove the
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4.16: The qCoarsen algorithm is a localized quadrilateral mesh simplification that
generates quadrilateral-only mesh hierarchies, sensitive to attribute data, i.e., quality
elements scaled to user defined (top) or automatically computed curvature-based (bot-
tom) attributes.

triangles by examining the edges that emanate from the endpoints of the merged edge.

Similar to the wandering edge swaps that occur in Delaunay triangulations [172], the

process can be described as rotating the edge shared by a triangle and quad until two

triangles are adjacent and combine to form a single element. The remeshing is limited

to the one-ring neighborhood of the merged edge and is executed once for each pair of

triangles, so that the qeMerge deletes 4 elements with each execution.

This localized deletion method can reproduce the results of the polychord deletions

(Figure 4.18). The qeMerge initiates a zipper-like effect that locally reproduces the

deletion results of two parallel polychords. In this way, the method may be used on

structured models to maintain high quality connectivity. But, unlike the polychord

deletion, each iteration is localized to avoid the propagation of the deletion by terminating

the zippering effects as determined by the surface attributes, i.e., important geometry

detected as high curvature.

4.3.2 Algorithmic Inputs

The localized coarsening algorithm, coined qCoarsen, requires an input quad mesh

and (optionally) annotated feature edges, importance map, and alignment vector data.

In the absence of user defined importance and vector attributes, the principal curvature

magnitudes and directions are approximated over the discrete model [7] by virtually
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4.17: The qeMerge operator generates an even (0, 2 or 4) triangles, that are resolved by
a subsequent remeshing phase.

4.18: The qeMerge followed by multiple qvMergers executes a zippering effect that
iteratively reproduces the polychord collapse.

subdividing each quad into four triangles. In practice the best results are observed when

the scalar importance values are normalized and scaled over the range [1.0,3.0]. The

simplification process is guided by the attribute data, preserving the topology of feature

edges while generating simplified models that scale element sizes based on the importance

map and improve element alignment to the given vector field.

4.3.3 Prioritizing Operations

To improve and maintain high quality mesh connectivity while obtaining attribute

awareness, it is important to intelligently select the elements for deletion. Simplifying

the state diagram in comparison to the previously described QMS algorithm, qCoarsen

implements a single priority queue to sort the qeMerge and qvMerge operations based on

the impact of each deletion on the resulting mesh. The weighting function, E, influenced

by [150], balances the quality of the vertex valences with sensitivity to importance

attributes,

E(·) = (
Vbefore(·)
Vafter(·)

+ α)2(D(·) + α)2(
Abefore(·)
Aafter(·)

+ α)2,
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where V measures the ratio of ideal vertices to total vertices, before (Vbefore) and after

the deletion and doublet removals (Vafter); D evaluates the average distance between

the merging vertices weighted by the importance scalars; and, A measures the quad

alignment to the attribute vector fields, before (Abefore) and after (Aafter) the deletion.

The constant α (in practice 0.01) is added to each term to ensure that the error metric

is greater than 0, critical in the absence of importance or vector alignment data.

The ratio of before versus after ideal valences improves the mesh connectivity. For

a quad mesh, the ideal valence is 4 and nonideal vertices are extraordinary as they

complicate parameterization solutions and subdivision schemes. This term contributes

lower error values for collapses that improve the mesh structure while penalizing those

that lead to the deterioration in quality of the connectivity.

The distance importance term D causes the element gradation illustrated in Figure

4.16. For the qeMerge operation, D is the average of the distances between the two

pairs of merging vertex groups with the midpoint of their respective group measured as

a percentage of the bounding box diagonal. D is weighted by the importance attribute

scalar assigned the quadrilateral. In contrast, for the qvMerge operation, D measures the

importance weighted distance percentage between the two merging vertices. In this way,

D attributes low errors for elements with small area and elements with low importance

attributes.

The alignment term A generates low error values for collapses that improve the element

alignment to associated attribute vector fields. Abefore measures the average angle of

separation prior to the collapse, modulo 90◦, between the images of dual chords of the

deleting quadrilaterals and their associated attribute vectors projected on the normal

planes evaluated at the quadrilaterals’ centroids, illustrated in Figure 4.19. A is evaluated

as
∑3

i=0(2〈x, ci〉2 − 1)2, where x is the attribute vector assigned the element, and ci is

the image of the dual chord across the ith edge on the tangent plane defined by the

quadrilateral’s normal evaluated at its centroid. Well aligned elements are assigned a

metric near 1, while misaligned elements are near 0. For the qeMerge this consists of

the two quads being removed, while the qvMerge considers a single element. Aafter

computes the similar metric based on the angle of separation between the edges to which

the quadrilaterals collapse with the attribute vectors.

The effects of attribute vector fields are illustrated and emphasized in Figure 4.20 for

simplification of the torus model. The elements are colored based on their alignment,



59

4.19: qCoarsen measures element alignment based on the angle of separation between
the assigned attribute vectors and the dual chords. A well aligned element is oriented
where its sides reflect the associated vector frame, while a misaligned element is rotated
by 45◦.

4.20: qCoarsen weights attribute vector field alignment. This proof of concept example
exaggerates the effects by forcing alignment to an unnatural vector field (the x-axis
projected onto the surface).

computed as previously described, to a constant vector field in the x-direction. Such

a vector field is not typical, but is useful in illustrating the effects of the alignment on

the simplification results. In Figure 4.20, red designates misaligned quads with angle of

separation between the dual chords and assigned attribute vectors near 45◦; and, green

represents well aligned elements, corresponding to angles measuring 0◦ or 90◦. Simpli-

fication without vector field alignment is achieved by assigning null attribute vectors to

the mesh.

To prevent the creation of many extraordinary vertices with high worst case valences,



60

a conditional term is added to E. If the worst case valence count after a collapse is greater

than the worst case before, V w
after > V w

before, then

E(·) = E(·) + β · V w
after(·),

where β (in practice 100) is a large constant. In this way, large error terms are awarded to

collapse scenarios that greatly degrade the quality of the mesh structure. In practice, this

conditional worst case valence term effectively reduces the creation of new extraordinary

vertices.

4.3.3.1 Mesh Smoothing

To improve the element quality and attribute sensitivity during simplification, a

centroidal-based smoothing procedure is executed on the vertices belonging to the quads

in the one-ring neighborhood of each collapse. For a vertex v with neighboring quads

{qi} corresponding to dual centroids {ci}, surface normals {ni} and importance attributes

{ai}, the new point ṽ is evaluated as the weighted average of the centroids, ṽ = (
P

aiciP
ai

).

This point is projected to the tangent plane,
∑

ni, defined at v to better preserve the

surface geometry.

Consistent with the QMS algorithm, QEMs are used to determine the vertex locations

following a deletion to maintain mesh fidelity. While the smoothing operation will modify

vertex locations, the associated QEMs remain unaffected. Future deletions initialize the

new neighborhood with the QEM-based vertex locations as if previous smoothing did not

occur. In practice, this results in quality representations that respect the original mesh

geometry.

