
High-Performance Visualization of Large
and Complex Scientific Datasets

Course Notes for Tutorial M9/SC 2002
Baltimore, Maryland

November 2002

Organizers:

Dirk Bartz University of T̈ubingen, Germany
Cláudio T. Silva Oregon Health & Science University

Speakers:

Dirk Bartz University of T̈ubingen, Germany
Peter Lindstrom Lawrence Livermore National Laboratory
James T. Klosowski IBM T.J. Watson Research Center
Will Schroeder Kitware
Cláudio T. Silva Oregon Health & Science University

Abstract

The goal of the tutorial is to introduce students, academics, and professionals
to techniques for the visualization of very large and complex datasets, in particular
those datasets which are too large to fit in main memory.

About 40% of the material are related to algorithms for large-data visualiza-
tion, including external memory algorithms. About 40% of the material relates to
parallel rendering and large displays. The other 20% of the time will be spent pre-
senting the VTK system that implements several of the most useful visualization
tools, and has been evolving towards being able to perform very large datasets.

Schedule(tentative)

08:30–08:45 Introduction to the course Silva
08:45–10:00 Parallel Rendering Algorithms Bartz
10:00–10:30 Break
10:30–11:30 Building and Driving High-Resolution Displays Klosowski
11:30–12:00 Out-Of-Core Scientific Visualization Silva
12:00–01:30 Break
01:30–02:15 Out-Of-Core Scientific Visualization (cont.) Silva
02:15–03:00 Out-Of-Core Surface Simplification Lindstrom
03:00–03:30 Break
03:30–03:45 Out-Of-Core Surface Simplification (cont.) Lindstrom
03:45–04:45 Parallel Processing With Vtk Schroeder
04:45–05:00 Final Remarks & Questions All

Speaker Biographies

Cláudio T. Silva
OGI/CSE
20000 N.W. Walker Road
Bearverton, OR 97006
E-mail: csilva@cse.ogi.edu
Cláudio T. Silva is an Associate Professor in the Department of Computer Science & Engineering
of the OGI School of Science and Engineering at Oregon Health & Science University.
Previously, he was a Principal Member of Technical Staff at AT&T Labs-Research.
His current research is on architectures and algorithms for building scalable displays, rendering
techniques for large datasets, 3D scanning, and algorithms for graphics hardware. Before joining
AT&T, Claudio was a Research Staff Member at IBM T. J. Watson Research Center. Claudio has
a Bachelor’s degree in mathematics from the Federal University of Ceara (Brazil), and MS and
PhD degrees in computer science from the State University of New York at Stony Brook. While a
student, and later as an NSF post-doc, he worked at Sandia National Labs, where he developed
large-scale scientific visualization algorithms and tools for handling massive datasets. His main
research interests are in graphics, visualization, applied computational geometry, and
high-performance computing. Claudio has published over 40 papers in international conferences
and journals, and presented courses at ACM SIGGRAPH, Eurographics, and IEEE Visualization
conferences. He is a member of the ACM, Eurographics, and IEEE. He is on the editorial board
of the IEEE Transactions on Visualization and Computer Graphics.

Dirk Bartz
Univ. of Tuebingen
WSI/GRIS
Auf der Morgenstelle 10/C9
D72076 Tuebingen, Germany
bartz@gris.uni-tuebinigen.de
Dirk Bartz is currently member of the research staff of the Computer Graphics Laboratory (GRIS)
at the Computer Science department of the University of Tuebingen. His recent works covers
interactive virtual medicine and thread-parallel visualization of large regular datasets. In 1998, he
was co-chair of the ”9th Eurographics Workshop on Visualization in Scientific Computing”, and
he is editor of the respective Springer book. Dirk studied computer science and medicine at the
University of Erlangen-Nuremberg and the SUNY at Stony Brook. He received a computer
science and medicine at the University of Erlangen-Nuremberg and the SUNY at Stony Brook.
He received a Diploma (M.S.) in computer science from the University of Erlangen-Nuremberg.
His main research interests are in visualization of large datasets, occlusion culling, scientific
visualization, parallel computing, virtual reality, and virtual medicine.

James T. Klosowski
IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598
jklosow@us.ibm.com
James T. Klosowski is a Research Staff Member at the IBM Thomas J. Watson Research Center.
His main research interests are in computer graphics, visualization and applied computational
geometry. Klosowski received a BS in computer science and mathematics from Fairfield
University in 1992, and an MS and PhD in applied mathematics from the State University of New
York at Stony Brook in 1994 and 1998, respectively. His research interests in computer graphics
include interactive visualization of large datasets, collision detection, volume rendering, and
adaptive network graphics. Recently, his research has focused on visibility culling, simplification
of complex geometric models, and parallel rendering of distributed data.

Peter Lindstrom
Lawrence Livermore National Laboratory
7000 East Avenue, L-560
Livermore, CA 94551
E-mail: pl@llnl.gov
Peter Lindstrom is a Computer Scientist in the Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory (LLNL). His current research is focused on surface
simplification and compression, view-dependent rendering and other level-of-detail techniques,
and geometric and multiresolution modeling. As a member of the ASCI VIEWS visualization
team at LLNL, he works on out-of-core methods for managing and visualizing terascale
geometric data sets generated in large scientific simulations. Peter joined LLNL in 2000 after
receiving his PhD in computer science from the Georgia Institute of Technology, and graduated
with BS degrees in computer science, mathematics, and physics from Elon University, North
Carolina, in 1994. Peter has published and presented papers at ACM SIGGRAPH, ACM TOG,
IEEE Visualization, and IEEE TVCG, among other computer graphics conferences and journals.
He is a member of ACM and IEEE.

William J. Schroeder
Kitware, Inc.
469 Clifton Corporate Parkway
Clifton Park, New York 12065
will.schroeder@kitware.com
William Schroeder is President and co-founder of Kitware, Inc. Kitware was incorporated in 1998
to support VTK, and build commercial applications with this open-source software foundation.
Prior to his current position, Dr. Schroeder was computational scientist as the GE Corporate R&D
Center where he developed software tools for mechanical system, medical, and computational
visualization. Dr. Schroeder graduated in 1983 with a M.S. in applied mathematics, and in 1991

with a Ph.D. in mathematics from Rensselaer Polytechnic Institute. His Ph.D. was obtained
part-time over an eleven year period while he worked full time at GE. Dr. Schroeder graduated
summa cum laude from the University of Maryland in 1980 as a mechanical engineer. Dr.
Schroeder continues to be active in the research community presenting papers, teaching courses,
and participating on panel discussions at such conferences as Siggraph and IEEE Visualization.
Dr. Schroeder has also been an invited speaker at conferences such as Pacific Graphics, the
CINECA (Italy) Supercomputing Series, Visualization Development Environments 2000, and
AT&T Visualization Days.

Contents

• Bartz

– “Excerpts from the Course Notes of the tutorial on Rendering and Visualization in
Parallel Environments”, D. Bartz, C. Silva, and B.-O. Schneider, 2001.

• Klosowski

– “Deep View: High-Resolution Reality,” J. T. Klosowski, P. D. Kirchner, J. Valuyeva,
G. Abram, C. J. Morris, R. H. Wolfe, T. Jackman,IEEE Computer Graphics &
Applications, 22(3):12-15, 2002.

– “Early Experiences and Challenges in Building and Using A Scalable Display Wall
System,” Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos
Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Allison Klein,
Zhiyan Liu, Emil Praun, Rudrajit Samanta, Ben Shedd, Jaswinder Pal Singh, George
Tzanetakis and Jiannan Zheng,IEEE Computer Graphics and Applications,
20(4):29-37, 2000.

– “Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters,”
Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter
Kirchner, Jim Klosowski,ACM Transactions on Graphics, 21(3):693-702, 2002.

• Lindstrom

– “A memory insensitive technique for large model simplification,” P. Lindstrom, C.
Silva, IEEE Visualization 2001, pp. 121-126, 2001.

– “External Memory Management and Simplification of Huge Meshes,” P. Cignoni, C.
Rocchini, C. Montani, R. Scopigno,IEEE Transactions on Visualization and
Computer Graphics, to appear.

• Schroeder

– “A Multi-Threaded Streaming Pipeline Architecture for Large Structured Data Sets,”
Charles Law, Kenneth M. Martin, William J. Schroeder, Joshua Temkin,IEEE
Visualization ’99, pp. 225-232, 1999.

– “Large-Scale Data Visualization Using Parallel Data Streaming,” James Ahrens, Kristi
Brislawn, Ken Martin, Berk Geveci, C. Charles Law, Michael Papka,IEEE Computer
Graphics & Applications, 21(4):34-41, 2001.

• Silva

– “Interactive Out-Of-Core Isosurface Extraction,” Y.-J. Chiang, C. Silva, and W.
Schroeder,IEEE Visualization 1998, pp. 167-174, 1998.

– “Out-Of-Core Rendering of Large Unstructured Grids,” R. Farias and C. Silva,IEEE
Computer Graphics and Applications, 21(4):42-50, 2001

– “Out-Of-Core Algorithms for Scientific Visualization and Computer Graphics,” C.
Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom, manuscript, 2002.

Page 1

SC 2002
Tutorial M9

Parallel Graphics Concepts
Dirk Bartz
University of Tübingen, Germany
bartz@gris.uni-tuebingen.de

(Based in part on presentations by
 Bengt-Olaf Schneider, NVIDIA and Claudio Silva)

SC 2002
Tutorial M9

The Problem

• Render a computer graphics scene using
multiple processors and/or threads

• Parallelization possible in every stage and
overlapping execution of stages

• Each stage maybe implemented on the
same or on separate processors

DisplayGeometryGeometryGeometry
RasterizerRasterizerRasterizer DisplayGeometryGeometryApplication Display

Page 2

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

Polygon
oriented

SC 2002
Tutorial M9

• Rendering
• Still-image rendering (single-frame)

• Animation (multiple-frames)

• Rendering algorithm and rendering quality

• Parallel Architectures
• Tightly-coupled SMP (SIMD less often)

• Loosely-coupled Clusters

• Graphics hardware or software renderers

Parallel Rendering Scenarios

Page 3

SC 2002
Tutorial M9

MIMD, SIMD, Pipelining (1)

Multiple-Instruction, Multiple-Data (MIMD)
• High level of independence between processors

• Requires synchronization between processors

• Best for task requiring many data-dependent
branches

• Used for geometry processing

SC 2002
Tutorial M9

MIMD, SIMD, Pipelining (2)

Single-Instruction, Multiple-Data (SIMD)
• Tight coupling between processors

• Implicit synchronization, good scalability

• Best for tasks requiring same operations for many
data

• Used for rasterization and fragment processing

Page 4

SC 2002
Tutorial M9

MIMD, SIMD, Pipelining (3)

Pipelining a.k.a. Functional Parallelization
• Natural for many algorithms, i.e. graphics pipeline

• Limited scalability and difficult to load balance

• Some operations require pipeline flush

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

Page 5

SC 2002
Tutorial M9

Classification of Parallel Renderers

Partitioning
• Object (MIMD)

• Image (SIMD)

• Temporal
(pipelining)

Sorting
• First

• Middle

• Last

SC 2002
Tutorial M9

Object vs. Image Partitioning

• Object-space partitioning
• Most often used for geometry processing

• Each task handles part of the scene,
i.e. high-level objects, triangles etc.

• Image-space partitioning
• Most often used for rasterization

• Each task processes parts of the image,
i.e. pixels, scanlines, tiles, etc.

Page 6

SC 2002
Tutorial M9

Temporal Partitioning (1)

• Popular choice for rendering of
animations

• Process
• Broadcast data to all processor

• Assign frames (i.e. viewpoint etc.) to n processors

• Render n frames

• Display or store n frames

SC 2002
Tutorial M9

Temporal Partitioning (2)

• Considered to be embarrassingly parallel
• Rendering performance could scale linearly with

number of processors

• But: Data distribution and collection
(communication), forms serial overhead and may
overshadow computation and rendering ...
 no speedup & bad scalability

Page 7

SC 2002
Tutorial M9

Classification by Sorting (1)

• Typical parallel polygon rendering system
• Geometry processing performed in object space,

i.e. each processor handles a subset of the scene

• Rasterization done in image space,
i.e. each processor handles a subset of the screen

 Objects must be sorted

SC 2002
Tutorial M9

Classification by Sorting (2)

• From object space
into image space

• Classification by
where the sorting
occurs.

R

G

R

G

R

G

R

G

Page 8

SC 2002
Tutorial M9

R

G

R

G

R

G

R

G

Sort-Middle Rendering (1)

Operation:
• Round-robin assignment of

objects to geometry proc's

• Sort objects to screen regions

• Rasterizers responsible for
screen regions

SC 2002
Tutorial M9

Sort-Middle Rendering (2)

• Properties
• Good load-balancing during

geometry processing
(clipping!)

• Possible load-balancing
problems
in rasterizer

• Most popular scheme

R

G

R

G

R

G

R

G

Page 9

SC 2002
Tutorial M9

Sort-Last Rendering (1)

Operation
� GR-pair for full screen

for all obj's

� Compositing step
determines visible
objects / pixels

G

R

G

R

G

R

G

Composited
Pixel

R

SC 2002
Tutorial M9

Sort-Last Rendering (2)

• Properties
• Generally good load balancing

(clipping, object size in screen space !)

• Requires large bandwidth

• No temporal order, transparency
and anti-aliasing hard

• PixelFlow

G

R

G

R

G

R

G

Composite
d Pixel

R

Page 10

SC 2002
Tutorial M9

R

G

R

G

R

G

R

G

Sort-First Rendering (1)

Quick mapping to screen
regions and sorting

SC 2002
Tutorial M9

Sort-First Rendering (2)

• Properties:
• Less sorting for highly tessellated objects

• Potential for load-imbalance due to
uneven spatial distribution of objects

• Ie., Princeton Display WALL, WireGL

R

G

R

G

R

G

R

G

Page 11

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

SC 2002
Tutorial M9

Load Balancing

� Objective is to ...
� distribute work evenly among all processors
� have all processors finish their work at the same time

� (One) Definition of load balance:
 Tf
 T

� LB Load balance
� Tf Time fastest processor finishes
� T Total processing time

Tf
T

T-Tf

LB =

Page 12

SC 2002
Tutorial M9

Geometry Processing
� Clipping: Trivial accept/reject simpler than

actual clipping
� Vertex Count: Polygons have different

number of vertices (e.g. clipping)
� Tessellation: Higher order primitives may be

tessellated into different number of basic
primitives (triangles)

� Rendering parameters: Number of lights,
shading type, texturing algorithm etc.

Load Balancing Problems (1)

SC 2002
Tutorial M9

Load Balancing Problems (2)

Rasterization
� Spatial distribution: Objects tend to be

clustered in certain screen areas
� Primitive size: Rasterization time is

proportional to primitive size
� Multipass: Some pixels require multipass rendering

Page 13

SC 2002
Tutorial M9

Terminology
� Task: Basic unit of work that can be assigned to a

processor, e.g. objects, primitives, scanlines, pixels, etc.
� Granularity: Minimum number of tasks that are

assigned to a processor,
e.g. 10 scanlines or 128x128 pixel regions.

Load Balancing Issues (1)

SC 2002
Tutorial M9

Load Balancing Issues (2)

Terminology, cont’
� Coherence:

� Neighboring elements (in space or time) are
similar, e.g. frames, scanline, pixels

� Exploited to speed up rendering calculations,
ie. for rasterization

� Parallelization may destroy / hide coherence
for a given processor

Page 14

SC 2002
Tutorial M9

� Static: Fixed assignment of tasks to
processors

� Dynamic: On-the-fly assignment of tasks to
processors

� Adaptive: Assign tasks such that all
processors have approximately the same load

Load Balancing Strategies

SC 2002
Tutorial M9

All tasks assigned before start of rendering, ie.
� Round-robin object assignment in sort-middle

architectures
� Assignment of screen regions to

rasterizers (SGI RE/IR, Pixel planes 4)

Static Load Balancing (1)

Page 15

SC 2002
Tutorial M9

Static Load Balancing (2)

Relies on assumptions about heuristics of the
model to achieve load balancing, e.g.

� Most objects requires same amount of work
� Interleaving of pixels will give each processor

equal share of busy and less busy screen regions
But: Reduces coherence between pixels within
a processor

� All frames of an animation incur approximately
same workload

SC 2002
Tutorial M9

Task are assigned on demand, i.e. the next task
goes to the first available processor:

� Assume that there are more tasks than processors
Granularity Ratio = #tasks / #processors > 1

� Upper bound for load imbalance is difference between
largest and smallest task

� Simple optimization: (if known) assign largest tasks first

Dynamic Load Balancing (1)

Page 16

SC 2002
Tutorial M9

Dynamic Load Balancing (2)

Task/processor assignment not known a priori:

� Maintains a task list that is depleted by processors
� Requires dynamic (sic) distribution of tasks during

runtime
� Tasks may not complete in same order as issued;

some APIs require temporal ordering, e.g. OpenGL !

SC 2002
Tutorial M9

� Rasterization modules for 128 x 128 pixel regions
� 80 regions for 1280 x 1024

display
� Several modules in a system

� Idle rasterizers process next
unprocessed region

� More efficient than Pixel-planes 4
� Scalability for cost, performance

and display size

1 2 3 4 1 2 3 1 2 4

Example: Pixel-Planes 5

Page 17

SC 2002
Tutorial M9

� Create tasks which will require (approximately)
the same amount of processing time

� Static adaptive load balancing
� Predictive: Estimate the processing time for each task
� Reactive: Deduce processing time from previous

frame
� Requires separate step to determine task assignments

Adaptive Load Balancing (1)

SC 2002
Tutorial M9

Adaptive Load Balancing (2)

� Dynamic adaptive load balancing
� Monitor workload of processors
� Reassign tasks from busy processors to idle

processors
� Requires concurrent monitoring process

Page 18

SC 2002
Tutorial M9

� Determine number of primitives per region
� Combine low-load regions
� Split high-load regions in half
� No control over location of split and hence

chance for low/no effectiveness

Example: Roble's Method

SC 2002
Tutorial M9

� Count number of centroids per region
� Split regions using distribution of centroids

� Median-cut algorithm to subdivide such that both
new regions contain same number of centroids

� Large effort for sorting primitives
� No accounting for primitive size

Example: Whelan's Method

Page 19

SC 2002
Tutorial M9

� Tally primitives overlapping each region
� Build quadtree of all regions, assigning number

overlapping primitives at each quadtree node
� Top-down subdivision of quadtree for nodes

with highest primitive count
� May still leave unbalanced

work distribution
� Increased granularity ratio

� Big primitives are counted multiple
times: Overestimation of work

Example: Whitman's Method (1992)

SC 2002
Tutorial M9

� Initial subdivision into tiles for given
granularity ratio (here 2)

� During rendering, processors who finish
early "steal" work from busy processors
by splitting work region

� An idle processor finds the processor
with most work left

� Split only if remaining work exceeds a
threshold

Example: Whitman's Method (1994)

Page 20

SC 2002
Tutorial M9

� Mesh-based adaptive hierarchical decomposition
� Based on small screen cells, ie. a fine, regular mesh

� Count primitives overlapping each cell in
inverse proportion to their size

� Avoid accounting problems like in Whitman's method
� Heuristic to balance constant geometry cost and size-dependent

rasterization cost (experimentally justified)

� Build a summed-area table (SAT)
� Subdivide screen into regions

along cell boundaries
� similar to median-cut algorithm

but cheaper because of SAT

Example: Mueller's Method: MAHD

SC 2002
Tutorial M9

� Reactive method, load balancing between frames
� Tally number of primitives overlapping each cell
� Estimate processing time for each cell
� Greedy, multiple-bin-packing algorithm to

assign regions to processors
� Sort regions by descending

polygon counts
� Assign next region to processor

with lightest workload

Example: Ellsworth's Method

Page 21

SC 2002
Tutorial M9

Example: Princeton Display Wall (1)

Multi-projector system
� Each projector is driven by a

dedicated computer
� Computers are connected through

high-speed network
� Data replication through-out system (2000)
� Later partial replication: k-way replication (2001)

SC 2002
Tutorial M9

Example: Princeton Display Wall (2)

Object/pixel based partition for every view
� Hybrid sort first/last system
� Recursive binary partition (kd-tree)
� Goal to reduce load inbalance and com’ overhead

Page 22

SC 2002
Tutorial M9

Example: Princeton Display Wall (3)

Recursive binary partition
� Sweep planes assign primitives to partitions to

render servers (sort first)
� Are sensitive to 2D Bounding Box size
� Partition overlaps are transmitted to participating

render servers (which renders other partition) (sort
last)

� Requires potentially slow framebuffer readback

SC 2002
Tutorial M9

Example: OpenSG (1)

• Open source system:
http://www.opensg.org

• Scene Graph is replicated through out
parallel system

• Local copies of data fields
• Data modification at synchronization

points

Page 23

SC 2002
Tutorial M9

Example: OpenSG (2)

• Will have support for Volume Rendering
(2D/3D texture based)

• Right now, only 2D slicing
• Current cluster model:

• Every node (PC) drives one display

• Load balancing implemented,
but currently no image composition available

SC 2002
Tutorial M9

Others

• WireGL/Chromium: Jim will talk about it in
the next session

• Various solutions of the National Labs
•

Page 24

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

SC 2002
Tutorial M9

� Often lost/difficult with parallel strategies
� Required by some APIs, ie. OpenGL
� Important for algorithms that rely on the order in which

objects are drawn onto the screen
� Painter's algorithm
� Multi-pass algorithms, ie. transparency, overlays, solid-modeling,

priority algorithm

� Possible solutions
� Sequence numbers (time stamps) enforce strict ordering
� Barriers to ensure ordering between groups of objects (ie.,

WireGL)

Temporal Ordering

Page 25

SC 2002
Tutorial M9

� Graphics hardware accelerators are very useful for
single-processor rendering

� Parallel Polygon Rendering Hardware
� Typically sort-middle architecture
� By now, complete graphics pipeline in hardware
� Most systems interleave pixels, scanlines, or stamps
� Some systems overlay a coarser tiling scheme for virtual

rasterizers, ie. Pixel-planes 5, Talisman

Graphics Hardware Concepts

SC 2002
Tutorial M9

� Multiple CPUs and/or multiple graphics adapters are a
challenge

� SMP geometry pipelines are difficult for many APIs
� In clusters, communication (in particular compositing) often

overshadows computation and rendering
� Communication overhead is often overlooked or excluded
� Even "embarrassingly parallel" approaches (frame-parallel)

are not trivially implemented
� Require high-speed networks and high-speed disks
� Poor scaling and chance for deceleration
� Solution: Increase CPU load to reduce communication

Exploiting Graphics Hardware

Page 26

SC 2002
Tutorial M9

� Hardware usually shortens rendering time
� Shift balance between computation & communication

� Rebalance by reducing communication overhead
� Use more CPU, ie. compression, selective updates, ...
� Use less bandwidth, ie. distributed frame buffers
� Overlap communication and computation

G R CNo
HW
With
HW R CG
Rebalanced R CG

Communication Bottleneck

SC 2002
Tutorial M9

� Avoid communication of final pixel values to a
central storage or display

� Instead use dedicated compositing hardware to
combine partial image

� ie. Wei et al. PRS95, IBM Yotta, Compaq’s Serpia, Lightning2

FB 2 FB 3 FB 4 Compose

From Parallel Renderers To Display

FB 1

Distributed Frame Buffer

Page 27

SC 2002
Tutorial M9

� Parallel polygon rendering classifications
� Sort-first/middle/last

� Key problems in parallel polygon rendering
� Load balancing
� Communication overhead (in particular compositing

� Load Balancing
� Required due to uneven work distribution
� Static, dynamic, adaptive

� Communication overhead
� Distribution and collection (compositing) of data
� Minimize transfers or support in hardware

Summary

Page 1

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

SC 2002
Tutorial M9

Overview

Introduction to Volume Rendering
Volume Rendering on

Regular Grids
Irregular Grids

Page 2

SC 2002
Tutorial M9

Regular Grids:
• Fixed grid topology

(ie., #neighbors, valence)
• Flexible grid geometry

Introduction to Volume Rendering (1)

Cartesian/rectilinearCurvilinear

SC 2002
Tutorial M9

Introduction to Volume Rendering (2)

Irregular/Unstructured Grids:
• Flexible grid topology
• Flexible grid geometry

Page 3

SC 2002
Tutorial M9

Introduction to Volume Rendering (3)

eyepoint

viewplane

Voxel fetch

Resampling

Shading

Compositing

Vxyz (R, G, B, alpha)

Volume rendering pipeline

SC 2002
Tutorial M9

Introduction to Volume Rendering (4)

Optical model:
• Absorption along the projection
• Receive light from light sources

(emission)
• Associative

composing

Page 4

SC 2002
Tutorial M9

Introduction to Volume Rendering (5)

Ray Casting:
• Rays are cast from viewplane
• Samples are composed along the ray into

viewplane pixels

SC 2002
Tutorial M9

Introduction to Volume Rendering (5)

Ray Casting:
• Rays are cast from viewplane
• Samples are composed along the ray into

viewplane pixels

Page 5

SC 2002
Tutorial M9

Introduction to Volume Rendering (5)

Ray Casting:
• Rays are cast from viewplane
• Samples are composed along the ray into

viewplane pixels

SC 2002
Tutorial M9

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

Page 6

SC 2002
Tutorial M9

Baseplane

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

SC 2002
Tutorial M9

Baseplane

Shear

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

Page 7

SC 2002
Tutorial M9

Baseplane

Shear

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

SC 2002
Tutorial M9

Baseplane

Shear

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

Page 8

SC 2002
Tutorial M9

Baseplane

Shear

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

SC 2002
Tutorial M9

Baseplane

Shear

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

Page 9

SC 2002
Tutorial M9

Baseplane

Warp

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

SC 2002
Tutorial M9

Baseplane

Warp

Introduction to Volume Rendering (6)

Shear Warp
• Base plane ray casting
• Similar parallel

approaches
• Lower quality (inter-

polation,sampling)
• Fast
• Cartesian grids only

Page 10

SC 2002
Tutorial M9

Overview

Introduction to Volume Rendering
Volume Rendering on

Regular Grids in
Shared Memory
Distributed Memory

Irregular Grids

SC 2002
Tutorial M9

Parallel Ray Casting

Idea: Assign (group of) rays to
separate processors

Issues:

Page 11

SC 2002
Tutorial M9

Idea: Assign (group of) rays to
separate processors

Issues:

Parallel Ray Casting

• Load Balancing:
static

CPU0 CPU1

CPU2 CPU3

SC 2002
Tutorial M9

Parallel Ray Casting

Idea: Assign (group of) rays to
separate processors

Issues: • Load Balancing:
dynamic

CPU0

CPU2 CPU3

CPU1

Page 12

SC 2002
Tutorial M9

Parallel Ray Casting

Idea: Assign (group of) rays to
separate processors

Issues: • Load Balancing
• Data locality and

cache coherence
(in particular on NUMA)

• Scalability

CPU0 CPU1

CPU2 CPU3

SC 2002
Tutorial M9

Example: Nieh and Levoy 1992

• Ray casting on the Stanford DASH
• Screen is sub-divided into titles
• Titles assigned dynamically
• 14 MB dataset on 48 proc’s:

• Maximum speedup 40, 1.4 fps (non-adaptive)

• Maximum frame rate 3 fps, speedup 33
(adaptive rendering)

Page 13

SC 2002
Tutorial M9

Example: Parker, Shirley, Livnat,
 Hansen, Sloan 1998

• Parallel ray casting of iso-surfaces on SGI O2K
• Screen is sub-divided into titles
• Dynamic load balancing of variable tile chunks
• Takes great care of cache coherence
• 900MB dataset on 128 proc’s:

speedups >100, 20 fps

(Similar techniques in Law,Yagel 1996
 and Palmer et al. 1997)

SC 2002
Tutorial M9

Volume Rendering on Regular Grids

Introduction to Volume Rendering
Volume Rendering on

Regular Grids in
Shared Memory
Distributed Memory

Irregular Grids

Page 14

SC 2002
Tutorial M9

Distributed-Memory Ray Casting

Issues:
• Communication / Synchronization
• Data Distribution / Replication
• Sorting / Compositing
• Load Balancing

SC 2002
Tutorial M9

Distributed-Memory Ray Casting

Issues:
• Communication / Synchronization
• Data Distribution / Replication

• Often replicated if local memory is large enough

• Object space chunks depending on ray directions

• Sorting / Compositing
• Load Balancing

Page 15

SC 2002
Tutorial M9

Sorting / Compositing (1)

• Sampling (partial) volume
• Compose (partial) samples
• Compose partial results

Important: Compositing is associative

How to compose partial results?

SC 2002
Tutorial M9

Processor 1 Processor 2

Sorting / Compositing (2)

How to compose partial results?
Compositing depends strongly
on load balancing / data distribution

Page 16

SC 2002
Tutorial M9

Binary Swap (Ma, Painter, Hansen, Krogh 1993)
• The data set partitioning

based on a K-d tree
• The image compositing

based on a recursive
image-subdivision scheme

Sorting / Compositing (3)

Also: Mackerras, TR ANU 1992

SC 2002
Tutorial M9

Sorting / Compositing (4)

Binary Swap (Ma, Painter, Hansen, Krogh 1993)
• The data set partitioning

based on a K-d tree
• The image compositing

based on a recursive
image-subdivision scheme

Page 17

SC 2002
Tutorial M9

Sorting / Compositing (5)

Binary Swap (Ma, Painter, Hansen, Krogh 1993)
• The data set partitioning

based on a K-d tree
• The image compositing

based on a recursive
image-subdivision scheme

SC 2002
Tutorial M9

Sorting / Compositing (6)

Binary Swap
• The data set partitioning

based on a K-d tree
• The image compositing

based on a recursive
image-subdivision scheme

since the data is partioned
into convex, non-overlapping
regions of 3-space.

Page 18

SC 2002
Tutorial M9

Sorting / Compositing (7)

Binary Swap
• The data set partitioning

based on a K-d tree
• The image compositing

based on a recursive
image-subdivision scheme

since the data is partioned
into convex, non-overlapping
regions of 3-space.

SC 2002
Tutorial M9

Final Image:

Sorting / Compositing (8)

Binary Swap

Page 19

SC 2002
Tutorial M9

Sorting / Compositing (9)

Binary Swap:
• Compositing with p processors
• O(log p) compositing (p should be 2n)
• Compositing of “empty regions”

SC 2002
Tutorial M9

Sorting / Compositing (10)

Parallel Pipeline (Lee, Raghanvendra,
Nicholsas, TVCG 1997):

• Image is split in p parts
• Compositing in ring buffer

P1 P2 P3

Page 20

SC 2002
Tutorial M9

Rendering cluster

Compositing cluster

Sub-images

Sorting / Compositing (11)

Rendering/Compositing Clusters
(Ramakrishnan, Silva 1999)

• BSP-Tree compositing
• #subimages = #compositors

SC 2002
Tutorial M9

virtual compositing tree
actual compositing tree

BSP-tree compiler

Sorting / Compositing (12)

Page 21

SC 2002
Tutorial M9

Load Balancing (1)

• Close related to Distribution / Compositing
• Tries to minimize communication
• Static / dynamic / adaptive
• Distribution also requires voxel extend

for neighborhood information

SC 2002
Tutorial M9

Subdivision into subvolumes
(Hsu, 1993, Westermann 1995,):

Load Balancing (2)

Page 22

SC 2002
Tutorial M9

Content-Based Load
Balancing (Silva’96)

• Uses Kd-tree
• Always subdivide along

the longest “axis”
• Always subdivide number

of full sub-cubes in half
• Static scheme

Load Balancing (3)

SC 2002
Tutorial M9

Overview

Introduction to Volume Rendering
Volume Rendering on

Regular Grids
Irregular Grids

Page 23

SC 2002
Tutorial M9

Volume Rendering on Irregular Grids

• Complex topology of grid
• Can have several disconnected

components
• Load Balancing has to deal with

cells of large size range
• Central problem:

sorting of cells for compositing

SC 2002
Tutorial M9

Distributed-Memory Technique
• Round-robin of the

cell primitives for
 load balancing

• May create problems
with caches/
local memory

Example: Ma and Crocket 97 (1)

B

A

Viewing direction

1

3 2

3

1
2

2

1 2
3

3

1

1

2

2
1

1

3

3
2

2

1
3

1 3

2 1
3

C

Page 24

SC 2002
Tutorial M9

Cell projection in two phases:
• Scan conversion of cells

• Compositing

Example: Ma and Crocket 97 (2)

B

A

Viewing direction

1

3 2

3

1
2

2

1 2
3

3

1

1

2

2
1

1

3

3
2

2

1
3

1 3

2 1
3

C

SC 2002
Tutorial M9

Uses k-d tree for sub-
partitioning to compose
sub-regions first
•Bounds the number of

not-composed
 ray segments

Example: Ma and Crocket 97 (3)

B

A

Viewing direction

1

3 2

3

1
2

2

1 2
3

3

1

1

2

2
1

1

3

3
2

2

1
3

1 3

2 1
3

C

Page 25

SC 2002
Tutorial M9

Example: Chen, Fujishiro, Nakajima,
EGPGV 2002 (1)

• Target: Earth Simulator (NEC SMP-Cluster)
• Complex unstructured grids
• Various cell types
• Large data: 1-100 Petabytes

(1PB = 1000 TB = 106 GB)
• For more details check website of

4th Eurographics Workshop on Parallel Graphics
and Visualization 2002:
http://www.gris.uni-tuebingen.de/conf/egpgv02

SC 2002
Tutorial M9

Example: Chen, Fujishiro, Nakajima,
EGPGV 2002 (2)

Hybrid parallelization
• Message passing: MPI for intra and inter node
• Threading: OpenMP for intra node
• Optimized for loop vectorization for PEs
• Difficulties to obtain good hybrid performance
• Data partitioned into sub volumes
• Dynamic load repartitioning depending on number of

relevant voxels/cells

Page 26

SC 2002
Tutorial M9

Example: Chen, Fujishiro, Nakajima,
EGPGV 2002 (3)

Data partitioned into sub volumes

Sub volumes are resampled and
adaptively refined into BONO structure

Sub volumes are assigned to SMP nodes
...

Image from:
Chen et al,
EG PGV 2002

SC 2002
Tutorial M9

Example: Chen, Fujishiro, Nakajima,
EGPGV 2002 (4)

Data partitioned into sub volumes
• Boundary and inner elements
• Sub volumes are individually rendered and opacity is

stored
• Sub images are composed using stored opacity
• Rendering by adaptive ray casting

Page 27

SC 2002
Tutorial M9

Volume Rendering on Irregular Grids

Other approaches focus on cell sorting
• Giertsen CG&A 1992/93 (sweep plane)
• Williams TOG’92, Silva, et al. VolVis 1998
• Westermann, Vis’97, SIGGRAPH’98,

VisSym’01: Hardware-based resampling of
irregular grids

SC 2002
Tutorial M9

Challenges/Opportunities Ahead

• PC clusters and hardware-assisted
rendering techniques

• Large- and high-resolution displays
and clusters

• Out-of-core rendering
• Time-critical rendering

Page 28

SC 2002
Tutorial M9

Outline

• The Problem
• General Concepts
• Classification
• Load Balancing
• Practical Issues
• Parallel Volume Rendering
• Parallel Hierarchy Generation

SC 2002
Tutorial M9

Parallel Hierarchy Generation (1)

• Hierarchies are often used to handle large data
• Implement a multi-resolution representation
• Generation can be time consuming,

in particular if needed often
• Sometimes dynamic generation needed
• Many hierarchical data structures are recursive

(ie., Octrees/BONO, BSP-trees, kd-trees, ...)

Page 29

SC 2002
Tutorial M9

Parallel Hierarchy Generation (2)

• Balanced, asynchronous generation
wanted

• Solution: Asynchronous Push-Up
(Bartz et al., 1998-2000):
• Parallel split-down of blocks into queue

• Parallel, asynchonous Push-Up

SC 2002
Tutorial M9

Parallel Hierarchy Generation (3)

Super
block

Split-down

Size
 ?

Last
 ?

Job queue

>

<

no
Update parent

Asynchronous Push-up

yes

Overview of construction

Page 30

SC 2002
Tutorial M9

Parallel Hierarchy Generation (4)

Split-down
.....

Current job

New jobs

queuing

Split-down
Parent n

Child n,m-1

Child n,m-2

Child n,0

SC 2002
Tutorial M9

Parallel Hierarchy Generation (5)

Asynchronous Push-up

Parent n

Child n,0Child n,1 Child n,m-2 Child n,m-1

Get new job
from queue

Get new job
from queue

parent
 update

Split-down

Get new job
from queue

Page 31

SC 2002
Tutorial M9

Parallel Hierarchy Generation (6)

Level mutexes:

Level mutex k

Block k

Block k,0

Block k,0,0

Level mutex k,0

..... Block k,l,n

Block k,l

Block k,l,0

Level mutex k,l

.....

.......

