
Towards Point-Based Acquisition and Rendering of Large Real-World Environments

WAGNER T. CORRÊA1, SHACHAR FLEISHMAN2, CLÁUDIO T. SILVA3

1Princeton University, 35 Olden St., Princeton, NJ 08540, USA
wtcorrea@cs.princeton.edu

2Tel-Aviv University, Schriber Building, Tel Aviv, 69978, Israel
shacharf@math.tau.ac.il

3OGI School of Science and Technology, 20000 NW Walker Road, Beaverton, OR, 97006, USA
Work performed while at AT&T Labs-Research

csilva@cse.ogi.edu

Abstract. This paper describes a pipeline for the acquisition and rendering of large real-world environments. In
the acquisition phase, we use a laser rangefinder to capture the geometry of an environment, and a digital camera to
capture its colors. In the rendering phase, we use a cluster of commodity PCs to render high-resolution images of
the environment at interactive frame rates. In this paper, we describe in detail our scanning hardware, the tools we
use to minimize the acquisition artifacts in the 3D scans, the procedure to register the scans to each other, and how
to map colors from a photograph to a scan. We also present a sequential, out-of-core rendering approach that uses
multiple threads to overlap rendering, visibility computation, and disk operations. Finally, we show how to use
the sequential rendering approach as a building block for a parallel rendering system that uses a cluster of PCs to
drive a high-resolution, multi-projector display wall. Our acquisition approach allows us to capture environments
that would be extremely difficult to model by hand, and our rendering approach allows us to use inexpensive PCs,
instead of high-end graphics workstations, to visualize those environments at interactive frame rates.

1 Introduction

Interactive rendering of realistic environments has been a
focus of computer graphics research for many years. Tradi-
tionally, researchers have modeled the geometric and pho-
tometric properties of an environment manually, and the re-
sulting models have been polygonal soups or meshes. Re-
cently, 3D scanning technology has allowed researchers to
capture those properties directly from real-world environ-
ments [4, 19, 22, 33], and the use of points instead of poly-
gons as rendering primitives has become widespread [12,
23, 26]. Most of the research on acquiring and rendering
point-based models has focused on single objects [4, 19].
In contrast, we share the goals of Nyland et al. [22], and
focus our work on large real-world environments.

In this paper, we describe a complete pipeline for ac-
quiring and rendering a point-based 3D model of a large
real-world environment (Figure 1). To acquire the geometry
of an environment, we use a time-of-flight laser rangefinder
which gives us a dense point cloud. To obtain the colors
of the environment, we use a high-resolution digital cam-
era, and then map the colors in the photographs onto the
scanned points. Finally, to render high-resolution images
of the model at interactive frame rates, we use a cluster of
commodity PCs to drive a multi-projector display wall.

This paper describes each step of this pipeline in de-
tail, discussing the challenges involved and how we address
them. We start with a brief review of related work in Sec-

render
model

build
model

model
new

images
calibrated

photographs

scanned
3D points

Figure 1: Our acquisition and rendering pipeline.

tion 2. In Section 3 we describe our scanning hardware, and
the tools we have developed to analyze and process the 3D
scans to identify and minimize acquisition artifacts such as
noise and bias. Because of occlusion, we need several scans
of the same area to obtain a complete model. In Section 4
we address the problems of merging the scans into a com-
mon coordinate-system and incrementally creating an out-
of-core hierarchical representation of the model. Section 5
describes the procedure to capture the imagery and map it
onto the geometry. In Section 6 we present our sequential,
out-of-core, multi-threaded approach to render the result-
ing 3D model. Section 7 shows how to use the sequential
rendering approach as a building block for a parallel sys-
tem that employs a cluster of PCs to render high-resolution
images of the model on a display wall. In Section 8 we
present the results of acquiring and rendering a large and
complex cluttered office environment. Finally, in Section 9
we conclude and discuss directions for future work.



2 Related Work

Advances in scanning technology have allowed researchers
to acquire models with millions of polygons [4, 19]. When
rendering such large models, many triangles will have a
projected area smaller than a pixel. In this case, it makes
sense to render point samples instead of triangles. Recently,
many researchers have developed point-based rendering
systems [12, 23, 26, 31], but point rendering is in fact quite
an old concept. Csuri [9] suggested the idea of using points
as primitives to render 3D surfaces more than two decades
ago. Levoy and Whitted [20] used points to render differen-
tiable surfaces. Points have also been used to model fuzzy
objects such as clouds, fire, and plants [5, 25, 32].