4.3.3.2 Topology Preservation

During simplification, qCoarsen maintains well-behaved surfaces by disallowing col-

lapse operators that generate nonmanifold models. Similar to the QMS algorithm, each

deletion operation can be validated using Link condition [47]. However, for ease of

implementation each collapse is allowed within qCoarsen, building an intermediate neigh-

borhood. An analysis obtained by exploring the dual representation of the intermediate

connectivity verifies that each quadrilateral contains exactly four unique chords. In such

cases, the deletion results in a well-behaved mesh and the intermediate neighborhood is

updated within the current mesh.
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4.3.4 Experimental Results

The qCoarsen algorithm was implemented in C++ and running times reported in

Table 4.2 were performed on a 2.16 GHz Intel Core 2 Duo with 4GB memory. In these

results, the vertex smoothing operation is performed once at the end of the simplification

routine, as opposed to following each deletion step, typically resulting in a 4x speedup.

The algorithmic cost of the qCoarsen implementation is O(mk log n−m) for m deletions,

k updates per deletion where queue updates are O(log n) for n quads. Because each

iteration of the deletion triggers a two-ring neighborhood update, a pathological mesh

may be organized so that this region includes the entire model, thus k = n. However, in

practice the update neighborhood is much smaller, k < 40, where the cost is O(m log n).

The code has been rigorously tested by constructing mesh hierarchies in the order of

a few minutes for various models, illustrated in Figure 4.21 and analyzed in Table 4.2.

The table quantifies the quality of the meshes, measuring statistics of the quads’ scaled

Jacobians; the structure, documenting the percentage of ideal vertices, the number of ex-

traordinary vertices and the worst case valence information; and lastly, the approximation

error measuring the Hausdorff distance between the simplified mesh and its original in

terms of the bounding box diagonal dB. The qCoarsen algorithm generates well-behaved,

homeomorphic surfaces despite the quality of the input mesh; most notably, significantly

improving the mesh structure of irregular models while maintaining close approximations

of the original surface.

4.4 Simplification Comparison

Comparison of the QMS results to those of the qCoarsen algorithm illustrates the

advantages of each approach. The use of a global deletion operator with a valence

heavy weighting metric allows the QMS algorithm to exploit highly structured dual

representations. A subset of semiregular quad meshes, including polycube-based remeshes

[169], dual contour surface [24], swept and rotated geometries, some spline-based models,

and some quadrilateral meshes generated from morse-based techniques [42], exhibit the

necessary structure because the dual polychords exhibit low geodesic curvature while

defining concise loops over the model. For these meshes, the QMS algorithm gen-

erates highly structured models through simplification. At the expense of additional

extraordinary vertices, qCoarsen generates more accurate simplifications with adaptive

sampling characteristics. Furthermore, due to the highly structured nature of the dual
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4.2: Simplification results (computation time, mesh quality (Scaled Jacobian statistics),
mesh structure (percent of ideal vertices, number of extraordinary vertices, and worst
case valence), and error) for various meshes.

Time S.Jacobian Vertex Valence Error
|Quads| (sec.) Median Worst Ideal |Ex| Worst (10−3)
Wooden Fish (Figure 4.16)

33k n/a 0.99 0.44 97% 876 6 n/a
16k 20 0.98 0.3 96% 673 6 13.9dB

8k 30 0.95 0.14 94% 509 6 11.9dB

4k 35 0.92 −0.17 91% 363 6 20.5dB

2k 37 0.91 0.18 89% 220 6 23.0dB

Egea (Figure 4.23)
27k n/a 0.63 0.02 51% 13.1k 11 n/a
3k 21 0.91 0.42 80% 592 6 17.0dB

12k n/a 0.97 0.52 95% 592 6 10.9dB

Stanford Bunny (Figure 4.21)
22k n/a 0.92 0.0 56% 9.6k 6 n/a
5k 22 0.96 0.52 93% 337 6 11dB

1k 27 0.93 0.44 88% 120 6 31dB

Fertility Model (Figure 4.21)
23k n/a 0.65 0.09 51% 11k 12 n/a
5k 17 0.87 0.22 72% 1396 7 8dB

2k 21 0.84 0.11 81% 366 6 24.7dB

representation, QMS is extremely efficient, removing many quads with each pass of

the polychord deletion, exemplified by the simplification performance of the pensatore

model in Figure 4.22 and Table 4.3. However, as illustrated by the timings for the other

simplification examples, this behavior is atypical.

For the remaining quad models, a majority of irregular and many semiregular meshes,

where the dual representation does not demonstrate the necessary structure that lends

itself to polychord deletions, the advantages of qCoarsen are more pronounced. For

example, the bimba model, illustrated in Figure 4.22, is generated by the periodic global

parameterization algorithm [126] and is dominanted by ideal vertices (99%); yet, the

extraordinary vertices do not describe a coarse cube-like decomposition of the model so

that the polychords describe complex knots, see Figure 4.7. Under such circumstances,

qCoarsen outperforms QMS in every way, documented in Table 4.3, with faster compu-

tations, fewer extraordinary vertices, and lower approximation errors (measured in terms

of the bounding box diagonal dB) with adaptive sampling to better describe complex

geometric details.
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4.21: The simplification hierarchies for multiple models generated by qCoarsen.

4.5 Simplification-based Remeshing

The introduced techniques for simplification can be used to robustly guide a quadrilateral-

only reconstruction of arbitrary topological and polygonal surface meshes. The remeshing

pipeline, illustrated in Figure 4.23, constructs a quadrilateral-only mesh by splitting the

polygonal elements based on the rules of Catmull-Clark subdivision. The split model

is simplified using QMS or qCoarsen to a quarter of the desired element count. In

Figure 4.23, automatically computed curvature-based attributes are associated with the

model to guide the qCoarsen simplification method. Finally, the model is subdivided

and vertices projected to the original surface model using a bounding volume hierarchy

to improve nearest neighbor searches. This technique is based on the observation that a

single iteration of the Catmull-Clark subdivision yields a quadrilateral-only representation

independent of the polygonal types present in the original mesh. Furthermore, while the

splitting results in an explosion of elements and generates many extraordinary vertices,

the simplification algorithms are able to reduce the element count while significantly

improving the mesh structure (Tables 4.1 and 4.2).

Geometric error thresholds during simplification are used to constrain the output

remesh within a bounded distance of the original surface. Additionally, the simplification

validations maintain mesh topology and user annotated feature edges, thus recreating

important, i.e., sharp, curves from the original model. Because this remeshing procedure

is entirely connectivity-based, relying on the deletion templates, the technique is both
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4.22: Comparison between the two quad simplification algorithms (QMS) and qCoarsen,
for a highly structured (left) and less structured (right) meshes. While QMS strives to
maintain mesh structure and element quality, qCoarsen introduces additional extraordi-
nary vertices to reduce approximation errors and respect surface attributes.

robust and simple to implement, with multiple results of varying genus are illustrated in

Figure 4.24, addressing the challenging problem of quadrilateral-only mesh generation.