Block k,0,m

SC 2002
Tutorial M9

Parallel Hierarchy Generation (7)

Observations
• Test on SMP systems (NUMA, UMA)
• (p)Thread -based, but extendable to OpenMP or

message passing
• Architecture sensitive memory managment needed
• No bottlenecks were

memory access, job queues, level mutexes
(might be different with more CPUs (>16) or
 distributed/cluster memory)

Page 32

SC 2002
Tutorial M9

Summary

• Parallel Graphics Concepts
• Scenarios, sorting, polygon oriented

• Parallel volume rendering of
regular and irregular grids

• Parallel hierarchy generation

• Check tutorial website for updated infos:
http://www.cse.cgi.edu/~csilva/tutorials/sc2002

SC 2002
Tutorial M9

References
(which are not in the notes)
Princeton Display Wall:
• R. Samanta, J.Zheng, T. Funkhouser, et al.: Load Balancing for Multi-Projector

Rendering Systems, EG/SIGGRAPH workshop on Graphics Hardware, 1999.
• R: Samanta, T. Funkhouser, K. Li, et al.:

Hybrid Sort-First and Sort-Last Rendering with a Cluster of PCs, EG/SIGGRAPH
workshop on Graphics Hardware, 2000.

• R. Samanta, T. Funkhouser, K. Li: Parallel Rendering with k-way Replication,
Symposium on Parallel and Large Data Visualization and Graphics, 2001.

Earth Simulator:
• L. Chen, I. Fujishiro, K. Nakajima: Parallel Performance Optimization of Large-Scale

Unstructured Data Visualization for the Earth Simulator, 4th Eurographics Workshop on
Parallel Graphics and Visualization, 2002.

Parallel Hierarchies:
• D. Bartz: Optimizing Memory Synchronization for the Parallel Construction of Recursive Tree

Hierarchies, 3rd Eurographics Workshop on Parallel Graphics and Visualization, 2000.

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Excerpts for the Course Notes of the tutorial on
Rendering and Visualization in Parallel Environments

Dirk Bartz
WSI/GRIS

University of Tübingen
Email: bartz@gris.uni-tuebingen.de

Claudio Silva
Oregon Health & Science University

Email: csilva@cse.ogi.edu

Bengt-Olaf Schneider
NVIDIA

The following sections contain parts from our tutorial on “Rendering and Visualization in Parallel Environments which was held
in the past years at ACM SIGGRAPH, IEEE Visualization, and the Eurographics conferences. For the full notes, please check

For updates and additional information, see
http://www.gris.uni-tuebingen.de/˜bartz/vis2001tutorial

.

Part I

Parallel Graphics Concepts
In this section, we describe several concepts for parallel graphics. Although this section mostly focusses on parallel polygon
graphics, some of these concepts are also applicable to parallel volume rendering.

1 Rendering Pipeline

DisplayDisk
Geometry
Processor

Memory Rasterizer
Processor
Fragement

Figure 1: Simplified model of the rendering pipeline.

In this paper we will only consider rendering of polygonal models using the standard rendering pipeline, i.e. we will not discuss
ray-tracing or volume rendering. Figure 1 shows the principal steps in rendering of a polygonal model. The description of the model
is stored on disk in some file format such as VRML. Before commencing the actual rendering process, the model must be loaded
from disk into main memory and converted into an internal representation suitable for rendering. All further processing steps are
then memory-to-memory operations. It should be noted that the order of primitives on disk and in the in-memory representation is
arbitrary and is usually determined by the application. In particular, the order of primitives in the should not be relied upon when
trying to load-balance parallel processors.

Geometry processing forms the first stage of the rendering pipeline. It includes the steps of transforming objects from their
intrinsic coordinate system, e.g. model coordinates, into device coordinates, lighting, computation of texture coordinates, and
clipping against the view frustum. Except for clipping, all operations in this stage are performed on vertex information. (Clipping
operates on entire polygons which is, in particular on SIMD computers, often disrupting the data flow. The steps in the geometry
pipeline can be rearranged such that clipping is postponed until the very end when vertices are reassembled into triangles for
rasterization [68, 78]. Geometry processing needs mostly floating point operations to implement the matrix multiplications required
to transform vertices and to support lighting calculations. Depending on the number of lights and the complexity of the lighting
model geometry processing requires between several hundred and a few thousand floating point operations per vertex.

Rasterization converts primitives (typically triangles) described as screen-space vertices into pixels. The resulting pixels are
then subjected to various fragment processing operations, such as texture mapping, z-buffering, alpha-blending etc. The final pixel
values are written into the frame buffer from where they are scanned out onto the display. Most graphics systems implement
rasterization and fragment processing as a unit. One notable exception is the PixelFlow system [24].

Rasterization and fragment processing are use predominantly fixed-point or integer computations. Depending on the complexity
of the fragment processing operations, between 5 and up to 50 integer computations per pixel and per triangle are required. Because
rasterization is algorithmically simple yet requires such a huge number of operations it is often implemented in hardware.

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

More details on the computational requirements for the different stages in the rendering pipeline can be found for instance in
[25, pp. 866-873].

Finally, the complete image is either sent to the screen for display or written to disk. In many parallel rendering algorithms
this step forms a performance bottleneck as partial images stored on different processors have to be merged in one central location
(the screen or a disk). (Although this step should be included when measuring the end-to-end performance of a parallel rendering
system, some researchers explicitly exclude this step due to shortcomings of their particular target platform [20].)

1.1 Single-frame vs. multi-frame rendering

Rendering polygonal models can be driven by several needs. If the model is only used once for the generation of a still image, the
entire rendering process outlined above has to be performed. The creation of animation sequences requires rendering of the same
model for different values of time and consequently varying values for time-dependent rendering parameters, e.g. view position,
object location, or light source intensities. Even though multi-frame rendering could be handled as repeated single-frame rendering,
it offers the opportunity to exploit inter-frame coherence. For example, access to the scene database can be amortized over several
frames and only the actual rendering steps (geometry processing and rasterization) must be performed for every frame. Other ways
to take advantage of inter-frame coherence will be discussed below.

2 Algorithm Classification

For many years the classification of parallel rendering algorithms and architectures has proven to be an elusive goal. We will discuss
several such classifications to gain some insight into the design space and possible solutions.

2.1 Pipelining vs. Parallelism

Irrespective of the problem domain, parallelization strategies can be distinguished by how the problem is mapped onto the parallel
processors.

For pipelining the problem is decomposed into individual steps that are mapped onto processors. Data travel through the proces-
sors and are transformed by each stage in the pipeline. For many problems, like the rendering pipeline (sic!), such a partitioning
is very natural. However, pipelining usually offers only a limited amount of parallelism. Furthermore, it is often difficult to
achieve good load-balancing amongst the processors in the pipeline as the different functions in the pipeline vary in computational
complexity.

To overcome such constraints pipelining is often augmented by replicating some or all pipeline stages. Data are distributed
amongst those processor and worked on in parallel. If the algorithms executed by each of the processors are identical, the processors
can perform their operation in lockstep, thus forming a SIMD (single-instruction, multiple-data) engine. If the algorithms contain
too many data dependencies thus making SIMD operation inefficient, MIMD (multiple-instruction, multiple-data) architectures
are more useful. SIMD implementations are usually more efficient as the processors can share instructions and require very little
interprocessor communication or synchronization.

2.2 Object Partitioning vs. Image Partitioning

One of the earliest attempts at classifying partitioning strategies for parallel rendering algorithms took into consideration whether
the data objects distributed amongst parallel processors belonged into object space, e.g. polygons, edges, or vertices, or into image
space, i.e. collections of pixels such as portions of the screen, scanlines or individual pixels [1]. Object-space partitioning is
commonly used for the geometry processing portion of the rendering pipeline, as its operation is intrinsically based on objects.
Most parallelization strategies for rasterizers employ image-space partitioning [22, 94, 18, 4, 3, 62] A few architectures apply
object-space partitioning in the rasterizer [92, 26, 77].

2.3 Sorting Classification

Based on the observation that rendering can be viewed as a sorting process of objects into pixels [23], different parallel rendering
algorithms can be distinguished by where in the rendering pipeline the sorting occurs [27]. Considering the two main steps in
rendering, i.e. geometry processing and rasterization, there are three principal locations for the sorting step: Early during geometry
processing (sort-first), between geometry processing and rasterization (sort-middle), and after rasterization (sort-last).

Figure 2) illustrates the three approaches. In the following discussion we will follow [27] in referring to a pair of geometry
processor and a rasterizer as a renderer.

Sort-middle architectures form the most natural implementation of the rendering pipeline. Many parallel rendering systems,
both software and hardware, use this approach, e.g. [4, 22, 3, 17, 15, 96, 20]. They assign primitives to geometry processors that
implement the entire geometry pipeline. The transformed primitives are then sent to rasterizers that are each serving a portion of
the entire screen. One drawback is the potential for poor load-balancing among the rasterizers due to uneven distribution of objects
across the screen. Another problem of this approach is the redistribution of primitives after the geometry stage which requires a
many-to-many communication between the processors. A hierarchical multi-step method to reduce the complexity of this global
sort is described in [20].

2

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Screen

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Screen

Composited
Pixel

(a) (b)

(c)

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Rasterizer

Geometry
Processor

Figure 2: Classification of parallel rendering methods according to the location of the sorting step. (a) sort-first (b) sort-middle (c)
sort-last.

Sort-last assigns primitives to renderers that generate a full-screen image of all assigned primitives. After all primitives have been
processed, the resulting images are merged/composited into the final image. Since all processors handle all pixels this approach
offers good load-balancing properties. However compositing the pixels of the partial images consumes large amounts of bandwidth
and requires support by dedicated hardware, e.g. [24]. Further, with sort-last implementations it is difficult to support anti-aliasing,
as objects covering the same pixel may be handled by different processors and will only meet during the final compositing step.
Possible solutions, like oversampling or A-buffers [9], increase the bandwidth requirements during the compositing step even
further.

Sort-first architectures quickly determine for each primitive to which screen region(s) it will contribute. The primitive is then
assigned to those renderers that are responsible for those screen regions. Currently, no actual rendering systems are based on this
approach even though there are some indications that it may prove advantageous for large models and high-resolution images [63].
[63] claims that sort-first has to redistribute fewer objects between frames than sort-middle. Similar to sort-middle, it is prone to
suffer from load-imbalances unless the workload is leveled using an adaptive scheme that resizes the screen regions each processor
is responsible for.

3

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Part II

Parallel Rendering
In this part, we discuss important parallel rendering issues which are typical for parallel approaches, such as load-balancing,
scheduling, or the foundations of the rendering approaches (for volume rendering).

3 Parallel Polygonal Rendering

As with the parallel implementation of any algorithm the performance depends critically on balancing the load between the parallel
processors. There are workload-related and design-related factors affecting the load balancing. We will first discuss workload
issues and then describe various approaches to design for good load-balance.

Before the discussion of load balancing strategies, we will define terms used throughout the rest of the discussion. Tasks are
the basic units of work that can be assigned to a processor, ie. objects, primitives, scanlines, pixels etc. Granularity quantifies the
minimum number of tasks that are assigned to a processor, ie. 10 scanlines per processor or 128x128 pixel regions. Coherence
describes the similarity between neighboring elements like consecutive frames or neighboring scanlines. Coherence is exploited
frequently in incremental calculations, ie. during scan conversion. Parallelization may destroy coherence, if neighboring elements
are distributed to different processors. Load balance describes how well tasks are distributed across different processor with respect
to keeping all processors busy for all (or most) of the time. Surprisingly, there is no commonly agreed upon definition of load
balance in the literature. Here, we define load balance based on the time between when the first and when the last work task finish.

LB = 1�
T � Tf

T
(1)

where T is the total processing time and Tf is the time when the fastest processor finishes.

3.1 Workload Characterization

Several properties of the model are important for analyzing performance and load-balancing of a given parallel rendering archi-
tecture. Clipping and object tesselation affect load-balancing during geometry processing, while spatial object distribution and
primitive size mostly affect the balance amongst parallel rasterizers.

Clipping. Objects clipped by the screen boundaries incur more work than objects that are trivially accepted or rejected. It is
difficult to predict whether an object will be clipped and load-imbalances can result as a consequence of one processor receiving
a disproportionate number of objects requiring clipping. There are techniques that can reduce the number of objects that require
clipping by enabling rasterizers to deal with objects outside of the view frustum [70, 21]. This reduces the adverse affects of
clipping on load-balancing to negligible amounts.

Tesselation. Some rendering APIs use higher order primitives, like NURBS, that are tesselated by the rendering subsystem. The
degree of tesselation, ie. the number of triangles per object, determines the amount of data expansion occurring during the rendering
process. The degree of tesselation is often view-dependent and hence hard to predict a priori. The variable degree of tesselation
leads to load imbalances as one processor’s objects may expand into more primitives than objects handled by another processor.
Tesselation also affects how many objects need to be considered during the sorting step. In sort-first architectures, primitives are
sorted before the tesselation, thus saving communication bandwidth compared to sort-middle architectures.

Primitive distribution. In systems using image-space partitioning, the spatial distribution of objects across the screen decides
how many objects must be processed by each processor. Usually, objects are not distributed uniformly, ie. more objects may be
located in the center of the screen than along the periphery. This creates potential imbalances in the amount of work assigned to
each processor. Below we will discuss different approaches to deal with this problem.

Primitive size. The performance of most rasterization algorithms increases for smaller primitives. (Simply put: It takes less
time to generate fewer pixels.) The mix of large and small primitives therefore determines the workload for the rasterizer. Several
experiments have shown (see ie. [12]) that many scenes contain a large number of small objects and a few large objects. The
primitive size also affects the overlap factor, ie. the number of screen regions affected by an object. The overlap factor affects the
performance of image-space partitioning schemes like sort-first and sort-middle algorithms.

3.2 Designing for Load-Balancing

Several design techniques are used to compensate for load-imbalances incurred by different workloads. They can be distinguished
as static, dynamic and adaptive.

Static load balancing uses a fixed assignment of tasks to processors. Although, a low (ie. no) overhead is incurred for determining
this assignment, load imbalances can occur if the duration of tasks is variable. Dynamic load balancing techniques determine the on
the fly which processor will receive the next task. Adaptive load balancing determines an assignment of tasks to processors based
on estimated cost for each task, thereby trying to assign equal workload to each processor.

We will now look at several concrete techniques to load balance graphics tasks in multi-processor systems.

4

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

On-demand assignment is a dynamic method that relies on the fact that there are many more tasks (objects or pixels) than
there are processors. New work is assigned to the first available, idle processor. Except during initialization and for the last few
tasks, every processor will be busy all the time. The maximum load imbalance is bounded by the difference in processing time
between the smallest (shortest processing time) and largest (longest processing time) task. The ratio of the number of tasks and
the number of processors is called the granularity ratio. Selecting the granularity ratio requires a compromise between good
load balancing (high granularity ratio) and overhead for instance due to large overlap factor (low granularity ratio). The optimal
granularity ratio depends on the model, typical values range from about 4 to 32.

An example for dynamic load-balancing through the use of on-demand assignment of tasks is the Pixel-planes 5 system [22].
In Pixel-planes 5, the tasks are 80 128x128 pixel regions that are assigned to the next available rasterizer module. The dynamic
distribution of tasks also allows for easy upgrade of the system with more processors.

Care must be taken when applying this technique to geometry processing: Some graphics APIs (like OpenGL) require that
operations are performed in the exact order in which they were specified, ie. objects are not allowed to “pass each other” on their
way through the pipeline. MIMD geometry engines using on-demand assignment of objects could violate that assumption and must
therefore take special steps to ensure temporal ordering, ie. by labeling objects with time stamps.

Interleaving is a static technique which is frequently used in rasterizers to decrease the sensitivity to uneven spatial object
distributions. In general, the screen is subdivided into regions, ie. pixels, scanlines, sets of scanlines, sets of pixel columns, or
rectangular blocks. The shape and the size of these regions determines the overlap factor. For a given region size, square regions
minimize the overlap factor [27]. Among n processor, each processor is responsible for every n-th screen region. The value
n is known as the interleave factor. Since clustering of objects usually occurs in larger screen regions and since every object
typically covers several pixels, this technique will eliminate most load-imbalances stemming from non-uniform distribution of
objects. Interleaving makes it harder to exploit spatial coherence as neighboring pixels (or scanlines) are assigned to different
processors. Therefore, the interleave factor, ie. the distance between pixels/scanlines assigned to the same processor, must be
chosen carefully. Several groups have explored various aspects of interleaving for parallel rasterization, ie. [38].

Adaptive scheduling tries to achieve balanced loading of all processors by assigning different number of tasks depending on
task size. For geometry processing this might mean to assign fewer objects to processors that are receiving objects that will be
tesselated very finely. In image-space schemes this means that processors are assigned smaller pixel sets in regions with many
objects, thus equalizing the number of objects assigned to each processor.

Adaptive scheduling can be performed either dynamically or statically. Dynamic adaptation is achieved by monitoring the load-
balance and if necessary splitting tasks to off-load busy processors. Such a scheme is described in [96]: Screen regions are initially
assigned statically to processors. If the system becomes unbalanced, idle processors grab a share of the tasks of the busy processors.

Statically adaptive schemes attempt to statically assign rendering tasks such that the resulting work is distributed evenly amongst
all processors. Such schemes are either predictive or reactive. Predictive schemes estimate the actual workload for the current frame
based on certain model properties. Reactive schemes exploit inter-frame coherence and determine the partioning of the next frame
based on the workload for the current frame, ie. [20, 74].

Numerous rendering algorithms using adaptive load-balancing have been described. Most these methods operate in two steps:
First, the workload is estimated by counting primitives per screen regions. Then, either the screen is subdivided to create regions
with approximately equal workload or different number of fixed-sized regions (tasks) are assigned to the processors.

One of the earliest such methods was described by Roble [74]. The number of primitives in each screen region are counted.
Then, low-load regions are combined to form regions with a higher workload. Regions with high workload are split in half. Since
the algorithm does not provide any control over the location of splits, it has the potential of low effectiveness in load-balancing.

Whelan [94] published a similar method that determines the workload by inspecting the location of primitive centroids. High-
workload regions are split using a median-cut algorithm, thereby improving the load-balancing behavior over Roble’s algorithm.
The median-cut approach incurs a sizeable overhead for sorting primitives. The use of centroids instead of actual primitives
introduces errors because the actual size of the primitives is not taken into account.

Whitman [95] measures workload by counting the number of primitives overlapping a region. The screen is then subdivided
using a quad-tree to create a set of regions with equal workload. The principal problem with the algorithm is that work may be
overestimated due to double-counting of primitives.

Mueller [63] improves over the shortcomings of Whelan’s method. The Mesh-based Adaptive Hierarchical Decomposition
(MAHD) is based on a regular, fine mesh overlaid over the screen. For each mesh cell, primitives are counting in inverse proportion
to their size. This approach is experimentally justified and avoids the double-counting problems of Whitman’s method. The mesh
cells are then aggregated into larger clusters by using a summed-area table for the workload distribution across the screen. The
summed-area table is more efficient than the media-cut algorithm in Whelan’s method.

Later, Whitman [96] describes an dynamically adaptive scheme. Initially, the screen is subdivided regularly to a predetermined
granularity ratio (here: 2). During the actual processing run, processors that complete their tasks early, “steal” work from busier
processors by splitting their work region. In order to avoid instability and/or extra overhead, processors steal from the processor
with most work left. Also, splitting only occurs if the remaining work exceeds a set threshold. Otherwise, the busy processor
finishes his work uninterrupted.

Finally, Ellsworth [20] describes a reactive adaptive load-balancing method. The method is based on a fixed grid overlaid over
the screen. Between the frames of an animation, the algorithm counts the number of primitives overlapping each grid cell and uses
this count to estimate the workload per cell. Then, cells are assigned to processors for the upcoming frame. The assignment is a

5

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

multiple-bin-packing algorithm: Regions are first sorted by descending polygon counts; the regions are assigned in this order to the
processor with the lightest workload.

Frame-parallel rendering is a straight-forward method to use parallel processors for rendering. Each processor works inde-
pendently on one frame of an animation sequence. If there is little variation between consecutive frames, frames can be assigned
statically to processors as all processor tend complete their respective frame(s) in approximately the same time. If processing time
varies between frames, it is also possible to assign frames dynamically (on-demand assignment). In either case, the processors are
working on independent frames and no communication between processors is required after the initial distribution of the model.
Unfortunately, this approach is only viable for rendering of animation sequence. It is not suitable for interactive rendering as it
typically introduces large latencies between the time a frame is issued by the application and when it appears on the screen.

The application programming interface (API) impacts how efficiently the strategies outlined above can be implemented.
Immediate-mode APIs like OpenGL or Direct3D do not have access to the entire model and hence do not allow global optimiza-
tions. Retained-mode APIs like Phigs, Performer, OpenGL Optimizer, Java3D and Fahrenheit maintain an internal representation
of the entire model which supports partitioning of the model for load-balancing.

3.3 Data Distribution and Scheduling

In distributed memory architectures, ie. clusters of workstations or message-passing computers, object data must be sent explicitly
to the processors. For small data sets, one can simply send the full data set to every processor and each processor is then instructed
which objects to use. This approach fails however for large models either because there is not enough storage to replicate the model
at every processor and/or the time to transfer the model is prohibitive due to the bandwidth limitations of the network.

Therefore, most implementations replicate only small data structures like graphics state, ie. current transformation matrices,
light source data, etc., and distribute the storage for large data structures, primarily the object descriptions and the frame buffer.

For system using static assignment of rendering tasks object data have to be distributed only during the initialization phase of the
algorithm. This makes it easy to partition the algorithm into separate phases that can be scheduled consecutively.

For dynamic schemes data must be distributed during the entire process. Therefore processors cannot continuously work ren-
dering objects but must instead divide their available cycles between rendering and communicating with other processors. Such an
implementation is described in [15]: The system implements a sort-middle architecture where each processor works concurrently
on geometry processing and rasterization, ie. producing and consuming polygons. The advantage is that only a small amount of
memory must be allocated for polygons to be transferred between processors. Determining the balance between polygon transfor-
mation (generation) and polygon rasterization (consuming) is not obvious. However, [15] states that the overall system performance
is fairly insensitive to that choice.

3.4 Summary

Parallel rendering of polygonal datasets faces several challenges most importantly load-balancing. Polygon rendering proceeds in
two main steps: geometry processing and rasterization. Both steps have unique computational and communication requirements.

For geometry processing load balancing is usually achieved using on-demand assignment of objects to idle processors. For
rasterization, interleaving of pixels or scanlines mostly eliminates load-balancing problems at the expense of less inter-pixel or
inter-scanline coherence for each processor. Adaptive load-balancing schemes estimate or measure the workload and divide the
screen into regions that will create approximately equal workload.

4 Parallel Volume Rendering

Volume rendering [41] is a powerful computer graphics technique for the visualization of large quantities of 3D data. It is specially
well suited for three dimensional scalar [44, 19, 90, 75] and vector fields [13, 54]. Fundamentally, it works by mapping quantities in
the dataset (such as color, transparency) to properties of a cloud-like material. Images are generated by modeling the interaction of
light with the cloudy materials [100, 56, 55]. Because of the type of data being rendered and the complexity of the lighting models,
the accuracy of the volume representation and of the calculation of the volume rendering integrals [6, 40, 39] are of major concern
and have received considerable interest from researchers in the field.

A popular alternative method to (direct) volume rendering is isosurface extraction, where given a certain value of interest � 2 R,
and some scalar function f : R3 ! R, a polygonal representation for the implicit surface f(x; y; z) = � is generated. There are
several methods to generate isosurfaces [47, 57, 34, 67], the most popular being the marching cubes method [47]. Isosurfaces have
a clear advantage over volume rendering when it comes to interactivity. Once the models have been polygonized (and simplified
[80] – marching cubes usually generate lots of redundant triangles), hardware supported graphics workstation can be used to speed
up the rendering. Isosurfaces have several disadvantages, such as lack of fine detail and flexibility during rendering (specially for
handling multiple transparent surfaces), and its binary decision process where surfaces are either inside or outside a given voxel
tends to create artifacts in the data (there is also an ambiguity problem, that has been addressed by later papers like [67]).

4.1 Volumetric Data

Volumetric data comes in a variety of formats, the most common being (we are using the taxonomy introduced in [89]) cartesian
or regular data. Cartesian data is typically a 3D matrix composed of voxels (a voxel can be defined in two different ways, either as

6

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

the datum in the intersection of each three coordinate aligned lines, or as the small cube, either definition is correct as long as used
consistently), while the regular data has the same representation but can also have a scaling matrix associated with it.

Irregular data comes in a large variety, including curvilinear data, that is data defined in a warped regular grid, or in general, one
can be given scattered (or unstructured) data, where no explicitly connectivity is defined. In general, scattered data can be composed
of tetrahedra, hexahedra, prisms, etc. An important special case is tetrahedral grids. They have several advantages, including easy
interpolation, simple representation (specially for connectivity information), and the fact that any other grid can be interpolated to a
tetrahedral one (with the possible introduction of Steiner points). Among their disadvantages is the fact that the size of the datasets
tend to grow as cells are decomposed into tetrahedra. In the case of curvilinear grids, an accurate decomposition will make the cell
complex contain five times as many cells. More details on irregular grids are postponed until Section 4.7.

4.2 Interpolation Issues

In order to generate the cloud-like properties from the volumetric data, one has to make some assumptions about the underlying
data. This is necessary because the rendering methods typically assume the ability to compute values as a continuous function, and
(for methods that use normal-based shading) at times, even derivatives of such functions anywhere in space. On the other hand,
data is given only at discrete locations in space usually with no explicit derivatives. In order to correctly interpolate the data, for the
case of regular sampled data, it is generally assumed the original data has been sampled at a high enough frequency (or has been
low-pass filtered) to avoid aliasing artifacts [33]. Several interpolation filters can be used, the most common by far is to compute
the value of a function f(x; y; z) by trilinearly interpolating the eight closest points. Higher order interpolation methods have also
been studied [8, 52], but the computational cost is too high for practical use.

In the case of irregular grids, the interpolation is more complicated. Even finding the cell that contains the sample point is
not as simple or efficient as in the regular case [64, 72]. Also, interpolation becomes much more complicated for cells that are not
tetrahedra (for tetrahedra a single linear function can be made to fit on the four vertices). For curvilinear grids, trilinear interpolation
becomes dependent on the underlying coordinate frame and even on the cell orientation [98, 31]. Wilhelms et al. [98] proposes using
inverse distance weighted interpolation as a solution to this problem. Another solution would be to use higher order interpolation.
In general, it is wise to ask the creator of the dataset for a suitable fitting function.

4.3 Optical Models for Volume Rendering

Volume rendering works by modeling volume as cloud cells composed of semi-transparent material which emits its own light,
partially transmits light from other cells and absorbs some incoming light [99, 53, 55]. Because of the importance of a clear
understanding of such a model to rendering both, regular and irregular grids, the actual inner workings of one such mechanism is
studied here. Our discussion closely follows the one in [99].

We assume each volume cells (differentially) emits light of a certain color E�(x; y; z), for each color channel � (red, green and
blue), and absorbs some light that comes from behind (we are assuming no multiple scattering of light by particles – our model is
the simplest “useful” model – for a more complete treatment see [53]).

Correctly defining opacity for cells of general size is slightly tricky. We define the differential opacity at some depth z to be

(z). Computing T (z), the fraction of light transmitted through depth 0 to z (assuming no emission of light inside the material),
is simple, we just need to notice that the amount of transmitted light at z+�z is just the amount of light at z minus the attenuation

(z) over a distance of �z:

T (z +�z) = T (z)�
(z)T (z)�z (2)

what (after making a division by �z and taking limits) implies

dT (z +�z)

dz
= �
(z)T (z) (3)

The solution to this linear equation of the first order [11] with boundary condition T (0) = 1 is:

T (z) = e
�
R
z

0

(u)du
(4)

The accumulated opacity over a ray from front-to-back inside a cell of depth d is (1�T (d)). An important special case is when
the cell has constant differential opacity
, in this case T (z) = e�
z . Before we continue, we can now solve the question of
defining differential opacity
 from the unity opacity (usually user defined and saved in a transfer function table). A simple formula
can express
 in terms of O:

 = log(
1

1 �O
) (5)

If the model allows for the emission of light inside the material, a similar calculation can be used to calculate the intensity I� for
each color channel inside a cell. In this case using an initial intensity I�(0) = 0, the final system and solutions are as follows:

dI�(z)

dz
= �
(z)I�(z) +E�(z) (6)

7

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

I�(z) = T (z)

Z z

0

E�(v)

T (v)
dv (7)

Specializing the solution for constant color and opacity cells (as done above) we get the simple solution:

I�(z) =
E

(1� e�
z) (8)

Usually, for computational efficiency, the exponential in the previous equation is approximated by its first terms in the Taylor
series. [99, 53, 55] describe in detail analytical solutions under different assumptions about the behavior of the opacity and emitted
colors inside the cells, extensions to more complex light behavior and the several tradeoffs of approximating the exponentials with
linear functions.

The previous equations show how to calculate the continuous color and opacity intensity, usually this calculation is done once
for every cell, and the results from each cell are composited in a later step. Compositing operators were first introduced in [71], and
are widely used. The most used operator in volume visualization is the over operator, its operation is basically to add the brightness
of the current cell to the attenuated brightness of the one behind, and in the case of front-to-back compositing update the opacities
of the cells. The equations for the over operator are:

Co = Ca + Cb(1�Oa) (9)

Oo = Oa +Ob(1�Oa) (10)

It is important to note, that in these equations the colors are saved pre-multiplied by the opacities (i.e., the actual color isCo=Oo),
this saves one multiplication per compositing operation.

4.4 Ray Casting

A popular method to generate images from volume data is to use ray casting [32, 44] which is a simplified variation of the ray
tracing algorithm for global illumination rendering. Ray casting works by casting (at least) one ray per image pixel into volume
space, point sampling the scene with some lighting model (like the one just presented) and compositing the samples as described
in the previous section. This method is very flexible and extremely easy to implement. There are several extensions of basic ray
casting to include higher order illumination effects, like discrete ray tracing [101], and volumetric ray tracing [88]. Both of these
techniques take into account global illumination effects incorporating more accurate approximations of the more general rendering
equation [39]. A more recent highly parallized and optimized approach is interactive ray tracing by Parker et al. [69]. Here,

Because of its size, volumetric ray casting (and ray tracing) is very expensive. Several optimizations have been applied to
ray tracing [45, 46, 16]. One of the most effective optimizations are the presence acceleration techniques, that exploit the fact
volumetric data is relatively sparse [45, 46, 16, 103, 102]. Levoy [45] introduced the idea by using an octree [76] to skip over
empty space. His idea was further optimized by Danskin and Hanrahan [16] to not only skip over empty space, but also to speed
up sampling calculations over uniform regions of the volume. Another important acceleration techniques include adaptive image
sampling and early ray termination. In 1994, Lacroute and Levoy [42] introduced the shear warp volume rendering algorithm –
based on previous shear-warp factorizations – which combines base-plane ray casting with bilinear interpolation of samples within
the volume slices. While this introduces a number of undersampling problems, it enables a high framerate for volume rendering.

PARC – Hardware-Based Presence Acceleration

Avila, Sobierajski and Kaufman [5, 87] introduced the idea of exploiting the graphics hardware on workstations to speed up volume
rendering. First, they introduce PARC (Polygon Assisted Ray Casting) [5], a technique that uses the Z-buffer [28] to find the closest
and farthest possibly contributing cells. Later, a revised technique [87] is proposed that (still using the Z-buffer) can produce a
better approximation of the set of contributing cells.

Their algorithm consists of first creating a polygonal representation of the set of contributing cells (based on axis aligned quadri-
laterals) from a coarse volume (see Figure 3). The coarse volume is calculated by grouping neighboring voxels together, creating
supervoxels. Each supervoxel is then tested for the presence of interesting voxels (i.e., voxels that belong to the range of voxels
mapped to non-zero intensities and opacities by the transfer functions). All six external faces of supervoxels are then marked based
on its possible visibility (the second method seems to need to project all the faces).

In order to perform the actual rendering, in the first method (called Depth Buffer PARC), all the visible quadrilaterals are trans-
formed and scan-converted twice. Once for finding the first non-empty front voxel, and again to determine the final integration
location. In the second method (called Color Buffer PARC), a sweep along the closest major axis is generated by coloring the
PARC cubes with power of two numbers (so they do not interfere with each other), what leaves a footprint of the intervals (ti; ti+1)
that can be used to better sample the regions having interesting voxels. This can be quite a savings, given that volumes are quite
sparse (most of the time, only 5-10% of a volume contains any lighting and shading information for a given set of transfer functions).

8

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Eye

PARC Sampling Points

Figure 3: Polygon Assisted Ray Casting.

4.5 Splatting or Projection

Ray casting, described in Section 4.4, works from the image space to the object space (volume dataset). Another way of achieving
volume rendering is to reconstruct the image from the object space to the image space, by computing for every element in the
dataset its contribution to the image. Several such techniques have been developed [19, 93].

Westover’s PhD dissertation describes the Splatting technique. In splatting, the final image is generated by computing for each
voxel in the volume dataset its contribution to the final image. The algorithm works by virtually “throwing” the voxels onto the
image plane. In this process every voxel in the object space leaves a footprint in the image space that will represent the object. The
computation is processed by virtually “peeling” the object space in slices, and by accumulating the result in the image plane.

Formally the process consists of reconstructing the signal that represents the original object, sampling it and computing the
image from the resampled signal. This reconstruction is done in steps, one voxel at a time. For each voxel, the algorithm calculates
its contribution to the final image, its footprint, and then it accumulates that footprint in the image plane buffer. The computation
can take place in back-to-front or front-to-back order. The footprint is in fact the reconstruction kernel and its computation is key
to the accuracy of the algorithm. Westover [93] proves that the footprint does not depend on the spatial position of voxel itself (for
parallel projections), thus he is able to use a lookup table to approximate the footprint. During computation the algorithm just need
to multiply the footprint with the color of the voxel, instead of having to perform a more expensive operation.

Although projection methods have been used for both regular and irregular grids, they are more popular for irregular grids. In
this case, projection can be sped up by using the graphics hardware (Z-buffer and texture mapping) [82].

4.6 Parallel Volume Rendering of Regular Grids

Here, we present a high performance parallel volume rendering engine for our PVR system. Our research has introduced two
contributions to parallel volume rendering: content-based load balancing and pipelined compositing. Content-based load balancing
(Section 4.6.2) introduces a method to achieve better load balancing in distributed memory MIMD machines. Pipelined compositing
(Section 4.6.3) proposes a component dataflow for implementing the Parallel Ray Casting pipeline.

The major goal of the research presented is to develop algorithms and code for volume rendering extremely large datasets at
reasonable speed with an aim on achieving real-time rendering on the next generation of high-performance parallel hardware.
The sizes of volumetric data we are primarily interested are in the approximate range of 512-by-512-by-512 to 2048-by-2048-by-
2048 voxels. Our primary hardware focus is on distributed-memory MIMD machines, such as the Intel Paragon and the Thinking
Machines CM-5.

A large number of parallel algorithms for volume rendering have been proposed. Schroeder and Salem [79] have proposed a
shear-based technique for the CM-2 that could render 1283 volumes at multiple frames a second, using a low quality filter. The
main drawback of their technique is low image quality. Their algorithm had to redistribute and resample the dataset for each
view change. Montani et al. [61] developed a distributed memory ray tracer for the nCUBE, that used a hybrid image-based load
balancing and context sensitive volume distribution. An interesting feature of their algorithm is the use of clusters to generate
higher drawing rates at the expense of data replication. However, their rendering times are well over interactive times. Using a
different volume distribution strategy but still a static data distribution, Ma et al. [48] have achieved better frame rates on a CM-5.
In their approach the dataset is distributed in a K-d tree fashion and the compositing is done in a tree structure. Others [37, 7, 65]
have used similar load balancing schemes using static data distribution, for either image compositing or ray dataflow compositing.
Nieh and Levoy [66] have parallelized an efficient volume ray caster [45] and achieved for that time good performance (and good
scaling results) performance on a shared memory DASH machine.

4.6.1 Performance Considerations

In analyzing the performance of parallel algorithms, there are many considerations related to the machine limitations, like for
instance, communication network latency and throughput [65]. Latency can be measured as the time it takes a message to leave

9

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

the source processor and be received at the destination end. Throughput is the amount of data that can be sent on the connection
per unit time. These numbers are particularly important for algorithms in distributed memory architectures. They can change the
behavior of a given algorithm enough to make it completely impractical.

Throughput is not a big issue for methods based on volume ray casting that perform static data distribution with ray dataflow
as most of the communication is amortized over time [61, 37, 7]. On the other hand, methods that perform compositing at the
end of rendering or that have communication scheduled as an implicit synchronization phase have a higher chance of experiencing
throughput problems. The reason for this is that communication is scheduled all at the same time, usually exceeding the machines
architectural limits. One should try to avoid synchronized phases as much as possible.

Latency is always a major concern, any algorithm that requires communication pays a price for using the network. The start up
time for message communication is usually long compared to CPU speeds. For instance, in the iPSC/860 it takes at least 200�s to
complete a round trip message between two processors. Latency hiding is an important issue in most algorithms, if an algorithm
often blocks waiting for data on other processors to continue its execution, it is very likely this algorithm will perform badly. The
classic ways to hide latency is to use pipelining or pre-fetching [36].