Most model acquisition systems focus on capturing a
single object such as a statue [4, 19]. Instead, we are inter-
ested in capturing entire environments [22, 33]. The system
that is most similar to ours is the one of Nyland et al. [22],
but there are several differences between our approaches.
Their best procedure to register two scans is manual, while
we use a semi-automatic procedure. Their procedure for
aligning geometry and imagery is based on automatic edge
detection, while we (again) use a semi-automatic proce-
dure. Our procedure requires more work from the user, but
is less sensitive to noise in the imagery. Finally, they use
a high-end graphics workstation for rendering, and assume
the entire model fits in memory. We have developed out-of-
core techniques to build, process, and render the model so
that we can use inexpensive PCs.

Funkhouser et al. [11] were the first to publish a sys-
tem that supported models larger than main memory, and
performed speculative prefetching. Their approach relied
on the from-region visibility algorithm of Teller et al. [34],
which requires long preprocessing times, and assumes that
the models are made of axis-aligned cells. Our approach is
based on the from-point visibility algorithm of Klosowski
and Silva [16], which requires very little preprocessing, and
makes no assumptions about the geometry of the model.

Aliaga et al. [3] have developed the massive model
rendering (MMR) system. MMR employs a large num-
ber of acceleration techniques, including replacing distant
geometry with image impostors, managing levels of detail,
and culling occluded geometry. MMR was perhaps the first
published system to handle models with tens of millions
of polygons at interactive frame rates. On the other hand,
MMR required up to weeks of preprocessing time and ex-
pensive high-end graphics workstations. Our approach re-
quires only minutes of preprocessing, and works on a clus-
ter of commodity PCs.

Samanta et al. [28, 29] have developed a sort-first ren-
dering system using a network of PCs. The main focus of
their work was on load balancing the geometry processing
and rasterization work done on each of the PCs, while we
focus on handling very large models.

3 Acquiring the Geometry

To acquire the geometry of an en-

Figure 2: Our scanner.

vironment, we use a time-of-flight
scanner (Figure 2) called Delta-
Sphere-3000 [1]. This scanner is
small (14 in. by 12 in. by 4 in.),
and weighs about 25 lbs. It has
an effective range of 40 ft. and an
accuracy of about 1/2 in. To ac-
quire a set of point samples, we
first place the scanner on top of
a tripod at some point inside the
environment. We then use a pro-
gram that communicates with the scanner via wireless net-
work to set the desired field of view and sample density,
and start the scanning process. The scanner rotates about
its vertical axis, and for each position it acquires a vertical
strip of sample points. The result if a set of points, each
consisting of its spherical coordinates (r,θ ,φ ) and the in-
tensity i of the energy returned from that point. We thus use
the term “rtpi sample” to refer to a point sample. Figure 3
shows a sample scan. To acquire that scan, we set the hori-
zontal field of view to 120 degrees, the vertical field of view
to 50 degrees, and the sampling density to “low.” The scan-
ning process took about 1 minute, and returned 1.1 million
points (19 MB) organized as 1604 vertical strips.

The raw data provided by the scanner contains several
artifacts, including a large amount of noise, a large differ-
ence in resolution between near and far surfaces, and a sig-
nificant amount of distortion due to intensity bias. In partic-
ular, points with too low or too high intensity tend to have
unreliable radius. To deal with these problems, we have de-
veloped a set of tools to analyze and process the raw scans.
One of these tools is a program called rtpi-histogram, which
plots a histogram of the intensities of the sample points.
This allows us to quickly identify a range of reliable inten-
sities, and then use another tool, rtpi-cut, to eliminate points
outside that range. To equalize the intensity histogram of
the remaining points, we use the tool called rtpi-equalize.