4.6 Summary

This chapter shows how it is possible to use the dual structure to develop a quadri-

lateral mesh simplification, through the (QMS) technique. To the best of my knowledge,

QMS is the first fully automatic technique for simplification of quadrilateral meshes

using quality metrics. Robustness is one of the key strengths of this approach; the

QMS algorithm is successfully demonstrated on a large number of models. Another is

simplicity; it is relatively easy to implement the algorithm and reproduce the associated

results.

The localized variant of quadrilateral mesh simplification, the qCoarsen algorithm,

describes a fully automated technique for quadrilateral-based simplification that simulta-

neously generates well structured quadrilateral-only meshes, dominated by ideal, valence

four vertices, while exhibiting augmented attribute awareness via controlled element sizing

and alignment to geometric features. User interaction is optional and straightforward,

allowing an importance map and a vector field defined over the surface, to enable tailored

algorithmic behavior. The localized deletion operators, while improving the attribute

awareness of the simplification results, further motivate the robustness and simplicity of
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4.3: Quantitative comparison of QMS and qCoarsen.
Time Vertex Valence Error

|Quads| (sec.) (Ideal,|Ex|,Worst) (10−3)
Pensatore (Figure 4.22)
43650 n/a 99% 8 3 n/a
11k (QMS) 46 99% 8 3 8dB

11k (qCoarsen) 38 99% 123 6 1.3dB

Bimba (Figure 4.22)
62842 n/a 99% 726 6 n/a
15.5k (QMS) 479 94% 898 6 4.5dB

15.5k (qCoarsen) 56 98% 432 6 3.8dB

Wooden Fish (Figures 4.11 and 4.16)
32.4k n/a 97% 876 6 n/a
2k (QMS) 120 84% 314 6 56.0dB

2k (qCoarsen) 37 89% 220 6 23.0dB

Bumpy Torus (Figure 4.21)
95256 n/a 50% 47.6k 13 n/a
23.5k (QMS) 878 66% 8006 10 14.8dB

23.5k (qCoarsen) 69 66% 7888 9 9.7dB

connectivity-based approach to quadrilateral-only mesh processing.

I touch only on the potential applications of this framework with the description of

a simple quadrilateral remeshing approach. Based on the usefulness of triangle-based

simplification in a wide variety of geometric processing algorithms, I believe that the

discussion in this chapter can be used as a building block in many other quadrilateral-

based processing techniques. The following chapter further motivates this research by

improving techniques for simplification guided remeshing of semiregular, quadrilateral-

only surfaces.
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4.23: The elements of a triangular mesh are split using a Catmull-Clark based scheme to
generate a quadrilateral-only mesh. A single iteration of the Catmull-Clark iteration is
shown to generate quadrilateral-only models for arbitrary polygonal types, i.e., triangles,
quad-dominant and t-junction models. The quadrilateral-only model is simplified to a
fraction of the desired element count, then subdivided and reprojected to the original
surface.

4.24: Simplification-based remeshing can robustly generate quad-only meshes from
polygonal meshes with arbitrary genus.



CHAPTER 5

REMESHING FROM SIMPLIFIED BASE

DOMAINS

Simplification-based remeshing is a robust approach to quadrilateral-only mesh gen-

eration, relying on connectivity-based operators that are simple to implement and under-

stand. Refinement methods insert ideal vertices so that no new extraordinary vertices

are generated with each iteration of subdivision, to define semiregular mesh structures.

However, the method proposed in Section 4.5 is limited in its application by requiring

that the simplified base domain is within a reasonable distance of the original model to

properly compute the backward projections.

The natural progression of simplification-based remeshing is to address the coarse-

ness of the base domain model. This chapter introduces an algorithm to remesh input

polygonal-based surfaces of arbitrary genus using simplification and refinement methods,

while creating a mapping function of the original model onto the simplified mesh at every

level-of-detail, illustrated in Figure 5.1. This chapter describes the implementation of an

hierarchical mapping technique as well as an adaptive resampling of the base domain.

These methods describe a semiregular, quadrilateral-only remeshing algorithm that can

be generalized to arbitrary polygonal remeshing.

This work uses quadrilateral-based simplification to build the base domains. It is well

articulated in Chapter 4 that the quadrilateral element enforces structural constraints

on the mesh, where the deletion of a single quadrilateral may require the removal of a

larger collection of elements to preserve an all-quadrilateral mesh or to maintain the mesh

structure. While this work is inspired by the multiresolution adaptive parameterization

of surfaces (MAPS) [94], and its variant [85], for triangle-based remeshing, a key novelty

is the development of a mapping technique that is not dependent on the particular

coarsening operations as required by quadrilateral-based simplification.

While semiregular, quadrilateral-only meshes demonstrate structural advantages use-

ful in subsequent applications, their constructions are complicated by parameterization-
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5.1: The algorithm splits an input mesh of arbitrary polygonal type (a) into a
quadrilateral-only mesh (b), simplifies the model while maintaining critical levels-of-detail
(c) to guide the map of the original geometry to the base domain (d). The base domain
is refined, the vertices relaxed to accommodate for area distortions in the map (e), then
the vertices are reprojected to the original surface (f). A surface parameterization is a
byproduct of the method to facilitate geometry processing, i.e., texture mapping (g).

based challenges. The base domain coarseness is constrained by the genus and geometric

complexities of the model, where too few base elements typically lead to distorted elements

and poor surface approximation, further discussed in Section 5.1.5. To address these

problems, an adaptive sampling of the base domain uses an approximation to the surface

area as well as element quality to reduce the parametric distortion and improve remeshing

errors.

5.1 Semiregular Remeshing

This algorithm relies on the observation from Section 4.5 that a single execution of

Catmull-Clark subdivision [28] generates a quadrilateral-only representation of an input

mesh, independent of the original polygonal elements. The splitting inserts ideal vertices

at the midpoints of the input mesh edges, and vertices with valence equal to the number

of polygon sides at each face centroid. The remainder of this section describes the

simplification, mapping and refinement processes for remeshing.

5.1.1 Deletion Operators

Quadrilateral-based simplification constructs the base domain mesh, while maintain-

ing a mapping from the original model to the coarsened mesh at each levels-of-detail. In

contrast to triangle-based techniques [94], mapping quadrilateral-based simplifications

have the challenge of supporting a large cast of deletion templates, including global

operators. In particular, as discussed in Chapter 4, the dual polychord collapse operator
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is a critical deletion operator for quadrilateral meshes.

While mapping of some polychord neighborhoods to the plane may be straightfor-

ward, the complex knots and global nature of these structures can quickly complicate

the parameterization method, as illustrated in Figure 5.2. In this work, the QMS

and qCoarsen algorithms, described in Chapter 4, are used to drive the simplification

process. Together, these techniques describe various deletion operators, as well as their

own weighting functions for the automated prioritization of the element deletions. A

novel hierarchical mapping scheme operates independent of the underlying simplification

method, supporting both QMS and qCoarsen without special case handling.