Even though latency and throughput are very important issues in the design and implementation of a parallel algorithm, the most
important issue by far is load balancing. No parallel algorithm can perform well without a good load balancing scheme.

Again, it is extremely important that the algorithm has as few inherently sequential parts as possible if at all. Amdahl’s law [36]
shows how speed up depends on the parallelism available in your particular algorithm and that any, however small, sequential part
will eventually limit the speed up of your algorithm.

Given all the constraints above, it is clear that to obtain good load balancing one wants an algorithm that:

� Needs low throughput and spreads communication well over the course of execution.

� Hides the latency, possibly by pipelining the operations and working on more than one image over time.

� Never causes processors to idle and/or wait for others without doing useful work.

A subtle point in our requirements is in the last phrase, how do we classify useful work ? We define useful work as the number
of instructions Iopt executed by the best sequential algorithm available to volume render a dataset. Thus, when a given parallel
implementation uses a suboptimal algorithm, it ends up using a much larger number of instructions than theoretically necessary as
each processor executes more instructions than Iopt

P
(P denotes the number of processors). Clearly, one needs to compare with the

best sequential algorithm as this is the actual speed up the user gets by using the parallel algorithm instead of the sequential one.
The last point on useful work is usually neglected in papers on parallel volume rendering and we believe this is a serious flaw in

some previous approaches to the problem. In particular, it is widely known that given a transfer function and some segmentation
bounds, the amount of useful information in a volume is only a fraction of its total size. Based on this fact, we can claim that
algorithms that use static data distribution based only on spatial considerations are presenting “efficiency” numbers that can be
inaccurate, maybe by a large margin.

To avoid the pitfalls of normal static data distribution, we present in the next section a new way to achieve realistic load balancing.
Our load balancing scheme, does not scale linearly, but achieves very fast rendering times while minimizing the “work” done by
the processors.

4.6.2 Content-Based Load Balancing

This section explains our approach to load balancing, which is able to achieve accurate load balancing even when using presence
acceleration optimizations. The original idea of our load balancing technique came from the PARC [5] acceleration technique. We
notice that the amount of “work” performed by a presence accelerated ray caster is roughly directly proportional to the number of
full supervoxels contained in the volume.

We use the number of full supervoxels a given processor is assigned as the measure of how much work is performed by that
particular processor. Let P denote the number of processors, and ci the number of full supervoxels processor i has. In order
to achieve a good load balancing (by our metric) we need a scheme that minimizes the following function for a partition X =
(c1; c2; : : :):

f(X) = max
i6=j

jci � cj j; 8i; j � P (11)

Equation 11 is very general and applies to any partition of the dataset D into disjoint pieces Di. In our work we have tried
to solve this optimization problem in a very restricted context. We have assumed that each Di is convex. (We show later that
this assumption makes it possible to create a fixed depth sorting network for the partial rays independently calculated each disjoint
region.) Furthermore, we only work with two very simple subdivisions: slabs and a special case of a BSP-tree.

Before we go any further, it is interesting to study the behavior of our load balancing scheme in the very simple case of a slab
subdivision of the volume D. Slabs (see Figure 4) are consecutive slices of the dataset aligned on two major axes. Given a volume
D, with s superslices and p processors with the restriction that each processor gets contiguous slices, the problem of calculating the
“best” load balancing partition for p processors consists of enumerating all the (s� 1)(s� 2) : : : (s� p+ 1) ways of partitioning
D, and choosing the one that minimizes Equation 11.

The problem of computing the optimal (as defined by our heuristic choice) load balance partition indices can be solved naively
as follows. We can compute all the possible partitions of the integer n, where n is the number of slabs, into P numbers, where P is

10

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Figure 4: During slab-based load balancing, each processor gets a range of continuous data set slabs. The number of full super-
voxels determines the exact partition ratio.

the number of processors (it is actually a bit different, as we need to consider addition non-associative). For example, if n = 5, and
P = 3, then 1 + 1 + 3 represents the solution that gives the first slab to the first processor, the second slab to the second processor
and the remaining three slabs to the third processor. Enumerating all possible partitioning to get the optimal one is a feasible
solution but can be very computationally expensive for large n and P . We use a slightly different algorithm for the computations
that follows, we choose the permutation with the smallest square difference from the average.

In order to show how our approach works in practice, let us work out the example of using our load balancing example to divide
the neghip dataset (the negative potential of a high-potential iron protein of 663 resolution) for four processors. Here we assume
the number of superslices to be 16, and the number of supervoxels to be 64 (equivalent to a level 4 PARC decomposition). Using a
voxel threshold of 10-200 (out of a range up to 255), we get the following 16 supervoxel count for each slab, out of the 1570 total
full supervoxels:

12, 28, 61, 138, 149, 154, 139, 104, 106, 139, 156, 151, 129, 62, 29, 13

A naive approach load balancing scheme would assign regions of equal volume to each processor resulting in the following
partition:

12 + 28 + 61 + 138 = 239
149 + 154 + 139 + 104 = 546
106 + 139 + 156 + 151 = 552

129 + 62 + 29 + 13 = 233

Here processors 2 and 3 have twice as much “work” as processors 1 and 4. Using our metric, we get:

12 + 28 + 61 + 138 + 149 = 388
154 + 139 + 104 = 397
106 + 139 + 156 = 401

151 + 129 + 62 + 29 + 13 = 384

One can see that some configurations will yield better load balancing than others but this is a limitation of the particular space
subdivision one chooses to implement, the more complex the subdivision one allows, the better load balancing but the harder it is to
implement a suitable load balancing scheme and the associated ray caster. Figure 5 plots the examples just described for the naive
approach. Figure 6 shows how well our load balancing scheme works for a broader set of processor arrangements.

These shortcomings of slabs let us to an alternative space decomposition structure previously used by Ma et al. [48, 49], the
Binary Space Partition (BSP) tree, originally introduced by Fuchs et al. [29].

4.6.3 The Parallel Ray Casting Rendering Pipeline

Compositing Cluster

The compositing nodes are responsible for regrouping all the sub-rays back together in a consistent manner, in order to keep image
correctness. This is only possible because composition is an associative operation, so if we have to sub-ray samples where one ends
where the other starts, it is possible to combine their samples into one sub-ray recursively until we have a value that constitutes the
full ray contribution to a pixel.

Ma et al. [49] use a different approach to compositing, where instead of having separate compositing nodes, the rendering
nodes switch between rendering and compositing. Our method is more efficient because we can use the special structure of the

11

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

N
um

be
r

of
 c

ub
es

Processor Number

out of 4 processors
out of 8 processors

Figure 5: The graph shows the number of cubes per processor under naive load balancing.

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

ub
es

Processor Number

out of 2 processors
out of 3 processors
out of 4 processors
out of 8 processors

out of 10 processors

Figure 6: Load balancing measures for our algorithm. The graph shows the number of cubes the processor receives in our
algorithm.

sub-ray composition to yield a high performance pipeline, where multiple nodes are used to implement the complete pipeline
(see Figure 12). Also, the structure of compositing requires synchronized operation (e.g., there is an explicit structure to the
composition, that needs to be guaranteed for correctness purposes), and light weight computation, making it much less attractive
for parallelization over a large number of processors, specially on machines with slow communication compared to CPU speeds
(almost all current machines).

It is easy to see that compositing has a very different structure than rendering. Here, nodes need to synchronize at every step of
the computation, making the depth of the compositing tree a hard limit on the speed of the rendering. That is, if one uses 2m nodes
for compositing, and it takes tc time to composite two images, even without any synchronization or communication factor in, it
takes at least mtc time to get a completely composited image.

Fortunately, most of this latency can be hidden by pipelining the computation. Here, instead of sending one image at a time,
we can send images continuously into the compositing cluster, and as long as we send images at a rate lower than one for every

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 7: Naive load balancing on the Paragon. The graph shows the actual rendering times for 4 processors using the naive load
balancing.

12

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 2 3 4

T
im

e
to

 R
en

de
r

(m
se

c)

Node Number

time to render with 4 processors

Figure 8: Our load balancing on the Paragon. The graph shows the actual rendering times for 4 processors using our load
balancing.

Figure 9: An example of the partition scheme we used for load balancing. The bottom represents a possible decomposition for 8
nodes. Notice that a cut can be made several times over the same axis to optimize the shape of the decomposition.

tc worth of time, the compositing cluster is able to composite those at full speed, and after mtc times, the latency is fully hidden
from the computation. As can be seen for our discussion, this latency hiding process is very sensitive to the rate of images coming
in the pipeline. One needs to try to avoid “stalls” as much as possible. Also, one can not pipe more than the overall capacity of the
pipeline.

Several implications for real-time rendering can be extracted from this simple model. Even though the latency is hidden from
the computation, it is not hidden from the user, at least not totally. The main reason is the overall time that an image takes to
be computed. Without network overhead, if an image takes tr time to be rendered by the rendering cluster, the first image of a
sequence takes (at least) time tr + mtc to be received by the user. Given that people can notice even very small latencies, our
latency budget for real-time volume rendering is extremely low and will definitely have to wait for the next generation of machines
to be build. We present a detailed account of the timings later in this chapter.

Going back to the previous discussion, we see that as long as tr is larger than tc we don’t have anything to worry about with

Figure 10: A cut through the partition accomplished using our load balancing scheme on an MRI head. It is easy to see that if a
regular partition scheme were used instead, as the number of processors increase, large number of processors would get just empty
voxels to render.

13

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Ray

00

010

000 001

010

011

A

B

C

D

E

F

G

H

Figure 11: Data partitioning shown in two dimensions. The dataset is partitioned into 8 pieces (marked A . . . H) in a canonical
hierarchical manner by the 7 lines (planes in 3D) represented by binary numbers. Once such a decomposition is performed, it is
relatively easy to see how the samples get composited back into a single value.

A B C D E F G H

00 01

0

010 011000 001

Compositing Cluster

Rendering Cluster

Figure 12: The internal structure of one compositing cluster, one rendering cluster and their interconnection is shown. In PVR, the
communication between the compositing and the rendering clusters is very flexible, with several rendering clusters being able to
work together in the same image. This is accomplished by using a set of tokens that are handled by the first level of the compositing
tree in order to guarantee consistency. Because of its tree structure, one properly synchronized compositing cluster can work on
several images at once, depending on its depth. The compositing cluster shown is relative to the decomposition shown in Figure 11.

respect to creating a bottleneck in the compositing end. As it turns out, tr is much larger than tc, even for relatively small datasets.
With this in mind, an interesting question is how to allocate the compositing nodes, with respect to size and topology.

The topology is actually fixed by the corresponding BSP-tree, that is, if the first level of the tree has n = 2h images (if one image
per rendering node, than n would be the number of rendering nodes), than potentially the number of compositing nodes required
might be as high as 2h � 1. There are several reasons not to use that many compositing nodes. First, it is a waste of processors.
Second, the first-image latency grows with the number of processors in the compositing tree. Fortunately, we can lower the number
of nodes required in the compositing tree by a process known as virtualization. A general solution to this problem is proposed in
Section 4.9.

Types of Parallelism

Due to the fact that each rendering node gets a portion of the dataset, this type of parallelism is called “object-space parallelism”.
The structure of our rendering pipeline makes it possible to exploit other types of parallelism. For instance, by using more than a
single rendering cluster to compute an image, we are making use of “image-space parallelism” (in PVR, it is possible to specify
that each cluster compute disjoint scanlines of the same image; see [86] for the issues related to image-space parallelism). The
clustering approach coupled with the inherent pipeline parallelism available in the compositing process (because of its recursive
structure) gives rise to a third parallelism type, namely “time-space parallelism” or “temporal parallelism”. In the latter, we can
exploit multiple clusters by concurrently calculating sub-rays for several images at once, that can be sent down the compositing
pipeline concurrently. Here, it is important for the correctness of the images, that each composition step be done in lockstep, in
order to avoid mixing of images. It should be clear by now that there are several advantages to our separation of nodes into our two
types.

14

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

4.7 Lazy Sweep Ray Casting Algorithm

Lazy Sweep Ray Casting is a fast algorithm for rendering general irregular grids. It is based on the sweep-plane paradigm, and it is
able to accelerate ray casting for rendering irregular grids, including disconnected and non-convex (even with holes) unstructured
irregular grids with a rendering cost that decreases as the “disconnectedness” decreases. The algorithm is carefully tailored to
exploit spatial coherence even if the image resolution differs substantially from the object space resolution.

Lazy Sweep Ray Casting has several desirable properties, including its generality, (depth-sorting) accuracy, low memory con-
sumption, speed, simplicity of implementation and portability (e.g., no hardware dependencies).

The design of our LSRC method for rendering irregular grids is based on two main goals: (1) the depth ordering of the cells
should be correct along the rays corresponding to every pixel; and (2) the algorithm should be as efficient as possible, taking
advantage of structure and coherence in the data. With the first goal in mind, we chose to develop a new ray casting algorithm, in
order to be able to handle cycles among cells (a case causing difficulties for projection methods). To address the second goal, we
use a sweep approach, as did Giertsen [31], in order to exploit both inter-scanline and inter-ray coherence. Our algorithm has the
following advantages over Giertsen’s:

(1) It avoids the explicit transformation and sorting phase, thereby avoiding the storage of an extra copy of the vertices;

(2) It makes no requirements or assumptions about the level of connectivity or convexity among cells of the mesh; however, it
does take advantage of structure in the mesh, running faster in cases that involve meshes having convex cells and convex
components;

(3) It avoids the use of a hash buffer plane, thereby allowing accurate rendering even for meshes whose cells greatly vary in size;

(4) It is able to handle parallel and perspective projection within the same framework (e.g, no explicit transformations).

4.7.1 Performing the Sweep

Our sweep method, like Giertsen’s, sweeps space with a sweep-plane that is orthogonal to the viewing plane (the x-y plane), and
parallel to the scanlines (i.e., parallel to the x-z plane). See Figure 13.

Sweep Plane

Intersection with sweep plane

Z axis

Viewing Plane

Y axis

Scanline X axis

Figure 13: A sweep-plane (perpendicular to the y-axis) used in sweeping 3-space.

Events occur when the sweep-plane hits vertices of the mesh S. But, rather than sorting all of the vertices of S in advance,
and placing them into an auxiliary data structure (thereby at least doubling the storage requirements), we maintain an event queue
(priority queue) of an appropriate subset of the mesh vertices.

A vertex v is locally extremal (or simply extremal, for short) if all of the edges incident to it lie in the (closed) halfspace above
or below it (in y-coordinate). A simple (linear-time) pass through the data readily identifies the extremal vertices.

We initialize the event queue with the extremal vertices, prioritized according to the magnitude of their inner product (dot
product) with the vector representing the y-axis (“up”) in the viewing coordinate system (i.e., according to their y-coordinates). We
do not explicitly transform coordinates. Furthermore, at any given instant, the event queue only stores the set of extremal vertices
not yet swept over, plus the vertices that are the upper endpoints of the edges currently intersected by the sweep-plane. In practice,
the event queue is relatively small, usually accounting for a very small percentage of the total data size. As the sweep takes place,
new vertices (non-extremal ones) will be inserted into and deleted from the event queue each time the sweep-plane hits a vertex
of S.

The sweep algorithm proceeds in the usual way, processing events as they occur, as determined by the event queue and by the
scanlines. We pop the event queue, obtaining the next vertex, v, to be hit, and we check whether or not the sweep-plane encounters
v before it reaches the y-coordinate of the next scanline. If it does hit v first, we perform the appropriate insertions/deletions on
the event queue; these are easily determined by checking the signs of the dot products of edge vectors out of v with the vector
representing the y-axis. Otherwise, the sweep-plane has encountered a scanline. And at this point, we stop the sweep and drop

15

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

into a two-dimensional ray casting procedure (also based on a sweep), as described below. The algorithm terminates once the last
scanline is encountered.

We remark here that, instead of doing a sort (in y) of all vertices of S at once, the algorithm is able to take advantage of the
partial order information that is encoded in the mesh data structure. (In particular, if each edge is oriented in the +y direction, the
resulting directed graph is acyclic, defining a partial ordering of the vertices.) Further, by doing the sorting “on the fly”, using the
event queue, our algorithm can be run in a “lock step” mode that avoids having to sort and sweep over highly complex subdomains
of the mesh. This is especially useful, as we see in the next section, if the slices that correspond to our actual scanlines are relatively
simple, or the image resolution (pixel size) is large in comparison with some of the features of the dataset. (Such cases arise, for
example, in some applications of scientific visualization on highly disparate datasets.)

4.7.2 Processing a Scanline

When the sweep-plane encounters a scanline, the current sweep status data structure gives us a “slice” through the mesh in which
we must solve a two-dimensional ray casting problem. (See Figure 14.) Let S denote the polygonal (planar) subdivision at the
current scanline (i.e., S is the subdivision obtained by intersecting the sweep-plane with the mesh S.) In time linear in the size of
S , we can recover the subdivision S (both its geometry and its topology), just by stepping through the sweep status structure, and
utilizing the local topology of the cells in the slice. In our implementation, S is actually not constructed explicitly, but only given
implicitly by the sweep status data structure, and then locally reconstructed as needed during the two-dimensional sweep (described
below).

1 2 3 4 5 6 7

Figure 14: Illustration of a sweep in one slice.

The two-dimensional problem is also solved using a sweep algorithm — now we sweep the plane with a sweep-line parallel to
the z axis. Events now correspond to vertices of the planar subdivision S . At the time that we construct S , we could identify those
vertices in the slice that are locally extremal in S (i.e., those vertices that have edges only leftward in x or rightward incident on
them.), and insert them in the initial event queue. (The actual implementation just sorts along the x-axis, since the extra memory
overhead is negligible in 2D.) The sweep-line status is an ordered list of the edges of S crossed by the sweep-line. The sweep-line
status is initially empty. Then, as we pass the sweep-line over S , we update the sweep-line status and the event queue at each
event when the sweep-line hits an extremal vertex, making insertions and deletions in the standard way. This is analogous to the
Bentley-Ottmann sweep that is used for computing line segment intersections in the plane [72]. We also stop the sweep at each
of the x-coordinates that correspond to the rays that we are casting (i.e., at the pixel coordinates along the current scanline), and
output to the rendering model the sorted ordering (depth ordering) given by the current sweep-line status. We have noticed that the
choice of data structure used to maintain the sweep-line status can have a dramatic impact on the performance of the algorithm.

See Silva and Mitchell [85] for details.

4.8 Parallel Rendering of Irregular Grids

Here, we present a distributed-memory MIMD machine parallelization of the LSRC method. Our parallelization is a distributed-
memory parallelization, and each rendering node gets a only portion of the dataset, not the complete dataset.

The need for the parallelization of rendering algorithms for irregular-grid rendering is obvious, given the fact that irregular grids
are extremely large (as compared to regular grids), and their rendering is much less efficient. The largest irregular grids currently
being rendered are just breaking the 1,000,000 cell barrier, what would be equivalent to a 100-by-100-by-100 regular grid, if only
data sample points are taken into account. On the other hand, such a grid requires more than 50MB of memory, when its regular
counterpart only needs 1MB. Actually, regular grids of this size can be rendered by inexpensive workstations in real-time (i.e.,
using the Shear-Warp technique), while the irregular grids of this size would be almost out of reach just a year ago.

Actually, the sizes of irregular grids of interest of computational scientists are larger than one million cells, possibly starting
at two times that range. (This is subjective data, obtained by talking to researchers at Sandia National Labs during the summer
of 1996). Given that it takes us about 150 seconds to render a 500,000 cell complex, and assuming linear behavior (what is not

16

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

completely correct) it would takes us over 10 minutes to generate images of a 2,000,000 cell complex. What is not an unreasonable
amount of time, given that Ma [50] needed over 40 minutes to render a dataset over 10 times smaller.

But our goal is to develop a method that is both faster and scalable to larger and larger dataset. The main reason for this trust is
not really current dataset, but those upcoming ones, specially from the new breed of supercomputers, such as the ASCI TeraFlop
machine installed at Sandia National Labs. The ASCI machine has orders of magnitude more memory than the current Intel Paragon
installed there, even more usable memory (i.e., not taking OS and network overhead into account). This will enable the generation
of extremely large grids, possibly in ranges of 10,000,000-100,000,000 cells or larger.

Part of this increase in dataset sizes can be offset by better algorithms, specially by further improvements in our rendering code
by complete implementation of our optimization ideas. But our experience with irregular grids, seems to show that only more
computing power can really offset the increase in dataset size.

The other main reason for the use of parallel machines comes from the pure size of the datasets. The largest workstations
available to us have 1GB–3GB of memory, what is very short of the 300GB–512GB of memory in the ASCI Tflop machine.
Several reasons indicate the visualization should be performed locally: the fact that very few workstations with more than a few
gigabytes of memory are available; moving 300GB of data in and out at ethernet, or even ATM OC-3 speeds is clearly infeasible;
disk transfer rates, even for reasonably large (and expensive) disk arrays are just too slow for this kind of data.

As all of the reasons pointed above for the use of the parallel machines that generated the dataset is not enough, we also need to
note that these simulations do not generate a single static volume, but in general, time dependent data is being generated and the
time steps can not, in general, be efficiently accessed (for obvious reasons).

With all of this in mind, we present our algorithm for rendering irregular grid data, in place, on distributed-memory MIMD
machines.

4.8.1 Previous Work

There has been very little work on rendering irregular grid data on distributed memory architectures. Overall parallel work on
rendering irregular grids has received relatively little attention. This might be due to the fact that rendering irregular grids is so
much harder than regular grids, that few people ever get to the point of being able to research parallel methods for irregular grids.

Uselton has parallelized his original ray tracing work (presented in [91]) in a shared memory multiprocessor SGI, and reported
that the implementation scales linearly up to 8 processors. Challinger [10] reports on a parallel algorithm for irregular grids,
implemented on a shared-memory BBN-2000 Butterfly. Giertsen [30] has also parallelized his sweep algorithm on a collection of
IBM RS/6000, using a master/slave scheme and total data replication in the nodes.

The most interesting work, by our perspective, is Ma [50], where a parallelization technique very similar to the one presented
here is proposed. It is unfortunate that he used a sequential ray casting technique that is shown to be at least two orders of magnitude
slower than the one we use. Because of this, he did not find any interesting bottlenecks of the parallelization technique.

His technique works by breaking up the original grid into multiple, disjoint cell complexes using Chaco [35], a graph-based
decomposition tool developed at Sandia National Labs. Chaco-based decompositions have several interesting and important prop-
erties for parallelization of computational methods. It is unclear, the extra overhead of using Chaco has actually any influence on
the rendering speed of the parallelization. Here, as in our parallel regular grid method presented in Section 4.6, we divide the nodes
into two classes: rendering and compositing nodes. The rendering nodes, compute each ray of an image, creating a set of stencils
(the rays may not be completely connected). After each ray is computed, they are sent to the compositing nodes for further sorting
and the final accumulation. Each compositing node is assigned a set of rays to be composited. He reports that because the rendering
takes so long, the compositing phase is negligible and he has not work any further on optimizing it.

In a later paper, Ma and Crockett [51] proposed a technique for rendering on irregular grids which sub-partions the data grid into
sub regions. After the parallel rendering of the each sub region – which includes the projection of the cells of the region and the
local compositing within that region –, the regions are composed into the final image.

4.8.2 Parallel LSRC

Overall the our algorithm is very similar to Ma’s. Continuing in the tradition of our regular grid work and the framework of our
PVR system, we divide the nodes into two relevant groups, rendering and compositing nodes. Our differences between our work
and Ma’s are actually in the details of the rendering and compositing.

Dataset Decomposition

In order to subdivide the dataset among the nodes, we use a hierarchical decomposition method, with a similar flavor to our load
balancing scheme for regular grids. Starting with the bounding box of the complete cell complex, we start making cuts in this box,
taking two things into account: the aspect ratio of the cuts, and the number of vertices. At every step, we cut along the largest axis
in such a way as to break the number of vertices in half, in each stage of the cutting. because cells might belong to more a single
of these convex space decomposition “boxes”, we assign the cell to the box that has most of it (e.g., in the number of vertices, with
ties broken in some arbitrary, but consistent way).

The obvious now, is just to assign each processor to a each box. This is a way to minimize the total rendering time of the
complete irregular grid. Unfortunately, it is not clear that this is the right thing, given that one might want to create a rough picture
of the grid fast, then wait for more complex rendering. In the future we expect to be able to create a scattered decomposition, that
will have better properties in creating approximate renderings of the grids.

17

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

With the decomposition method just proposed, each processor should have roughly the same number of primitives, each of
which, approximately confined to a rectangular grid of almost bounded aspect ratio (because of the largest-axis cutting).

Rendering

The rendering performed at each node is just a variation of our sequential technique presented in Section 4.7. This is just a single
significant difference, instead of generating an image, every node generates a stencil data-structure. Of course, all nodes work
concurrently on generating stencil scan-lines.

The stencil representation of a scan-line is just a linked-list of color and depth of cells, who have been lazily composited. That
is, if two stencils shared an end point (e.g., (~a;~b) and (~b;~c)), they are composited into a single stencil (~a;~c), representing the whole
region. In the end of a scan-line rendering computation, each node potentially has a collection of stencils. Because of the process
of decomposing the dataset among the nodes, it is expected the stencil fragmentation is low. This is necessary in order to enable
fast communication for compositing.

Compositing

One solution for compositing would just to copy Ma’s technique, where nodes are responsible for certain scan-lines. This way the
rendering nodes could just send its collection of stencils for further sorting in the compositing nodes. In our case, we try to achieve
better performance by creating a tree of compositing nodes (such as the one we use for the regular case). Every compositing node
is responsible for a certain region of space (i.e., one of the original box decompositions proposed above), that belongs to a global
BSP-tree.

It is the responsibility of the rendering nodes to respect the BSP-tree boundaries and send the data to the correct compositing
nodes, possibly breaking stencils that are span across boundaries.

Once the data of each scan-line is received in the compositing nodes, the final depth sorting can be efficiently performed by
merging the stencils into a complete image. An efficient pipeline scheme can be implemented on a scan-line by scan-line basis,
with similar good properties as the one implemented image-by-image for the regular grid case.

4.9 General BSP-tree Compositing

A simple way of parallelizing rendering algorithms is to do it at the object-space level: i.e., divide the task of rendering different
objects among different rendering processors, and then compose the full images together. A large class of rendering algorithms
(although not all), in particular scan-line algorithms, can be parallelized using this strategy. Such parallel rendering architectures,
where renderers operate independently until the visibility stage, are called sort-last (SL) architectures [60]. A fundamental ad-
vantage of SL architecture is the overall simplicity, since it is possible to parallelize a large class of existing rendering algorithms
without major modifications. Also, such architectures are less prone to load imbalance, and can be made linearly scalable by using
more renderers [58, 59]. One shortcoming of SL architectures is that very high bandwidth might be necessary, since a large number
of pixels have to be communicated between the rendering and compositing processors. Despite the potential high bandwidth re-
quirements, sort-last has been one of the most used, and successful parallelization strategies for both volume rendering and polygon
rendering, as shown by the several works published in the area [14, 97, 43, 49].

Here we present a general purpose, optimal compositing machinery that can be used as a black box for efficiently parallelizing
a large class of sort-last rendering algorithms. We consider sort-last rendering pipelines that are based on separating the rendering
processors from the compositing processors, similar to what was proposed previously by Molnar [58]. The techniques described
in this paper optimize overall performance and scalability without sacrificing generality or the ease of adaptability to different
renderers. Following Molnar, we propose to use a scan-line approach to image composition, and to execute the operations in a
pipeline as to achieve the highest possible frame rate. In fact, our framework inherits most of the salient advantages of Molnar’s
technique. The two fundamental differences between our pipeline and Molnar’s are:

(1) instead a fixed network of Z-buffer compositors, our approach uses a user-programmable BSP-tree based composition tree;

(2) we use general purpose processors and networks, instead of Molnar’s special purpose Z-comparators arranged in a tree.

In our approach, hidden-surface elimination is not performed by Z-buffer alone, but instead by executing a BSP-tree model. This
way, we are able to offer extra flexibility, and instead of only providing parallelization of simple depth-buffer scan-line algorithms,
we are able to provide a general framework that adds support for true transparency, and general depth-sort scan-line algorithms.
In trying to extend the results of Molnar to general purposes parallel machines, we must deal with a processor allocation problem.
The basic problem is how to minimize the amount of processing power devoted to the compositing back-end and still provide
performance guarantees (i.e., frame rate guarantees) for the user. We propose a solution to this problem in the paper.

In our framework the user defines a BSP-tree, in which the leaves correspond to renderers (the renderers perform user-defined
rendering functions). Also, the user defines a data structure for each pixel, and a compositing function, that will be applied to
each pixel by the internal nodes of the BSP-tree previously defined. Given a pool of processors to be used for the execution of
the compositing tree, and a minimum required frame rate, our processor allocation algorithm partitions the compositing operations
among processors. The partition is chosen so as to minimize the number of processors without violating the frame-rate needs.
During rendering, the user just needs to provide a viewpoint (actually, for optimum performance, a sequence of viewpoints, since
our algorithm exploits pipelining). Upon execution of the compositing tree, messages are sent to the renderers specifying where to

18

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

send their images, so no prior knowledge of the actual compositing order is necessary on the (user) rendering nodes side. For each
viewpoint provided, a complete image will be generated, and stored at the processor that was allocated the root of the compositing
tree. The system is fully pipelined, and if no stalls are generated by the renderers, our system guarantees a frame rate at which the
user can collect the full images from the root processor.

4.9.1 Optimal Partitioning of the Compositing Tree

We can view the BSP tree as an expression tree, with compositing being the only operation. In our model of compositing clusters,
evaluation of the compositing expression is mapped on to a tree of compositing processes such that each process evaluates exactly
one sub-expression. See Figure 15 for an illustration of such a mapping. The actual ordering of compositing under a BSP-tree
depends not only on the position of the nodes, but also on the viewing direction. So, during the execution phase, a specific
ordering has to be obeyed. Fortunately, given any partition of the tree, each subtree can still be executed independently. Intuitively,
correctness is achieved by having the nodes “fire up” in a on-demand fashion.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

����
����
����
����
����

����
����
����
����
����

�������
�������
�������

�������
�������
�������

(a) (b)

Figure 15: (a) A BSP tree, showing a grouping of compositing operations and (b) the corresponding tree of compositing processes.
Each compositing process can be mapped to a different physical node in the parallel machine.

Such a decompositing is based on a model of the cost of the subtrees. For details on this, and the partitioning algorithm, shown
in Figure 16, see Ramakrishnan and Silva [73].

Practical Considerations

Algorithm partition provides a simple way of given a BSP-tree, and a performance requirement, given in terms of the frame rate,
how to divide up the tree in such a way as to optimize the use of processors. Several issues, including machine architecture
bottlenecks, such as synchronization, interconnection bandwidth, mapping the actual execution to a specific architecture (e.g., a
mesh-connected MIMD machine) were left out of the previous discussion. We now describe how Algorithm partition can be
readily adapted to account for some of the above issues in practice.

Compositing Granularity: Note that there is nothing in the model that requires that full images be composited and transfered
one at a time. Actually, one should take into consideration when determining the unit size of work, and communication, hardware
constraints such as memory limitations, and bandwidth requirements. So, for instance, instead of messages being a full image, it
might be better to send a pre-defined number of scan-lines. Notice that in order for images of arbitrary large size to be able to be
computed, the rendering algorithm must also be able to generate the images in scan-line order.

Communication Bandwidth: Of course, in order to achieve the desired frame rate, enough bandwidth for distributing the images
during composition is strictly necessary. Given p processors, each performing k compositing operations, the overall aggregate
bandwidth required is proportional to p(k+2). It should be clear that as kmax increases, the actual bandwidth requirement actually
decreases (both for the case of a SL-full, as well as a SL-sparse architecture) since as kmax increases the number of processors
required decreases. This decrease in bandwidth is due to the fact that compositing computation are performed locally, inside each
composite processor, instead of being sent over the network. If one processor performs exactly kmax compositing operations, it
needs kmax + 2 units of bandwidth, as opposed to 3kmax when using one processor per compositing operation— a bandwidth
savings of almost a factor of three!

Another interesting consideration related to bandwidth is the fact that our messages tend to be large, implying that our method
operates on the best range of the message size versus communication bandwidth curve. For instance, for messages smaller than 100
bytes the Intel Paragon running SUNMOS achieve less than 1 MB/sec bandwidth, while for large messages (i.e., 1MB or larger),
it is able to achieve over 160MB/sec. (This is very close to 175MB/sec, which is the peak hardware network performance of the
machine.) As will be seen in Section 4.9.2, our tree execution method is able to completely hide the communication latency, while
still using large messages for its communication.

19

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

Algorithm partition(u)
/* The algorithm marks the beginning of partitions in

the subtree of G rooted at u. If more vertices,
can be added to the root partition, the algorithm
returns the size of the root partition.
Otherwise, the algorithm returns 0. */

1. if (arity(u) = 2) then /* u is a binary vertex */
2. w1 := partition(left child(u));
3. w2 := partition(right child(u));
4. w := w1 + w2 + 1;
5. if (w > K) then
6. if (w1 � w2) then
7. Mark right child(u) as start of new partition
8. w := w1 + 1;
9. else
10. Mark left child(u) as start of new partition
11. w := w2 + 1;
12. else if (arity(u) = 1) then /* u is a unary vertex */
13. w := partition(child(u)) + 1;
14. else /* u is a leaf */
15. w := 1;
16. if (w = K) then
17. Mark u as a start of new partition
18. return(0);
19. else
20. return(w);

Figure 16: Algorithm partition

Latency and Subtree Topology: As will be seen in Section 4.9.2, the whole process is pipelined, with a request-based paradigm.
This greatly reduces the overhead of any possible synchronization. Actually, given enough compositing processors, the overall
time is only dependent on the performance of the rendering processors. Also, note that the actual shape of the subtree that a given
processor gets is irrelevant, since the execution of the tree is completely pipelined.

Architectural Topology Mapping: We do not provide any mechanism for optimizing the mapping from our tree topology to the
actual processors in a given architecture. With recent advancements in network technology, it is much less likely that the use of
particular communication patterns improve the performance of parallel algorithms substantially. In new architectures, the point-
to-point bandwidth in access of 100–400 MB/sec are not uncommon1, while in the old days of the Intel Delta, it was merely on
the order of 20 MB/sec. Also, network switches, with complex routing schemes, are less likely to make neighbor communication
necessary. (Actually, the current trend is not to try to exploit such patterns since new fault-handling and adaptive routers usually
make such tricks useless.)

Limitations of Analytical Cost Model: Even though we can support both SL-full and SL-sparse architecture, our model does not
make any distinction of the work that a given compositing processor is performing based on the depth of its compositing nodes.
This is one of the limitations of our analytical formulation. However, the experimental results indicate that this limitation does not
seem have any impact on the use of our partitioning technique in practice. Actually, frame-to-frame differences might diminish the
concrete advantage of techniques that try to optimize for this fact.

4.9.2 Optimal Evaluation

In the previous section, we described techniques to partition the set of compositing operations and allocate one processor to each
partition, such that the various costs of the compositing pipeline can be minimized. We now describe efficient techniques for
performing the compositing operations within each processor.

Space-Optimal Sequential Evaluation of Compositing Trees

Storage is the most critical resource for evaluating a compositing tree. We need 4MB of memory to store an image of size 512 �
512, assuming 4-bytes each for RGB and � values per pixel. Naive evaluation of a compositing tree with N nodes may require
intermediate storage for up to N images.

We now describe techniques, adapted from register allocation techniques used in programming language compilation, to mini-
mize the total intermediate storage required. Figure 17a shows a compositing tree for compositing images I1 through I6. We can

1These numbers are already outdated by now.

20

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

2I

I6

I3 I4

5I1I

I1 2

I3

I4

I5

I6

I

(a) (b)

Figure 17: (a) A compositing tree and (b) its corresponding associative tree.

consider the tree as representing the expression

(I1�(I2�(I3�I4)))�(I5�I6) (12)

where � is the compositing operator. Since images I1 through I6 are obtained from remote processors, we need to copy these
images locally into intermediate buffers before applying the compositing operator. The problem now is to sequence these operations
and reuse intermediate buffers such that the total number of buffers needed for evaluating the tree is minimized.

We encounter a very similar problem in a compiler, while generating code for expressions. Consider a machine instruction (such
as integer addition) that operates only on pairs of registers. Before this operation can be performed on operands stored in the main
memory, the operands must be loaded into registers. We now describe how techniques to generate optimal code for expressions can
be adapted to minimize intermediate storage requirements of a compositing process. The number of registers needed to evaluate an
expression tree can be minimized, using a simple tree traversal algorithm [2, pages 561–562]. Using this algorithm, the compositing
tree in Figure 17a can be evaluated using 3 buffers. In general, O(logN) buffers are needed to evaluate a compositing tree of size
N . However, by exploiting the algebraic properties of the operations, we can further reduce the number of buffers needed— to
O(1). Since � is associative, evaluating expression (12) is equivalent to evaluating the expression:

((((I1�I2)�I3)�I4)�I5)�I6 (13)

The above expression is represented by the compositing tree in Figure 17b, called an associative tree [81]. The associative tree can
be evaluated using only 2 buffers.