To minimize the intensity bias of the scanner, we use a
calibration image that changes linearly from black to white,
and is surrounded by a white background (Figure 4a). We
place the image on a flat surface and scan it. From the scan,
we build a bias correction table that is used for correcting
subsequent scans. Figures 4b and 4d show the scanned cal-
ibration image in 3D. We assume that the noise distribution
in the scan is of zero mean. The bias in the scan is in the r
part of an rtpi sample, not in φ or θ . We consider the back-
ground to be the ground truth, and we fit the best (in the
least squares sense) plane to the background points. A bias
is computed for every intensity value i ∈ [0,255] as the av-
erage height H i (relative to the plane) of the sampled points
with intensity i. To minimize the bias, we iterate over the



(a) Cafe Otto’s kitchen (b) Closeup view of a cupboard door

Figure 3: A sample scan.

(a) (b) (c)

(d) (e) (f)

Figure 4: Removing intensity bias. (a) Test pattern. (b) Be-
fore removing bias. (c) After removing bias. (d) Side view
before. (e) Side view after. (f) Reconstructed surface.

points in the scan, and correct the radius r of every point by
computing r′ = r−H i. Figures 4c and 4e show the result of
applying the bias minimization procedure to the calibration
image. We casually place the scanner in front of the cali-
bration image, and do not require any precise measurement
of the distance or angle between the scanner and calibra-
tion image. To verify that the process works, we scanned
the calibration image several times from different angles
and distances, and applied the tool to these new scans. We
obtained very similar correction tables for all cases.

To remove noise, we apply the moving least squares
(MLS) projection of Levin [2, 18], with a weight function

θ (d) = e−
d2

h2 .

We set h = 4a, where a is the scanner’s accuracy (0.5 in.).
Figure 4f shows a smoothed version of the bias calibration
image, and Figure 5 shows the application of the noise re-
moval procedure to a scanned desktop.

(a) (b) (c)

Figure 5: Removing noise. (a) Scan of a desktop. (b) Be-
fore removing noise. (c) After removing noise.

4 Merging the Geometry

A single scan will have holes due to occlusion, and will
sample near and far objects at different resolutions. Thus,
to get a more complete model, or to obtain a more uniform
resolution, we need to scan the environment from several
different locations. Automatically determining the best set
of locations for scanning is a hard problem [10, 24]. We
simply select the scanning locations ourselves, trying to
minimize the number of scans necessary for a good cover-
age of the environment, and making sure that there is some
overlap between the scans.

After we have a set of scans, we need to align them
in a common coordinate system. To do that, we have de-
veloped a tool called rtpi-register. Currently, rtpi-register
only performs pairwise scan alignment. For a given pair of
scans, the user selects a few corresponding points on each
scan, and then the computer finds the best rigid transforma-
tion (in the least squares sense) that aligns the two scans
using Horn’s technique [14].

Finally, after aligning the scans, we have to build a
hierarchical representation of the combined model, which
will be use later for rendering. Since a high-resolution scan
is about 100 MB large, the final size of a combined model is
in the order of gigabytes. Since one of our goals is to pro-
cess and render these models using commodity PCs with



Figure 6: The semi-automatic imagery-geometry registration process.

small memory, we need an out-of-core algorithm to build
the hierarchical representation of a given model. Moreover,
because we may want to update the model with more scans
to fill in holes, we need an incremental algorithm. We have
developed such an algorithm [7]. In practice, a tool called
oct-gen generates an octree [30] with the contents of a given
scan, and a tool called oct-add uses our out-of-core, incre-
mental algorithm to add a scan to an existing octree.

5 Acquiring the Imagery

The 3D scanner only provides us with geometric informa-
tion. To capture the colors of the environment, we take pho-
tographs using a Kodak DCS-300 digital camera. The first
step in acquiring the imagery is calibrating the intrinsic pa-
rameters of the camera. We use Willson’s freeware imple-
mentation [36] of Tsai’s camera calibration algorithm [35].
Tsai’s camera model has five intrinsic parameters, namely
the focal length, the first-order coefficient of radial distor-
tion, the coordinates of the image center, and a scale fac-
tor. To calibrate these intrinsic parameters, we first take a
photograph of a planar checkerboard pattern with known
geometry. Then, we find the image location of the checker-
board corners with subpixel accuracy using Bouguet’s cam-
era calibration toolbox [6]. Finally, we pass the 3D and 2D
locations of the checkerboard corners to ccal fo, Willson’s
program for finding the intrinsic camera parameters using
full non-linear optimization given coplanar calibration data.