5.1.2 Keyframe Meshes

The function φ defines a bijective mapping of the vertices V of an input quad mesh

M to the base domain mesh M0, φ : M → M0. To support arbitrary deletion operators

without special case handling, φ is constructed by storing a set of keyframe meshes

K{M,...,0} during the simplification process, illustrated in Figure 5.3. The term keyframe

is intended to evoke a popular animation technique, where important locations and poses

are defined through which a character deforms. Analogously, the keyframe meshes dictate

the path progression for points as they map from M to M0.

The original model M is pushed onto the stack of keyframe meshes, denoted as KM .

During simplification a new keyframe mesh Km−1 is committed to stack as necessitated

by an inspection routine executed after each deletion iteration. The current simplified

mesh M c is committed to the keyframe stack if the Hausdorff distance between M c and

Km, the previously committed keyframe mesh, is greater than a specified distance d; or

if the projection of Km onto M c has flipped elements. Lastly, the base domain mesh M0

is committed as the final keyframe mesh K0.

To improve performance, this inspection process is localized to a subset of quads Qm

of Km. Consider that a deletion operator processes a set quads Qc of M c, including the

element(s) intended for deletion and their one-neighborhood, returning a new set of quads

Qnew, where |Qnew| < |Qc|. Only the subset of quads Qm of Km within the distance d of

the original quad group Qc are considered. The vertices of Qm are projected onto Qnew

using a closest point projection, testing the distance threshold and for flipped elements.

Localizing the inspection improves performance.
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5.2: A single polychord is highlighted on the two models above. While mapping some
polychord neighborhood boundaries to the plane is straightforward (left), the global
nature of these structures may require more complicated parametric domains (right).

5.1.3 Hierarchical Keyframe Mapping

The development of φ : M → M0 is guided by the keyframe meshes, where individual

functions are independently developed to map each keyframe mesh to the next coarsest

representation, φm : Km → Km−1. As illustrated in Figure 5.4, the function φm is

obtained through iterative ray casting and relaxation of the vertices of Km over Km−1

until inverted elements are resolved. Figure 5.4 illustrates a 2D diagram of the projection

and relaxation phase results, as well as an example image of the fold over evident within

a projected mesh.

A new mesh K̃m that is the projection of Km onto Km−1, produces an initial φm.

To ensure that φm is a bijective mapping, flipped elements in K̃m are resolved via a

relaxation phase. A movement vector m̃ corresponding to a vertex ṽ of K̃m is computed

towards the weighted average of the centroids of the neighboring quads q̃i of ṽ:

m̃ =
P

i C(q̃i)θ(Ñ
m(C(q̃i)),N

m−1(ṽ))P
i θ(Ñm(C(q̃i)),Nm−1(ṽ))

− ṽ,

θ(n1, n2) =

{
10, 〈n1, n2〉 ≥ 0.0
0, otherwise

where C(q) computes the centroid of quad q, Ñm(v) returns the normal of K̃m evaluated

at v, Nm−1(v) returns the normal of Km−1 evaluated at the projection of v, and 〈n1, n2〉
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5.3: Keyframe meshes Km are discrete samplings of the simplification hierarchy, used to
guide the mapping of a point from KM to K0.

is the inner product of the two vectors. The relaxation process resolves flipped elements

of K̃m by assigning larger weights, θ, to nonflipped quads. The weighting differential

results in a pulling effect that spreads points away from flipped regions. The movement

vector m̃ is projected and scaled, ṽ = ṽ + α(m̃ − 〈Nm−1(ṽ), m̃〉Nm−1(ṽ)), in practice

α = 0.5, and ṽ is reprojected onto Km−1.

Developing the mapping functions φm between keyframe meshes allows the procedure

to be parallelized with the simplification process and each other. This hierarchical map-

ping technique improves computational performance required in the resolution of flipped

elements, because each keyframe mesh stores a reduced number of vertices, especially

in comparison to M . The projection of a point on M to M0 through the keyframe

mapping functions φm necessitates the use of barycentric coordinates, illustrated in Figure

5.3. In this work, the barycentric coordinates are computed by virtually dividing each

quadrilateral into four triangles, radiating about the centroid.

5.1.4 Downward Projection

A point p on Km is assigned the barycentric coordinates (α, β, γ) for the subtriangle

t of the quadrilateral q. The vertices of q are indexed q.vi, i = (0, 1, 2, 3), the centroid is

q.c, and the subtriangle t is described by vertices (q.vt, q.v(t+1)%4, q.c). The projection of

p onto Km−1 is computed based on φm, illustrated in Figure 5.5.

When the vertices of q map to the same subtriangle t′ of quadrilateral q′ on Km−1,
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5.4: The function φm maps the vertices and connectivity of the keyframe mesh Km onto
the next keyframe mesh Km−1, developed as a two phase process: ray cast projection (a)
and relaxation to resolve inverted elements in the projection of Km (b).

mapping p onto Km−1 is straightforward (Figure 5.5a). Barycentric coordinates are

computed for each vertex q.vi on t′ as (αi, βi, γi), and those assigned the centroid are

an average of the four vertices, (αc, βc, γc) = 1
4

∑4
i=0(αi, βi, γi). The new barycentric

coordinates for p within t′ are computed as a weighted combination,

(α′
t · α + α′

(t+1)%4 · β + α′
c · γ,

β′t · α + β′(t+1)%4 · β + β′c · γ,

γ′t · α + γ′(t+1)%4 · β + γ′c · γ).

The more challenging problem is when the vertices of q map to multiple subtriangles

on Km−1. When the vertices of q map to two adjacent subtriangles, t′1 and t′2, on Km−1,

the triangles may be locally flattened. On this plane, new barycentric coordinates are

computed for p after projecting the vertices q.vi and q.c. However, when additional

subtriangles are involved, more intricate flattening strategies are required.

Instead, to compute new barycentric coordinates of p, we decided to use a ray casting

approach (Figure 5.5b). The vertices q.vi correspond to q.v′i of K̃m, q.v′i = φm(q.vi).

Because the vertices of q map to multiple subtriangles of Km−1, the simple projection

case (Figure 5.5a) does not apply. Instead, the projected centroid q.c′ is the average of

the mapped vertices q.c′ = 1
4(

∑
i q.v

′
i). This point q.c′ is projected in the normal direction

Ñm(q.c′) onto Km−1.
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5.5: The barycentric coordinates of the point p within subtriangle t of q ∈ Km are
known. If all vertices of q map, φm(v), to the same subtriangle (a) t′ ∈ Km−1, then new
barycentric coordinates assigned to p are computed at p′ within t′. If the vertices of q
map to multiple subtriangles (b), the mapped centroid is projected in a normal direction
to Km−1, c′, and p′ is computed. If p′ is not on a subtriangle of Km−1, then it is projected
in a normal direction.

If the vertices q.v′t, q.v′(t+1)%4, and q.c′, map to the same subtriangle of Km−1, then new

barycentric coordinates for p may be computed as a weighted combination, previously

discussed. However, when these vertices map to multiple subtriangles, p′ is computed

on the triangle formed by these vertices, p′ = αq.v′t + βq.v′(t+1)%4 + γq.c′. This point

is projected in the normal direction Ñm(p′) onto Km−1, computing new barycentric

coordinates for p at the intersection.