Again, for full details, we refer the reader to the full paper [73].

4.9.3 Implementation

In this section, we sketch the implementation of our compositing pipeline. We implemented our compositing back-end in the PVR
system [84]. PVR is a high-performance volume rendering system, and it is freely available for research purposes. Our main
reason for choosing PVR was that it already supported the notion of separate rendering and compositing clusters, as explained in
[83, Chapter 3]. The basic operation is very simple. Initially, before image computation begins, all compositing nodes receive a
BSP-tree defining the compositing operations based on the object space partitioning chosen by the user. Each compositing node, in
parallel, computes its portion of the compositing tree, and generates a view-independent data structure for its part. Image calculation
starts when all nodes receive a sequence of viewpoints.

The rendering nodes, simply run the following simple loop:

For each (viewpoint v)
ComputeImage(v);
p = WaitForToken();
SendImage(p);

Notice that the rendering nodes do not need any explicit knowledge of parallelism; in fact, each node does not even need to
know, a priori, where its computed image is to be sent. Basically, the object space partitioning and the BSP-tree takes care of all
the details of parallelization.

The operation of the compositing nodes is a bit more complicated. First, (for each view) each compositing processor computes
(in parallel, using its portion of the compositing tree) an array with indices of the compositing operations assigned to it as a sequence
of processor numbers from which it needs to fetch and compose images. The actual execution is basically an implementation of the
pre-fetching scheme proposed here, with each read request being turned into a PVR MSG TOKEN message, where the value of
the token carries its processor id. So, the basic operation of the compositing node is:

21

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

For each (viewpoint v)
CompositeImages(v);
p = WaitForToken();
SendImage(p);

Notice that there is no explicit synchronization point in the algorithm. All the communication happens bottom-up, with requests
being sent as early as possible (in PVR, tokens are sent asynchronously, and in most cases, the rendering nodes do not wait for the
tokens), and speed is determined by the slowest processor in the overall execution, effectively pipelining the computation. Also, one
can use as many (or as few) nodes one wants for the compositing tree. That is, the user can determine the rendering performance
for a given configuration, and based on the time to composite two images it is straightforward simple to scale our compositing
back-end for his particular application.

Acknowledgments

Numerous individuals have contributed to all parts of the material presented here. In particular, we like to thank Bengt-Olaf
Schneider, who originally contributed earlier versions of the sections on personal workstations and parallel polygon graphics.

References

[1] G. Abram and H. Fuchs. Vlsi architectures for computer graphics. In G. Enderle, editor, Advances in Computer Graphics I,
pages 6–21, Berlin, Heidelberg, New York, Tokyo, 1986. Springer-Verlag.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers — Principles, Techniques, and Tools. Addison Wesley, 1988.

[3] K. Akeley. Realityengine graphics. In Computer Graphics (Proc. Siggraph), pages 109–116, August 1993.

[4] K. Akeley and T. Jermoluk. High-performance polygon rendering. Computer Graphics (Proc. Siggraph), 22(4):239–246,
August 1988.

[5] R. Avila, L. Sobierajski, and A. Kaufman. Towards a comprehensive volume visualization system. In IEEE Visualization,
pages 13–20. IEEE CS Press, 1992.

[6] J. F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. In Computer Graphics (SIGGRAPH ’82
Proceedings), pages 21–29, July 1982.

[7] E. Camahort and I. Chakravarty. Integrating volume data analysis and rendering on distributed memory architectures. In
IEEE/ACM Parallel Rendering Symposium, pages 89–96. ACM Press, October 1993.

[8] Ingrid Carlbom. Optimal filter design for volume reconstruction and visualization. In IEEE Visualization, pages 54–61,
1993.

[9] L. Carpenter. The a-buffer, an antialiased hidden surface method. Computer Graphics (Proc. Siggraph), 18(3):125–138,
1985.

[10] J. Challinger. Scalable parallel volume raycasting for nonrectilinear computational grids. In IEEE/ACM Parallel Rendering
Symposium, pages 81–88, 1993.

[11] Earl Coddington. An Introduction to Ordinary Differential Equations. Prentice-Hall, 1961.

[12] M. Cox and P. Hanrahan. Depth complexity in object-parallel graphics architectures. In Proc. 7th Eurographics Workshop
on Graphics Hardware, pages 204–222, Cambridge (UK), 1992.

[13] Roger Crawfis and Nelson Max. Direct volume visualization of three-dimensional vector fields. 1992 Workshop on Volume
Visualization, pages 55–60, 1992.

[14] T. W. Crockett. Parallel rendering. In A. Kent and J. G. Williams, editors, Encyclopedia of Computer Science and Technology,
volume 34, Supp. 19, A., pages 335–371. Marcel Dekker, 1996. Also available as ICASE Report No. 95-31 (NASA CR-
195080), 1996.

[15] T.W. Crockett and T. Orloff. A parallel rendering algorithm for mimd architectures. Technical Report ICASE-Report 91-3,
Institute for Computer Science and Engineering, NASA Langley Research Center, 1991.

[16] John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing. 1992 Workshop on Volume Visualization, pages
91–98, 1992.

22

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

[17] M. Deering and S.R. Nelson. Leo: A system for cost effective 3d shaded graphics. In Computer Graphics (Proc. Siggraph),
pages 101–108, August 1993.

[18] S. Demetrescu. High-speed image rasterization using scan line access memories. In H. Fuchs, editor, Proc. Chapel Hill
Conference on VLSI, pages 221–243, 1985.

[19] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In John Dill, editor, Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22, pages 65–74, August 1988.

[20] D. Ellsworth. A new algorithm for interactive graphics on multicomputers. IEEE Computer Graphics & Applications, pages
33–40, July 1994.

[21] A. Barkans et al. Guardband clipping method and apparatus for 3d graphics display system. U.S. Patent 4,888,712. Issued
Dec 19, 1989.

[22] H. Fuchs et al. Pixel-planes 5: A heterogeneous multiprocessor graphics system using processor-enhanced memories.
Computer Graphics (Proc. Siggraph), 23(3):79–88, July 1989.

[23] I. Sutherland et al. A characterization of ten hidden surface algorithms. ACM Computing Surveys, 6(1):1–55, March 1974.

[24] J. Eyles et al. Pixelflow: The realization. In Proc. of Eurographic/ACM SIGGRAPH Workshop on Graphics Hardware,
pages 57–68, New York, 1997. ACM Press.

[25] J. Foley et al. Computer Graphics: Principles and Practice. Addison Wesley, 2nd edition, 1990.

[26] M. Deering et al. The triangle processor and normal vector shader: A vlsi system for high-performance graphics. Computer
Graphics (Proc. Siggraph), 12(2):21–30, August 1988.

[27] S. Molnar et al. A sorting classification of parallel rendering. IEEE Computer Graphics & Applications, pages 23–32, July
1994.

[28] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics, Principles and Practice,
Second Edition. Addison-Wesley, Reading, Massachusetts, 1990. Overview of research to date.

[29] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures. In Computer Graphics
(SIGGRAPH ’80 Proceedings), pages 124–133, July 1980.

[30] C. Giertsen and J. Petersen. Parallel volume rendering on a network of workstations. IEEE Computer Graphics and Appli-
cations, 13(6):16–23, 1993.

[31] Christopher Giertsen. Volume visualization of sparse irregular meshes. IEEE Computer Graphics and Applications,
12(2):40–48, March 1992.

[32] A. Glassner, editor. An Introduction to Ray Tracing. Academic Press, 1989.

[33] Andrew Glassner. Principles of Digital Image Synthesis (2 Vols). Morgan Kaufmann Publishers, Inc. ISBN 1-55860-276-3,
San Francisco, CA, 1995.

[34] Heinrich Müller and Michael Stark. Adaptive generation of surfaces in volume data. The Visual Computer, 9(4):182–199,
January 1993.

[35] B. Hendrickson and R. Leland. The chaco user’s guide (version 1.0). Tech. Rep. SAND93-2339, Sandia National Laborato-
ries, Albuquerque, N.M., 1993.

[36] J. Hennesy and D. Paterson. Computer Architecture: A Quantitative Approach. Morgan-Kaufmann, 1990.

[37] W. Hsu. Segmented ray casting for data parallel volume rendering. In IEEE/ACM Parallel Rendering Symposium, pages
7–14. ACM Press, October 1993.

[38] M. Hu and J. Foley. Parallel processing approaches to hidden-surface removal in image space. Computers & Graphics,
9(3):303–317, 1985.

[39] James T. Kajiya. The rendering equation. In David C. Evans and Russell J. Athay, editors, Computer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 143–150, August 1986.

[40] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities. In Hank Christiansen, editor, Computer Graphics
(SIGGRAPH ’84 Proceedings), volume 18, pages 165–174, July 1984.

[41] Arie E. Kaufman. Volume Visualization. IEEE Computer Society Press, ISBN 908186-9020-8, Los Alamitos, CA, 1990.

23

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

[42] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear–warp factorization of the viewing transformation.
In Andrew Glassner, editor, Proceedings of SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, pages
451–458. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[43] T. Lee, C. Raghavendra, and J. Nicholas. Image composition methods for sort-last polygon rendering on 2d mesh architec-
tures. In IEEE/ACM Parallel Rendering Symposium, pages 55–62, 1995.

[44] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29–37, May 1988.

[45] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261, July 1990.

[46] Marc Levoy. Volume rendering by adaptive refinement. The Visual Computer, 6(1):2–7, February 1990.

[47] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. In
Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 163–169, July 1987.

[48] K. Ma, J. Painter, C. Hansen, and M. Krogh. A data distributed parallel algorithm for ray-traced volume rendering. In
IEEE/ACM Parallel Rendering Symposium, pages 15–22. ACM Press, October 1993.

[49] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using binary-swap compositing. IEEE Computer
Graphics and Applications, 14(4):59–68, 1994.

[50] Kwan-Liu Ma. Parallel volume rendering for unstructured-grid data on distributed memory machines. In IEEE/ACM Parallel
Rendering Symposium, pages 23–30, 1995.

[51] Kwan-Liu Ma and Thomas Crockett. Parallel volume rendering for unstructured-grid data on distributed memory machines.
In IEEE/ACM Parallel Rendering Symposium, pages 95–104, 1997.

[52] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume rendering. In IEEE Visualization, pages
100–107, 1994.

[53] Nelson Max. Optical models for direct volume rendering. IEEE Transations on Visualization and Computer Graphics,
1(2):99–108, June 1995.

[54] Nelson Max, Roger Crawfis, and Barry Becker. New techniques in 3D scalar and vector field visualization. In First Pa-
cific Conference on Computer Graphics and Applications. Korean Information Science Society, Korean Computer Graphics
Society, August 1993.

[55] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient visualization of 3D scalar functions.
In Computer Graphics (San Diego Workshop on Volume Visualization), pages 27–33, November 1990.

[56] Nelson L. Max. Efficient light propagation for multiple anisotropic volume scattering. In Fifth Eurographics Workshop on
Rendering, pages 87–104, Darmstadt, Germany, June 1994.

[57] James V. Miller, David E. Breen, William E. Lorensen, Robert M. O’Bara, and Michael J. Wozny. Geometrically deformed
models: A method for extracting closed geometric models from volume data. In Thomas W. Sederberg, editor, Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 217–226, July 1991.

[58] S. Molnar. Combining Z-buffer engines for higher-speed rendering. In Advances in Computer Graphics Hardware III, pages
171–182, 1988.

[59] S. Molnar. Image Composition Architectures for Real-Time Image Generation. Ph.D. thesis, University of North Carolina,
Chappel Hill, 1991.

[60] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification for parallel rendering. IEEE Computer Graphics
and Applications, 14(4):23–32, 1994.

[61] C. Montani, R. Perego, and R. Scopigno. Parallel volume visualization on a hypercube architecture. In 1992 Workshop on
Volume Visualization Proceedings, pages 9–16. ACM Press, October 1992.

[62] J. Montrym. Infinite reality: A real-time graphics system. In Computer Graphics (Proc. Siggraph), pages 293–302, August
1997.

[63] C. Mueller. The sort-first rendering architecture for high-performance graphics. In Proc. 1995 Symposium on Interactive 3D
Graphics, pages 75–84, New York, 1995. ACM Press.

[64] Henry Neeman. A decomposition algorithm for visualizing irregular grids. In Computer Graphics (San Diego Workshop on
Volume Visualization), pages 49–56, November 1990.

24

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

[65] U. Neumann. Parallel volume-rendering algorithm performance on mesh-connected multicomputers. In IEEE/ACM Parallel
Rendering Symposium, pages 97–104. ACM Press, October 1993.

[66] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory mimd architectures. In 1992 Workshop on Volume
Visualization Proceedings, pages 17–24. ACM Press, October 1992.

[67] Gregory M. Nielson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in marching cubes. In IEEE
Visualization, pages 83–91, 1991.

[68] M. Olano and T. Greer. Triangle scan conversion using 2d homogeneous coordinates. In Proc. of Eurographic/ACM SIG-
GRAPH Workshop on Graphics Hardware, pages 89–96, New York, 1997. ACM Press.

[69] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive Ray Tracing for Isosurface Rendering. In IEEE
Visualization, pages 233–238, 1998.

[70] J. Pineda. A parallel algorithm for polygon rasterization. Computer Graphics (Proc. Siggraph), 22(4):17–20, August 1988.

[71] Thomas Porter and Tom Duff. Compositing digital images. In Hank Christiansen, editor, Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 253–259, July 1984.

[72] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

[73] C.R. Ramakrishnan and C.T. Silva. Optimal processor allocation for sort-last compositing under bsp-tree ordering, submitted
for publication, 1997.

[74] D. Roble. A load balanced parallel scanline z-buffer algorithm for the ipsc hypercube. In Proc. Pixim ’88, pages 177–192,
Paris (France), October 1988.

[75] Paolo Sabella. A rendering algorithm for visualizing 3D scalar fields. In John Dill, editor, Computer Graphics (SIGGRAPH
’88 Proceedings), volume 22, pages 51–58, August 1988.

[76] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1990.

[77] B.-O. Schneider. A processor for an object-oriented renderin system. Computer Graphics Forum, 7:301–310, 1988.

[78] B.-O. Schneider and J. van Welzen. Efficient polygon clipping for a simd graphics pipeline. IEEE Transactions on Visual-
ization and Computer Graphics, 4(3), July 1998. To appear.

[79] P. Schroeder and J. Salem. Fast rotation of volume data on data parallel architectures. In IEEE Visualization, pages 50–57.
IEEE CS Press, 1991.

[80] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. In Edwin E. Catmull,
editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

[81] R. Sethi and J. Ullman. The generation of optimal code for arithmetic expressions. Journal of the ACM, 17(4), 1970.

[82] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering. In Computer Graphics
(San Diego Workshop on Volume Visualization), pages 63–70, November 1990.

[83] C. Silva. Parallel Volume Rendering of Irregular Grids. Ph.D. thesis, State University of New York at Stony Brook, 1996.

[84] C. Silva, A. Kaufman, and C. Pavlakos. PVR: High-Performance Volume Rendering. In IEEE Computational Science and
Engineering, 1996.

[85] C.T. Silva and J.S.B. Mitchell. The lazy sweep ray casting algorithm for rendering irregular grids. IEEE Transations on
Visualization and Computer Graphics, 3(2), 1997.

[86] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and architectural implications. IEEE
Computer, 27(7):45–55, 1994.

[87] L. Sobierajski and R. Avila. A hardware acceleration method for volume ray tracing. In IEEE Visualization. IEEE CS Press,
1995.

[88] Lisa Sobierajski and Arie Kaufman. Volumetric ray tracing. In Arie Kaufman and Wolfgang Krueger, editors, 1994 Sympo-
sium on Volume Visualization, pages 11–18. ACM SIGGRAPH, October 1994. ISBN 0-89791-741-3.

[89] Don Speray and Steve Kennon. Volume probes: Interactive data exploration on arbitrary grids. In Computer Graphics (San
Diego Workshop on Volume Visualization), pages 5–12, November 1990.

25

Excerpts from the tutorial on ”Rendering and Visualization in Parallel Environments”

[90] Craig Upson and Michael Keeler. VBUFFER: Visible volume rendering. In John Dill, editor, Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22, pages 59–64, August 1988.

[91] Sam Uselton. Volume rendering for computational fluid dynamics: Initial results. Tech Report RNR-91-026, Nasa Ames
Research Center, 1991.

[92] R. Weinberg. Parallel processing image synthesis with anti-aliasing. Computer Graphics (Proc. Siggraph), 15(3):55–62,
August 1981.

[93] Lee Westover. Footprint evaluation for volume rendering. In Forest Baskett, editor, Computer Graphics (SIGGRAPH ’90
Proceedings), volume 24, pages 367–376, August 1990.

[94] D. Whelan. A rectangular area filling display system architecture. Computer Graphics (Proc. Siggraph), 16(3):147–153,
July 1982.

[95] S. Whitman. Multiprocessor Methods for Computer Graphics Rendering. Jones and Bartlett, Boston, London, 1992.

[96] S. Whitman. Dynamic load balancing for parallel polygon rendering. IEEE Computer Graphics & Applications, pages
41–48, July 1994.

[97] S. R. Whitman. A survey of parallel algorithms for graphics and visualization. In International Workshop on High-
Performance Computing for Computer Graphics and Visualization, Swansea, United Kingdom, 1995.

[98] Jane Wilhelms and Judy Challinger. Direct volume rendering of curvilinear volumes. In Computer Graphics (San Diego
Workshop on Volume Visualization), pages 41–47, November 1990.

[99] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume rendering. In Thomas W. Sederberg,
editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 275–284, July 1991.

[100] Peter L. Williams and Nelson Max. A volume density optical model. 1992 Workshop on Volume Visualization, pages 61–68,
1992.

[101] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics and Applications, pages 19–28, 1992.

[102] K. Zuiderveld. Visualization of Multimodality Medical Volume Data using Object-Oriented Methods. PhD thesis, University
of Utrecht, The Netherlands, 1995.

[103] K. Zuiderveld, A. Koning, and M. Viergever. Acceleration of ray-casting using 3D distance transforms. In Proc. of Visual-
ization in Biomedical Computing, pages 324–335. SPIE, 1992.

26

Page ‹#›

SC 2002
Tutorial M9

James T. Klosowski

IBM T. J. Watson Research Center

Building and Driving
High-Resolution Displays

SC 2002
Tutorial M9

Outline

• Motivation

• High-Resolution Displays

• Tiled Display Walls

• LCDs

• Chromium

Page ‹#›

SC 2002
Tutorial M9

Motivation

• Who needs high-resolution anyway?

• Whoever wants to visualize large data

• Accelerated Strategic Computing Initiative (ASCI)

• Whoever wants to collaborate effectively

• Industrial design, petroleum exploration, entertainment

SC 2002
Tutorial M9

Motivation

• ASCI Visualization Needs
• High fidelity simulations required to achieve the

needed confidence in simulation results

Page ‹#›

SC 2002
Tutorial M9

Applications: Scientific Visualization

• ASCI terascale simulations:
8 billion voxels
27,000 time steps

469M Triangle Isosurface

SC 2002
Tutorial M9

Applications: Simulation Analysis

• Crashes, Fires, Explosions, Turbulence

Page ‹#›

SC 2002
Tutorial M9

Applications: Collaboration

SC 2002
Tutorial M9

Applications: Medical Imaging

Page ‹#›

SC 2002
Tutorial M9

Applications: Weather Forecasting

SC 2002
Tutorial M9

Other Applications

• Flight Simulators

• Planetariums

• Manufacturing

• Automotive Design

• Oil & Gas Exploration

• Entertainment

Page ‹#›

SC 2002
Tutorial M9

Outline

• Motivation

• High-Resolution Displays

• Tiled Display Walls

• LCDs

• Chromium

SC 2002
Tutorial M9

High-Resolution Displays

• Multi-Projector Displays
• Tiled, Cylindrical, Rectilinear, Domes

• Our focus will be on tiled display walls

• Liquid Crystal Displays (LCDs)
• IBM T221 (9.2 million pixels)

Page ‹#›

SC 2002
Tutorial M9

Tiled Display Walls

• Projectors
• CRT, LCD, DLP, laser

• Characteristics to consider:
resolution, brightness, contrast, color gamut, gamma, data
interfaces, image quality, calibration, flatness of illumination

• Front versus rear projection

SC 2002
Tutorial M9

Tiled Display Walls

• Screens
• Characteristics to consider:

image performance (brightness, resolution, angle of view,
contrast ratio), weight, fragility, portability

• Color balance and dynamic range should match projectors

Page ‹#›

SC 2002
Tutorial M9

Tiled Display Walls

• Pros
• Great for data visualization & collaboration

• Resolution, human scale

• Cons
• Seamless display complications

• Large footprint

SC 2002
Tutorial M9

LCDs

• Characteristics to consider:
• Resolution, contrast, pixels per inch, vertical refresh,

viewable image area

Page ‹#›

SC 2002
Tutorial M9

LCDs

• Pros
• Great for data visualization

• Resolution, seamless display

• Small footprint

• Cons
• Poor for large group collaborations

SC 2002
Tutorial M9

Outline

• Motivation

• High-Resolution Displays

• Tiled Display Walls
• Driving tiled displays

• Seamless displays: challenges

• Examples of existing systems

• LCDs

• Chromium

Page ‹#›

SC 2002
Tutorial M9

Tiled Display Walls: Manufacturers

• Projectors
• Barco, Boxlight, Christie, Compaq, Dell, Epson, Fujitsu,

Hitachi, Mitsubishi, NEC, Optoma, Proxima, Sharp, Sony,
and many, many others

• Screens
• Da-Lite, Draper, JenMar, Stewart Filmscreen

SC 2002
Tutorial M9

Driving Tiled Display Walls

• Hardware

• Custom/High-End machine

• SGI

• Clusters of workstations

• Commodity PCs

Page ‹#›

SC 2002
Tutorial M9

SGI

• Pros
• Distributed shared-memory architecture

• InfiniteReality accelerators (HW edge blending)

• Simple display synchronization

• Simplier development of applications

• Cons
• Expensive, large footprint

• Limited number of projectors (max 16 IR pipes)

SC 2002
Tutorial M9

Cluster of Workstations

• Pros
• Price/performance

• Tracks commodity parts very well (gfx, networks, CPUs)

• Potential scalability

• Cons
• More complicated application development

• I/O limitations within and between nodes

• Graphics capabilities driven by gamer’s needs

Page ‹#›

SC 2002
Tutorial M9

Driving Tiled Display Walls

• Parallel Rendering
• Aggregation of rendering output

• Load Balancing

• Synchronization

SC 2002
Tutorial M9

Parallel Rendering: Sort-First

• Geometric primitives distributed among nodes

• 2D screen partitioning into disjoint tiles

• Prior to transformation step, primitives redistributed to
appropriate regions

• Pros:
frame-to-frame coherence; any rendering algorithm

• Cons:
load balancing; border primitives

Page ‹#›

SC 2002
Tutorial M9

Parallel Rendering: Sort-Middle

• Arbitrary assignment of geometric primitives to nodes

• Portion of total display assigned to each rasterizer

• Geometry processor transforms and lights primitives

• Screen-space primitives sorted and sent to rasterizers

• Most popular until very recently

• Cons:
load balance on rasterizers, special hardware

SC 2002
Tutorial M9

Parallel Rendering: Sort-Last

• Arbitrary assignment of geometric primitives to nodes

• Geometry rendered

• Pixels (color & depth) sent to compositing nodes

• Pros:
data size scalability

• Cons:
high bandwidth; transparency & anti-aliasing

Page ‹#›

SC 2002
Tutorial M9

Clusters of Workstations

• Sort-first and sort-last most appropriate

• Sort-middle not appropriate:
• Geometry processing and rasterization are tightly coupled

on commodity graphics accelerators: only slow access to
intermediate rendering results

SC 2002
Tutorial M9

Parallel Rendering: Samanta 1999

• Load balancing multi-projector systems
• Sort-first rendering

• Partition image into virtual tiles for each frame (k-d tree)

• virtual tiles are different from physical (projector) tiles

• readback pixels from framebuffer and transfer them to
PC driving the corresponding physical tile’s projector

• VMMC: low latency, high bandwidth, &
fast synchronization for framebuffer swap

Page ‹#›

SC 2002
Tutorial M9

Parallel Rendering: Samanta 1999

SC 2002
Tutorial M9

Parallel Rendering: Moreland 2001

• Extremely large data sets
• Sort-last rendering on 12Mpel tiled display wall

• Each nodes renders images for each tile in the wall

• 120 million triangles per second

1

1

1

1

1

Page ‹#›

SC 2002
Tutorial M9

Aggregation of Rendering

• Sort-first
• 1 screen tile per node: each node drives 1 projector

• 2+ tiles per node: pixels must be transferred b/w nodes

• Sort-last
• Readback framebuffer (RGB, Z, alpha, etc.)

• Transmit contents to compositing engine

• Composite contents & display results

SC 2002
Tutorial M9

Sort-Last Aggregation

• Compositing done on nodes
• imagery exchanged over cluster interconnect

(binary swap)

• Complications
• framebuffer readback performance is generally slow

• bandwidth and latency

• processor overhead

Page ‹#›

SC 2002
Tutorial M9

Sort-Last Aggregation

• Compositing done on DVI attached HW
• Stanford’s Lightning-2

U. Texas’ Metabuffer

• Avoids readback bottleneck

• Complications
• Synchronization issues

• DVI limitations

• Limited compositing functions

Lightning-2

SC 2002
Tutorial M9

• Compositing done on network attached HW
• Compaq’s Sepia, IBM’s Scalable Graphics Engine

• Offload compositing operation from cluster nodes

• General pixel formats, programmable composition functions

• Complications
• Framebuffer readback

• Bus contention

Sort-Last Aggregation

Sepia 2

Page ‹#›

SC 2002
Tutorial M9

IBM Scalable Graphics Engine

• Network attached framebuffer
• 16 million RGBA pixels double buffered

• up to 16 GigE inputs, 8 synchronized DVI outputs

• up to 720 Mpel/s display refresh bandwidth

• Not a graphics adapter!

SC 2002
Tutorial M9

SGE: Today and Tomorrow

•

memory

DVI
outputs

gigE
inputs

SGE-2 (research prototype)

SGE-3 (artist’s drawing)

Page ‹#›

SC 2002
Tutorial M9

Challenges (to seamless display)

• Projector Alignment

• Color calibration

• Blending

SC 2002
Tutorial M9

Projector Alignment

• Very difficult problem (active research area)
• Many degrees of freedom

• Distortions

• Manual alignment is time consuming and tedious

• Hardware and software solutions

Page ‹#›

SC 2002
Tutorial M9

Mechanical Projector Positioners

Princeton-Intel Argonne National Lab

Positioners not as effective for
commodity projectors (due to distortions)

SC 2002
Tutorial M9

Projector Alignment

• Software controlled alignment
• MIT, UNC: automatically distort images sent to projectors

by using a calibrated camera

• UNC: Office of the Future -- freeform projector placement
with alignment fixed completely in software

• Princeton: uncalibrated camera

Page ‹#›

SC 2002
Tutorial M9

Projector Alignment: Chen 2000

• Camera measures point correspondences & line
matches between projectors

• Simulated annealing used to minimize global error and
solve for the projection matrices

• Image-warping process resamples the images to counter
the effects of physical misalignment

SC 2002
Tutorial M9

Projector Alignment: Chen 2000

Page ‹#›

SC 2002
Tutorial M9

Projector Alignment: Yang 2001

• PixelFlex: multi-projector system
• Reconfigurable: can change pixel density, size, and shape

of single logical display

• Calibration (image warping and blending) runs in minutes

• Front-projection system

• ceiling-mounted computer aligned projectors

• wide field-of-view camera for closed-loop calibration
(must see entire display surface)

SC 2002
Tutorial M9

Projector Alignment: New Research

• Chen et al, IEEE Visualization 2002
• Scalable Alignment of Large-Format Multi-Projector

Displays Using Camera Homography Trees

• Raskar, et al., ACCV 2002
• A Low-Cost Projector Mosaic with Fast Registration

Page ‹#›

SC 2002
Tutorial M9

Color Calibration

• Variation between projectors
(even same model)

• Variation within a projector’s FOV

SC 2002
Tutorial M9

Color Calibration

• Manual adjustment of projectors possible for
small numbers

• Computer assisted adjustment
• Color analyzer used to adjust each projector’s color

through the serial port

• Software adjustment of colors

Page ‹#›

SC 2002
Tutorial M9

Color Calibration: Majumder 2000

• Goal: For the same input, the colors perceived
at every pixel of every projector are equivalent

• Approach: color mapping
• for each projector, map input color to a new input color

to produce perceptually identical pixels

SC 2002
Tutorial M9

Color Calibration: Majumder 2000

• For 24-bit color, number of inputs is large: 224

• Plus the variation within a projector’s FOV

• Reduce number of color maps needed
• ignore variation within a projector

• one color map per channel per projector

Page ‹#›

SC 2002
Tutorial M9

Color Calibration: Majumder 2000

• Color map algorithm:
• non-linearity correction

• luminance matching

• chrominance matching

• Use the per channel color LUT available in
image generators

SC 2002
Tutorial M9

Color Calibration: Majumder 2002

uncalibrated calibrated

Page ‹#›

SC 2002
Tutorial M9

Blending

• Overlapping tiles and tapering brightness of
images can give smooth transitions
• Soft averaging of errors (misalignment, zoom, distortion)

• LCD/DLP projectors leak light for black pixels
black + black = gray

SC 2002
Tutorial M9

Blending: Solutions

• Avoid it
• Reduces pixel counts & creates a “blurred” region that

some people notice more than the edges themselves

• High-end projectors (better color matching & flat
illumination) and very careful alignment

• Software
• use roll-off function (linear ramp, cosine curve) to smooth

the intensity transition between projectors

Page ‹#›

SC 2002
Tutorial M9

Blending: Solutions

• Hardware
• Modulate video signals (Panoram, Trimension)

• Only available in high-end CRT projectors

• Aperture modulation (Princeton)

• Obscure projected image in overlap region with opaque
object (no change to input images needed)

SC 2002
Tutorial M9

Blending: Aperture Modulation

Page ‹#›

SC 2002
Tutorial M9

Existing Systems

• Sandia National Laboratories

• L.L.N.L.: PowerWall

• Princeton: Scalable Display Wall

• Stanford: Interactive Mural

• Many others

SC 2002
Tutorial M9

Sandia National Laboratories

• 20 Mpel wall (10’x13’)

• 64 PC cluster

• 4x4 projector array

• Next step: 64 Mpel

Page ‹#›

SC 2002
Tutorial M9

Lawrence Livermore National Lab

• 20 Mpel PowerWall (16’x8’)

• SGI Onyx2 (16 IR pipes)

• 5x3 projector array

• 3x2 PowerWall
SGI Onyx2 or
32 PC cluster

SC 2002
Tutorial M9

Princeton’s Scalable Display Wall

• 18 Mpel (18’x8’)

• 24 PC cluster

• 6x4 projector array

Page ‹#›

SC 2002
Tutorial M9

Stanford’s Interactive Mural

• 9 Mpel (6’x4’)

• SGI Onyx2 or PC cluster

• 3x4 projector array

SC 2002
Tutorial M9

Many others...

• Argonne National Laboratory: ActiveMural

• AT&T: InfoWall

• MIT: DataWall

• Univ. of Minnesota: PowerWall

• Univ. of Texas at Austin

Page ‹#›

SC 2002
Tutorial M9

Outline

• Motivation

• High-Resolution Displays

• Tiled Display Walls

• LCDs
• Available displays

• How to drive them

• Chromium

SC 2002
Tutorial M9

Displays

• IBM T221
• 3840 x 2400 pixels > 9.2 Mpel

• 204 pixels per inch

• 22.2 inches viewable image size

• Viewsonic VP2290b
• Same panel as T221

Page ‹#›

SC 2002
Tutorial M9

IBM T221

• Vertical refresh: 41 Hz

• Contrast: 400:1

• Pixel pitch: 0.1245 mm

• Viewing angle: 170 degrees (horiz & vert)

• 21.5” W x 17.2” H x 7.7” D

• 26.4 pounds, 135 watts

SC 2002
Tutorial M9

Quake3 on the T221

Page ‹#›

SC 2002
Tutorial M9

High-Resolution LCD Market

• Engineering

• Finance

• Publishing

• Earth Resource Management

• Digital Content

• Medicine

SC 2002
Tutorial M9

Driving the T221

• 2D
• Matrox 200MMS (32-bit PCI, 32 MB, 4 DVI)

• 4 stripes 960x2400, or 4 tiles 1920x1200

• 3D
• nVidia Quadro4 900 XGL (AGP 4x, 128 MB, 2 DVI)

• full screen, or 2 stripes 1920x2400

• ATI Fire GL4 (AGP 4x, 128 MB, 2 DVI)

• 2 stripes 1920x2400

Page ‹#›

SC 2002
Tutorial M9

Driving the T221

• Many other cards also capable
• 3D Labs, IBM, ATI, nVidia, etc.