After calibrating the intrinsic camera parameters, we
take photographs of the environment. We keep the same
camera settings for all photographs to avoid having to re-
calibrate the intrinsic parameters. For each photograph, we

first remove its radial distortion, using a warp based on the
coefficient found above, and then find the extrinsic camera
parameters, namely the position (translation) and orienta-
tion (rotation) of the camera when we took the photograph
relative to an arbitrary global coordinate system. To find
the extrinsic camera parameters, we use an interactive pro-
gram to specify corresponding 2D points on the undistorted
photograph and 3D points on a scan. These corresponding
points are then passed along with the intrinsic camera pa-
rameters to ecal, Willson’s program [36] to find the camera
translation and rotation. Typically we only need 7 to 10
correspondences to obtain a good calibration of the camera.

Finally, we map the colors from the photograph to the
scan (or scans) that it covers. For each 3D point in a scan
covered by the photograph, we find its 2D projection on the
camera plane, and assign the corresponding pixel color to it.
The color of the point is stored together with the point’s co-
ordinates in the corresponding octree node. We only store
one color sample per point. It would be possible to store
multiple color samples per point to support view-dependent
effects (such as highlights).

Figure 6 illustrates the imagery registration process.
The left image shows a photograph with a few feature points
marked by the user, and the right image shows the corre-
sponding 3D points marked on a scan. The right image also
shows the estimated camera location and the result of map-
ping the photograph colors to the scan. The magenta rays
go from the camera’s position to the true location of the
feature points, and the cyan rays go from the camera’s posi-
tion to the expected location of the feature points given the
estimated camera parameters. These rays are very close to
each other, which indicates an accurate camera calibration.



model rendering
thread

look−ahead
thread

visibility
subsystem

fetch
threads

prefetch
threads

user
input

image

Figure 7: The rendering architecture.

6 Rendering

In the acquisition phase, we capture the geometry and the
colors of an environment, and store them in an octree on
disk. Our goal now is to walk through the environment at
interactive frame rates. Figure 7 illustrates our rendering
approach [7]. A rendering thread uses the visibility subsys-
tem to determine the set of octree nodes visible from the
user’s point of view. For each visible node, the rendering
thread sends a fetch request to the fetch threads, which will
process the request, and bring the contents of the node from
disk into a memory cache. If the cache is full, the least re-
cently used node in the cache is evicted from memory.

To minimize the chance of I/O bursts, which cause
abrupt drops in frame rates, there is a look-ahead thread
that runs concurrently with the rendering thread. The look-
ahead thread tries to predict where the user is going to be
in the next few frames, and sends prefetch requests to the
prefetch threads. If there are no fetch requests pending, the
prefetch threads will bring the requested nodes into mem-
ory (up to certain limit per frame based on the disks band-
width). This speculative prefetching scheme amortizes the
bursts of I/O over frames that require little or no I/O, and
produces faster and smoother frame rates.

To estimate the set of visible nodes, the visibility sub-
system uses the PLP algorithm [16], which is an approxi-
mate, from-point visibility algorithm. When we build the
octree for an environment, we save the structure of the hi-
erarchy in a separate file. The hierarchy structure (HS) file
contains the bounding boxes of the octree nodes and some
summary statistics for each node (such as the number of
points in the node). The HS file trivially fits in memory. For
example, the size of the HS file for a 4-GB octree is 1 MB.
The PLP algorithm guesses the visible set based only on
the HS file, without having to read the geometry inside the
nodes. Using PLP, we are able to sustain interactive frame
rates (10 frames per second) and high accuracy (above 95%
of correct pixels) even for very large environments [7].

The visibility subsystem may also use cPLP [17], a
conservative extension of PLP that guarantees 100% accu-
rate images. In conservative mode, however, the visibility
subsystem needs to read the exact geometry of each poten-
tially visible node, and the extra number of I/O operations
make the frame rate drop.

For interactive rendering, we draw each octree node as
an OpenGL vertex array, and we allow the user to set the
desired level of detail. If the level of detail is 1, we draw
all the points; if it is 1/2, we draw every other point; and so
on. We adjust the splat size according to the level of detail
using glPointSize(). The system can also automatically pick
the level of detail based on the user’s speed.

For high quality rendering, which requires shading, we
find the normal vectors at each point p using MLS projec-
tion [2], and choose the normal n that satisfies p · n < 0.
Because the origin of a scan is at the position 0 of the scan-
ner, and since every scanned point faces the scanner, p−0
is an estimate of the normal at p. The MLS projection op-
erator is local, i.e., to project a point, we only need to apply
the MLS operator over a small neighborhood.