The ray casting based downward projections yield similar results to the previously

described unhinging technique, without special cases for the various neighborhood sce-

narios. For improved performance, the vertices and centroids of each keyframe mesh are

projected once and stored. Future projections require only normal projections of p′ for a

subset of the subtriangles in Km.

5.1.5 Adaptive Resampling

Following the computation of a map, typically a semiregular remesh is computed

through regular refinement of K0 and backward projection of the vertices onto KM .

However, this approach is unable to accommodate for nonequiareal mappings that results

in poor surface approximations. We allow the base domain remesh R0 to adaptively
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5.6: Regular refinement of the base domain may poorly approximate the surface, due to
area-based distortions in the mapping. Our refinement and adaptive resampling better
accommodates these regions, highlighted on the tail and ears.

resample K0 (Figure 5.6), guided by surface area, approximation error and the element

quality of the final remesh RM .

The vertices of R0 lie on the base domain determined by regular refinement of M0.

The area of the original model M associated with each vertex v ∈ R0 can be computed

by integrating the area of M that maps onto M0 nearest to v. Relaxation of v occurs by

moving towards the area weighted centroid of its neighboring remesh vertices. Iterative

execution of the relaxation improves the distribution of the remesh vertices, more evenly

sampling the original model.

Because our keyframe mapping approach does not describe a conformal mapping,

the angles formed by edges of R0 do not translate to similar angles on RM . A second

relaxation phase is integrated within the resampling to reduce parametric distortion on

RM by adapting a ballooning scheme that improves element quality and approxima-

tion [140]. Each vertex in RM moves in the direction of the vertex normal, scaled by

the accumulated error value measured as the signed distance between each neighboring

quadrilateral centroid and M . The vertices are simultaneously relaxed toward the the

average of their connected neighbors, and projected onto KM . The vertices of R0, v0
i

corresponding to vM
i on RM , are updated to reflect these relaxations, v0

i = φ(vM
i ).

This process leverages both representations of the remesh on the base domain R0

and the original model RM . The relaxations improve element quality while allowing
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the remesh to cope with parametric distortions in the map, illustrated in Figure 5.6.

Furthermore, hierarchical resampling, achieved by interleaving the refinement and two

relaxation phases produces faster convergence of the remesh vertices, a method used for

the remeshes illustrated throughout this paper.

5.1.6 Area Approximation

Wavefront propagation used to compute the surface area associated with each remesh

vertex, as described above, is time consuming and costly. Instead, to quickly approximate

the area of the original model as it maps to the base domain based on the keyframe maps,

we construct two point clouds, using a kd-tree to facilitate nearest neighbor searches: PM

is a near equiareal, random sampling of KM , and P 0 is its mapping onto K0 through the

keyframe maps, φm.

Given P 0, the approximation of the surface area associated with a remesh vertex v

of R0 is computed by summing the number of points in P 0 within a specified distance

of v. The search radius is evaluated as one half the average distance between v and

each of its neighbor vertices in R0. Because the sampling of PM is near equiareal, the

neighborhood count serves as a sufficient scalar to approximate an area-based weight that

can be assigned to each point in R0.

5.1.7 Point Projection

It is possible to project all of the original vertices through φ onto the base domain,

illustrated in Figure 5.6, for precise backward projection computations. However, for

improved computational performance, we leverage the correspondence between the points

in PM and the projected points P 0. An approximation of the backward projection for a

point p on K0 with neighboring points ni ∈ P 0 that correspond to n′i ∈ PM , is computed

as

p′ = (
∑

i

n′i
‖p− ni‖

)/(
∑

i

1
‖p− ni‖

).

With a dense sampling of PM (in practice 2k points), the technique is fast and adequate

for our purposes, avoiding the mapping of potentially many vertices in M to K0. The

subsequent ballooning, relaxation and projection will ensure that p′ is placed on M .

Furthermore, the relationship between PM and P 0 can be further exploited during the

downward projections while updating the point locations of R0 to reflect relaxations that

occur on RM .
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5.1.8 Feature Preservation

The simplification operators maintain the topology of feature edges, important struc-

tures annotated on the original mesh [35]. The keyframe-based remeshing method recon-

structs feature edges with special case handling during the adaptive resampling. When

refining the feature annotated edges of the base domain K0, the new vertices are mapped

to the corresponding feature on KM and moved to evenly resample the original feature.

These vertices are later fixed during the subsequent smoothing iterations, relying on

movement of normal vertices to resolve inverted elements.

5.2 Results

The quadrilateral mapping described in Section 5.1 was implemented in C++. The

remeshes were performed on a 2.16 GHz Intel Core 2 Duo with 2GB memory, taking in

the order of a few minutes to compute, further detailed in Table 5.1 for remeshes shown

throughout the paper. The timings measure four phases, monitoring the simplification

of the model (I), the additional time needed to complete the keyframe mappings (II),

and the adaptive resampling and backward projections (III). This code had been built to

emphasize its ability to operate independent of the simplification technique, supporting

any variety of deletion operations without special case handling.

The implementation is tested on a range of models with varying genus, geometric

complexities, and input polygonal types, illustrated in Figure 5.7. These remeshes test

multiple quadrilateral-based simplification algorithms that support locally- and globally-

based operations, while developing quadrilateral-only reconstructions of triangle-, quad-

dominant and irregular quadrilateral-only meshes. All of the remeshes shown throughout

this paper emphasize the advantages of our simplification-based algorithm by supporting

very coarse base domains.

Table 5.1 quantitatively analyzes the quality of the remeshes, documenting approxima-

tion errors, number of extraordinary vertices (nonideal valence four), worst case valence,

and the orthogonality of the resulting parameterization. The remesh error measures the

Hausdorff distance of the remesh and the original model, relative to the bounding box

diagonal dB. The number of extraordinary vertices is related to the number of coarse

quad regions that segment the model for parameterization or semiregular remeshing. The

scaled Jacobian statistics indicate the orthogonality of the mesh elements, average and

worst case, where 1 corresponds to a rectangle, 0 to a quad with 3 colinear vertices, and
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5.1: Analysis of the original quad models (following the initialization subdivision when
necessary), and the remesh results, including remesh times (simplification (I), keyframe
mapping (II), adaptive remesh (III) and total (T)), vertex information (total, extraor-
dinary, and worst case valence), element quality (median and worst Scaled Jacobian,
median and standard deviation mesh angles), and approximation errors of the models
shown throughout this chapter.