• Drivers
• Windows: widely available

• Linux: somewhat available

SC 2002
Tutorial M9

Driving the T221

• PC cluster
• A single graphics card has limited resources

• By combining computational power of several PCs, the
throughput to the T221 can be even higher

• Direct connection to T221
– synchronization becomes an issue

• Compositing hardware
– SGE, Lightning-2, Sepia, MetaBuffer

Page ‹#›

SC 2002
Tutorial M9

IBM Deep View Visualization System

• 8 Linux nodes
• Real-time rendering

• Media streaming

• SGE

• T221

SC 2002
Tutorial M9

Outline

• Motivation

• High-Resolution Displays

• Tiled Display Walls

• LCDs

• Chromium

Page ‹#›

SC 2002
Tutorial M9

Chromium: Cluster Rendering System

• Open Source Software (Sourceforge, Free-BSD)

• Development initiated at Stanford

• DOE/ASCI VIEWS funding

• Follow-up project to WireGL

• Humphreys et al. SIGGRAPH 2002

SC 2002
Tutorial M9

WireGL: Humphreys 2001

• Allows an OpenGL application to render in
parallel on a cluster of workstations
• Supports existing applications without modifications

• Transparent support for tiled displays (sort-first)

• Parallel interface for (input) scalability

• requires OpenGL parallel extensions (Igehy, et al. 1998)

Page ‹#›

SC 2002
Tutorial M9

SC 2002
Tutorial M9

Page ‹#›

SC 2002
Tutorial M9

WireGL’s limitations

• Too restrictive
• sort-first is hard to load balance

• screen-space parallelism is limited

• dependent on spatial locality

• Resource utilization
• geometry moved over network each frame

• server’s graphics hardware remains underutilized

SC 2002
Tutorial M9

Chromium (Cr)

• Cr approaches cluster rendering as processing
streams of OpenGL commands
• Forms a DAG of transformation nodes (computers)

• Edges in DAG are OpenGL communications

• Each node can generate, absorb, or modify a stream of
OpenGL commands

• WireGL operations: tile-sort (on client) & render (on server)

Page ‹#›

SC 2002
Tutorial M9

Chromium

• Cr servers are similar to those in WireGL
• Difference lies in the decoding library: Cr allows arbitrary

processing, not just render and display

• Cr can do everything that WireGL did

SC 2002
Tutorial M9

Chromium: SPUs

• Stream Processing Units (SPUs)
• Shared libraries

• Generic, interchangeable

• Each node loads a chain of SPUs

• Commonly, SPU will intercept a few OpenGL
calls, pass all others to downstream SPU

Page ‹#›

SC 2002
Tutorial M9

Chromium

• Libraries: network, packing, unpacking, &
state tracking

• Sort-first, sort-last out of the box

• Mechanisms provide greater flexibility
than algorithms

• Windows, Linux, AIX, Irix, Solaris, HPUX, +

SC 2002
Tutorial M9

Chromium on Deep View

• Application
Integration

• AIX client
& Linux
servers

Page ‹#›

SC 2002
Tutorial M9

Chromium with Application Integration

SC 2002
Tutorial M9

Chromium on Deep View: Scalability

Page ‹#›

SC 2002
Tutorial M9

Summary

• High-resolution display systems are an efficient,
cost-effective means of visualizing large data

• Tiled display walls offer high resolution on a
human scale for visualization and collaboration

• LCDs offer seamless, high resolution for
beautiful visualizations

SC 2002
Tutorial M9

Good References

• SuperComputing 2002 Course #M9: High-Performance Visualization of Large and
Complex Scientific Datasets (Building and Driving High-Resolution Displays)
http://www.research.ibm.com/people/j/jklosow/sc2002.html
jklosow@us.ibm.com

• ACM SIGGRAPH Course #37: Commodity-based Scalable Visualization
Pavlakos, et al., ACM SIGGRAPH 2001

• ACM SIGGRAPH Course #55: Projector-based Graphics
Raskar and Lantz, ACM SIGGRAPH 2002

Page ‹#›

SC 2002
Tutorial M9

Selected Bibliography (categorized)

Projector Alignment:

4, 6, 8, 11, 12, 19, 24, 25, 26, 29, 31, 32

Color Calibration:

11, 12, 21, 32

Blending:

11, 12, 19, 20, 24, 25, 26, 29, 31

Parallel Rendering & Compositing:
2, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27

Projector-based Systems:

1, 3, 5, 7, 10, 11, 12, 16, 19, 24, 28, 30, 32

SC 2002
Tutorial M9

Selected Bibliography

1. Working in the Office of “Real Soon Now”
Bishop and Welch, IEEE CG&A 20(4), 2000

2. The MetaBuffer: A Scalable Multiresolution Multidisplay 3D Graphics System using
Commodity Rendering Engines, Blanke et al., CS Dept, U Texas (Austin), TR2000-16

3. Large Displays in Automotive Design
Buxton, et al., IEEE CG&A 20(4), 2000

4. Scalable Alignment of Large-Format Multi-Projector Displays Using Camera
Homography Trees, Chen, et al., IEEE Vis 2002

5. Experiences with Scalability of Display Walls
Chen, et al., Immersive Projection Technology Workshop, 2002

6. Calibrating Scalable Multi-Projector Displays Using Camera Homography Trees
Chen, et al., Computer Vision and Pattern Recognition (sketch) 2001

7. Data Distribution Strategies for High Resolution Displays
Chen, et al., Computer Graphics 25(5) 2001

8. Automatic Alignment of High-Resolution Multi-Projector Displays Using an
Uncalibrated Camera, Chen, et al., IEEE Vis 2000

Page ‹#›

SC 2002
Tutorial M9

Selected Bibliography

9. Out-of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays
Correa, et al., Eurographics Workshop on Parallel Graphics and Visualization 2002

10. Design Considerations for a Multi-Projector Display Rendering Cluster
Gotz, UNC Technical Report 10-025, 2001

11. Introduction to Building Projection-Based Tiled Display Systems
Hereld, et al., IEEE CG&A 20(4), 2000

12. Developing Tiled Projection Display Systems
Herald, et al., Immersive Projection Technology Workshop, 2000

13. Chromium: A Stream Processing Framework for Interactive Rendering on Clusters
Humphreys, et al., ACM SIGGRAPH 2002

14. WireGL: A Scalable Graphics System for Clusters
Humphreys, et al., ACM SIGGRAPH 2001

15. Distributed Rendering for Scalable Displays
Humphreys, et al., SuperComputing 2000

16. A Distributed Graphics System for Large Tiled Displays
Humphreys and Hanrahan, IEEE Vis 1999

SC 2002
Tutorial M9

Selected Bibliography

17. The Design of a Parallel Graphics Interface
Igehy, et al., ACM SIGGRAPH 1998

18. Deep View: High-Resolution Reality
Klosowski, et al., IEEE CG&A 22(3), 2002

19. Building and Using a Scalable Display Wall System
Li, et al., IEEE CG&A 20(4), 2000

20. Optical Blending for Multi-Projector Display Wall System
Li and Chen, Lasers and Electro-Optics Society 1999 Annual Meeting

21. Achieving Color Uniformity Across Multi-Projector Displays
Majumder, et al., IEEE Vis 2000

22. Sepia: Scalable 3D Compositing using PCI Pamette
Moll, et al., IEEE Field Programmable Custom Computing Machines 1999

23. Sort-Last Parallel Rendering for Viewing Extremely Large Data Sets on Tile Displays
Moreland, et al., IEEE PVG 2001

24. A Low-Cost Projector Mosaic with Fast Registration
Raskar, et al., Asian Conference on Computer Vision 2002

Page ‹#›

SC 2002
Tutorial M9

Selected Bibliography

25. Multi-Projector Displays Using Camera-Based Registration
Raskar, et al., IEEE Vis 1999

26. Seamless Projection Overlaps using Image Warping and Intensity Blending
Raskar, et al., 4th Conference on Virtual Systems and Multimedia, 1998

27. Load Balancing for Multi-Projector Rendering Systems
Samanta, et al., SIGGRAPH/Eurographics Workshop on Graphics Hardware 1999

28. High-Resolution Multiprojector Display Walls
Schikore, et al., IEEE CG&A 20(4), 2000

29. Scalable Self-Calibrating Technology for Seamless Large-Scale Displays
Surati, Ph.D. Thesis, MIT, 1999

30. Visualization Research with Large Displays
Wei, et al., IEEE CG&A 20(4), 2000

31. Projected Imagery in Your “Office of the Future”
Welch, et al., IEEE CG&A 20(4), 2000

32. PixelFlex: A Reconfigurable Multi-Projector Display System
Yang, et al., IEEE Vis 2001

Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters

Greg Humphreys� Mike Houston� Ren Ng� Randall Frank† Sean Ahern† Peter D. Kirchner‡

James T. Klosowski‡

�Stanford University †Lawrence Livermore National Laboratory ‡IBM T.J. Watson Research Center

Abstract

We describe Chromium, a system for manipulating streams of
graphics API commands on clusters of workstations. Chromium’s
stream filters can be arranged to create sort-first and sort-last par-
allel graphics architectures that, in many cases, support the same
applications while using only commodity graphics accelerators. In
addition, these stream filters can be extended programmatically, al-
lowing the user to customize the stream transformations performed
by nodes in a cluster. Because our stream processing mechanism
is completely general, any cluster-parallel rendering algorithm can
be either implemented on top of or embedded in Chromium. In
this paper, we give examples of real-world applications that use
Chromium to achieve good scalability on clusters of workstations,
and describe other potential uses of this stream processing technol-
ogy. By completely abstracting the underlying graphics architec-
ture, network topology, and API command processing semantics,
we allow a variety of applications to run in different environments.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.4 [Computer Graphics]: Graph-
ics Utilities—Software support, Virtual device interfaces; C.2.2
[Computer-Communication Networks]: Network Protocols—
Applications; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/Server, Distributed Applications

Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren-
dering, Tiled Displays, Remote Graphics, Virtual Graphics, Stream
Processing

1 Introduction

The performance of consumer graphics hardware is increasing at
such a fast pace that a large class of applications can no longer
utilize the full computational potential of the graphics processor.
This is largely due to the slow serial interface between the host and
the graphics subsystem. Recently, clusters of workstations have
emerged as a viable option to alleviate this bottleneck. However,
cluster rendering systems have largely been focused on providing
specific algorithms, rather than a general mechanism for enabling
interactive graphics on clusters. The goal of our work is to allow
applications to utilize more easily the aggregate rendering power of
a collection of commodity graphics accelerators housed in a cluster

of workstations, without imposing a specific scalability algorithm
that may not meet an application’s needs.

To achieve this goal, we have designed and built a system that
provides a generic mechanism for manipulating streams of graphics
API commands. This system, called Chromium, can be used as the
underlying mechanism for any cluster-graphics algorithm by having
the algorithm use OpenGL to move geometry and imagery across
a network as required. In addition, existing OpenGL applications
can use a cluster with very few modifications, because Chromium
provides an industry-standard graphics API that virtualizes the dis-
joint rendering resources present in a cluster. In some cases, the
application does not even need to be recompiled. Compatibility
with existing applications may accelerate the adoption of rendering
clusters and high resolution displays, encouraging the development
of new applications that exploit resolution and parallelism.

Chromium’s stream processors are implemented as modules that
can be interchanged and combined in an almost completely arbi-
trary way. By modifying the configuration of these stream pro-
cessors, we have built sort-first and sort-last parallel graphics ar-
chitectures that can, in many cases, support the same applications
without recompilation. Unlike previous work, our approach does
not necessarily require that any geometry be moved across a net-
work (although this may be desirable for load-balancing reasons).
Instead, applications can issue commands directly to locally housed
graphics hardware, thereby achieving the node’s full advertised ren-
dering performance. Because our focus is on clusters of commod-
ity components, we consider only architectures that do not require
communication between stages in the pipeline that are not normally
exposed to an application. For example, a sort-middle architecture,
which requires communication between the geometry and rasteri-
zation stages, is not a good match for our system.

Chromium’s stream processors can be extended programmati-
cally. This added flexibility allows Chromium users to solve more
general problems than just scalability, such as integration with an
existing user interface, stylized drawing, or application debugging.
This extensibility is one of Chromium’s key strengths. Because we
simply provide a programmable filter mechanism for graphics API
calls, Chromium can implement many different underlying algo-
rithms. This model can be thought of as an extension of Voorhies’s
virtual graphics pipeline [33], which insulates applications from the
details of the underlying implementations of a common API.

2 Background and Related Work

2.1 Cluster Graphics

Clusters have long been used for parallelizing traditionally non-
interactive graphics tasks such as ray-tracing, radiosity [5, 25], and
volume rendering [6]. Other cluster-parallel rendering efforts have
largely concentrated on exploiting inter-frame parallelism rather
than trying to make each individual frame run faster [20]. We are in-
terested in enabling fast, interactive rendering on clusters, so these
techniques tend to be at most loosely applicable to our domain.

In the last few years, there has been growing interest in using
clusters for interactive rendering tasks. Initially, the goal of these

James T Klosowski
Reprinted, with permission, from ACM Transactions on Graphics, 21(3), pp. 693-702, Proceedings of ACM SIGGRAPH 2002.Copyright © 2002 by Association for Computing Machinery, Inc. Permission to make digital orhard copies of part of all of this work for personal or classroom use is granted without fee providedthat copies are not made or distributed for profit or commercial advantage. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

systems was to drive large tiled displays. Humphreys and Hanrahan
described an early system designed for 3D graphics [9]. Although
the system described in that paper ran on an SGI InfiniteReality, it
was later ported to a cluster of workstations. At first, their cluster-
based system, called WireGL, only allowed a single serial applica-
tion to drive a tiled display over a network [7]. WireGL used tra-
ditional sort-first parallel rendering techniques to achieve scalable
display size with minimal impact on the application’s performance.
The main drawback of this system was its poor utilization of the
graphics resources available in a cluster. Because it only focused on
display resolution, applications would rarely run faster on a cluster
than they would locally.

Other approaches focused on scalable rendering rates. Samanta
et al. described a cost-based model for load-balancing rendering
tasks among nodes in a cluster, eventually redistributing the re-
sulting non-overlapping pixel-tiles to drive a tiled display [29, 31].
They then extended this technique to allow for tile overlap, creat-
ing a hybrid sort-first and sort-last algorithm that could effectively
drive a single display [30]. All of these algorithms required the
full replication of the scene database on each node in the cluster,
so further work was done to only require partial replication, trad-
ing off memory usage for efficiency [28]. Although these papers
present an excellent study of differing data-management strategies
in a clustered environment, they all provide algorithms rather than
mechanisms. Applying these techniques to a big-data visualization
problem would require significant reworking of existing software.

A different approach to dataset scalability was taken by
Humphreys et al. when they integrated a parallel interface into
WireGL [8]. By posing as the system’s OpenGL driver, WireGL
intercepts OpenGL commands made by an application (or multi-
ple applications), and generates multiple new command sequences,
each represented in a compact wire protocol. Each sequence is then
transmitted over a network to a different server. Those servers man-
age image tiles, and execute the commands encoded in the streams
on behalf of the client. Finally, the resulting framebuffer tiles are
extracted and transmitted to a compositing server for display. Or-
dering between streams resulting from a parallel application is con-
trolled using the parallel immediate mode graphics extensions pro-
posed by Igehy et al [10]. WireGL can use either software-based
image reassembly or custom hardware such as Lightning-2 [32] to
reassemble the resulting image tiles and form the final output. This
approach to cluster rendering allows existing applications to be par-
allelized easily, since it is built upon a popular, industry-standard
API. However, by imposing a sort-first architecture on the resulting
application, it can be difficult to load-balance the graphics work.
Load-balancing is usually attempted by using smaller tiles, but this
will tend to cause primitives to overlap more tiles, resulting in ad-
ditional load on the network and reduced scalability. More funda-
mentally, WireGL requires that all geometry be moved over a net-
work every frame, but today’s networks are not fast enough to keep
remote graphics cards busy.

2.2 Stream Processing

Continual growth in typical dataset size and network bandwidth has
made stream-based analysis a hot topic for many different disci-
plines, such as telephone record analysis [4], multimedia, render-
ing of remotely stored 3D models [27], database queries [2], and
theoretical computer science [16]. In these domains, streams are an
appropriate computational primitive because large amounts of data
arrive continuously, and it is impractical or unnecessary to retain
the entire data set. In the broadest sense, a stream is a potentially
infinite ordered sequence of records. Applications designed to op-
erate on streams only access the elements of the sequence in order,
although it is possible to buffer a portion of a stream for more global
analysis. Any stream processing algorithm must operate on this po-

tentially infinite input set using only finite resources.
Many of the traditional techniques used to solve problems in

computer graphics can be thought of as stream processing algo-
rithms. Immediate-mode rendering is a classic example. In this
graphics model, an unbounded sequence of primitives is sent one at
a time through a narrow API. The graphics system processes each
primitive in turn, using only a finite framebuffer (and possibly tex-
ture memory) to store any necessary intermediate results. Because
such a graphics system does not have memory of past primitives,
its computational expressiveness is limited1. Owens et al. imple-
mented an OpenGL-based polygon renderer on Imagine, a pro-
grammable stream processor [17]. Using Imagine, they achieved
performance that is competitive with custom hardware while en-
abling greater programmability at each stage in the pipeline.

Mohr and Gleicher demonstrated that a variety of stylized draw-
ing techniques could be applied to an unmodified OpenGL applica-
tion by only analyzing and modifying the stream of commands [14].
They intercept the application’s API commands by posing as the
system’s OpenGL driver, in exactly the same way Chromium ob-
tains its command source. Although some of their techniques re-
quire potentially unbounded memory, some similar effects can be
achieved using Chromium and multiple nodes in a cluster.

3 System Architecture

The overall design of Chromium was influenced by Stanford’s
WireGL system [8]. Although the sort-first architecture imple-
mented by WireGL is fairly restrictive, one critical aspect of the
design led directly to Chromium: The wire protocol used to move
image tiles from the servers to the compositor is the same as
the networked-OpenGL protocol used to move geometry from the
clients to the servers. In effect, WireGL’s servers themselves be-
come clients of a second parallel rendering application, which uses
imagery as its fundamental drawing primitive. This means that the
compositing node is not special; in fact, it is just another instance
of the same network server executing OpenGL commands and re-
solving ordering constraints on behalf of some parallel client.

If we consider a sequence of OpenGL commands to be a stream,
WireGL provides three main stream “filters”. First, it can sort a
serial stream into tiles. Next, it can dispatch a stream to a local im-
plementation of OpenGL. Finally, WireGL can read back a frame-
buffer and generate a new stream of image-drawing commands. In
WireGL, these stream transformations can only be realized at spe-
cific nodes in the cluster (e.g., an application’s stream can only be
sorted). To arrive at Chromium’s design, we realized that it would
be useful to perform other transformations on API streams, and it
would also be necessary to arrange cluster nodes in a more generic
topology than WireGL’s many-to-many-to-few arrangement.

3.1 Cluster Nodes

Chromium users begin by deciding which nodes in their cluster will
be involved in a given parallel rendering run, and what communi-
cation will be necessary. This is specified to a centralized configu-
ration system as a directed acyclic graph. Nodes in this graph rep-
resent computers in a cluster, while edges represent network traffic.
Each node is actually divided into two parts: a transformation por-
tion and a serialization portion.

1Because most graphics API’s have some mechanism to force data to
flow back towards the host (i.e., glReadPixels), graphics hardware is actu-
ally not a purely feed-forward stream processor. This fact has been exploited
to perform more general computation using graphics hardware [18, 22], and
extensions to the graphics pipeline have been proposed to further generalize
its computational expressiveness [12].

The transformation portion of a node takes a single stream of
OpenGL commands as input, and produces zero or more streams
of OpenGL commands as output. The mapping from input to out-
put is completely arbitrary. The output streams (if any) are sent
over a network to another node in the cluster to be serialized and
transformed again. Stream transformations are described in greater
detail in section 3.2.

The serialization portion of a node consumes one or more in-
dependent OpenGL streams, each with its own associated graph-
ics context, and produces a single OpenGL stream as output. This
task is analogous to the scheduler in a multitasking operating sys-
tem; the serializer chooses a stream to “execute”, and copies that
stream to its output until the stream becomes “blocked”. It then se-
lects another input stream, performs a context switch, and continues
copying. Streams block and unblock via extensions to the OpenGL
API that provide barriers and semaphores, as proposed by Igehy et
al [10]. These synchronization primitives do not block the issuing
process, but rather encode ordering constraints that will be enforced
by the serializer. Because the serializer may have to switch be-
tween contexts very frequently, we use a hierarchical OpenGL state
tracker similar to the one described by Buck et al [3]. This state
representation allows for the efficient computation of the difference
between two graphics contexts, allowing for fine-grained sharing of
rendering resources.

A node’s serializer can be implemented in one of two ways.
Graph nodes that have one or more incoming edges are realized
by Chromium’s network server, and are referred to as server nodes.
Servers manage multiple incoming network connections, interpret-
ing messages on those connections as packed representations of
OpenGL streams.

On the other hand, nodes that have no incoming edges must
generate their (already serial) OpenGL streams programmati-
cally. These nodes are called client nodes. Clients obtain their
streams from standalone applications that use the OpenGL API.
Chromium’s application launcher causes these programs to load our
OpenGL shared library on startup. Chromium’s OpenGL library
injects the application’s commands into the node’s stream trans-
former, so the application does not have to be modified to initialize
or load Chromium. If there is only one client in the graph, it will
typically be an unmodified off-the-shelf OpenGL application. For
graphs with multiple clients, the applications will have to specify
the ordering constraints on their respective streams.

3.2 OpenGL Stream Processing

Stream transformations are performed by OpenGL “Stream Pro-
cessing Units”, or SPUs. SPUs are implemented as dynamically
loadable libraries that provide the OpenGL interface, so each node’s
serializer will load the required libraries at run time and build an
OpenGL dispatch table. SPUs are normally designed as generically
as possible so they can be used anywhere in a graph.

A simple example configuration is shown in figure 1. The client
loads the tilesort SPU, which incorporates all of the sort-first
stream processing logic from WireGL. The servers use the render
SPU, which dispatches the incoming streams directly to their local
graphics accelerators. This configuration has the effect of running
the unmodified client application on a tiled display using sort-first
stream processing, giving identical semantics and similar perfor-
mance to the tiled display system described by Humphreys et al [7].
Notice that in figure 1, the graph edges originate from the tilesort
SPU, not the application itself. This convention is used because the
SPU in fact manages its own network resources, originates connec-
tions to servers, and generates traffic.

Application
Tilesort

...

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Figure 1: A simple Chromium configuration. In this example,
a serial application is made to run on a tiled display using a
sort-first stream processor called tilesort.

3.3 SPU Chains

A node’s stream transformation need not be performed by only a
single SPU; serializers can load a linear chain of SPUs at run time.
During initialization, each SPU receives an OpenGL dispatch table
for the next SPU in its local chain, meaning simple SPUs can be
chained together to achieve more complex results. Using this fea-
ture, a SPU might intercept and modify (or discard) calls to one par-
ticular OpenGL function and pass the rest untouched to its down-
stream SPU. This allows a SPU, for example, to adjust the graphics
state slightly to achieve a different rendering style.

One example of such a SPU is a “wireframe style” filter. This
SPU issues a glPolygonMode call to its downstream SPU at startup
to set the drawing mode to wireframe. It then passes all OpenGL
calls directly through except glPolygonMode, which it discards,
preventing the application from resetting the drawing mode. Note
that Chromium does not require a stream to be rendered on a dif-
ferent node from where it originated; it is straightforward for the
client to load the render SPU as part of its chain. In this way, an
application’s drawing style can be modified while it runs directly
on the node’s graphics hardware, without any network traffic.

SPU chains are always initialized in back-to-front order, starting
with the final SPU in the chain. At initialization, a SPU must return
a list of all the functions that it implements. A SPU that wants to
pass a function call through to the SPU immediately downstream
can return the downstream SPU’s function pointer as its own. Be-
cause there is no indirection in this model, passing OpenGL calls
through multiple SPUs does not incur any performance overhead.
Such function pointer copying is common in Chromium; as long as
SPUs copy and change OpenGL function tables using only our pro-
vided API’s, they can change their own exported interface on the fly
and automatically propagate those changes throughout the node.

3.4 SPU Inheritance

A SPU need not export a complete OpenGL interface. Instead,
SPUs benefit from a single-inheritance model in which any func-
tions not implemented by a SPU can be obtained from a “parent”,
or “super” SPU. The SPU most commonly inherited from is the
passthrough SPU, which passes all of its calls to the next SPU in
its node’s chain. The wireframe drawing SPU mentioned in the pre-
vious section would likely be implemented this way—it would im-
plement only glPolygonMode, and rely on the passthrough SPU
to handle all other OpenGL functions. At initialization, each SPU
is given a dispatch table for its parent. When the wireframe SPU
wishes to set the drawing mode to wireframe during initialization, it
calls the passthrough SPU’s implementation of glPolygonMode.

Application
Tilesort

Application
Tilesort

Application
Tilesort

... ...

Chromium Server

Readback

Chromium Server

Chromium Server

Chromium Server

Send

Readback Send

Readback Send

Readback Send

Chromium Server

Render

Figure 2: Chromium configured as a complete WireGL re-
placement. A parallel application drives a tiled display using
the sort-first logic in the tilesort SPU. Imagery is then read
back from the servers managing those tiles and sent to a final
compositing server for display.

3.5 Provided Tools and SPUs

Chromium provides four libraries that encapsulate frequently per-
formed stream operations. The first is a stream packing library. This
library takes a sequence of commands and produces a serialized en-
coding of the commands and their arguments. Although this library
is normally used to prepare commands for network transmission, it
can also be used to buffer a group of commands for later analysis,
as described in section 4.3. We use a very similar encoding method
to the one described by Buck et al [3]. It incurs almost no wasted
space, retains natural argument alignment, and allows a group of
command “opcodes” and their arguments to be sent with a single
call to the networking library.

Second, we provide a stream unpacking library. This library de-
codes an already serialized representation of a sequence of com-
mands and dispatches those commands to a given SPU. This library
is primarily used by Chromium’s network server to handle incom-
ing network traffic, but it can also be used by SPUs that need to
locally buffer a portion of a stream in order to perform more global
analysis or make multiple passes over that portion.

The third is a point-to-point connection-based networking ab-
straction. This library abstracts the details of the underlying trans-
port mechanism; we have implemented this API on top of TCP/IP
and Myrinet. In addition, the library can be used by SPUs and
applications to communicate with each other along channels other
than those implied by the configuration graph described in sec-
tion 3.1. This out-of-band communication allows complex com-
positing SPUs to be built, such as the one described in section 4.1.

Finally, Chromium includes a complete OpenGL state tracker.
In addition to maintaining the entire OpenGL state, this library can
efficiently compute the difference between two graphics contexts,
generating a call to a given SPU for every discrepancy found. This
efficient context differencing operation is due to a hierarchical rep-
resentation described by Buck et al [3].

In addition to these support libraries, Chromium provides a num-
ber of SPUs that can be used as is or extended to realize the de-
sired stream transformation. There are too many SPUs to list here;
a complete list can be found in the Chromium documentation at
http://chromium.sourceforge.net.

3.6 Realizing Parallel Rendering Architectures

We now present two examples of parallel rendering architectures
that can be realized using Chromium. As described by Molnar et
al., parallel rendering architectures can be classified according to
the point in the graphics pipeline at which data is “sorted” from an

...

Application

Readback Send

Application

Readback Send

Application

Readback Send

Application

Readback Send

Chromium Server

Render

Figure 3: Another possible Chromium configuration. In this
example, nodes in a parallel application render their portion of
the scene directly to their local hardware. The color and depth
buffers are then read back and transmitted to a final composit-
ing server, where they are combined to produce the final im-
age.

object-parallel distribution to an image-parallel distribution [15].

The first configuration, shown in figure 2, shows a sort-first
graphics architecture that functions identically to WireGL. As in
figure 1, we use the tilesort SPU to sort the streams into tiles.
Each intermediate server serializes its incoming streams and passes
the result to the readback SPU. The readback SPU inherits from
the render SPU using the mechanism described in section 3.4, so
the streams are rendered on the locally housed graphics hardware.
However, the readback SPU provides its own implementation of
SwapBuffers, so at the end of the frame it extracts the framebuffer
and uses glDrawPixels to pass the pixel data to another SPU. In
the figure, each pixel array is passed to a send SPU, which trans-
mits the data to a final server for tile reassembly. Each readback
SPU is configured at startup to know where its tiles should end up
in the final display; these coordinates are passed to the send SPU
using glRasterPos. The readback SPU also uses Igehy’s parallel
graphics synchronization extensions [10] to ensure that the tiles all
arrive at their destination before the final rendering server displays
its results. This final tile reassembly step could also be performed
using custom hardware such as Lightning-2 [32].

A dramatically different architecture is shown in figure 3. In
this figure, the readback SPU is loaded directly by the applica-
tions. Recall that the readback SPU dispatches all of the OpenGL
API directly to the underlying graphics hardware, so the application
running in this configuration benefits from the full performance of
local 3D acceleration. In this case, the readback SPU is configured
to extract both the color and depth buffers, sending them both to a
final compositing server along with the appropriate OpenGL com-
mands to perform a depth composite. In contrast to WireGL, this is
a sort-last architecture. In practice, having many full framebuffers
arriving at a single display server would be a severe bottleneck, so
this architecture is rarely used. In addition, when doing depth com-
positing in Chromium, it can be beneficial to write a special SPU
to perform the composite in software, because compositing depth
images in OpenGL requires using the stencil buffer in a way that is
quite slow on many architectures. A more advanced (and practical)
Chromium-based sort-last architecture is presented in section 4.1.

Because Chromium provides a virtual graphics pipeline with a
parallel interface, the application in figure 3 could be run unmodi-
fied on the architecture in figure 2 simply by specifying a different
configuration DAG. The architectures may provide different seman-
tics (e.g., the sort-last architecture cannot guarantee ordering con-
straints), but the application need not be aware of the change.

Volume Renderer

Binary Swap Send

Volume Renderer

Binary Swap Send

Volume Renderer
Binary Swap Send

Volume Renderer

Binary Swap Send

Chromium Server

Render

Figure 4: Configuration used for a four-node version of our
cluster-parallel volume rendering system. Each client renders
its local portion of the volume using local graphics hardware.
Next, the volumes are composited using the binaryswap
SPU. The SPUs use out-of-band communication to exchange
partial framebuffers until each SPU contains one quarter of
the final image. These partial images are then sent to a single
server for display.

4 Results

In this section, we present three different Chromium usage scenar-
ios: a parallel volume renderer used to interactively explore a large
volumetric dataset, the reintegration of an application’s graphics
stream into its original user interface on a high-resolution display
device, and a stream transformation to achieve a non-photorealistic
drawing style.

4.1 Parallel Volume Rendering

Our volume rendering application uses 3D textures to store vol-
umes and renders them with view-aligned slicing polygons, com-
posited from back to front. Using Stanford’s Real-Time Shading
Language [22], we can implement different classification and shad-
ing schemes using the latest programmable graphics hardware, such
as NVIDIA’s GeForce3. Small shaders can easily exhaust these
cards’ resources; for example, a shader that implements a simple
2D transfer function and a specular shading model requires two 3D
texture lookups, one 2D texture lookup (dependent on one of the
3D lookups), and all eight register combiners.

Because we store our volumes as textures, the maximum size of
the volume that can be rendered is limited by the amount of avail-
able texture memory. In practice, on a single GeForce3 with 64 MB
of texture memory, the largest volume that can be rendered with the
shader described above is 256�256�128. In addition, the speed of
volume rendering with 3D textures is limited by the fill rate of our
graphics accelerator. While the theoretical fill rate of the GeForce3
is 800 Mpix/sec, complex fragment processing greatly decreases
the attainable performance. Depending on the complexity of the
shader being used, we achieve between 42 and 190 Mpix/sec, or
roughly 5% to 24% of the GeForce3’s theoretical peak fill rate.

Both of these limitations can be mitigated by parallelizing the
rendering across a cluster. We first divide the volume among the
nodes in our cluster. Each node renders its subvolume on locally
housed graphics hardware using the binaryswap SPU, which com-
posites the resulting framebuffers using the “binary swap” tech-
nique described by Ma et al [11]. In this technique, rendering nodes
are first grouped into pairs. Each node sends one half of its image
to its counterpart, and receives the other half of its counterpart’s im-
age. This communication uses Chromium’s connection-based net-
working abstraction, described in section 3.5. The SPUs then com-
posite the image they received with their local framebuffer. This
newly composited sub-region of the image is then split in half, a dif-
ferent pairing is chosen, and the process repeats. If there are n nodes

0 50 100
Millions of Voxels

0

5

10

15

20

Fr
am

es
 p

er
 s

ec
on

d

Isosurface

2D Transfer Function

Lit Isosurface

Lit 2D Transfer Function

Figure 5: Performance of our volume renderer as larger
volumes are used. In this graph, each node renders a
256�256�128 subvolume to a 1024�256 window. The
data points correspond to a cluster of 1, 2, 4, 8, and 16
nodes. At 16 nodes, we are rendering two copies of the full
256�256�1024 dataset.

in our cluster, after log�n� steps each node will have completely
composited 1

n of the total image. Because we are compositing trans-
parent images using Porter and Duff’s “over” operator [21], the se-
quence of pairings is chosen carefully so that blending is performed
in the correct order with respect to the viewpoint.

Our scalability experiments were conducted on a cluster of six-
teen nodes, each running RedHat Linux 7.2. The nodes contain
an 800 MHz Pentium III Xeon, a GeForce3 with 64 MB of video
memory, 256 MB of main memory, and a Myrinet network with a
maximum bandwidth of approximately 100 MB/sec. The dataset is
a 256�256�1024 magnetic resonance scan of a mouse. All of our
renderings are performed in a window of size 1024�256, ensuring
that each voxel is sampled exactly once. Table 1 shows the four
shaders we used to vary the achievable per-node performance.

Figure 4 shows the Chromium communication graph for a cluster
of four nodes. Note that a minimum of eight nodes is required to
render the full mouse volume, because each node in our cluster has
only 64 MB of texture memory. Figure 5 shows the performance
of our volume renderer as the size of the volume is scaled. In this
experiment, we rendered a portion of the mouse dataset on each
node in our cluster. The initial drop in performance is due to the
additional framebuffer reads required, but because the binary swap
algorithm keeps all the nodes busy while compositing, the graph
flattens out, and we sustain nearly constant performance as the size
of the volume is repeatedly doubled. At 16 nodes, we render two
copies of the full 256�256�1024 volume at a rate between 643
MVox/sec and 1.59 GVox/sec, depending on the shader used.

If we instead fix the size of the volume and parallelize the render-
ing, we quickly become limited by our pixel readback and network
performance. When rendering a single 256�256�128 volume split
across multiple nodes, the rendering rate rapidly becomes negli-
gible. When creating a 1024�256 image, our volume renderer’s
performance converges to approximately 22 frames per second. Be-
cause the parallel image compositing and final transmission for dis-
play happen sequentially, we can analyze this performance as fol-
lows: With 16 nodes, each node eventually extracts and sends 15

16

Isosurface 2D Transfer Function Lit Isosurface Lit 2D Transfer Function

Shader 3D textures 2D (dependent) textures Register Combiners Single-Node Fill Rate (Mpix/sec)

Isosurface 1 0 6 190
2D Transfer Function 1 1 4 98

Lit Isosurface 2 0 8 78
Lit 2D Transfer Function 2 1 8 42

Table 1: Shaders used in our volume rendering experiments. The lit 2D transfer function shader exhausts the resources of a GeForce3.
Mouse dataset courtesy of the Duke Center for In Vivo Microscopy.

of its framebuffer, requiring four bytes per pixel. The final trans-
mission sends only 1

16 of a framebuffer at three bytes per pixel, but
because all of these framebuffer portions arrive at the same node,
we must consider the aggregate incoming bandwidth at that node,
which is a full framebuffer at three bytes per pixel. This adds up to
1.69 MB/frame, or 37.1 MB/sec. This measurement is close to our
measured RGBA readback performance of the GeForce3, which is
clearly the limiting factor for the binaryswap SPU, since our net-
work can sustain 100 MB/sec. Future improvements in pixel read-
back rate and network bandwidth would result in higher framerates,
as would an alpha-compositing mode for a post-scanout composit-
ing system such as Lightning-2.

4.2 Integration With an Existing User Interface

Normally, when Chromium intercepts an application’s graphics
commands, that application’s graphics window will be blank, with
the rendering appearing in one or more separate windows, poten-
tially distributed across multiple remote computers. Because the
interface is now separated from the visualization, this can interfere
with the productive use of some applications. To address this prob-
lem, we have implemented the integration SPU to reincorporate
remotely rendered tiles into the application’s user interface. This
way, users can apply a standard user interface to a parallel client.

This manipulation can also be useful for serial applications.
Even though the net effect is a null transformation on the appli-
cation’s stream, it can aid in driving high resolution displays. For
our experiments, we use the IBM T221, a 3840�2400 LCD. Few
graphics cards can drive this display directly, and those that can
do not have sufficient scanout bandwidth to do so at a high refresh
rate. The T221 can be driven by up to four separate synchronized
digital video inputs, so we can achieve higher bandwidth to the dis-
play using a cluster and special hardware such as Lightning-2 [32],
or a network-attached parallel framebuffer such as IBM’s Scalable
Graphics Engine (SGE) [19]. The SGE supports up to 16 one-
gigabit ethernet inputs, can double buffer up to 16 million pixels,
and can drive up to eight displays. In our tests, we used the SGE
to supply four synchronized DVI outputs that collectively drive the
T221 at its highest resolution. An X-Windows server for the SGE
provides a standard user interface for this configuration.

The integration SPU is conceptually similar to the readback
SPU in that it inherits almost all of its functionality from the
render SPU. To extract the color information from the framebuffer,
the integration SPU implements its own SwapBuffers handler,
which uses the SGE to display those pixels on the T221. The con-
figuration graph used to conduct this experiment is shown in fig-

ure 8. The application’s graphics stream is sorted into tiles man-
aged by multiple Chromium servers, each of which dispatches its
tile’s stream to the integration SPU. The integration SPU places
the resulting pixels into X regions by tunneling, meaning that the
pixels are transferred to the SGE’s framebuffer without the involve-
ment of the X server that manages the display. Because the SGE
supports multiple simultaneous writes to the framebuffer, this tech-
nique does not unnecessarily serialize tile placement. Note that the
number of tiles sent to the SGE is independent of the number of the
SGE’s outputs, so we use an 8-node cluster to drive the four outputs
at interactive rates.

The integration SPU must also properly handle changes to
the size of the application’s rendering area. When an applica-
tion window is resized, it will typically call glViewport to reset
its drawing area. Accordingly, the integration SPU overrides
the render SPU’s implementation of glViewport to detect these
changes, and adjusts the size of the render tiles if necessary. Be-
cause the tilesort SPU sorts based on a logical decomposition of
the screen, it does not need to be notified of this change2.

Although the integration SPU enables functionality that is
not otherwise possible, it is still important that it not impede in-
teractivity. For our performance experiments, we used a cluster
of eight nodes running RedHat Linux 7.1, each with two 866MHz
Pentium III Xeon CPUs, 1GB of RDRAM, NVIDIA Quadro graph-
ics, and both gigabit ethernet and Myrinet 2000 networking. One
of our cluster nodes runs the SGE’s X-windows server in addi-
tion to the Chromium server. We successfully tested applications
ranging from trivial (simple demos from the GLUT library) to a
medium-complexity scientific visualization application (OpenDX)
to a closed-source, high-complexity CAD package (CATIA).

The graph shown in figure 6 shows the average frame rate as
we scale the display resolution of the T221 from 800�600 to
3840�2400. Four curves are shown, corresponding to a cluster of
1, 2, 4, and 8 nodes. Because we want to measure only the perfor-
mance impact of the integration SPU, we rendered only small
amounts of geometry (approximately 5000 vertices per frame) us-
ing the GLUT atlantis demo. This demo runs at a much greater
rate than the refresh rate of the display, so its effect on performance
is minimal compared to the expense of extracting and transmitting
tiles.

The maximum frame rate achieved using 4 or 8 nodes is 41 Hz,
which is exactly the vertical refresh rate of the T221. Because

2Our example application uses only geometric primitives. In order for
pixel-based primitives to be rendered correctly, the tilesort SPU would
need to be notified when the window size changes. Alternately, the tilesort
SPU could be configured to broadcast all glDrawPixels calls.

0 2 4 6 8 10
Millions of pixels

0

10

20

30

40
Fr

am
es

 p
er

 s
ec

on
d

1 server

2 servers

4 servers

8 servers

Figure 6: Performance of the GLUT “atlantis” demo using
the integration SPU to drive the T221 display at differ-
ent resolutions. Each curve shows the relationship between
performance and resolution for a given number of rendering
servers. For smaller windows, the SPU becomes limited by
the vertical refresh rate of the display (41 Hz). As the res-
olution approaches 3840�2400 (9.2 million pixels), a small
8-server configuration still achieves interactive refresh rates.

the SGE requires hardware synchronization to the refresh rate, no
higher frame rate can be achieved. For a given fixed resolution,
the integration SPU achieves the expected performance increase
as more rendering nodes are used, because this application is com-
pletely limited by the speed at which we can redistribute pixels.
Figure 7 shows this phenomenon more clearly. In this graph, the
same data are plotted showing seconds per frame rather than frames
per second. In addition, the data have been normalized by the
number of nodes used, so the quantity being measured is the pixel
throughput per node. The coincidence of the four curves shows that
there is no penalty associated with adding rendering nodes, so lin-
ear speedup is achieved until the display’s refresh rate becomes the
limiting factor. The rate at which each node can read back pixels
and send them to the SGE is given by the slope of the line, which is
approximately 12 MPix/second/node, or 48 MB/second/node. Ex-
trapolating to a very small image size, the system overhead is ap-
proximately 15 milliseconds, which indicates that the maximum
system response rate of the integration SPU is approximately
70 Hz (in the absence of monitor refresh rate limitations).