7 Parallel Rendering

When interacting with large, detailed models, it is desir-
able to visualize these models in high resolution. Our se-
quential rendering approach only produces low-resolution
(1024×768) images at interactive frame rates. We now de-
scribe a parallel system that uses our sequential approach
as a building block, and delivers 4096×3072-pixel images
at the same (or faster) frame rates [8].

Our approach is to use a cluster of PCs to drive a multi-
projector display wall. We chose to use a cluster of PCs, as
opposed to a high-end parallel machine, for many reasons:
a cluster of PCs typically has a better price/performance ra-
tio than a high-end supercomputer; we can upgrade a cluster
of PCs much more often than a high-end system, as new in-
expensive PC graphics cards become available every 6-12
months; we can easily add or remove machines from the
cluster, mix machines of different kinds, and user the cluster
for tasks other than rendering; and the aggregate comput-
ing, storage, and bandwidth capacity of a PC cluster grows
linearly with the number of machines in the cluster [28].

Parallel rendering strategies fall within three main cat-
egories, depending on which stage of the rendering pipeline
sorting for visible-surface determination takes place [21].
These categories are sort-first, sort-middle, and sort-last.
Sort-first approaches divide the 2D screen into disjoint tiles,
and assign each region to a different processor, which is
responsible for all the rendering in its tile. Sort-middle ap-
proaches assign an arbitrary subset of primitives to each ge-
ometry processor, and a portion of the screen to each raster-
izer. A geometry processor transforms and lights its prim-
itives, and then sends them to the appropriate rasterizers.
Sort-last approaches assign an arbitrary subset of the prim-
itives to each renderer. A renderer computes pixel values
for its subset, no matter where they fall in the screen, and
then transfer theses pixels (color and depth values) to the
compositing processors.



image image image image

rendering
server

rendering
server

rendering
server

rendering
server

user
input model

...

Figure 8: The parallel rendering architecture.

We chose to use a sort-first approach, because sort-first
processors implement the entire pipeline for a portion of
the screen, which is exactly the case for which PC graphics
cards are optimized. A sort-middle approach requires tight
integration between the geometry processing and rasteriza-
tion stages, which is not available in PC graphics cards. A
sort-last approach requires high pixel bandwidth, which is
also not available in graphics PC cards.

Figure 8 shows our parallel rendering architecture [8].
A client machine is responsible for processing user input.
At each frame, the client broadcasts the viewing parame-
ters to the rendering servers. Each rendering server is an
MPI task, and runs basically the sequential algorithm we
discussed in the previous section, with a few modifications.
First, each renderer performs visibility culling using only
the view frustum of its display wall tile. Second, each ren-
derer receives inputs events through the network, instead of
directly from the user. Finally, we add an MPI barrier at
the end of the rendering loop to synchronize the renderers.
Each renderer reads the parts of the model it needs from a
shared network disk in the file server, and sends the result-
ing image to one of the display wall projectors. Optionally,
each renderer may read its primitives from a local disk.

8 Results

Figure 9a shows a photograph of a work space at AT&T’s
Information Visualization Laboratory. The environment is
rich in detail that would be extremely difficult to model
by hand. Figure 9b shows part of a 3D scan of that work
space. The scan contains about 4 million points, spanning
360 degrees horizontally and 70 degrees vertically. Fig-
ure 9c shows the result of mapping the photograph onto the
scan. We acquired two other scans of the same room at dif-
ferent positions, and Figure 9d shows the result of merging
them. The circle patterns on the ceiling correspond to areas
that were missed by one of the scans but covered by an-
other. The total acquisition time was about 1 hour, and the
size of the octree containing the three scans was 600 MB.

(a) Photograph

(b) 3D scan

(c) Photograph mapped onto 3D scan

(d) 3 registered scans

Figure 9: AT&T Info Lab.