Time (seconds) Vertices S.Jacobians Mesh Angles Error
(I,II,III) total (|V|, |Ex|, wc) (median, worst) (mean, σ) (10−2)

Egea (Figure 5.1) (27k, 13.1k, 11) (0.63, 0.02) (90◦, 36.6◦) n/a
(26, 30, 28) 84 (10.2k, 8, 5) (0.98, 0.66) (89.9◦, 9.6◦) 0.71dB

Bunny (Figure 5.6) (21.7k, 9.6k, 6) (0.92, 0.0) (89.9◦, 18.1◦) n/a
(34, 1348, 33) 1415 (2.3k, 8, 5) (0.88, −0.25) (89.3◦, 32.5◦) 4.3dB

Fertility (Figure 5.7) (22.5k, 11.1k, 11) (0.65, 0.09) (90◦, 34.3◦) n/a
(18, 9, 42) 69 (31.9k, 110, 6) (0.98, 0.06) (89.9◦, 9.7◦) 1.0dB

Venus (Figure 5.7) (28.1k, 14k, 11) (0.83, −0.96) (89.9◦, 23.3◦) n/a
(139, 15, 39) 193 (25.6k, 26, 6) (0.98, 0.45) (89.8◦, 10.7◦) 1.4dB

Moai (Figure 5.7) (63.5k, 31k, 11) (0.72, −1.0) (89.9◦, 28.8◦) n/a
(293, 7, 24) 324 (12.8k, 12, 5) (0.98, 0.45) (89.7◦, 10.7◦) 0.083dB

Pensatore (Figure 5.7) (31.1k, 16.4k, 6) (0.88, 0.05) (89.9◦, 20.1◦) n/a
(66, 31, 33) 130 (19.5k, 8, 5) (0.99, 0.41) (89.8◦, 8.6◦) 0.16dB

inverted elements are less than 0.

Further analysis compares the results of the adaptive remeshing versus traditional

regular refinement, illustrated in Figure 5.6. Regular refinement, especially when simpli-

fying to coarse base domains, yields higher approximation error (E = 0.16dB) than our

adaptive technique (E = 0.043dB). Without incorporating the relaxation scheme, regular

refinement does not handle parametric distortions, generating a median scaled Jacobian

of 0.81 with a worst case −0.94. Our adaptive resampling relaxes vertex locations based

on element quality to improve these metrics, with a median scaled Jacobian equal to

0.88 and a worst case −0.25. The coarseness of the base domain (10 faces) can result in

the negative scaled Jacobians, despite our adaptive resampling technique. In these cases,

the small number of user desired extraordinary vertices over constrains the structure and

optimization (Table 5.1). Allowing more extraordinary verices and concomitantly more

faces in the base domain gives the flexibility needed to improve the remesh quality.

5.2.1 Remesh Comparison

This study measures the quality of the remesh elements, a statistical analysis of the

scaled Jacobians and the mesh angles, as well as a comparison of parametric stretching

related to the mesh edge lengths. Our bimba remesh is compared to a model acquired on-
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5.7: Semiregular, quadrilateral-only remeshes, supporting both local- and global-based
simplification algorithms, for input triangle and quadrilateral-only models.

line, remeshed using periodic global parameterization (PGP) [126] in Figure 5.8. The PGP

remesh describes a coarse quad segmentation, generating a semiregular, quadrilateral-only

mesh. The 915 T-junctions on the model were not included in the count of extraordinary

vertices. In comparison to PGP, our model, that was specifically constructed to have a

similar number of extraordinary vertices, exhibits a similar statistical analysis (mean and

standard deviation) of the mesh angles and edge lengths, while improving the worst case

scaled Jacobian. This comparison, and similar quality metrics evaluated on our remeshes

(Table 5.1), illustrates that it is possible to create remeshes of similar quality with our

method in comparison to existing remeshing methods, while improving the ability to

control the number of base patches and extraordinary vertices of the final remesh.
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Vertices S.Jacobians Mesh Angles Edge Lengths
(|V| |Ex| median worst mean σ mean σ

PGP 47.3k 26 0.99 −0.75 89.9◦ 10.8◦ 0.0063 0.0027
qMap 31.7k 24 0.98 0.53 89.9◦ 11.5◦ 0.0059 0.0026

5.8: Remesh results of periodic global parameterization (PGP) [126] and our remeshing
algorithm (qMap). A quantitative analysis of the illustrated meshes compares the vertex
information (original count, remesh count, and extraordinary count), and statistics related
to the mesh angles and edge lengths.

5.2.2 Applications

Geometric processing algorithms are able to take advantage of the neighborhood

structure offered by semiregular polygonal meshes. Particularly, simplification-based

remeshing schemes facilitate mesh improvement [24], consistent remeshing [135] and defor-

mation [93] applications. As illustrated in Figure 5.1, the semiregular, quadrilateral-only

remeshes are coupled with a surface parameterization as a byproduct of their construction.

Texturing and displacement mapping applications, as well as spline-based modeling is

straightforward, illustrated using several remeshes in Figure 5.9. Out of scope of this

dissertation, yet applicable to the spline-based modeling, are related research projects

[32] and [31] in which I address intersurface continuity between adjacent B-spline patches

fit over input geometry.

5.2.3 Limitations

The hierarchical mapping technique can generalize to other surface representations,

supports arbitrary deletion methods, and describes a hierarchical approach to the map

development. However, the relaxation that resolves inverted projections can require many
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5.9: A surface parameterization is a byproduct of the remeshing algorithm, facilitating
texture and displacement mapping, as well as spline-based modeling.

iterations, especially in resolving large fold over regions that may occur while reducing

to a very coarse base domain. Most remeshes are obtained within a few minutes (Table

5.1); however, the Stanford bunny (Figure 5.6) required 23 minutes because of the base

domain coarseness (i.e. only 8 faces). This mapping technique is unable to handle cases

where the simplification generates self intersections.

Future research will address improving the placement of the remesh vertices, in

particular, extraordinary vertices. An advantage of our approach is that it will facilitate

processing, by computing vertex shifting, element refinement, and other methods on the

coarse base domains. An important and challenging aspect of quad meshes is to address

the placement of base domain extraordinary vertices and the integration of attribute

alignment [92].
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5.3 Summary

This chapter introduces a simplification-based technique for the semiregular, quad-

only remeshing of arbitrary topological polygonal meshes that operates independent of

the deletion operations by leveraging keyframe meshes to guide a hierarchical mapping

algorithm. It is shown that this method can produce models with similar quality el-

ements as an existing quad remeshing scheme (PGP), while providing tools for more

direct control over the number of extraordinary vertices to produce very coarse quad

regions. The remesh vertices are sampled in a way that reduces parametric distortions

and approximation errors. The remeshing algorithm is able to significantly simplify the

input geometry by implementing an adaptive resampling scheme of the base domain

to accommodate for area distortions in the mapping functions. The modified resam-

pling supports coarser segmentations than other simplification-based remeshing [35] and

mapping-based methods [94, 85, 1], by which this work in inspired.



CHAPTER 6

QUADRILATERAL MESH

IMPROVEMENT

To promote themes evident throughout the dissertation, this chapter motivates the

use of connectivity-based operators while emphasizing structure in the underlying dual

representation. The following discussion applies polychord-based methods within an

interactive mesh improvement framework. The preliminary results of this research further

demonstrates the potential of polychord-based methods for quadrilateral mesh processing,

while presenting methods that are straightforward to implement.