The measurements presented here give a worst-case scenario for
the integration SPU, in which it is responsible for almost 100%
of the overhead in the system. We are able to demonstrate frame
rates exceeding 40Hz using only 8 nodes, and achieve an interac-
tive 10 Hz even with each node supplying over one million pixels
per frame. In addition, if measured independently, pixel readback
rate and the SGE transfer rate can both provide bandwidths exceed-
ing 23 Mpix/sec, nearly twice what they achieve when measured
together. This leads us to believe that the system I/O bus or mem-
ory subsystem is under-performing when these two tasks are being
performed simultaneously, an effect that will likely be eliminated
with the introduction of new I/O subsystems designed specifically
for high-end servers. This is a similar contention effect to that ob-
served by Humphreys et al. when evaluating WireGL on a cluster
of SMP nodes [8].

0 1 2 3
Millions of pixels per node

0

0.1

0.2

Se
co

nd
s

pe
r

fr
am

e

1 server

2 servers

4 servers

8 servers

Figure 7: We have replotted the data from figure 6 to show
seconds per frame versus pixels per node, to show per-node
throughput. The coincidence of the four curves shows that
there is insignificant overhead to doubling the number of ren-
dering nodes, so linear speedup is achieved until the monitor
refresh rate becomes the limiting performance factor.

4.3 Stylized Drawing

For a long time, research on non-photorealistic, or “stylized”, ren-
dering focused on non-interactive, batch-mode techniques. In re-
cent years, however, there has been considerable interest in real-
time stylized rendering. Early interactive NPR systems required
a priori knowledge of the model and its connectivity [13, 26].
More recently, Raskar has shown that non-trivial NPR styles can
be achieved with no model analysis using either standard graphics
pipeline tricks [24] or slight extensions to modern programmable
graphics hardware [23].

We have developed a simple stylized rendering filter that cre-
ates a flat-shaded hidden-line drawing style. Our approach is sim-
ilar to that taken by Mohr and Gleicher [14], although we show a
technique that requires only finite storage. Hidden line drawing in
OpenGL is a straightforward multi-pass technique, accomplished
by first rasterizing all polygons to the depth buffer, and then re-
rasterizing the polygon edges. The polygon depth values are offset
using glPolygonOffset to reduce aliasing artifacts [1].

Achieving this effect in Chromium can be accomplished with a
single SPU. The hiddenline SPU packs each graphics command
into a buffer as if they were being prepared for network transport.
This has the effect of recording the entire frame into local mem-
ory. Instead of actually sending them to a server, we instead decode
the commands twice at the end of each frame, once as polygons
and once as lines, achieving our desired style. The code required
to achieve this transformation is shown in figure 9, and the visual
results are shown in figure 10. The performance impact of this SPU
is shown in figure 11.

There are three interesting notes regarding the actual implemen-
tation of a hiddenline SPU. First, the application may generate
state queries that need to be satisfied immediately and not recorded.
In order to do this, the entire graphics state is maintained using our
state tracking library, and any function that might affect the state
is passed to the state tracker before being packed. This behavior is
frequently overly cautious; most state queries are attempts to deter-

CATIA

Tilesort

...

Chromium Server

Chromium Server

Chromium Server

Chromium Server

Chromium protocol

Gigabit Ethernet

DVI video cables

Integration

Integration

Integration

Integration

IBM
Scalable
Graphics

Engine

T221
Display

Figure 8: Configuration used to drive IBM’s 3840�2400 T221 display using Chromium. The commercial CAD package CATIA is
used to create a tiled rendering of a jet engine nacelle (model courtesy of Goodrich Aerostructures). The tiles are then re-integrated into
the application’s original user interface, allowing CATIA to be used as designed, despite the distribution of its graphics workload on a
cluster. Due to the capacity and range of gigabit ethernet, all of the computational and 3D graphics hardware can be remote from the
eventual display.

mine some fundamental limit of the graphics system (such as the
maximum size of a texture), rather than querying state that was set
by the application itself. Robust implementations of style filters
like the hiddenline SPU would likely benefit from the ability to
disable full state tracking.

Second, the SPU does not play back the exact calls made in the
frame. Because we want to draw all polygons in the same color
(and similarly for lines), the application must be prevented from
enabling texturing, changing the current color, turning on light-
ing, changing the polygon draw style, enabling blending, chang-
ing the line width, disabling the depth test, or disabling writes to
the depth buffer. To accomplish this, a new OpenGL dispatch ta-
ble is built, containing mostly functions from the SPU immediately
following the hiddenline SPU in its chain, but with our own ver-
sions of glEnable, glDisable, glDepthMask, glPolygonMode,
glLineWidth, and all the glColor variants, which enforce these
rules. Applications which rely on complex uses of these functions
may not function properly using this SPU.

Finally, some care must be taken to properly handle vertex ar-
rays. Because the semantics of vertex arrays allow for the data
buffer to be changed (or discarded) after it is referenced, we cannot
store vertex array calls verbatim and expect them to decode prop-
erly later in the frame. Instead, we transform uses of vertex arrays
back into sequences of separate OpenGL calls. Although this could
be done by the hiddenline SPU itself, we have found this trans-
formation to be useful in other situations, so we have implemented
the vertex array filtering in a separate vertexarray SPU. This SPU
appears immediately before the hiddenline SPU in figure 10.

It should be noted that the hiddenline SPU as presented re-
quires potentially infinite storage, since it buffers the entire frame,
and therefore cannot be considered a true stream processor. There
are two possible solutions to this problem. One is to perform
primitive assembly in the hiddenline SPU, drawing each styl-
ized primitive separately. This technique does satisfy our resource
constraints (extremely large polygonal primitives can be split into
smaller ones), but would result in a significant performance penalty
for applications with a high frame rate, due to the overhead of soft-
ware primitive assembly as well as the frequent state changes.

A better solution to this problem is to use multiple cluster nodes,
as shown in figure 12. Rather than buffering the entire frame, we

void hiddenline_SwapBuffers(void)
{
/* Draw filled polygons */
super.Clear(color and depth);
super.PolygonOffset(1.5f, 0.000001f);
super.PolygonMode(GL_FRONT_AND_BACK, GL_FILL);
super.Color3f(poly_r, poly_g, poly_b);
PlaybackFrame(modified_child_dispatch);

/* Draw outlined polygons */
super.PolygonMode(GL_FRONT_AND_BACK, GL_LINE);
super.Color3f(line_r, line_g, line_b);
PlaybackFrame(modified_child_dispatch);

super.SwapBuffers();
}

Figure 9: End-of-frame logic for a simple hidden-line style
SPU. The entire frame is played back twice, once as depth-
offset filled polygons, and once as lines. We modify the down-
stream SPU’s dispatch table to discard calls that would affect
our drawing style, such as texture enabling and color changes.

send the entire stream verbatim to two servers, one rendering the
incoming stream as depth-offset polygons, the other as lines. In-
stead of writing two new SPUs for each of these rendering styles,
we would inject the appropriate OpenGL calls into the streams be-
fore transmission. We then use the readback and send SPUs to
combine the two renderings using a depth-compositing network, as
described in section 3.6. Note that we could more economically use
our resources by rendering depth-offset polygons locally and for-
warding the stream to a single line-rendering node (or vice versa),
thereby requiring only three nodes instead of four, although this
would require a more complex implementation.

5 Discussion and Future Work

In their seminal paper on virtual graphics, Voorhies, Kirk and Lath-
rop note that providing a level of abstraction between an applica-

Quake III

Hiddenline RenderVertexArray

Figure 10: Drawing style enabled by the hiddenline SPU. After uses of vertex arrays are filtered out, the SPU records the entire frame,
and plays it back twice to achieve a hidden-line effect. No high-level knowledge of the model is required.

100 200 300 400 500 600
Frame

0

50

100

150

200

Fr
am

es
 p

er
 s

ec
on

d

Quake III

vertexarray

hiddenline

Figure 11: Performance of Quake III running a prerecorded
demo. The first 90 frames are devoted to an introductory
splash screen and are not shown here. The red curve shows
the performance achieved by the application alone. The blue
curve shows the same demo using just the vertexarray SPU,
and the green curve gives the performance of the demo ren-
dering with a hidden-line style. Despite more than a 2:1 re-
duction in speed, the demo still runs at approximately 40-50
frames per second.

tion and the graphics hardware “allows for cleaner software de-
sign, higher performance, and effective concurrent use of the dis-
play” [33]. We believe that the power and implications of these
observations have not yet been fully explored. Chromium provides
a compelling mechanism with which to further investigate the po-
tential of virtual graphics. Because Chromium provides a complete
graphics API (many of the key SPUs such as tilesort, send, and
render pass almost all of the OpenGL conformance tests), it is no
longer necessary to write custom applications to test new ideas in
graphics API processing. Also, the barrier to entry is quite low; for
example, the hiddenline SPU described in section 4.3 adds only
approximately 250 lines of code to Chromium’s SPU template.

In the future, we would like to see Chromium applied to new
application domains, especially new ideas in scalable interactive
graphics on clusters. Of particular interest is the problem of man-
aging enormous time-varying datasets, both volumetric and polyg-

Application

Hiddenline2

Chromium Server

Readback

Chromium Server

Send

Readback Send

Chromium Server

Render

Figure 12: A different usage model for achieving a hidden-
line drawing style. In this example, the filled polygon stream
and the wireframe stream are sent to two different rendering
servers and the resulting images are depth composited. This
way, no single SPU needs to buffer the entire frame, and the
system requires only finite resources.

onal. Today’s time-varying volumetric datasets can easily exceed
30 terabytes in size. We intend to build a new parallel rendering
application designed specifically for interactively visualizing these
datasets on a cluster, using Chromium as the underlying transport,
rendering, and compositing mechanism.

We are particularly interested in building infrastructure to sup-
port flexible remote graphics. We believe that a clean separation
between a scalable graphics resource and the eventual display has
the potential to change the way we use graphics every day. We
are actively pursuing a new direction to make scalable cluster-
based graphics appear as a remote, shared service akin to a network
mounted filesystem.

Most of all, we hope that Chromium will be adopted as a com-
mon low-level mechanism for enabling new graphics algorithms,
particularly for clusters. If this happens, research results in cluster
graphics can more easily be applied to existing problems outside
the original researcher’s lab.

6 Conclusions

We have described Chromium, a flexible framework for manipulat-
ing streams of graphics API commands on clusters of workstations.
Chromium’s stream processors can be configured to provide a sort-
first parallel rendering architecture with a parallel interface, or a
sort-last architecture capable of handling most of the same appli-
cations. Chromium’s flexibility makes it an ideal launching point
for new research in parallel rendering systems, particularly those
that target clusters of commodity hardware. In addition, it is likely
that Chromium’s stream-processing model can be applied to other
problems in visualization and computer illustration.

Acknowledgments

The authors would like to thank Brian Paul and Alan Hourihaine
for their tireless efforts to make Chromium more robust. Allan
Johnson, Gary Cofer, Sally Gewalt, and Laurence Hedlund from the
Duke Center for In Vivo Microscopy (an NIH/NCRR National Re-
source) provided the dataset for our volume renderer. Kekoa Proud-
foot and Bill Mark provided assistance with the implementation of
a volume renderer on top of the Stanford Real Time Shading Lan-
guage. Finally, we would like to especially thank all the WireGL
and Chromium users for their continued support. This work was
funded by DOE contract B504665, and was also performed under
the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under con-
tract No. W-7405-Eng-48 (UCRL-JC-146802).

References

[1] Advanced Graphics Progamming Techniques Using OpenGL.
SIGGRAPH 1998 Course Notes.

[2] Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. SIGMOD Record, pages 109–120, September
2001.

[3] Ian Buck, Greg Humphreys, and Pat Hanrahan. Track-
ing graphics state for networked rendering. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 87–95, August 2000.

[4] Corrina Cortes, Kathleen Fisher, Daryl Pregibon, Anne
Rodgers, and Frederick Smith. Hancock: A language for ex-
tracting signatures from data streams. Proceedings of 2000
ACM SIGKDD International Conference on Knowledge and
Data Mining, pages 9–17, August 2000.

[5] Thomas Funkhouser. Coarse-grained parallelism for hierar-
chical radiosity using group iterative methods. Proceedings
of SIGGRAPH 96, pages 343–352, August 1996.

[6] Christopher Giertsen and Johnny Peterson. Parallel volume
rendering on a network of workstations. IEEE Computer
Graphics and Applications, pages 16–23, November 1993.

[7] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Han-
rahan. Distributed rendering for scalable displays. IEEE Su-
percomputing 2000, October 2000.

[8] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll,
Matthew Everett, and Pat Hanrahan. WireGL: A scalable
graphics system for clusters. Proceedings of SIGGRAPH
2001, pages 129–140, August 2001.

[9] Greg Humphreys and Pat Hanrahan. A distributed graphics
system for large tiled displays. IEEE Visualization ’99, pages
215–224, October 1999.

[10] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The design of
a parallel graphics interface. Proceedings of SIGGRAPH 98,
pages 141–150, July 1998.

[11] Kwan-Liu Ma, James Painter, Charles Hansen, and Michael
Krogh. Parallel volume rendering using binary-swap image
compositing. IEEE Computer Graphics and Applications,
pages 59–68, July 1994.

[12] William Mark and Kekoa Proudfoot. The F-buffer: A ras-
terization order FIFO buffer for multi-pass rendering. Pro-
ceedings of SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 57–64, August 2001.

[13] Lee Markosian, Michael Kowalski, Samuel Trychin, Lubomir
Bourdev, Daniel Goldstein, and John Hughes. Real-time non-
photorealistic rendering. Proceedings of SIGGRAPH 1997,
pages 415–420.

[14] Alex Mohr and Michael Gleicher. Non-invasive, interac-
tive, stylized rendering. ACM Symposium on Interactive 3D
Graphics, pages 175–178, March 2001.

[15] Steve Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs. A sorting classification of parallel rendering. IEEE
Computer Graphics and Algorithms, pages 23–32, July 1994.

[16] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto
Guha, and Rajeev Motwani. Streaming-data algorithms for
high-quality clustering. To appear in Proceedings of IEEE
International Conference on Data Engineering, March 2002.

[17] John Owens, William Dally, Ujval Kapasi, Scott Rixner, Pe-
ter Mattson, and Ben Mowery. Polygon rendering on a stream
architecture. Proceedings of SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 23–32, August 2000.

[18] Mark Peercy, Marc Olano, John Airey, and Jeffrey Ungar. In-
teractive multi-pass programmable shading. Proceedings of
SIGGRAPH 2000, pages 425–432, August 2000.

[19] Kenneth Perrine and Donald Jones. Parallel graphics and in-
teractivity with the scaleable graphics engine. IEEE Super-
computing 2001, November 2001.

[20] Pixar animation studios. PhotoRealistic RenderMan Toolkit.
1998.

[21] Thomas Porter and Tom Duff. Compositing digital images.
Proceedings of SIGGRAPH 84, pages 253–259, July 1984.

[22] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real time procedural shading system for pro-
grammable graphics hardware. Proceedings of SIGGRAPH
2001, pages 159–170, August 2001.

[23] Ramesh Raskar. Hardware support for non-photorealistic ren-
dering. Proceedings of SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 41–46, August 2001.

[24] Ramesh Raskar and Michael Cohen. Image precision silhou-
ette edges. ACM Symposium on Interactive 3D Graphics,
pages 135–140, April 1999.

[25] Rodney Recker, David George, and Donald Greenberg. Ac-
celeration techniques for progressive refinement radiosity.
ACM Symposium on Interactive 3D Graphics, pages 59–66,
1990.

[26] Jareck Rossignac and Maarten van Emmerik. Hid-
den contours on a framebuffer. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, September 1992.

[27] Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat:
A viewer for networked visualization of large, dense models.
ACM Symposium on Interactive 3D Graphics, pages 63–68,
2001.

[28] Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Paral-
lel rendering with k-way replication. IEEE Symposium on
Parallel and Large-Data Visualization and Graphics, October
2001.

[29] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Sort-first parallel rendering with a clus-
ter of PCs. SIGGRAPH 2000 Technical Sketch, August 2000.

[30] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Hybrid sort-first and sort-last par-
allel rendering with a cluster of PCs. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 97–108, August 2000.

[31] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser,
Kai Li, and Jaswinder Pal Singh. Load balancing
for multi-projector rendering systems. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 107–116, August 1999.

[32] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb,
Steven Berman, Richard Levy, Chris Caywood, Milton
Taveira, Stephen Hunt, and Pat Hanrahan. Lightning-2: A
high-performance display subsystem for PC clusters. Pro-
ceedings of SIGGRAPH 2001, pages 141–148, August 2001.

[33] Douglas Voorhies, David Kirk, and Olin Lathrop. Virtual
graphics. Proceedings of SIGGRAPH 88, pages 247–253, Au-
gust 1988.

Complex geometric models more accurately repre-
sent actual physical objects, giving virtual objects

more realism. For example, we can model a virtual ball
using a tessellated sphere with many tiny triangles to
better approximate the ball’s curvature. However, even
when using a million triangles in the geometric model
of that ball, if we’re only rendering those triangles into
a window of 250,000 pixels (500 × 500), then at most
25 percent of those triangles could possibly contribute
to the final image. By increasing the display window’s
resolution, more triangles can contribute to the ren-
dered image, thereby adding further detail and mak-
ing the virtual object appear more realistic.

By today’s standards, most displays (and graphics
adapters) can support resolutions up to 1600 × 1200 pix-
els (1.9 million). Although this provides good image
quality, additional pixel counts can provide the viewer
with more detail and better overall context of what
they’re seeing. Thanks to recent advances in liquid crys-
tal display technology, IBM has developed its T221 dis-
play, which consists of more than 9.2 million pixels
(3840 × 2400) in a 22.2-inch (diagonal) viewing image
area (more than 200 dpi). With this resolution and clar-
ity, rendered images of virtual objects come to life and

become harder to distinguish from the real thing. We
can scale video walls, which enlist an array of projectors
to generate a display mosaic, to arbitrary resolutions.
Driving such high-content displays at interactive rates,
however, presents challenges. For example, no single
graphics adapter yet has the necessary horsepower and
bandwidth to feed a 9.2-million pixel display (at 41 Hz
using 24 bits per pixel).

We’ve addressed many of these challenges by design-
ing the Deep View visualization system (see Figure 1).
Deep View consists of a Linux cluster that performs com-
putations to produce 3D geometry, renders the geome-
try to produce 2D pixels, and then transfers the pixels
to be displayed on the T221 display (or video wall). We
accelerate the pixel transfer operations using IBM’s
Scalable Graphics Engine (SGE).

System hardware
We designed Deep View to leverage commodity com-

ponents wherever possible. Our Linux cluster consists
of eight workstations running Red Hat 7.1, each with
two 866-MHz processors, 1 Gbyte of RAM, and a mid-
range graphics adapter. In addition, our cluster nodes
have two commodity interconnects: Myrinet for intern-

ode communications and Gigabit
Ethernet for transfer of the ren-
dered pixels to the display.

We drive high-resolution dis-
plays at interactive frame rates
using our cluster and the SGE.
The SGE is a network-attached
frame buffer capable of double
buffering up to 16-million pixels.
It routes incoming pixels from
multiple sources to the appropri-
ate locations in its frame buffer
and then transfers the composit-
ed result to the T221 display using
digital video interface (DVI) out-
put. In total, the SGE can accept
up to 16 input links and can drive
as many as eight synchronized
DVI outputs. In addition, it can
time interleave image pairs from
its frame buffer to effect time-divi-
sion stereo. In the current Deep

James T.
Klosowski, Peter
D. Kirchner,
Julia Valuyeva,
Greg Abram,
Christopher J.
Morris, Robert
H. Wolfe, and
Thomas
Jackman

IBM T.J. Watson
Research Center

0272-1716/02/$17.00 © 2002 IEEE

Deep View: High-Resolution Reality __________________

Projects in VR
Editors: Lawrence Rosenblum and
Michael Macedonia

12 May/June 2002

1 Overview of
Deep View. The
full rack con-
tains eight
cluster nodes
and two net-
work switches.
The half rack to
the right is the
Scalable
Graphics Engine
(SGE), connect-
ed to the cluster
by eight Gigabit
Ethernet links.
The T221
display sits
directly to the
left of the SGE.

James T Klosowski
© 2002 IEEE. Reprinted, with permission, from IEEE Computer Graphics and Applications, 22 (3), pp. 12-15, May/June 2002.

View configuration, the rendered
pixels are sent by each node in the
cluster to the SGE over a Gigabit
Ethernet link, and we use four of the
synchronized DVI outputs to drive
the T221 at full resolution.

System software
Another key component of Deep

View is the underlying software that
leverages the hardware. We’ve writ-
ten several in-house applications to
visualize the data from various appli-
cation domains and participated in
several open-source software pro-
jects. Two of the main pieces of soft-
ware we’re using on Deep View are
Chromium and OpenDX-MPI.

Chromium
Chromium (http://www.source-

forge.net/projects/chromium) is a
flexible system that uses modules,
called stream processing units (SPUs), to manipulate
the stream of OpenGL calls as desired by the user. For
example, researchers have implemented sort-first and
sort-last parallel rendering algorithms using
Chromium’s SPUs. Initiated at Stanford University, and
now an open-source software project, Chromium’s
development has been supported by the Lawrence
Livermore, Sandia, and Los Alamos National Labs and
many other members of the cluster rendering commu-
nity including IBM Research.

Chromium lets us manipulate streams of OpenGL
graphics calls on clusters. More specifically, Chromium
intercepts the OpenGL calls by replacing the native
OpenGL driver with its own. By doing so, Chromium
enables an unmodified application to run on a node (or
nodes) in the cluster and have its graphics output auto-
matically rendered in parallel on all the cluster’s nodes.
This capability allows efficient scaling of the graphics
output of an application to drive high-resolution dis-
plays such as the T221 or a tiling of standard displays.

One side effect of intercepting graphics calls is that the
graphics output is consequently divorced from the appli-
cation’s user interface. Thankfully, due to Chromium’s
flexibility, we’ve written an SPU to reintegrate the scaled
graphics back into the user interface to display them on
the T221 display (see Figure 2). This lets the end user
continue using the application exactly as before, with
the added benefit of high-resolution visualization.

OpenDX-MPI
Visualizing scientific and engineering data often

requires much computation to convert abstract data to
meaningful geometry before rendering begins. When
we run large simulations on distributed systems, it
becomes impractical to off-load the visualization task
onto a special-purpose server when doing so requires
the serialization and exportation of the raw data to that
server. We’ve developed a distributed-parallel visual-
ization system based on OpenDX, a visualization pack-

age developed at IBM Research and released as an open-
source package in 1998.

OpenDX-MPI lets us preserve the distribution of data
in a parallel simulation through the visualization
process, letting us closely couple the visualization of the
data to its generation. Thus, the visualization process
can take place in situ on the nodes of the distributed sys-
tem on which the simulation takes place or by using the
system’s high-performance intercommunications to
transfer the data in parallel to dedicated visualization
nodes within the same distributed system. The parallel
visualization operations that OpenDX-MPI performs
result in the distribution of renderable geometry across
the visualization nodes. OpenDX-MPI then takes advan-
tage of the distributed rendering capabilities of Deep
View to provide high-resolution interactive imagery.

Applications
The true test of our worth is how well we support

visual-intensive applications. Many application domains
would benefit from increased pixel resolutions as a
result of high-resolution displays. We’ve applied our sys-
tem to applications in the mechanical CAD, medical,
molecular modeling, and entertainment fields.

Mechanical CAD
In CAD, designers are constantly challenged to per-

ceive in detail individual components of the model they’re
designing while observing interrelationships visible only
when seeing the entire model. On typical displays, design-
ers must switch back and forth between a whole assem-
bly view and views of individual components, a solution
that is tolerable at best. For example, consider the CATIA
model in Figure 2. Approximately 1 million triangles are
necessary to render the model, which means that on a
typical 1-million pixel display, there would be, on aver-
age, no more than one pixel available per triangle. To get
a detailed display of a portion of the model, so that a tri-
angle spreads over n × n pixels, a designer must zoom in

IEEE Computer Graphics and Applications 13

2 Dassault Systems’ CAD/CAM design package CATIA running on the T221
display. As engineers design models, in this case a jet-engine nacelle, hav-
ing the high-resolution display provides detailed information and context
that would otherwise be unavailable.

M
od

el
 c

ou
rt

es
y

of
 G

oo
dr

ic
h

A
er

os
tr

uc
tu

re
s

by a factor of n. In contrast, the T221, being a 9.2-million
pixel display, can devote 3 × 3 pixels to each triangle when
showing the entire model, thereby greatly reducing the
zoom range required.

An excellent illustration of where this resolution
benefits the engineer is when visualizing the model’s
underlying finite elements. This information, which is
often shown using line segments drawn on top of the
model’s surface, can be lost or clouded when viewed
on standard resolution displays. By zooming closely
into the model, we could get that information back,
but we would then lose the overall context of the
model. By using the T221 display, we greatly reduce
this problem.

Medical
High resolution is especially beneficial when visual-

izing detailed medical data. The ability to adequately
view and interact with these complex data sets can pro-
vide a wealth of information. We illustrate this capabil-
ity by visualizing high-resolution (3800 × 2000 pixels)
digital images from the National Library of Medicine’s
Visible Male data set.1 These images depict volumes of
the original data set that we rendered, in parallel, on
Deep View. We can then display the resulting images on
the T221 display at their intended resolution without
loss of detail (see Figure 3).

Interactive and animated visualization also provide
opportunities to see internal structures that we would-
n’t generally see by solely looking at static images. Using
IBM’s General Parallel File System (GPFS), we can read
each of the images directly from disk in parallel. In addi-
tion, GPFS lets us store the entire data set (more than
1,800 images, each 22.8 Mbytes) by striping its 41
Gbytes of data across Deep View’s nodes. Using an in-
house viewer, we are able to display the images at more
than 5 frames per second (fps). When prefetching the
images and storing them in the cluster nodes’ main
memory, we can transfer the pixels through the SGE to
the T221 display at 20 fps.

Molecular modeling
We’ve implemented an extension

to OpenDX-MPI that lets it perform
real-time concurrent visualization
of the progress of distributed-par-
allel simulations. We’ve used this
extension to provide interactive
visualization of the secondary
structures of proteins2 during the
course of a run of GROMACS
(Groningen Machine for Chemical
Solutions), an open-source molec-
ular dynamics simulation package
(http://www.gromacs.org), as Fig-
ure 4 shows. In this application
domain, both the simulation and
visualization run concurrently on
Deep View, and the high-resolution
displays provide ample screen space
to visualize the complex molecular
structures.

Projects in VR

14 May/June 2002

3 The Visible Male. We produced this image using
parallel volume rendering on Deep View. The high-
resolution T221 lets us generate such views without
downsampling the original images.

4 A virtual protein (1A6F). Using OpenDX-MPI on
Deep View, we can perform the visualization of time
steps of a molecular dynamics simulation in parallel
and concurrently with the simulation.

5 Using the Chromium software, we can play Quake III Arena at a
resolution of 3840 × 2400 pixels.

Entertainment
Due to game consoles such as Sony’s PlayStation 2,

Microsoft’s X-Box, and Nintendo’s GameCube, com-
puter games are generating more revenue than the
entire movie industry. Although high resolution isn’t
critical to play and enjoy most games, it certainly adds
to the user’s overall experience. Multiplayer games
are especially well suited for high-resolution tech-
nology, thereby letting all the players see and expe-
rience the same environment.

Using Chromium, we can play Quake III Arena, using
only the binary executable we downloaded off the
Internet (see Figure 5). Of course, because its develop-
ers didn’t originally intend resolutions this high when
they wrote the game, certain features (such as texture
mapping) don’t look as good as they could. This will
inevitably change as high-resolution displays continue
to decrease in price.

Conclusion
From its inception, virtual reality has tested the lim-

its of computing, graphics and displays. Technological
progress and commoditization continues to produce
remarkable increases in power and decreases in the
cost of these elements. Systems such as Deep View
aggregate these components with commodity inter-
connects, creating more powerful systems at modest

cost. This progression should mean that over the next
few years, the cost and performance of the visual part
of VR systems will cease to be limiting factors. At this
watershed, we may be too immersed in our work to
notice! �

References
1. V. Spitzer et al., “The Visible Human Male: A Technical

Report,’’ J. Am. Medical Informatics Assoc., vol. 3, no. 2,
1996, pp. 118-130.

2. R.E. Gillilan and F. Wood, “Visualization, Virtual Reality,
and Animation within the Data Flow Model of Comput-
ing,” Computer Graphics, vol. 29, no. 2, 1995, pp. 55-58.

Readers may contact Thomas Jackman, at the IBM T.J.
Watson Research Center, 19 Skyline Dr., Hawthorne, NY
10532, email tjackman@us.ibm.com.

Readers may contact the department editors by email
at rosenblu@ait.nrl.navy.mil or Michael_Macedonia@
stricom.army.mil.

IEEE Computer Graphics and Applications 15

Choose from 100 courses at the IEEE Computer Society’s Distance Learning Campus.
Subjects covered include…

* Java * Project management * HTML
* PowerPoint * Visual C++ * Visual C++
* Cisco * TCP/IP protocols * CompTIA
* Windows Network Security * Unix

With this benefit, offered exclusively to members, you get…
* Access from anywhere at any time * Vendor-certified courseware
* A multimedia environment for optimal learning * A personalized “campus”
* Courses powered by KnowledgeNet®—a leader

in online training

Sign up and start learning now!

http://computer.org/DistanceLearning

Get thousands of dollars
worth of online training—
FREE for members

New 2002MembershipBenefit

Early Experiences and Early Experiences and Early Experiences and Early Experiences and
Challenges in Building Challenges in Building Challenges in Building Challenges in Building

and Using A Scalable and Using A Scalable and Using A Scalable and Using A Scalable
Display Wall SyDisplay Wall SyDisplay Wall SyDisplay Wall Sysssstemtemtemtem

Kai Li,Han Chen,Yuqun Chen,Douglas W.Clark,
Perry Cook,Stefanos Damianakis,Georg Essl,

Adam Finkelstein,Thomas Funkhouser,
Timothy Housel,Allison Klein,Zhiyan Liu,
Emil Praun,RudrajitSamanta,Ben Shedd,
Jaswinder Pal Singh,George Tzanetakis,

Jiannan Zheng

Departmentof Computer Science,
Princeton University,Princeton,NJ 08544

http://www.cs.princeton.edu/omnimedia/

Introduction
The Princeton Scalable Display Wall project explores

how to build and use a large-formatdisplay with multiple
commodity components. Our goal is to construct a col-
laborative space that fully utilizes a large-format display,
immersive sound,and natural user interfaces.

Unlike mostdisplay wall systems today,whicharebuilt
with high-end graphics machinesandhigh-endprojectors,
our prototype system is built with low-cost commodity
components: a cluster of PCs, PC graphics accelerators,
consumer video and sound equipment,and portablepres-
entation projectors. The advantages of this approach are
low cost and technology tracking, as high-volume com-
modity components typically have better
price/performance ratios and improve at faster rates than
special-purpose hardware. The challenge is to use com-
modity components to construct a high-quality collabora-
tive environment that delivers display, rendering, input,
and sound performance competitive with, or better than,
that delivered by the custom-designed, high-end graphics
machine approach.

A schematic representation of our current display wall
system is shown in Figure 1. It comprises an 8’ ×18’ rear
projection screen with a 4 ×2 array of Proxima LCD
polysiliconprojectors,eachdrivenbya450 MhzPentiumII
PC with an off-the-shelf graphics accelerator. The resolu-
tion of the resulting image is 4,096×1,536. The display
system is integrated with several components, including:a
sound server, a PC that uses two 8-channel sound cards to
drive 16 speakers placed around the area in front of the
wall; an input cluster, which uses two 300 Mhz Pentium II
PCs to capture video images from an array of video cam-
eras, to gather input from a gyroscope mouse, and to re-
ceive audio input from a microphone; a storage server,
which uses two PCs each with 5 inexpensive EIDE disks;a
local compute cluster of 4 PCs, which provides high-
bandwidth access to compute cycles;a remote compute clus-
ter containing 32 PCs; and, a console PC, which controls
execution of the system.

All the PCs are connected by a 100 Base-T Ethernet net-
work. In addition, the PCs of the display cluster,localcom-
pute cluster,and storage server areconnectedbyaMyrinet
system area network. We are using the Virtual Memory-
MappedCommunication (VMMC)mechanismdevelopedin
theScalableHigh-performanceReallyInexpensiveMultiProces-
sor (SHRIMP) project.3 VMMC implements a protected,
reliable,user-level communication protocol. Itsend-to-end

end-to-end latency at the user level is about 13 microsec-
onds and its peak user-level bandwidth is about
100 Mbytes/sec on the Myrinet.7,4

Figure 1: A Scalable, Inexpensive Display Wall System

The foci of our research are usability and scalability. In
order to address usability: we must investigate new user
interfaces, new content design methodologies, and learn
from human perception studies in teachingdesigncourses.
In order to achieve scalability, we must carefully address
three key system design issues:
• Coordination among multiple components: Commodity

components are usually designed for individual use
rather than as building blocks for a larger, seamless
system. To achieve seamless imaging and sound, one
must develop methods to coordinate multiple com-
ponents effectively.

• Communication performance and requirements: Immer-
sive and collaborative applications require that multi-
ple components communicate effectively. A scalable
system should provide a low-latency, high-
bandwidth mechanism to deliver high-performance
communication among multiple commodity compo-
nents. At the same time, software systems and appli-
cations must be carefully designed to achieve high
quality and performance while minimizing commu-
nication requirements.

• Resource allocation: Effective resource allocation and
partitioning of work among components is critical at
both the system and application levels.

Inthefollowingsections,wereportourearlyexperiences
in building and using a display wall system, and we de-
scribe our approach to research challenges in several spe-
cific research areas, including seamless tiling, parallel ren-
dering, parallel data visualization, parallel MPEG decod-

James T Klosowski
© 2000 IEEE. Reprinted, with permission, from IEEE Computer Graphics and Applications, 20(4), pp. 29-37, July/August 2000.

ing, layered multi-resolution video input, multi-channel
immersive sound, user interfaces, application tools, and
content-creation.

Seamless Tiling
Image Blending: Although a lot of progress has been

made recently in the development of new display tech-
nologiessuchasOrganicLightEmittingDiodes (OLEDs),the
current economical approach to making a large-format,
high-resolution display is to use an array of projectors. In
this case,an important issue is the coordination ofmultiple
commodity projectors to achieve seamless edge blending
and precise alignment.

Seamless edge blending can remove the visible discon-
tinuities between adjacent projectors. Edge blending tech-
niques overlap the edges of projected, tiled images and
blend the overlapped pixels to smooth the luminance and
chromaticity transition from one image to another. The
current state-of-the-art technique is to use specially de-
signed hardware to modulate the video signals that corre-
spond to the overlapped region.11,18 This electrical edge-
blending approach works only with CRT projectors but
does not work well with commodity LCD or DLP projec-
tors. This is because these new projectors leak light when
projected pixels are black, making them appear dark gray.
Overlapped dark gray regions are then lighter gray –
brighter than non-overlapped regions. In order to avoid
seams we reduce the light projected in the overlapped
regions.

Our approach is based on the technique of aperture
modulation, that is, placing an opaque object in front of a
lens (between the projector lens and the screen) to reduce
the luminance of the image without distorting the image
itself. Thus, by carefully placing an opaque rectangular
frame, we can make its shadow penumbra coincide with
the inter-projector overlap regions.8

Computational Alignment: To make a multi-projector
display appear seamless, projected images musthave pre-
cise alignment with each other in all directions. Aligning
projectors manually is a time-consuming task. The tradi-
tional alignment method is to use a sophisticated adjust-
able platform to fine-tune projector position and orienta-
tion.This approach requires expensive mechanicaldevices
and extensive human time. In addition, it does not work
for commodity projectors whose lenses tend to produce
image distortions.

Figure 2: a) Without Correction b) With Correction

To overcome both misalignment and image distortion
problems, we use image-processing techniques to “cor-
rect” the source image before it is displayed by misaligned
projectors. In other words, we pre-warp the image in such
a way that the projected images are aligned. We call this
approach computational alignment. It requires only the
coarsest physical alignment of the projectors. Our align-
ment algorithm currently calculates for each projector a

3×3 projection matrix, with which an image warping
process resamples the images to counter the effects of
physical misalignment. Figure 2a shows a picture without
correction. Figure 2b shows the picture after each projector
re-samples the image according to its correct perspective
matrix. As a work in progress, we adapt our alignment
algorithm to correct some distortions caused by imperfect
lenses,e.g. radial distortions.