We tested the performance of the rendering system us-
ing a cluster of 16 PCs, and gathered statistics for a pre-
recorded 485-frame camera path inside the info-lab model.
Each rendering server is a 900 MHz AMD Athlon with
512 MB of main memory, an nVidia GeForce2 graphics
card, and an IDE hard disk. The file server has a 400 GB
SCSI disk. The client machine is a 700 MHz Pentium III.
All machines run Red Hat Linux 7.2, and are connected by
a switched gigabit ethernet. Using approximate visibility
mode, we were able to render 4096×3072-pixel images of
the model, with a mean accuracy of 95.7% of correct pixels,
and at a mean frame rate of 9.8 frames per second.

9 Conclusion and Future Work

We have described a complete pipeline for acquiring and
rendering point-based models of real-world environments.
We have discussed the details of the acquisition process, the
limitations of the scanner, our approaches to minimize the
acquisition artifacts, and our out-of-core hierarchical repre-
sentation of the scanned model. We have shown how to ef-
ficiently render the model on low-end machines with small
memory by using a multi-threaded approach that overlaps
rendering, visibility computation, fetching, and speculative
prefetching. We have also shown how to build a paral-
lel system that renders high-resolution images on a multi-
projector display wall driven by a cluster of PCs.

There are many ways to improve our pipeline. Our
geometry registration and imagery mapping procedures are
semi-automatic. Also, the geometry registration only takes
into account a pair of scans at a time. We are studying
approaches that are more automatic, and perform a global
alignment [13, 15, 27]. The geometry returned by the scan-
ner may contain holes due to occlusion or because the scan-
ner cannot capture certain surfaces. We are investigating a
multi-modal approach that extracts depth information from
calibrated photographs to fill in some of those holes. Fi-
nally, we would like to accelerate point set surface render-
ing by exploiting the programmable vertex shaders avail-
able in new PC graphics cards such as the nVidia GeForce3.

Acknowledgements

We thank 3rdTech, and in particular Lars Nyland, for help
with the scanning hardware. We are grateful to Stanford
University and the University of North Carolina at Chapel
Hill for providing us with test models. We are indebted to
the following people who have given us code, suggestions,
and encouragement: Daniel Aliaga, David Dobkin, Thomas
Funkhouser, James Klosowski, Jeff Korn, Manuel Oliveira,
Emil Praun, Szymon Rusinkiewicz, and Greg Turk. This
research was partly funded by CNPq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico), Brazil.

References

[1] 3rdTech. Deltasphere-3000 laser 3D scene digitizer.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,
D. Levin, and C. T. Silva. Point set surfaces. IEEE
Visualization 2001, pages 21–28, Oct. 2001.

[3] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stürzlinger, E. Baker, R. Bas-
tos, M. Whitton, F. Brooks, and D. Manocha. MMR:
An interactive massive model rendering system using
geometric and image-based acceleration. 1999 ACM
Symposium on Interactive 3D Graphics, pages 199–
206, 1999.

[4] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier,
and G. Taubin. Building a digital model of Michelan-
gelo’s Florentine Pietà. IEEE Computer Graphics &
Applications, 22(1):59–67, Jan. 2002.

[5] J. F. Blinn. Light reflection functions for simulation
of clouds and dusty surfaces. In Proceedings of SIG-
GRAPH 82, pages 21–29, 1992.

[6] J.-Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/calib doc.

[7] W. T. Corrêa, J. T. Klosowski, and C. T. Silva.
iWalk: Interactive out-of-core rendering of large mod-
els. Technical Report TR-653-02, Princeton Univer-
sity, 2002.

[8] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Out-
of-core sort-first parallel rendering for cluster-based
tiled displays. In Proceedings of the 4th Eurograph-
ics Workshop on Parallel Graphics and Visualization.,
2002. To appear.

[9] C. Csuri, R. Hackathorn, R. Parent, W. E. Carlson,
and M. Howard. Towards an interactive high visual
complexity animation system. In Proceedings of SIG-
GRAPH 79, pages 289–299, 1979.

[10] S. Fleishman, D. Cohen-Or, and D. Lischinski. Au-
tomatic camera placement for image-based modeling.
Computer Graphics Forum, 19(2):100–110, 2000.

[11] T. A. Funkhouser, C. H. Séquin, and S. J. Teller. Man-
agement of large amounts of data in interactive build-
ing walkthroughs. 1992 ACM Symposium on Interac-
tive 3D Graphics, 25(2):11–20, Mar. 1992.

[12] J. Grossman and W. J. Dally. Point sample rendering.
In 9th Eurographics Workshop on Rendering, pages
181–192, Aug. 1998.