6.1 Interactive Mesh Improvement

The goal of an mesh editting system is to provide the user with a set of tools to

guide a set of semiautomated methods that augment characteristics and features of the

model. Analogously, photo editors provide an artist many painting, cutting, and other

templates to manipulate the input. While there are many modifications a user may wish

to control on the mesh, including multiresolution editting [17, 93], optimization [71] and

smoothing [161, 39, 180], this work focuses on a novel approach to augment the structure

of a quadrilateral mesh, reducing and isolating extraordinary vertices to specific regions

on the model.

In this research, the user specifies the alignment of an ideal polychord. In practice, I

have chosen ideal polychord alignment to be guided by surface curvature, forming concise

loops around cylindrical components of a model. Following the creation of a target

polychord, the method alternates between simplification methods to remove existing

elements from the model, and ideal insertion techniques to refine the element count back

towards the desired number. The user is able to control the area of influence around

the ideal polychord, localizing the effects of the improvement scheme. The following

subsections further documents the refinement operators, user interface, and details of the

outlined method for mesh improvement.
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6.1.1 Polychord Pillowing

The polychord pillowing operator is designed to generate a polychord of desired

structure or shape on the model. This operator inserts a set of quadrilaterals in such

a way that it forms a polychord that runs parallel to a selected looping set of mesh edges.

As illustrated in Figure 6.1, given a linked list of mesh edges (a), the method separates

the mesh along this curve creating a void with two boundary curves with an identical

number of vertices (b). The pillowing method fills the void by connecting the duplicated

vertices to generate the new polychord (c). The polychord pillowing method is able to

generate desired structures within the dual representation independent of the original

polychords.

6.1.2 Polychord Insertion

Polychord insertion, more aptly described as duplication, results in the inclusion of an

additional polychord within the dual representation. In contrast to the polychord collapse,

the insertion method simultaneously creates multiple quadrilaterals in the mesh. As

illustrated in Figure 6.1, the method splits the mesh elements by sequentially connecting

the midpoints of edges to which the polychord is dual. Because of the looping property

of the polychord, the polychord insertion will not generate any T-junctions, maintaining

a quadrilateral-only model. Note that the polychord insertion is in fact a constrained

version of the polychord pillowing, where the mesh edge loop parallels a polychord.

However, to ease this discussion, the operators are considered distinct to better distinguish

between them.

6.1.3 User Interface

To initialize the algorithm, as illustrated in Figure 6.2, the user identifies information

pertaining to the desired polychord alignment and region of improvement. First, the user

identifies the looping mesh edges that will seed the polychord pillowing and insertion

methods. Second, the user defines the region within which the edge loop will be duplicated

over the model.

Two methods exist to define the linked list of mesh edges. For wandering (or obscure)

paths, the user may iteratively walk the mesh from a seed vertex to grow the edge

sequence. However, in practice the selected edge loops often contain a simple structure,

circumnavigating cylindrical regions of the model. A semiautomated method facilitates

the definition of edge loops of this type, requiring the user to identify a seed vertex and a
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6.1: The pillow insertion (top), for a selected looping set of mesh edges (a), separates
the mesh along the edge loop (b), then inserts elements to fill the void (c) generating a
polychord that aligns with the edge loop (d). The polychord insertion (bottom) splits
the polychord’s quadrilaterals (g,h), by connecting midpoints of the edges dual to the
polychord (i).

grow direction of the path. Given these inputs, a variant of the Djikstra’s shortest path

algorithm that disregards edges whose direction has a negative inner product with the

defined growth vector, computes a looping path around the model.

The mesh improvement is executed over the region surrounding the looping mesh edge

sequence defined by the user through a painting interface. As illustrated in Figure 6.2,

the boundaries of this region are set by allowing the user to select the deletable elements

on the mesh. An adaptable brush size facilitates the painting process as the user applies

strokes via their mouse to the mesh.

6.1.4 Improvement Algorithm

The semiautomatic algorithm is initialized with the user highlighted mesh region and

specified edge loop to guide the mesh simplification and polychord-based refinement.

First, the method produces the desired (or ideal) polychord by pillowing the specified

mesh edge loop (Figure 6.1). Then a variant of the localized qCoarsen simplification

algorithm, described in Chapter 4, is used to coarsen the elements within the painted

deletable element region. Because the improvement algorithm uses the orientation of
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6.2: Given an input quadrilateral mesh, the modeler selects a looping set of mesh edges
and the region over which a polychord aligned to these edges should be propogated. Given
these inputs, the improvement algorithm pillow inserts a polychord along the identified
edges, then iterates between simplification and polychord insertion to obtain an improved
remesh of the region.

the looping edge sequence to align elements during insertion, the simplification priority

metric focuses on vertex valence and element size to prioritize the deletions.

As the original elements are removed from the model, new elements are created

through polychord insertion, and vertex relaxation propagates the elements over the

coarsened area. The success of this improvement scheme stems from the observation

that the polychord insertion does not generate any extraordinary vertices. The method

alternates between the simplification process and refinement, fluctuating within a window

of the desired element count; in practice, reducing elements to 90% the desired count

before refining to the original element count. The remeshing algorithm terminates when

a fraction, in practice < 25%, of the original elements that had been marked for deletion,

remain on the model. Experiments indicate that deleting all of the painted elements

during the remeshing scheme leads to a poor transistion in element density between the

original mesh and the remeshed quadrilaterals.

Localization of the improvement method and operating within a small window of the

desired element count, in practice, keeps the remesh surface within a tight envelope of

the original surface. As such, following the simplification and refinement methods, a post

process smoothing and projection routine is executed. This better distributes the inserted
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elements, improves quadrilateral quality and reduces the remesh approximation error.

6.1.5 Preliminary Studies

The refinement operators, polychord pillowing and insertion, introduce ideal vertices

aligned to the user-specified mesh edges. As such, the improvement scheme operates

independently of the underlying geometry, allowing the user to create the appropriate

polychord structure. Application of the improvement method to multiple regions defined

over the model will allow a global improvement of the entire mesh structure. In this vision,

the user individually paints regions of the model, identifying cylindrical regions where the

looping polychord is straightforward. The improvement algorithm run separately for each

region isolates extraordinary vertices within the unpainted regions of the model.

While this improvement scheme is guided by user input, the final remeshes exhibit

characteristics of path tracing remeshing schemes that are guided by curvature tensor

fields [7, 107, 126, 20]. In practice, the selected mesh edges typically align to low

frequency curvature vectors, looping principal curvature directions of cylindrical elements.

Furthermore, the regions that remain unpainted during the editting process typically

correspond the area surrounding curvature vector singularities. This results in an isolation

of extraordinary vertices to similar regions as the path tracing methods, while producing

large expanses of structured elements.

The goal of the improvement algorithm is to be applied globally over the model;

however, two important aspects limit the current approach. First, the simplification

procedure removes elements based on their impact on mesh connectivity and area of

collapse, unconcerned with the distance to the inserting polychord wavefronts. Applying

the described method globally over the model, may result in significant degradation of the

model far removed from the inserting wavefronts. Second, the currently described system

is unable to process multiple seed edge loops that initiate the insertion process. While

support of the additional looping polychords may be straightforward, some consideration

of their inter-relationship is critical. For instance, it may become important to provide a

means to describe a correspondence between neighboring seed edge loops to align the

elements and prevent twisting artifacts. Furthermore, based on the parallels to the

curvature-based remeshing, discussed earlier, it may be possible to completely automate

this improvement algorithm, leveraging both path tracing methods to identify ideal

polychords, a correspondance between them, and regions ideal for extraordinary vertices,
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while connectivity-based operators can robustly improve the mesh structure.