We obtainprecisealignment(ormisalignment) informa-
tion with an off-the-shelf camera thathas muchlowerreso-
lution than our display wall. We zoom the camera to focus
on a relatively small region of the display wall,and pan the
camera across the wall to geta broader coverage.The cam-
era measures point correspondences and line matches be-
tween neighboring projectors. We then use simulated an-
nealing to minimize alignmenterror globally,and solve for
theprojectionmatrices.Ourapproachdiffersfromthesolu-
tions ofRasker,etal.,14whichusescarefullycalibrated,fixed-
zoomed camera(s) to obtain projector distortion measure-
ments. The cameras in their approach have to see the entire
screen or a significant portion of it; and, therefore, cannot
easily obtain sub-pixel alignment information.

Parallel rendering
We are investigating parallel rendering algorithms6 for

real-time display of very large,high-resolution images par-
titioned over multiple projectors. Here we face all three
general types of research challenges: coordination of PCs
and graphics accelerators to create consistent, real-time
images, communication among multiple PCs and their
graphics accelerators, and resource allocation to achieve
good utilization.

The focus of our efforts is on developing “sort-first” and
“sort-last” parallel rendering methods that minimize com-
munication requirements and balance the rendering load
across a cluster of PCs.12 Our general approach is to parti-
tion each frame into a number of “virtual tiles.” Each ren-
dering machine is then assigned a set of virtual tiles so that
the load is as evenly balanced as possible. Since the virtual
tiles usually do not correspond to the physical tiles on the
wall, rendered pixels must often be read back from the
rendering PC’s frame buffer and transferred over the net-
work to the projecting PC’s frame buffer. We use the
VMMC mechanism to achieve low latency and high
bandwidth communication for the pixel redistribution
phase, as well as to provide fast synchronization of the
frame buffer swapping.

The research issues are to develop algorithms that com-
pute the shapes and arrangement of virtual tiles dynami-
cally, sort graphics primitives among virtual tiles in real-
time,deliver graphicsprimitivestomultiplePCsinparallel,
and redistribute pixels across a network efficiently. To ex-
plore this space we have designed and implemented sev-
eral “sort-first” virtual tiling algorithms. The best of these
algorithms uses a KD-tree partition of the screen space
followedbyanoptimizationsteptoensurethebestpossible
balance of the load.15 Figure 3 and Figure 4 show the cases
with a static screen-space partition without load balancing
and a KD-tree partition after load balancing, respectively.
The colors indicate which machines render the different
parts of the scene. The imbalance in the first case can be
observed by looking at the “load bars” on the bottom right
of the figure. The load is much better balanced in the KD-

tree case, and as a result the final frame-time is up to four
times lower with eightPCs.

Figure 3: Parallel Rendering without Loading Balancing

Figure 4: Parallel Rendering with Load Balancing

Parallel Data Visualization
Increases in computingpowerhaveenabledresearchers

in areas ranging from astrophysics to zoology to amass
vast data sets resulting from both observation and simula-
tion. Since the data itself is quite rich, the display wall pre-
sents an ideal medium for scientific visualization at high
resolution. The magnitude of the data sets motivates the
use of parallel computation,a fastnetwork,andseparation
of computation and rendering across differentmachines.

The initial focus of our research is to develop parallel al-
gorithms that permit the users to interactively view isosur-
faces in volumetric data on the display wall. Our system
uses the PCs in the display cluster to perform rendering,
the PCs in compute cluster to perform isosurface extrac-
tion, and storage servers to hold datasets. We coordinate
these three sets ofPCsinapipelinedfashiononaperframe
basis. Data are sent from the storage servers to the isosur-
face extraction PC cluster. Triangles for an isosurface are
generated in parallel using a marching cubes algorithm10

accelerated with an interval method5 based on Chazelle’s
filtering search. They are then sent to the appropriate ren-
dering PCs.

Wehaveexperimentedwithlosslesscompressionmeth-
ods to reduce communication requirements. Even with
compression, we find that low-latency, high-bandwidth
communication between theisosurfaceextractionPCsand
rendering PCs is critical.

Figure 5: Parallel Visualization of "Visible Woman"

Figure 5 shows the resultof using our parallel visualiza-
tion system to visualize part of the Visible Woman data
set.13 We are currently focusing on better isosurface extrac-
tion algorithms, large-scale storage server development,
and load-balancing methods to improve the utilization of
computing resources.

Parallel MPEG-2 Decoding
MPEG-2 is the current standard format for delivering

high-quality video streams forentertainment,collaboration
and digital art. Our goal is to develop fast pure-software
MPEG-2 decodingmethodsonaPCclustertobringHDTV
or even higher resolution MPEG-2 videos to a scalable dis-
play wall. To achieve the 60 fps real time frame rate includ-
ing the overhead in scaling and loading pixels into the
frame buffer, a decoder should be capable of decompress-
ing one frame in less than about 14 ms. We approach the
problem in two steps:developing a fastdecoder on asingle
PC and designing a fast parallel, scalable decoder for a PC
cluster. The key research challenges here are coordination
among PCs to split an MPEG-2 stream and fast communi-
cationamongPCstodecodehigh-resolutionstreamsinreal
time.

To improve the MPEG-2 decoding performance on a
single PC, we exploited both instruction level parallelism
and memory/cache behavior. We develop our decoder
based on the open source MPEGSoftware Simulation Group
reference design, which decodes 720p HDTV (1280 ×720)
at about 13 fps on a 733 MHz Pentium III PC. We exten-
sively use Intel MMX/SSE instructions to accelerate arith-
metic operations and carefully design the data structures
and their layouts to improve the data cache utilization.Our
preliminary result is a decoder capable of decompressing
720p HDTV stream at over 56 fps on a 733 MHz Pen-
tium III PC.The speed-up is over a factor of four.

To further improve the performance,we use parallel de-
coding on a PC cluster. Previous work on parallel MPEG
decoding is done almost exclusively on shared memory
multiprocessors.2 They parallelize MPEG-2 video decoder
at either the picture or slice level. However, the amount of
data movementamongthePCsistoohighif thesemethods
are used for a PC cluster. We develop a novel macroblock
level parallelization.We use a single PC to splitanMPEG-2
stream into multiple sub-streams at macroblock level and
send them to the PCs in the display cluster to be decoded,
scaled and displayed.

With the previous picture-level or slice-level paralleliza-
tion, the per-link bandwidth requirement of the decoding
PC depends on the whole video size. With our macro-
block-level parallelization, itdepends onlyonthesizeof the
portion that the local node is decoding. This makes our
approach highly scalable. Our preliminary result shows
that with 4 PCs (in a 2×2 setup) decoding 720p HDTV
streams in parallel, the aggregate communication band-
width requirement among all nodes is only about
100 Mbits/sec. As a comparison, this number can be as
high as 1.7 Gbits/sec when a picture or slice level paralleli-
zation is used.

Multi-layered Video Input
Video resolution has always been limited by the TV

standards. In order to take advantage of the highresolution
of a scalable display wall, we are working on methods to
create video streams at a scalable resolution that matches
the displayresolution,usingasmallnumberofcommodity
video cameras. The main research challenge is the coordi-
nation among video cameras.

The traditional approach is to use juxtaposed cameras
with edge overlapping and stitch multiple images to-
gether.17 Ithas several disadvantages.First, juxtaposedcam-

eras make zooming awkward – the cameras must be syn-
chronized and the angles between them must be adjusted
mechanically at the same time. Second, since each camera
has its own focal point, scenes with a lotof depths can look
unnatural with multiple focal points. Third, it requires
many video cameras. For example, it requires 28 640 ×480
video cameras for a 4,096×1,536 resolution display wall.
The aggregate communication requirement of the video
streams is also too high for the network. We would like to
overcome all of these problems.

Figure 6: Multi-Layered Video Registration Program

Our approach is called layered multi-resolution video.
We use a number of cameras to cover different fields of
view. Each camera can be panned, tilted, and zoomed
individually. We are developing a fast registration algo-
rithm to find the correspondence of the different layers
and merge them into one. This method not only solves
the three problems above, but also fits nicely into MPEG-
4 video compression framework. Our current registration
algorithm runs at 30 registration-passes per second for 2
images. Figure 6 demonstrates the registration process.
Our goal is to develop a registration algorithm that runs
at real time.

Multi-channel Immersive Sound
Sound guides theeyes,enhancesthesenseofreality,and

providesextrachannelsofcommunication.Sincethevisual
display is spread over a large surface, large amounts of the
displayed data might be out of the visual field of any user.
Sound can be used to draw directional auditory attention
to an event, causing users of a large display system to turn
their heads toward the sound and thusbringingimportant
visual information into their field of view. To investigate
the integration of immersive sound with a large-scale dis-
play wall, we use a large number of speakers positioned
around the space in front of the display wall to provide
immersive sound synthesis and processing in real time.
The key challenge is the coordination of multiple sound
devices to create immersive sound.

Figure 7: Multi-Channel Sound System

The display wall sound system is implemented on
commodity PCs, using inexpensive multi-channel sound
cards.These cards are designed fordigitalhome-recording
use, and can be synchronized through SPDIF/AESEBU

cables and special calls to the software drivers. We have
written a sound server that takes commands from any
computer via a TCP/IP connection. The server can play-
back sound files through any combination of the 16 speak-
ers in the present configuration (See Figure 7). Other possi-
ble sound sources include onboard synthesis of sound
effects, microphone signals, sound streams from any ma-
chine on the network or web,and effects (reverb,echo,etc.)
processing of any sound source.

User Interfaces
A large collaborative space presents interesting chal-

lenges for user interfaces,both displayandcontrol.Because
of the scale of the display wall, it is important to track hu-
man positions, recognize gestures, and construct imagery
and sound appropriate for the user’s position.Many meth-
ods developed in the past require users to carry cumber-
some tracking or sensing devices. Our focus has been on
developing natural methods for users to interact with the
system. We use multiple cameras in the viewing field to
track human and input device. We also develop image
processing algorithms to understand gestures in a collabo-
rative environment. The main research challenge is the
coordination of among commodity inputdevices andwith
the computers in the display wall PC cluster.

Figure 8: a) Magic Wand Input b) Voice Recognition

We write a multi-input mouse server program thatruns
on a master cursor control computer. Any other computer
can take control of the display wall mouse by running a
mouse client program and connecting to the server. This
has allowed us to quickly construct and test a number of
new pointing devices, including a swivel chair (the Quake
Chair), voice input mouse control, and pressure sensitive
floor panels. Figure 8a and Figure 8b shows the use of a
camera-tracked wand as a pointer device and a wireless
microphone as a speech recognition device, respectively.
Research challenges include allowing multiple cursors at
once, as well as further refinement and integration of cam-
era tracking.

Methods to Design Application Tools
It is importantandnon-trivial tobringmanyapplications

to a scalable display wall and run them at the intrinsic reso-
lution supported by the display surface. Most video-wall
products use special-purpose hardware to scale relatively
lower-resolution content, such as NTSC, VGA, SVGA,
HDTV formats to fit large display surfaces. Only a few
expensive solutions use high-end graphics machines to
render directly in the intrinsic resolution of a multi-
projector display system. Coordination and communica-
tion are the two main challenges in developingtoolstoport
off-the-shelf applications to a scalable display wall using its
native display resolution.

We have investigated four methods to design tools for
applications: custom-designed, distributed application,
distributed 2D primitive,and distributed 3Dprimitive.The

following subsections illustrate each method by an exam-
ple.

Figure 9: Looking at Image with Still Image Viewer

Custom-DesignedMethod:Ourfirsttoolonthedisplay
wall is a Still Image Viewer, which allows a naive user to
display still images and perform cross fading between
images on the wall.Theimageviewercontainstwoparts:a
controller program and an image viewer program. An
image viewer program runs on every PC in the display
cluster. The controller program runs on a differentPC and
sends commands over the network, such as loading an
image from the disk, displaying a cached image, or cross
fading between two cached images. The image viewer
loads JPEG images fromasharedfilesystem,decodesonly
its portion of theimage,andsynchronizeswithotherview-
ers on other PCs prior to swapping the frame buffer. The
controllerprogramalsoimplementsascriptinginterfaceso
that the users can write scripts to control image and video
playback that are synchronized with our multi-channel
sound playback. Many students have made multimedia
presentations on our display wall using the image viewer
and the multi-channel sound system. Figure 9 shows an
image of the International Space Station on the display
wall.

Figure 10: A Distributed Building Walkthrough Program

Distributed Application Method: We distribute appli-
cation-level input commands to bring a Building Walk-
through system designed for a uniprocessor system to the
display wall. We run an instance of the building walk-
through program on every PC in the display cluster. In
order to coordinate among these programs, we run an-
other instance on the console PC. A user drives the walk-
through using the console PC. The console translates the
user inputs and sends the camera information and screen
space information to each PC that drives a tile of the dis-
play wall. PCs in the display cluster execute copies of a
uniprocessor walkthrough application, each of which ren-
ders a different part of the screen from its own copy of the
scene database. They synchronize frame updates with
network messages under the control of console. This
method provides interactive frame rates (e.g. 20 fps) with-
out noticeable synchronization problems.Figure 10 shows

the walkthrough program being run with a 3D model cre-
ated by LucentTechnologies.

Figure 11: Windows 2000 Virtual Display Driver

Distributed 2D Primitive Method:We have developed
a Virtual Display Driver (VDD) to bring existing Windows
applications to the display wall, using a distributed 2D
primitive method. VDD is a Windows display driver that
“fakes” a high-resolution graphics adaptertotheWindows
2000 operating system.It leverages the feature in Windows
2000 that supports multiple monitors on a single PC. VDD
intercepts all Device Driver Interface (DDI) calls and execute
them remotely as remote procedure calls on the PCs in the
display cluster. The users can drag application windows
from the regular CRT display into our virtual display, the
contents of which are subsequently drawn on the display
wall. All drawing done by the application on VDD is per-
formed in the intrinsic resolution of the virtual display,
which is the same as the display wall. Therefore, users can
see a lot more details in any Windows applications than
with existing commercial video-walls. Figure 11 shows
Microsoft PowerPoint and Internet Explorer running on
our Display Wall through VDD. At the close range where
people are standing in front of the display wall, both
applications show adequate details and no fuzziness with
line drawings and text.

Figure 12: GlQuake Running on the Display Wall

Distributed 3D Primitive Method: We developed a
user-level, Distributed OpenGL tool using a 3D primitive
distribution method. Unlike the distributed 2D primitive
method where our tool works at the device driver level, the
distributed OpenGL library lives at the user level. We take
advantage of the fact that on all Windows platforms, an
application’s calls to the OpenGL API are made through a
Dynamically Linked Library (DLL), opengl32.dll. Our ap-
proach is to implement our own opengl32.dll to intercept
all the OpenGL calls, and forward them to the PCs in the
display cluster.ThesePCsreceivetheRPCcallsanddirectly
execute them,withtheexceptionthattheviewfrustumsare
properly modified so that each projector renders only its
own tile portion of the screen space. This distributed
OpenGL mechanism allows many off-the-shelf Windows
OpenGL applications to run on the display wall without
any modifications. We have brought up many such appli-
cations including games, CAD and visualization tools.

Figure 12 shows the game GlQuake being run on the dis-
play wall using our distributed OpenGL mechanism.Cur-
rently, we are investigating methods for integrating our
parallel rendering algorithms into this OpenGL library.

Content Creation and Design Implications
We started studying content creation and design meth-

ods at the same time as other research topics. We taught
two design courses using the display wall.The main point
of these courses is to provide opportunity and experience
utilizing desktop-size screens to create effective wall-size
images. Figure 13 to 15 show students’ creations on the
display wall.

Figure 13: Multiple Small Windows IAN BUCK

Compared to the traditional, expensive display walls,
the inexpensive aspectof the scalable display wall makes a
big difference in content creation. Suddenly, we are pre-
sented with a new design space available to all users, in
particular non-technical users. This rapid democratization
of billboard-size display space is quite provocative. Stu-
dents in the design class are asked to imagine future appli-
cationsandimplicationswhenmanysuchwallsarewidely
in use, and to investigate the best uses for these large dis-
plays.

Figure 14: Sketches on a Digital Canvas JON HARRIS

Oneimplicationofawall-sizeimageisthatitcompletely
fills our visual field, which creates a one-to-one experience
with the onscreen imagery.There is no border or frame for
scale reference as on small monitors. This single shift cre-
ates a whole new design paradigm.16 Areas of interest and
focus must be added into the image composition. A sec-
ond implication is that a group can interact with informa-
tion on just a portion of the screen while others focus on a
different area. Different viewers can be at different dis-
tances from the high-resolution screen and move around
in the room space while viewing.Third,objectscanbeseen
life-size or intensely magnified.For example,an imageofa
dense computer chip reads like a road map. Fourth, there
is not necessarily a need to rapidly change the images, as
they can be so densely filled with data that it takes a while

to absorb it all.Often,a single high-resolution screen can be
displayed for 10 to 20 minutes and remain continuously
interesting. Fifth, the light from the screen can become the
room light for the working group. All of these elements,
especially the frameless nature of the image, require new
thinking and new ways of approaching design.1,19

Figure 15: A Fractal Image WILMOT KIDD

This new design paradigm motivates future work in
compositiontoolsforlarge-formatdisplays.Self-expression
has a new form. TCL scripting adds the dimension of time
to wall presentations, providing capabilities for timed dis-
playsanddissolvesfromimagetoimage.Bysynchronizing
music and sounds to changing images, the wall has be-
come a storytelling space for presentations of 5 to 10 min-
utes, as complex and engrossing as any short film or video.
The wall room, with its billboard size images, has been
used three times as a performance art and theater space.
Virtually everyone who visits the display wall expresses
some kind of emotional response about being in the huge
visual and aural space.9

Summary and Conclusions
The Princeton Scalable Display Wall prototype system

has been operational since March 1998. It has been used as
an infrastructure to conductour research as well as to teach
two design courses.

Theapproachofusingamultiplicityofcommodityparts
to construct a scalable display wall system works well, but
it requires us to address design tradeoffs to deal with coor-
dination, communication and resource allocation issues.
We have successfully addressed these tradeoffs and devel-
oped solutions in several research areas as outlined in this
paper. In seamless rendering, we have developed a combi-
nation of optical edge-blending and software image ma-
nipulationforprojectoralignment.Inparallelrendering,we
have developed a “sort-first” screen partitioning method
that achieves good load balance and parallel speedup. In
parallel data visualization, we have developed a parallel
isosurfaceextractionalgorithmforaPCclusterarchitecture.
In parallel MPEG-2 decoding, we have developed a fast
splitter and a fast decoder that achieve real-time decoding
entirely in software with minimal communication over-
head. In layered multi-resolution video, we interactively
combine multiple video streams with a fast registration
algorithm. And in application tools design, we developed
four methods to let existing applications use the native
resolution of the display system while minimizing com-
munication requirements.

Study of user interface issues and human perceptions is
very important in building a collaborative environment
with a scalable display wall system. We have developed
and experimented with several user interfaces beyond the
traditional keyboard and mouse, including a gyroscope
mouse, a “magic wand” implemented by multi-camera

tracking, and a speech recognition user interface. Our ex-
perienceshowsthatnatural,unencumbereduserinterfaces
based on passive sensors are useful in such an environ-
ment and that it is very desirable to allow multiple users to
control a shared display wall simultaneously.

Finally, in teaching design courses using our display
wall system,we have foundthattheresolutionandscaleof
the display require new ways of approaching design. For
instance,vastamountsof informationcanbepresentedina
single image, rather than as a sequence of imagesaswould
be required in a desktop display. Typographic layouts
where the font sizes can range from 2 to 600 points bring
new capabilities to the use and meaning of text. Sound,
especially spatial sound integrated with imagery, is critical
for storytelling. A design aesthetic is emerging for large
scale, high-resolution images that are dependent on the
center of the images rather than on the frame of the wall.
Perhaps, from the high magnifications seen in wall size
imagery, we will discover new insights and experiences
thathad notpreviously been available. !

Acknowledgements
The Princeton Display Wall Project is supported in part

by Department of Energy under grant ANI-9906704 and
grant DE-FC02-99ER25387, by Intel Research Council and
Intel Technology 2000 equipment grant, and by National
Science Foundation under grant CDA-9624099 and grant
EIA-9975011. The research programs of Adam Finkelstein
and Thomas Funkhouser are also supported, respectively,
by an NSF CAREERaward andanAlfredP.SloanFellow-
ship. We are also grateful to Arial Foundation, Interval
Research, Microsoft Corporation and Viewsonic for their
generous equipmentand software donations.

We would like to thank John DiLoreto for building spe-
cial large-format screens, and several Intel colleagues Kon-
rad Lai,Dick Hofsheier,Steve Hunt,PaulPierce,andWen-
Hann Wang for sharing their ideas, projector-mount de-
sign,and contents.We also wouldliketothankallstudents
who took the design classes and who conducted inde-
pendent studies using the display wall for their content
creation.

References
1. R.Arnheim. The Power of the Center.University of Cali-

fornia,Berkeley,CA,1988.
2. A.Bilas, J.Fritts, and J.P.Singh. “Real-Time Parallel

MPEG-2 DecodinginSoftware.”InProceedingsof Inter-
national Parallel Processing Symposium, 1997.

3. M.Blumrich, K.Li, R.Alpert, C.Dubnicki, E.Felten,
and J.Sandberg. “Virtual Memory Mapped Network
Interface for the Shrimp Multicomputer.” In
ACM/IEEE Proceedings of the 21st Annual International
Symposium on Computer Architecture, pp 142-153,April
1994.

4. Y.Chen, C.Dubnicki, S.Damianakis, A.Bilas, and
K.Li. “UTLB: A Mechanism for Translations on Net-
work Interface.” In Proceedings of ACM Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS-VIII),pp 193-204,October 1998.

5. P.Cignoni, P.Marino, C.Montani, E.Puppo, and
R.Scopigno.“SpeedingUpIsosurfaceExtractionusing

Interval Trees.” IEEE Transactions on Visualization and
Computer Graphics,Vol 3(2),pp 158-170, June 1997.

6. T.W.Crockett. “An Introduction to Parallel Render-
ing.” Parallel Computing,Vol 23,pp 819-843,1997.

7. C.Dubnicki, A.Bilas, K.Li and J.Philbin. “Design and
Implementation of Virtual Memory-Mapped Com-
munication on Myrinet.” In Proceedings of the IEEE 11th
International Parallel Processing Symposium,April 1997.

8. K.Li and Y.Chen, “Optical Blending for Multi-
Projector Display Wall System.” In Proceedingsof the12th

Lasers and Electro-Optics Society 1999 Annual Meeting,
November 1999.

9. M.Lombard and T.Ditton. “At the Heart of It All: The
Concept of Presence.” http://www.ascusc.org/jcmc/
vol3/issue2/lombard.html

10. W.Lorensen and H.Cline. “Marching cubes: a high
resolution 3D surface construction algorithm.” ACM
Computer Graphics (SIGGRAPH '87 Conference Proceed-
ings),Vol 21(4),pp 163-170,1987.

11. T.Mayer.“NewOptionsandConsiderationsforCreat-
ing Enhanced Viewing Experiences.” Computer Graph-
ics,Vol 31(2),pp 32-34,May 1997.

12. S.Molnar, M.Cox, D.Ellsworth, and H.Fuchs, “A
Sorting Classification of Parallel Rendering.” IEEE
Computer Graphics and Applications, Vol 14(4), pp 23-32,
July 1994.

13. Visible Human Projectat theNationalLibraryofMedi-
cine.http://www.nlm.nih.gov/research/visible/

14. R.Raskar, M.S.Brown, R.Yang, W.-C.Chen, G.Welch
and H.Towles. “Multi-Projector Displays Using Cam-
era-BasedRegistration.”InProceedingsof IEEEVisualiza-
tion 1999.October 1999.

15. R.Samanta, J.Zheng, T.Funkhouser, K.Li, and
J.P.Singh.“LoadBalancingforMulti-ProjectorRender-
ing Systems.” SIGGRAPH/Eurographics Workshop on
Graphics Hardware,Los Angeles,CA,August1999.

16. B.Shedd. “Exploding the Frame: Seeking a New
Cinematic Language”,SMPTE 135th Conference, 1994

17. R.Szeliski,and H.-Y.Shum.“Creating Full View Pano-
ramic Image Mosaics and EnvironmentMaps.” In Pro-
ceedings of ACM Siggraph 1995, 1995.

18. http://www.trimension.com/
19. E.R.Tufte. Visual Explanations. Graphics Press, Chesh-

ire,CT,1997

1

18-Nov-02 · 1High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

High-Performance Visualization of
Large and Complex Scientific Datasets

Out-of-Core Surface Simplification

Peter Lindstrom
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by
University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

18-Nov-02 · 2High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Talk Overview

introduction
spatial clustering methods

surface segmentation methods
wrap-up

2

18-Nov-02 · 3High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Introduction

geometric datasets are growing rapidly in size
• scientific simulations
• medical imaging
• laser range scanning
• remote sensing
• computer-aided design

datasets often too large for common tasks
• storage and transmission
• in-core processing and visualization on desktop computers

18-Nov-02 · 4High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Large-Data Example #1

Richtmeyer-Meshkov instability simulation at LLNL
• 2K3 voxels, 27,000 time steps, 470 million triangle isosurface

3

18-Nov-02 · 5High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Large-Data Example #2

Digital Michelangelo project
• _ millimeter resolution range scan: 370 million triangles

18-Nov-02 · 6High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Large-Data Example #3

Visible Human project
• 0.33 millimeter resolution scan: over 100 billion voxels

4

18-Nov-02 · 7High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Managing Large Data

one solution to large-data problem: simplification
• approximate dataset with fewer primitives while satisfying

error tolerance or size constraint
• enables levels of detail, multiresolution representations,

progressive/adaptive/view-dependent refinement

2.4M faces 100K faces 5K faces

18-Nov-02 · 8High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Triangle Mesh Simplification

most surfaces are represented as triangle meshes

common triangle mesh coarsening operations
• vertex removal (Schroeder et al. ‘92)
• edge collapse (Hoppe et al. ‘93)
• half-edge collapse (Kobbelt et al. ‘98)
• triangle collapse (Hamann ‘94)
• vertex pair contraction (Garland & Heckbert ‘97)
• vertex clustering (Rossignac & Borrel ‘93)

all operations instances of vertex set partitioning
• (except general vertex removal)

5

18-Nov-02 · 9High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Vertex Set Partitioning

partition vertices into disjoint sets (clusters)
• V = V1 » V2 » ⋅⋅⋅ » Vn

collapse each set into single (possibly new) vertex
• Vi Æ vi

discard degenerate triangles
• “surviving” triangles span three different clusters

variations between simplification operations
• legality of partitions (e.g. clusters must be edge-connected)
• vertex positioning (e.g. subsampling vs. optimization)

18-Nov-02 · 10High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Examples of Vertex Set Partitions

uniform partitions (spatial clustering on 3D grid)

adaptive partitions (error-driven edge collapse)

6

18-Nov-02 · 11High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

The Dilemma

surface simplification can reduce data size, but...

simplification traditionally done in-core
• load entire surface mesh into memory
• queue up sequence of fine-grained coarsening operations

(e.g. vertex removal, edge collapse) in order of least error
• proceed by iteratively coarsening mesh
• memory: O(n) storage, random (i.e. incoherent) access
• running time: O(n log n)

• conclusion: does not scale well

18-Nov-02 · 12High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Out-of-Core Simplification

recent research focused on external memory methods
• key concepts: data segmentation, coherent/sequential access,

disk-based algorithms (e.g. B-trees, external sorts)
• simplification of arbitrarily large surfaces now possible

two distinct approaches to out-of-core simplification
• spatial clustering

– Lindstrom ‘00, Lindstrom & Silva ‘01, Shaffer & Garland ‘01,
Fei et al. ‘02, Garland & Shaffer ‘02

• surface segmentation
– Bernardini et al. ‘99, El-Sana & Chiang ‘00, Prince ‘00,

Cignoni et al. ‘02, Choudhury & Watson ‘02

7

18-Nov-02 · 13High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Talk Overview

introduction

spatial clustering methods
surface segmentation methods

wrap-up

18-Nov-02 · 14High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Spatial Clustering

idea: partition space that surface lies in into 3D cells
• vertex set partitions given geometrically by cell containment

– no topological constraints or considerations

• cell geometry can be adapted to surface
– e.g. smaller cells in detailed regions, adapt cell shape to surface

• simplest partition: uniform 3D Cartesian grid

8

18-Nov-02 · 15High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCS: Uniform Spatial Clustering
Lindstrom ‘00

algorithm overview
• partition space using a fixed 3D rectilinear grid

– sparse data structure (hash table) to represent occupied cells

• position vertices by minimizing quadric error
– weighted sum of squared distances to set of planes

• features
– fast linear-time, single-pass algorithm
– reads arbitrarily large “triangle soup” stream sequentially

• drawbacks
– requires enough core memory to store simplified mesh
– non-adaptive partitions yield poor quality

• basis for many out-of-core spatial clustering methods

18-Nov-02 · 16High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCS Algorithm

1. for each triangle t in Tin

2. compute quadric matrix Qt = ntnt
T

3. for each vertex v of t
4. map v to cluster cell c
5. add Qt to Qc

6. if t not degenerate, add t to Tout

7. for each cluster c
8. compute vertex xc from Qc

9. add xc to Xout

1. for each triangle t in Tin

2. compute quadric matrix Qt = ntnt
T

3. for each vertex v of t
4. map v to cluster cell c
5. add Qt to Qc

6. if t not degenerate, add t to Tout

7. for each cluster c
8. compute vertex xc from Qc

9. add xc to Xout

9

18-Nov-02 · 17High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCS Results:
St. Matthew Statue (close-up view)

original: 390M triangles simplified: 3.1M triangles
dataset courtesy of the Digital Michelangelo Project

18-Nov-02 · 18High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCS Results:
Mesh Quality

0.001

0.01

0.1

1

10,000 100,000 1,000,000

model size (triangles)

m
ea

n
ge

om
et

ric
 e

rro
r

OoCS: center

OoCS: grading

OoCS: mean

OoCS: quadrics

QSlim

Memoryless
0.001

0.01

0.1

1

10,000 100,000 1,000,000

model size (triangles)

m
ea

n
ge

om
et

ric
 e

rro
r

OoCS: center

OoCS: grading

OoCS: mean

OoCS: quadrics

QSlim

Memoryless

10

18-Nov-02 · 19High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCS Results:
Resource Usage

simplification speed
• processes 250K triangles per second on desktop PC

– roughly one hour to simplify billion-triangle mesh

memory requirements
• 63–72 bytes per output triangle (depends on hash table load)

– compare with 80 bytes per input triangle for typical in-core
method

– allows 15 million-triangle simplified mesh on 1GB RAM computer

18-Nov-02 · 20High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Output Sensitive Methods

handling arbitrarily large inputs is nice, but…

output size limited by available RAM
• what if simplified mesh is not accurate enough?

– cannot use finer grid because of memory constraints

disk cheaper, orders of magnitude larger than RAM
• so can we use disk instead of RAM during simplification?
• yes, but we must avoid slow random accesses!

11

18-Nov-02 · 21High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCSx: Memory Insensitive Clustering
 Lindstrom & Silva ‘01

achieve coherent disk access via external sort
• only random access in OoCS is to clusters’ quadric

information (via in-core hash lookup)
• sort quadric information on disk, then process sequentially

18-Nov-02 · 22High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCSx Algorithm Overview

simplification
• scan input mesh

– read triangles, compute plane equations
– output cluster ID, plane equation for each vertex
– output non-degenerate triangles to triangle file

• sort plane equation file on cluster ID
• compute cluster quadrics, output optimal vertices

re-indexing
• sort triangle file on given vertex field
• scan and replace cluster ID with vertex ID
• repeat for each of three vertex fields

12

18-Nov-02 · 23High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OoCSx Results

simplification speed
• 30-70K triangles per second (vs. 250K for OoCS)

resource usage
• temporary disk: ~5 times size of input mesh

– depends on external sort used

• memory: arbitrarily little (specified by user)
– 4 MB used in current implementation

18-Nov-02 · 24High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Drawbacks of Uniform Spatial Clustering

uniform grid not well adapted to surface features
• spatial proximity does not imply well-shaped clusters
• uneven and/or disconnected surface patches frequent
• fixed-resolution grid limits size of smallest feature preserved

13

18-Nov-02 · 25High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Adaptive Spatial Clustering
Shaffer & Garland ‘01

idea: analyze mesh and repartition space
• accumulate quadrics on uniform grid in first pass (as in OoCS)
• use PCA of primal/dual quadrics to determine better partitions

– construct BSP-tree top-down for arbitrary convex cells

• recluster mesh on irregular grid in second pass

18-Nov-02 · 26High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Adaptive Spatial Clustering

algorithm characteristics
• features

– higher quality, better distribution of triangles than uniform spatial
clustering

• drawbacks
– higher grid resolution (thus more memory) needed in first pass
– still output sensitive memory requirements

14

18-Nov-02 · 27High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Adaptive Spatial Clustering Results

images courtesy of Eric Shaffer and Michael Garland

original uniform adaptive

uniform adaptive

18-Nov-02 · 28High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Other Spatial Clustering Methods

Fei et al. ‘02a (SIGGRAPH 2002 tech. sketch)
• simplification sensitive to translation of cluster grid

– degree of sensitivity (DOS) depends on amount of surface detail
– compute local DOS by clustering on two interlaced grids
– use more detail in regions of high DOS

Fei et al. ‘02b (Computer Graphics Forum 2002)
• following initial uniform clustering pass, use per-cell quadric

error to determine which cells to refine/coarsen
– introduce split planes based on PCA of quadric matrices
– additional pass(es) used to incrementally, adaptively

refine/coarsen mesh
– more memory efficient but slower adaptation than in

Shaffer & Garland ‘01

15

18-Nov-02 · 29High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Talk Overview

introduction
spatial clustering methods

surface segmentation methods
wrap-up

18-Nov-02 · 30High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Surface Segmentation

idea: segment surface into small, disjoint patches
• ensure patches small enough to fit in-core
• simplify each patch using in-core method (e.g. edge collapse)
• stitch together simplified patches
• repeat if necessary

figure courtesy of Hugues Hoppe

partition
mesh

pre-simplify
blocks

simplify blocks
& save ecol’s

stitch blocks into
larger blocks

simplify
top-level block

ecolA

ecolB

ecolS

apply bottom-up recursion

16

18-Nov-02 · 31High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Vertex Set Partitioning using
Surface Segmentation

V

V1 V2 V3» » »⋅⋅⋅

segment
surface

V11 V12 V13 V21 Vn1 Vn2» » » »» »⋅⋅⋅

partition
patches

v11 v12 v13 v21 vn1 vn2

collapse
clusters

18-Nov-02 · 32High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Uniform Spatial Surface Segmentation
Bernardini et al. ‘99

surface segmentation on a uniform rectilinear grid
• 3D grid partitions mesh into small patches
• simplify patches in-core to given error tolerance

– must leave patch boundaries intact to allow future merging

• stitch patches together along common boundaries
• displace grid by half a grid cell in each direction
• repeat procedure to coarsen patch seams
• features

– fairly easy to implement, higher quality than spatial clustering

• drawbacks
– two orders of magnitude slower than spatial clustering
– outputs only single level of detail

17

18-Nov-02 · 33High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OEMM: Adaptive Surface Segmentation
 Cignoni et al. ‘02

octree-based external memory mesh data structure
• rectilinear octree grid segments surface
• general data structure for out-of-core mesh processing

– not only for simplification

figure courtesy of Paolo Cignoni

18-Nov-02 · 34High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OEMM Overview

similar approach to Bernardini et al. ‘99, but
• octree grid adapts in resolution to better match surface detail

– siblings merged when triangle count drops below limit

• outputs progressive mesh, e.g. for view-dependent rendering
• by loading grid cells neighboring current patch, edges can be

collapsed across patch boundaries
– no need to keep patch boundaries at full resolution

18

18-Nov-02 · 35High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

OEMM Results

speed
• one-time OEMM construction: ~10K triangles per second
• simplification: ~10K triangles per second

quality

uniform spatial clustering OEMM

images courtesy of Paolo Cignoni

18-Nov-02 · 36High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Error-Driven Surface Segmentation
El-Sana & Chiang ‘00

disk-based implementation of edge collapse
• uses B-tree disk data structure to index mesh, priority queue
• simplification done in batches by loading pieces of mesh

– surface patches given by faces spanned by edges to be
collapsed

patch spanning edge
to be collapsed

figure courtesy of El-Sana & Chiang

19

18-Nov-02 · 37High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Error-Driven Surface Segmentation

algorithm overview
• compute mesh connectivity, initialize priority queue on disk
• for each batch of lowest-cost edges

– dequeue edges and load incident faces into RAM
– merge faces into larger patches whenever possible
– collapse edges, recompute edge costs, write back to disk

• repeat until desired accuracy/size reached
• features

– entirely error-driven surface segmentation

• drawbacks
– poor scalability; patches small when input-to-RAM ratio large
– non-trivial error metrics may force out-of-order edge collapses

18-Nov-02 · 38High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Other Surface Segmentation Methods

Prince ‘00
• extension of Hoppe ‘98 terrain simp. to arbitrary surfaces
• uses octree partition and edge collapse
• contrary to Cignoni et al. ‘02, patch boundaries frozen
• 1K triangles per second simplification speed reported

Choudhury & Watson ‘02
• “simplification in reverse” (i.e. refinement from coarse to fine)
• segments surface into face clusters via binary splitting
• face clusters grouped together on disk

– increased refinement yields increased locality of reference
– hence virtual memory disk access possible with little thrashing

20

18-Nov-02 · 39High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Talk Overview

introduction
spatial clustering methods

surface segmentation methods

wrap-up

18-Nov-02 · 40High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Summary of Simplification Methods

spatial clustering
• clusters vertices based on spatial proximity

– adaptive space partitioning possible

• features
– very fast (50–250K triangles per second)
– simple to implement

• drawbacks
– low quality results
– topology not preserved, non-manifold simplices possible

• use when
– time or space is at a premium
– topology simplification is desired

21

18-Nov-02 · 41High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Summary (continued)

surface segmentation
• clusters vertices primarily based on error
• iterative simplification lends itself to progressive mesh output
• features

– high quality results
– can preserve topology

• drawbacks
– rather slow (1-10K triangles per second)
– must implement iterative method plus external memory support

• use when
– quality is more important than speed
– progressive streaming or view-dependent rendering is needed

18-Nov-02 · 42High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Future Work

improved spatial clustering methods
• metric spaces other than Euclidean

– cluster based on surface geometry (normals, curvature)

hybrid methods
• Garland & Shaffer ‘02

– first-phase spatial clustering using quadric error metric
– pass quadric information to second-phase edge collapse

exploit parallelism for “interactive” simplification

alternatives to conventional simplification
• out-of-core remeshing and similar techniques

22

18-Nov-02 · 43High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

Acknowledgements

thanks to
• the LLNL ASCI VIEWS team for datasets and support
• the Digital Michelangelo Project for sharing their datasets
• Yi-Jen Chiang, Paolo Cignoni, Jihad El-Sana, Michael Garland,

and Hugues Hoppe for contributing figures and images
• Eric Shaffer for providing simplified meshes

18-Nov-02 · 44High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

References
• F. Bernardini et al. “Case Study: Scanning Michelangelo’s Florentine Pieta.”