[13] O. Hall-Holt and S. Rusinkiewicz. Stripe boundary
codes for real-time structured-light range scanning of
moving objects. In Proceedings of the Eighth Inter-
national Conference on Computer Vision, pages 359–
366, 2001.

[14] B. K. P. Horn. Closed form solution of absolute orien-
tation using unit quaternions. Journal of the Optical
Society A, 4(4):629–642, Apr. 1987.

[15] D. F. Huber and M. Hebert. Fully automatic registra-
tion of multiple 3D data sets. In IEEE Computer Soci-
ety Workshop on Computer Vision Beyond the Visible
Spectrum (CVBVS 2001), Dec. 2001.

[16] J. T. Klosowski and C. T. Silva. The prioritized-
layered projection algorithm for visible set estima-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 6(2):108–123, Apr. 2000.

[17] J. T. Klosowski and C. T. Silva. Efficient conservative
visibility culling using the prioritized-layered projec-
tion algorithm. IEEE Transactions on Visualization
and Computer Graphics, 7(4):365–379, Oct. 2001.

[18] D. Levin. Mesh-independent surface interpolation.
Technical report, Tel-Aviv University, 2000. Avail-
able online at http://www.math.tau.ac.il/˜levin.

[19] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The dig-
ital Michelangelo project: 3D scanning of large stat-
ues. In Proceedings of SIGGRAPH 2000, pages 131–
144, 2000.

[20] M. Levoy and T. Whitted. The use of points as a dis-
play primitive. Technical Report TR 85-022, The Uni-
versity of North Carolina at Chapel Hill, Department
of Computer Science, 1985.

[21] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs.
A sorting classification of parallel rendering. IEEE
Computer Graphics and Applications, 14(4):23–32,
1994.

[22] L. Nyland, A. Lastra, D. K. McAllister, V. Popescu,
and C. McCue. Capturing, processing and rendering
real-world scenes. In Videometrics and Optical Meth-
ods for 3D Shape Measurement, Electronic Imaging
2001, Photonics West, volume 4309, pages 107–116.
SPIE, 2001.

[23] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-
fels: Surface elements as rendering primitives. In Pro-
ceedings of SIGGRAPH 2000, pages 335–342, 2000.

[24] R. Pito. A solution to the next best view problem
for automated surface acquisition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
21(10):1016–1030, 1999.

[25] W. T. Reeves. Particle systems — a technique for
modeling a class of fuzzy objects. ACM Transactions
on Graphics, 2(2):91–108, Apr. 1983.

[26] S. Rusinkiewicz and M. Levoy. QSplat: A mul-
tiresolution point rendering system for large meshes.
In Proceedings of SIGGRAPH 2000, pages 343–352,
2000.

[27] S. Rusinkiewicz and M. Levoy. Efficient variants of
the ICP algorithm. In Proceedings of the Third Inter-
national Conference on 3D Digital Imaging and Mod-
eling, pages 145–152, 2001.

[28] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh.
Hybrid sort-first and sort-last parallel rendering with
a cluster of PCs. In 2000 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 97–108,
2000.

[29] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh.
Sort-first parallel rendering with a cluster of PCs. In
Sketches and Applications, SIGGRAPH 2000, page
260, 2000.

[30] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[31] G. Schaufler and H. W. Jensen. Ray tracing point sam-
pled geometry. In Eurographics Rendering Workshop
Proceedings, pages 319–328, 2000.

[32] A. R. Smith. Plants, fractals and formal languages. In
Proceedings of SIGGRAPH 84, pages 1–10, 1984.

[33] S. Teller. Toward urban model acquisition from geo-
located images. Pacific Graphics ’98, Oct. 1998.

[34] S. J. Teller and C. H. Séquin. Visibility preprocess-
ing for interactive walkthroughs. In Proceedings of
SIGGRAPH 91, pages 61–69, 1991.

[35] R. Y. Tsai. A versatile camera calibration technique
for high-accuracy 3D machine vision metrology using
off-the-shelf TV cameras and lenses. IEEE Journal
of Robotics and Automation, RA-3(4):323–344, Aug.
1987.

[36] R. Willson. Freeware implementation of Roger Tsai’s
camera calibration algorithm. Available online at
http://www.cs.cmu.edu/˜rgw/TsaiCode.html.