6.2 Summary

The work outlined in this chapter further motivates the connectivity-based theme

using simplification and refinement methods, as well as the study of the polychord

structures. The results illustrate the effectiveness of polychord deletions and insertions for

interactive mesh improvement. The work demonstrated throughout this chapter repre-

sents preliminary results and raises interesting questions and challenges. In particular, the

methods do not consider the preservation and recreation of important feature curves over

the model, discussed throughout this dissertation as sharp features. The generalization

of these techniques to hexahedral remeshing presents a feasible and attractive direction

for future research.



CHAPTER 7

CONCLUSIONS

The contributions of this research span multiple tasks affiliated with surface recon-

struction, developing techniques that bridge the gap between discrete and continuous

geometry. At face value, these topics address continuous feature curves defined over

point-based geometry and surface remeshing and parameterization through simplification

of quadrilateral models. A meaningful contribution achieved through these studies is the

understanding of the dual representation for quadrilateral meshes and the advantages of

structure imposed on this form.

Beyond the continuation of the preliminary research explored in Chapter 6, because

quadrilateral meshing is increasing in popularity, there exist many interesting avenues of

pursuit within the area. While this work stresses the robustness of connectivity-based

approaches, it has yet to significantly consider the surface geometry in its operations.

Drawing from lessons of anisotropic-based path tracing [7, 107, 20] and variational shape

approximation methods [155, 108], the intelligent placement of extraordinary vertices,

located at regions of singularities in curvature tensor fields and in regions of high cur-

vature, improves mesh descriptions. Integration of connectivity-based algorithms and

numerical-based path tracing schemes may prove robust while augmenting attribute

awareness in the final meshes.

7.1 Constraining the Structure

It has been observed in this research, particularly through the global-based simplifi-

cation, that the structure of the dual representation is important to defining and creating

high quality mesh elements. While semiregular remeshes define a local structure that is

advantageous for many geometry processing algorithms, there is also the consideration of

the global structure related to the dual representation. As illustrated in Figure 4.7, many

semiregular models define dual polychords with knots that complicate quadrilateral-based

simplification and refinement applications where maintaining mesh structure and quality
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is important.

Polycube maps [160] produce seamless textures for arbitrary objects by extending the

ideas of cube mapping, used in environment mapping and texturing cube-like surfaces.

The polycube map describes a set of axis aligned cubes stacked together in a way that

resembles the original model, capturing large geometric features. The original polycube

mapping requires user interaction to model the input geometry. More recently it has

been shown that the Reeb graph is useful in designing a decomposition of the model that

can guide the polycube map construction [101]. Because the two shapes are relatively

close in general shape, mapping the original model onto the polycube domain describes

a parameterization with low distortion. By virtue of the quadrilateral base domain,

polycube maps can guide quadrilateral-based remeshing and parameterization [169].

The global structure of the polycube map is unique. A polychord of the axis aligned

cube configuration concisely loops over the polycube model along the boundary of a

hexahedral dual sheet [21]. In contrast to a generic semiregular mesh, semiregular

meshes with constrained polychords that exhibit a polycube-like structure may facilitate

hexahedral mesh generation techniques that are based on input quadrilateral meshes

[153], as well as simplification and refinement processing of surface models [24].

Expansion of the ideas introduced throughout this dissertation, in concert with tech-

niques based on surface grafting [151] or dual contouring [79, 133], may lead to the robust,

connectivity-based development of polycube remeshes. Surface grafting generates struc-

tured quadrilateral meshes of arbitrary orientable manifolds, requiring only a projection

operator. Illustrated in Figure 7.1, the method embeds the surface within a uniform

hexahedral grid (a), culls away exterior (completely or partially) voxels (b), then projects

the remaining exterior nodes to the surface (c).

The polychords of a grafted surface describe a concise loops around the model, demon-

strated in a related voxel-based remeshing scheme [24]. The polychords correspond to the

intersection of hexahedral dual sheets that correspond to the rows, columns and layers

of the underlying hexahedral grid. The variant of surface grafting implements polychord

deletions to remove many extraordinary vertices from grafted quadrilateral models. While

this work focuses on a single minded task of reducing extraordinary vertices, further

improvement to the approach may consider the allowance of select extraordinary vertices,

using persistence-based weighting methods to intelligently guide deletions and insertions.
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7.1: The surface grafting algorithm remeshes an input geometry by embedding it within
a uniform grid (a), culling external voxels (b), and projecting the boundary nodes to the
surface (c).

7.2 Future Research

Surface models play a critical role in many facets of computer graphics where the

ability to interact with geometry is vital. For instance, entertainment driven animations,

isosurface extraction for medical imaging, manufacturing design, planning, and reverse

engineering, physically-based simulations, (non)photorealistic rendering and scientific

visualization, among many other applications, leverage computations on virtual represen-

tations of real world objects. To offer the different functionality required by the variety

of driving applications, a plethora of surface representational forms have been created.

The trade offs assorted with the different surface model types are associated with the

structure of the underlying connectivity. For instance, discrete connectionless point sam-

ples are often utilized for the reconstruction and visualization of virtual models generated

from range scanners; however, exact mathematical computations of shape are impossi-

ble. In contrast, spline-based models, requiring highly structured quadrilateral control

meshes, provide continuous surface definitions and exact differential operations that

are instrumental in manufacturing and computer aided design applications. Polygonal

meshes balance the trade offs between computational power and discrete approximation,

supporting fast computations and error bounded representations.

The research I present outlines a fundamental tool in the pursuit of a representational

independent modeling (RIM) system. Such a system would enable the creation of an

attribute aware surface model of any desired structural format, generated from a virtual

model that may be potentially composed of multiple heterogenously represented com-

ponents. Support of error bounded conversions between the assorted modeling formats

greatly increases the number of available algorithms with which a designer may interact
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with a virtual model. As opposed to redesigning geometry processing methods, origi-

nally created for a specific structural format, for all model types, a task that is neither

straightforward nor necessarily possible, the RIM system would generate the appropriate

model structure for the desired processing task.

A semiregular quadrilateral mesh, by virtue of its relationship to spline-based model-

ing, presents an attractive representational format to operate as the hub of the described

conversion network. However, before such a system is recognized, further research is

required. Development of the algorithms that form the error bounded conversion net-

work is paramount, and means to track modifications made to the model by external

geometry processes is important. The improved alignment and adaptive sampling of

semiregular meshes and support of direct and intuitive controls for user manipulation of

the semiregular, quadrilateral-only models is a critical task. The generalization of these

techniques for hexahedral models is both daunting and important. The solution to these

challenges, developed within a coherent software package, will revolutionize the way in

which we operate on virtual models.
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