SIGGRAPH 99 course #8.
• P. Choudhury & B. Watson. “Completely Adaptive Simplification of Massive

Meshes.” Northwestern University tech. report CS-02-09, 2002.
• P. Cignoni et al. “External Memory Management and Simplification of Huge

Meshes.” IEEE Trans. on Visualization and Computer Graphics, to appear.
• J. El-Sana & Y.-J. Chiang. “External Memory View-Dependent Simplification.”

Computer Graphics Forum 19(3) 2000, pp. 139-150.
• Fei et al. “An Adaptive Sampling Scheme for Out-of-Core Simplification.”

Computer Graphics Forum 21(2) 2002, pp. 111-119.
• Fei et al. “Detail Calibration for Out-of-Core Model Simplification through

Interlaced Sampling.” SIGGRAPH 2002 tech. sketch, p. 166.
• M. Garland & E. Shaffer. “A Multiphase Approach to Efficient Surface

Simplification.” Visualization ‘02, to appear.
• H. Hoppe. “Smooth View-Dependent Level-of-Detail Control and its

Application to Terrain Rendering.” Visualization ‘98, pp. 35-42.

23

18-Nov-02 · 45High-Performance Visualization of Large and Complex Scientific DatasetsPeter Lindstrom

References (continued)
• P. Lindstrom. “Out-of-Core Simplification of Large Polygonal Models.”

SIGGRAPH 2000, pp. 259-262.
• P. Lindstrom & C. T. Silva. “A Memory Insensitive Method for Large Model

Simplification.” Visualization ‘01, pp. 121-126.
• C. Prince. “Progressive Meshes for Large Models of Arbitrary Topology.”

Master’s Thesis, University of Washington, 2000.

A Memory Insensitive Technique for Large Model Simplification

Peter Lindstrom∗
LLNL

Cláudio T. Silva†

AT&T

Abstract

In this paper we propose three simple, but significant improve-
ments to the OoCS (Out-of-Core Simplification) algorithm of Lind-
strom [20] which increase the quality of approximations and extend
the applicability of the algorithm to an even larger class of compute
systems.

The original OoCS algorithm has memory complexity that de-
pends on the size of the output mesh, but no dependency on the size
of the input mesh. That is, it can be used to simplify meshes of
arbitrarily large size, but the complexity of the output mesh is lim-
ited by the amount of memory available. Our first contribution is
a version of OoCS that removes the dependency of having enough
memory to hold (even) the simplified mesh. With our new algo-
rithm, the whole process is made essentially independent of the
available memory on the host computer. Our new technique uses
disk instead of main memory, but it is carefully designed to avoid
costly random accesses.

Our two other contributions improve the quality of the approxi-
mations generated by OoCS. We propose a scheme for preserving
surface boundaries which does not use connectivity information,
and a scheme for constraining the position of the “representative
vertex” of a grid cell to an optimal position inside the cell.

CR Categories: E.5 [Files]: Sorting; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Surface and ob-
ject representations.

Keywords: polygonal surface simplification, large data, out-of-
core algorithms, external sorting, quadric error metrics.

1 INTRODUCTION

In recent years there has been a rapid increase in the raw size of
polygonal datasets. Several technological trends are contributing to
this effect, such as the development of high-resolution 3D scanners,
and the need to visualize ASCI-size (Accelerated Strategic Com-
puting Initiative) datasets. A useful paradigm for visualizing large
datasets is to generate levels of detail. Over the last decade, there
has been substantial research in designing algorithms for generat-
ing level-of-detail approximations of triangle meshes. In this paper,
our focus is on algorithms which have low memory complexity.

A simplification algorithm receives an input mesh of complexity
n, and outputs a mesh of complexitym (wherem< n). Often, the
user sets the target size of the output, and the algorithm attempts
to minimize the overall error of the approximation. One impor-
tant aspect of the design of a surface simplification algorithm is its

∗Center for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, 7000 East Avenue, L-560, Livermore, CA 94551, USA;
pl@llnl.gov.

†AT&T Labs-Research, 180 Park Avenue, Room D265, PO Box 971,
Florham Park, NJ 07932, USA; csilva@research.att.com.

memory usage. In general, different algorithms have different main
memory dependencies onn andm. For different applications, it is
useful to have algorithms which are memory efficient with respect
to n or m (but ideally both). The memory dependency onn affects
the usefulness of a given algorithm in the sense that it limits the size
of models that can be simplified.

In general the memory requirement of a given algorithm grows
with both m andn (for exceptions, see e.g. [29, 30]). The depen-
dency onm has direct implications on the maximum accuracy of
the approximation. As an example, an efficient terrain simplifica-
tion algorithm is presented in [13], whose memory complexity is
analyzed to be 3n+192m bytes, wheren andm are the number of
vertices in the input and output, respectively. In order to generate
a high-quality approximation with one eighth of the input points,
i.e.,m= 1

8n, one would need to have 27n bytes of memory, or nine
times as much as the size of the input. Often, the memory com-
plexity is much higher on bothn andm (e.g., [21] uses 160n bytes
for general surface simplification), and generating approximations
of large datasets is usually quite hard.

The OoCS algorithm proposed by Lindstrom [20] is a big step
forward in that it has no dependency onn, thus allowing for simpli-
fication of extremely large datasets. One contribution of our work
is to remove the main memory dependency onm from OoCS, thus
allowing for an arbitrarily accurate approximation of an arbitrarily
large dataset. Our new algorithm, OoCSx, usesconstant memory,
no matter how large the dataset or approximation error.

One might argue that the ability to produce simplified models
that are still too large to represent in-core is of little practical value,
since the main reason for simplifying the model in the first place
is to reduce its complexity to something more manageable. How-
ever, we see several important uses of our new algorithm. First, in
many situations it is not known beforehand how much RAM will be
available on the client machine on which the simplified mesh is to
be used, as is generally the case with multi-level-of-detail datasets
provided through data repositories. Second, OoCS does not pro-
vide a mechanism for specifying the exact sizem of the simplified
model, and trial and error may be necessary to find a grid resolution
that leads to a detailed simplification that, along with the auxiliary
data structures used in OoCS, fits in-core. Our memory insensitive
algorithm, on the other hand, is able to finish and output a simpli-
fied model regardless of the grid resolution. Third, many applica-
tions demand a strict error bound, in which case trading memory for
mesh accuracy is not a practical option. As we shall see, even when
an explicit error bound is not given, the mesh may be so geometri-
cally complex that the most detailed simplification to fit in-core is of
unacceptable visual quality. Finally, our work nicely complements
the recent trend of developing efficient out-of-core scientific visu-
alization techniques (see, e.g., [7, 11, 32]). With tools like these in
hand, further out-of-core processing of a simplified mesh becomes
practical.

Our new technique uses disk instead of main memory. In fact,
OoCSx generally needs more disk space than OoCS needs main
memory. On the other hand, disk is often much cheaper and more
readily available than random access memory. The naive use of disk
has the potential for considerable slowdown (as in the case of oper-
ating system paging). Our algorithm is carefully designed to avoid

James T Klosowski
© 2001 IEEE. Reprinted, with permission, from IEEE Visualization 2001, pp. 121-126, 2001.

random accesses, thus achieving simplification speeds which, al-
though slower than OoCS, are still quite practical. Our experiments
show that OoCSx is typically between two to five times slower than
OoCS, while using constant main memory. However, when insuf-
ficient main memory is available for OoCS to store the simplified
model, OoCSx runs faster. Of course, for large enough models,
OoCS is not able to finish at all.

Because OoCS does not make use of connectivity information, it
has no way of detecting whether an edge is a boundary edge or not.
As a consequence, boundaries are generally poorly preserved by
OoCS. We propose a technique for preserving boundaries that does
not use any connectivity information. Finally, we sketch a tech-
nique for enforcing maximum errors, which constrains the optimal
cluster representative to lie inside its grid cell while minimizing the
approximation error.

2 RELATED WORK

Polygonal simplification has been a hot topic of research over the
last decade, with a vast number of published algorithms. Many of
the early simplification algorithms were designed to handle modest
size datasets of a few tens of thousands of triangles. Recent im-
provements in scanning and storage technology, however, have lead
to datasets as large as billions of triangles [19, 23]. As a result, a
number of methods, particularly for out-of-core visualization, have
been proposed for coping with models that are too large to fit in
main memory, e.g. [3,5–8,17,24,28,31,32].

Rossignac and Borrel proposed one of the earliest simplification
algorithms [26]. Their algorithm partitions space into cube-like
cells from a uniform rectilinear grid, and replaces all mesh vertices
within a grid cell by a single representative vertex. While simple
and fast, their method produces rather low quality meshes, in part
due to the simple vertex positioning scheme used in their original
algorithm. Lindstrom’s OoCS algorithm [20] is also based on ver-
tex clustering on a uniform grid, but has a lower time and memory
complexity, and uses a quadric error metric to improve the mesh
quality. This method was recently extended by Shaffer and Gar-
land [27], who make two passes over the input mesh. During the
first pass, the surface is analyzed and an adaptive (instead of uni-
form) partitioning of space is made. Using this approach, a larger
number of irregular grid cells (and thus samples) can be allocated to
the more detailed portions of the surface. However, their algorithm
requires more RAM than OoCS in order to maintain a BSP-tree and
additional quadric information in-core.

Bernardini et al. describe a radically different approach to out-
of-core simplification [4]. Their method splits the model up into
separate patches that are small enough to be simplified individually
in-core using a conventional simplification algorithm. Special care
has to be taken along the patch boundaries. A similar technique
was proposed by Hoppe for creating hierarchical levels of detail for
height fields [15], which was later generalized by Prince to arbitrary
meshes [25]. While conceptually simple, the time and space over-
head of partitioning the model and later stitching it together adds to
an already expensive in-core simplification process, rendering such
a method less suitable for simplifying very large meshes.

El-Sana and Chiang [10] propose an external-memory algorithm
to support view-dependent simplification of datasets that do not fit
in main memory. Similar to [4,15,25], they segment the model into
sub-meshes that can be simplified independently and later merged
in a preprocessing phase. The segmentation and stitching are made
simple by ensuring that edges are collapsed in edge-length order,
and guaranteeing that sub-mesh boundary edges are longer than
interior edges. During run-time, only the portions of the view-
dependence tree that are necessary to render the given level of detail
are kept in main memory.

3 OUT-OF-CORE SIMPLIFICATION

In order to describe our new simplification algorithm, we will first
provide a brief review of OoCS. For full details see [20]. The input
to the algorithm is a set of triangles, stored as triplets of vertex coor-
dinates in a file, and the resolution of a three-dimensional grid. (See
the appendix for a disk-based technique on how to transform from
indexed meshes to thisdereferencedformat.) The algorithm, which
is loosely based on the clustering algorithm by Rossignac and Bor-
rel [26], computes for each cluster grid location a representative
vertex. (A set of vertices constitute a “cluster” if they all lie inside
the same grid cell.) The position of the representative vertex is cho-
sen so as to minimize thequadric error[14] measured with respect
to the triangles in the cluster. For each trianglet = (xt

1,x
t
2,x

t
3), an

associatedquadric matrixQt is computed:

Qt = n̄t n̄T
t (1)

n̄t =
(

xt
1×xt

2 +xt
2×xt

3 +xt
3×xt

1−[xt
1,x

t
2,x

t
3]

)
(2)

wheren̄t is a 4-vector made up of the area-weighted normal oft and
the scalar triple product of its three vertices.1 Qt is then distributed
to the clusters associated with each oft ’s three vertices by adding
Qt to their quadric matrices.

After summing up all per-triangle quadric matrices in a cluster,
we obtain a quadric matrixQS that contains shape information for
the piece of surface passing through the grid cell:

QS = ∑
t

Qt =
(

A
−bT

−b
c

)
(3)

Using this decomposition ofQS, the 3×3 linear systemAx = b is
solved for the “optimal” representative vertex positionx that min-
imizes the quadric error. That is,x is the position that minimizes
the sum of squared volumes of the tetrahedra formed byx and the
triangles in the cell. When clustering vertices together, the majority
of triangles degenerate into edges or points and can be discarded,
thereby reducing the complexity of the model.

3.1 OoCSx

The main idea of our modification of the OoCS algorithm is to elim-
inate the list of occupied clusters which OoCS allocates in main
memory and uses for keeping track of their quadrics. Instead of
directly computing quadrics, OoCSx computesn̄t for the current
trianglet and outputs this information to a file, three times for each
of the three vertices, together with the information for what grid cell
the vertex belongs to. At the same time, we also output another file
which contains the non-degenerate triangles (those triangles that
have vertices in three different clusters) represented as indices to
the grid cells. Then, we externally sort the file containing the vec-
torsn̄t using the grid locations as the primary key. After this, all the
information related to one grid cell is placed contiguously in the
file. By scanning it, it is possible to compute the quadrics and the
optimum location of the representative vertex for a particular grid
cell. After the vertices in the simplified mesh have been computed,
we are left with the task of associating the grid cell references in
the triangle file with vertex representatives. This step is described
in more detail below.

Here are the steps of OoCSx in detail:

(1) Read triangles, compute quadric information for later use.
For each trianglet = (xt

1,x
t
2,x

t
3) in the input mesh, we com-

pute n̄t (Equation 2). Note that we do not compute any

1In this paper,̄a denotes a 4-vector, andâ is a unit-length 3-vector.

quadric matrices at this point. For each vertexxt
i of t, we

also determine the grid locationG(xt
i) (as an integer ID) that

the vertex will be mapped to. As triangles are read, we output
this information to two files:

– A “plane equation” file, which contains 3 entries for
each triangle, one for each vertex. Each entry is of the
form: 〈G(xt

i), n̄t〉. Using 32-bit integers to representG
and 32-bit floats for̄nt , this file takes 20 bytes of disk
per entry.

– A “triangle cluster” file, which contains records of
the form 〈G(xt

1),G(xt
2),G(xt

3)〉. Each record takes
12 bytes, and is written only whenG(xt

1) 6= G(xt
2) 6=

G(xt
3).

(2) Sort “plane equation” file using G as the sort key. This
step is performed using an external sort algorithm, which is
discussed below.

(3) Compute quadrics and output optimal vertices. In order to
find the representative vertex for a given cluster, we need to
sum up all the quadrics that contribute to its position. Because
the “plane equation” file has been sorted on cluster IDs (i.e.,
G), all the vectors̄nt that contribute to a given grid cell are
together in the file. That is, in a single scan, we can sum all
the n̄t n̄T

t into a quadric matrixQS, which is used to compute
the representative vertex position.2

As we find the representative vertexx for a given grid cellG ,
we output 16-byte records〈G(x),x〉. Note that we get this file
already in “sorted” order for free.

(4) Replace cluster IDs in triangle file with corresponding ver-
tices. At this point, the file with the representative vertices and
the “triangle cluster” file hold the complete simplified mesh.
A more useful format for this data is to “dereference” the tri-
angle cluster file and create a file which lists the vertices of
each triangle. This can be done in three passes, one for each of
the three fieldsG(xt

i). In each pass, the triangle file is sorted
on the current vertex field. After each sort, the cluster IDs
are scanned and replaced with entries from the representative
vertex file, which is read sequentially, in tandem. Many appli-
cations prefer an indexed mesh representation, for which one
would replace the cluster IDs with vertex indices.

Time and Space Complexity

The memory usage of the OoCSx algorithm we have described does
not depend on the size of the input dataset. The algorithm just needs
to have enough memory to hold the data structures for one triangle
and perform the other calculations for computing the quadrics and
optimal vertices. In fact, we use slightly more memory in our exter-
nal sort implementation, which by default uses four megabytes of
memory. Overall, on a PC running Linux, the code never uses more
than five megabytes of memory (eight megabytes on IRIX due to
larger executables) regardless of the size of the input dataset or the
level of approximation desired.

The time complexity of OoCS isO(n), since it only performs
a single scan over the mesh file and keeps all the information re-
garding the quadrics in main memory. Because of the need to sort
several files, OoCSx has time complexityO(nlogn).

2Although our input and output files use single-precision floating point
numbers, we perform the in-memory computations in double precision. 32-
bit floats do not provide enough precision for the computations done for
very large models like the St. Matthew statue and fluid isosurface.

External Sorting

At the center of OoCSx are a series of external sorts. External sort
algorithms are very important for the design and implementation
of I/O-efficient algorithms (see [1, 16]). There are several issues
in implementing external memory algorithms, and these issues can
greatly affect the overall performance of a system. In general trying
to mimic the interface of the Cqsort routine, although often pur-
sued, does not seem the most efficient implementation technique. In
our experience with different external sorts [2,12,18], the most ef-
ficient implementation uses a combination of radix and merge sort,
for which the keys are compared lexicographically. A particularly
efficient external sort isrsort written by John Linderman at AT&T
Research [18]. We usersort for the results presented in this pa-
per. Luckily, it is relatively easy to generate keys which can be
compared lexicographically (see the man page forfixcut, also from
Linderman). In OoCSx, we only need integer keys. For these, we
simply have to write them in big-endian format.

3.2 Quality Improvements

Surface Boundary Preservation

Because OoCS does not make use of connectivity information, it
has no way of detecting whether an edge is a boundary edge or
not. Consequently, surface boundaries are not well preserved by
the method. We propose a variation on the technique used by Gar-
land and Heckbert [14], which makes use of planes parallel to the
boundary edges and orthogonal to their incident triangles.

Building on this idea, we can create an edge quadric. For each
half-edgee of each triangle, we compute a planēme that passes
through the two vertices ofe. The normal vectorme of this plane
is orthogonal to bothe and the normal of the face thate belongs to
(Figure 1). The distance of a point to this plane provides a mea-
sure of how close the point is to the associated edge. We are here
only concerned with distances parallel to the plane of the incident
face—the per-triangle quadrics from Equation 2 already penalize
deviations orthogonal to the face. Using these definitions, we dis-
tribute for each half-edgee= (xe

1,x
e
2) its plane equation̄me to the

clusters corresponding to its two vertices. After adding up all the
plane equations (4-vectors) in a cluster, we compute a quadric ma-
trix QB for the boundary as:

QB =
(

∑
e

m̄e

)(
∑
e

m̄e

)T

(4)

m̄e =
(

me

− 1
2(xe

1 +xe
2)

Tme

)
(5)

me = ‖ee‖(ee× n̂e) (6)

ee = xe
2−xe

1 (7)

Note that all edges, whether manifold or on the boundary, are
treated equally. What makes the algorithm sensitive to boundary
edges is that, when adding the implicit plane equationsm̄e, there
is no opposing half-edge from the neighboring triangle to cancel
m̄e. This is illustrated in Figure 1(b), where the plane equations
for two adjacent coplanar faces exactly cancel each other. For non-
coplanar faces, the plane equations will not totally cancel, but a
residual vector (the normal vector of a new plane) remains that pe-
nalizes positions away from the edge in the plane that bisects the
dihedral angle formed by the two triangles. The sharper an edge
is, the larger this penalty becomes. When used as part of an error
measure, this would tend to preserve sharp edges, which is often
desired. Based on this argument, non-manifold edges would also
tend to be preserved, which is likely desirable since they typically
form sharp creases in the mesh. Note that this scheme makes no use

n̂

e
m

(a) vectorm orthogonal to boundary edge

m

−m

(b) coplanar faces

m1

m2
m1 + m2

(c) non-coplanar faces

Figure 1: Illustration of the vectors used for surface boundary preservation. The boundary normalm is orthogonal to the face normaln̂ and the vectore along
the edgee. For manifold edges that share two coplanar faces, the boundary normals cancel. In the case of non-coplanar faces, the residual vectorm1 +m2 lies
in the plane that bisectse’s dihedral angle.

of connectivity information, yet implicitly accounts for the feature
edges in the mesh.

The final quadric for the cluster is computed as a linear combi-
nationλQS+(1−λ)QB of the surface quadric and the new bound-
ary quadric. Note that we have been careful to weight the bound-
ary quadric so as to ensure scale invariance and compatibility with
the area-squared weighted triangle quadrics. We have found that
weighting the quadrics equally (λ = 1

2) tends to give good results.

Constrained Optimization over Cell Boundaries

As discussed in [20], the minimum quadric error sometimes falls
outside the cluster’s grid cell. While rare, the minimum may be
arbitrarily far from the grid cell given the right conditions. Our pre-
vious approach to handling these degeneracies was to use one of
a number of ad hoc methods for clamping the vertex coordinates,
such as projecting the vertex onto the grid cell boundary. To ensure
that the vertex is contained in the grid cell, but also results in the
smallest possible quadric error, we perform a linearly constrained
optimization over the grid cell boundary whenever the global opti-
mum is outside it. Because the quadric functional is quadratic and
the grid cell constraints are linear, the solution to this optimization
problem can be found by solving a set of linear equations (cf. [22]).
This optimization problem is made particularly easy by the fact that
the linear constraints are all perpendicular to each other and parallel
to the coordinate axes, and can therefore generally be solved as a
2D or 1D problem.

4 EXPERIMENTAL RESULTS

Table 1 summarizes our experimental results. We used two ma-
chines for our experiments, most of which were performed on a
Linux PC with 512 MB of main memory and two 800 MHz Pen-
tium III processors. The simplification of the statue and fluid iso-
surface was performed on one processor of a SGI Onyx2 with forty-
eight 250 MHz R10000 processors and 15.5 GB of main memory.
On the SGI, we used one of its one-terabyte striped disks. Over-
all, OoCSx was between two to five times slower than OoCS, but
sometimes the speed difference was even smaller. In one case, for a
high-resolution simplification of the blade, OoCSx was faster than
OoCS. The reason for this is that OoCS ran out of memory, and
numerous page faults occurred. This happened while trying to sim-
plify the blade to one quarter of its initial size. The ratio in memory
usage of OoCS and disk usage of OoCSx varied widely, going from
a low of 6 to a high of 245! These variations are due to the de-
pendency onn, the size of the input model, in OoCSx, whereas the
memory usage of OoCS is proportional tom, the size of the output
model. For the external sort codersort used in our implementation,
we empirically determined the maximum disk usage of OoCSx to

model Tin Tout
RAM:disk (MB) time (h:m:s)

OoCS OoCSx OoCS OoCSx

dragon 871,306
47,236 4:0 5: 150 6 13

113,058 9:0 5: 152 7 14
244,568 21:0 5: 153 9 17

buddha 1,087,716
62,346 5:0 5: 187 7 16

204,766 20:0 5: 191 10 19

blade 28,246,208
507,104 49:0 5: 4,850 2:46 13:14

1,968,172 160:0 5: 4,899 3:11 14:30
7,327,888 859:0 5: 4,993 19:14 17:04

statue 372,963,401
3,012,996 261:0 8:64,004 44:22 2:37:24

21,506,180 3,407:0 8:64,256 51:23 2:49:30

fluid 467,614,855
6,823,739 588:0 8:80,334 55:56 3:11:48

26,086,125 3,427:0 8:80,510 1:08:48 3:23:42
94,054,242 - 8:81,345 - 4:19:09

Table 1: Run-time performance of OoCS and OoCSx. The results reported
for the dragon, buddha, and blade were computed on a Linux PC. The statue
and fluid models were simplified on a SGI Onyx2. Even on the 15.5 GB
SGI, not enough RAM was available for OoCS to produce the finest level
of detail of the fluid dataset.

be 172Tin +12Tout bytes.3 These results indicate thatrsort requires
roughly twice the input size of additional storage. If necessary,
there are techniques for lowering the disk overhead of OoCSx. For
instance, it would be possible to perform multiple sorts, instead of
a single one, and accumulate phases if disk space is at a premium.

Figure 4 shows the effect of using edge quadrics in the simpli-
fication of the boundary (shown in red) of the bunny. From this
figure, it is evident that the boundaries have been preserved with
better visual accuracy. This subjective result is also supported nu-
merically by Figure 2, which shows the maximum (Hausdorff) and
root mean square (RMS) distances between closest points on the
boundaries for several levels of detail of the bunny. These error
measures were evaluated symmetrically by considering all points
on the boundaries of both the original and the simplified model.
Clearly, the use of boundary quadrics greatly reduced the bound-
ary errors. In addition, we found that the use of boundary quadrics
did not negatively impact the errors measured over the surface in-
teriors. Instead, using boundary quadrics reduced both boundary
and surface errors for models with boundaries, and did not result in
a measurable increase in surface error for models without bound-
aries.

Figure 3 is an isosurface of a time slice from a large-scale
turbulent-mixing fluid dynamics simulation, consisting of 2,048×
2,048× 1,920 voxels at 27,000 time steps [23]. This surface is
challenging to simplify due to its highly complex topology and
wispy geometry. Table 1 lists the performance data for simplifying
the entire isosurface. To avoid too much clutter in the images pre-
sented here, we also extracted a small piece (one third of a percent)
of the volume and simplified it independently (Figure 6). As can be

3This usage is for the intermediate files only, and does not include the
space needed for the input and output files.

0.01

0.1

1

10

1,000 10,000 100,000

model size (triangles)

b
o

u
n

d
ar

y
er

ro
r

(%
)

w/o boundary quadrics (max error) w/ boundary quadrics (max error)

w/o boundary quadrics (rms error) w/ boundary quadrics (rms error)

Figure 2: Maximum and root mean square boundary error for bunny model,
simplified with and without boundary quadrics.

seen in Figure 6(e), there is significant loss in topological structure
and geometric detail as the triangle count drops to a few million.
A simplification of a complex dataset like this requires more tri-
angles than can be stored in RAM on most computers, and must
be simplified using a memory insensitive method such as OoCSx.
Notice also the improved boundaries in Figure 6(d) over the model
simplified without boundary quadrics (Figure 6(b)).

Finally, we evaluated the effect of performing constrained opti-
mization over the cell boundary in those cases where the optimal
vertex position lies outside the cell. We compared this approach
to (1) leaving the vertex outside the cell, and (2) projecting it onto
the cell boundary. In all cases, the constrained optimization per-
formed as well or better than the other two approaches, both in
terms of maximum and RMS error. Figure 5 shows an example
where constrained optimization resulted in nearly a factor of six re-
duction in the maximum error over leaving the vertices unclamped.
Notice how the artifacts near the lower jaw, ears, and hind leg are
eliminated by clamping and optimizing the vertices, leaving a more
visually pleasing model.

5 CONCLUSIONS

In this paper, we proposed improvements to the out-of-core sim-
plification (OoCS) technique [20]. First, we described OoCSx, a
memory insensitive variation of OoCS. The key feature of OoCSx
is its ability to efficiently simplify arbitrarily large datasets using
a constant amount of main memory. OoCSx uses a disk-based
technique for storing information about the simplified mesh and ar-
ranging it in a cache-coherent manner. We also discussed an ef-
ficient implementation of OoCSx and compared its performance
with OoCS. Second, we proposed a technique for preserving sur-
face boundaries without making use of connectivity information.
Our approach is to compute and minimize an edge-based quadric
error for all edges of the mesh, regardless of their topological type.
We showed that this technique can dramatically improve the shape
of boundary curves, with little or no loss in geometric quality over
the remaining surface. Finally, we proposed using a linearly con-
strained optimization over grid cell boundaries to compute vertex
positions whenever the global optimum is outside the grid cell.

One shortcoming of the current approach is that the overall sim-
plification has constant feature size. Similar to [27], it would be in-
teresting to extend OoCSx to simplify the mesh adaptively. Taking
this one step further, we will investigate how to adapt our out-of-
core algorithms to perform dynamic view-dependent refinement of
the mesh for interactive visualization. Another drawback of OoCSx
is that it requires significant amounts of disk space. The per-triangle
quadric information stored on disk constitutes a large portion of

Figure 3: 470 million triangle isosurface of entire fluid dynamics dataset.

the overall space requirements. We believe that careful encoding
of these 4-vectors, using normal quantization [9] and per-grid-cell
coordinate representations, will allow this information to be repre-
sented using as little as 32 bits per vector. Finally, many datasets
come with surface attributes such as scalar field values, normal and
curvature information, and color. We hope to extend our simplifi-
cation code to take into account and preserve such information.

Acknowledgements

This work was performed under the auspices of the U.S. DOE by
LLNL under contract no. W-7405-Eng-48. We would like to thank
the reviewers for useful comments. Many thanks to Glenn Fowler
and John Linderman for several discussions and access to their ex-
ternal sorting code. We wish to thank Stanford University and the
Digital Michelangelo Project for providing the bunny, dragon, Bud-
dha, and St. Matthew datasets, and Kitware for the turbine blade
model. Thanks to David Bremer, Mark Duchaineau, and Randy
Frank for preparing the fluid dynamics dataset.

Appendix: Dereferencing Indexed Meshes

The file format we assume in our algorithm is different from the in-
dexed mesh formats commonly used for main memory techniques.
In main memory, it is common to store a list of vertex coordinates
(x,y,z), and a list of triangles, represented by three integers that re-
fer to the vertices of the given triangle. Before such datasets can be
used in our algorithm, they need to be “normalized”, a process that
dereferences the pointers to vertices. This process is thoroughly
explained in [7]. For completeness, we briefly explain how to nor-
malize such a file withV vertices andT triangles. In an initial
pass, we create two (binary) files, one with the list of vertices, and
another with the list of triangles. Next, in three passes, we deref-
erence each index in the triangle file, and replace it with the actual
position for the vertex. In order to do this efficiently, we first (ex-
ternally) sort the triangle file on the index we intend to dereference.
This takes timeO(T logT) using an (external memory) mergesort.
Then, we perform a synchronous scan of both the vertex and the
(sorted) triangle file, reading one record at a time, and appropri-
ately outputting the deferenced value for the vertex. Note that this
can be done efficiently in timeO(V +T) because all the vertex ref-
erences are sorted. When we are done with all three passes, the
triangle file will containT records with the “value” (not reference)
of each of its three vertices.

References

[1] J. Abello and J. Vitter.External Memory Algorithms and Vi-
sualization. American Mathematical Society Press, 1999.

[2] L. Ammeraal. Algorithms and Data Structures in C++. Ad-
dison Wesley, 1996.

[3] C. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang. Par-
allel Accelerated Isocontouring for Out-of-Core Visualiza-
tion. Proceedings of IEEE Parallel Visualization and Graph-
ics Symposium 1999, pages 97–104, October 1999.

[4] F. Bernardini, J. Mittleman, and H. Rushmeier. Case study:
Scanning Michaelangelo’s Florentine Pietà. In ACM SIG-
GRAPH 1999 Course notes, Course #8, August 1999.

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The Ball-Pivoting Algorithm for Surface Recon-
struction. IEEE Transactions on Visualization and Computer
Graphics, 5(4):349–359, October - December 1999.

[6] Y.-J. Chiang and C. T. Silva. I/O Optimal Isosurface Ex-
traction. IEEE Visualization ’97, pages 293–300, November
1997.

[7] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive Out-
of-Core Isosurface Extraction.IEEE Visualization ’98, pages
167–174, October 1998.

[8] M. B. Cox and D. Ellsworth. Application-Controlled Demand
Paging for Out-of-Core Visualization.IEEE Visualization ’97,
pages 235–244, November 1997.

[9] M. F. Deering. Geometry Compression.Proceedings of SIG-
GRAPH 95, pages 13–20, August 1995.

[10] J. El-Sana and Y.-J. Chiang. External Memory View-
Dependent Simplification.Computer Graphics Forum, 19(3),
August 2000.

[11] R. Farias and C. Silva. Out-of-Core Rendering of Large Un-
structured Grids.IEEE Computer Graphics & Applications,
21(4):42–50, 2001.

[12] G. Fowler. ASTsort. http://www.research.att.com/sw/
download.

[13] M. Garland and P. Heckbert. Fast Polygonal Approximation
of Terrains and Height Fields. Technical Report CMU-CS-
95-181, Carnegie Mellon University, 1995.

[14] M. Garland and P. Heckbert. Surface Simplification Using
Quadric Error Metrics.Proceedings of SIGGRAPH 97, pages
209–216, August 1997.

[15] H. H. Hoppe. Smooth View-Dependent Level-of-Detail Con-
trol and its Application to Terrain Rendering.IEEE Visualiza-
tion ’98, pages 35–42, October 1998.

[16] D. E. Knuth. Sorting and Searching, volume 3 ofThe Art of
Computer Programming. Addison-Wesley, 1973.

[17] S. Leutenegger and K.-L. Ma. Fast Retrieval of Disk-Resident
Unstructured Volume Data for Visualization. InExternal
Memory Algorithms and Visualization, DIMACS Book Se-
ries, American Mathematical Society, vol. 50, 1999.

[18] J. Linderman. rsort andfixcut man pages. April 1996 (re-
vised June 2000).

[19] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo Project: 3D
Scanning of Large Statues.Proceedings of SIGGRAPH 2000,
pages 131–144, July 2000.

[20] P. Lindstrom. Out-of-Core Simplification of Large Polygonal
Models. Proceedings of SIGGRAPH 2000, pages 259–262,
July 2000.

[21] P. Lindstrom and G. Turk. Fast and Memory Efficient Polyg-
onal Simplification.IEEE Visualization ’98, pages 279–286,
October 1998.

[22] P. Lindstrom and G. Turk. Evaluation of Memoryless Simpli-
fication. IEEE Transactions on Visualization and Computer
Graphics, 5(2):98–115, April - June 1999.

[23] A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dan-
nevik, A. M. Dimitis, M. A. Duchaineau, D. E. Eliason,
D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Wood-
ward, L. J. Shieh, and S. W. White. Very High Resolution
Simulation of Compressible Turbulence on the IBM-SP Sys-
tem. Proceedings of Supercomputing 99, November 1999.

[24] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering
Complex Scenes with Memory-Coherent Ray Tracing.Pro-
ceedings of SIGGRAPH 97, pages 101–108, August 1997.

[25] C. Prince. Progressive Meshes for Large Models of Arbitrary
Topology. M.S. thesis, University of Washington, 2000.

[26] J. Rossignac and P. Borrel. Multi-Resolution 3D Approxima-
tion for Rendering Complex Scenes. InModeling in Com-
puter Graphics, pages 455–465, 1993.

[27] E. Shaffer and M. Garland. Efficient Adaptive Simplification
of Massive Meshes.IEEE Visualization ’01, October 2001.

[28] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A Fast Volume
Rendering Algorithm for Time-Varying Fields Using a Time-
Space Partitioning (TSP) Tree.IEEE Visualization ’99, pages
371–378, October 1999.

[29] C. Silva, J. Mitchell, and A. E. Kaufman. Automatic Gen-
eration of Triangular Irregular Networks Using Greedy Cuts.
IEEE Visualization ’95, pages 201–208, November 1995.

[30] C. Silva and J. Mitchell. Greedy Cuts: An Advancing Front
Terrain Triangulation Algorithm.Proceedings of the 6th ACM
Workshop on Advances in GIS, pages 137–144, November
1998.

[31] P. M. Sutton and C. D. Hansen. Accelerated Isosurface Ex-
traction in Time-Varying Fields.IEEE Transactions on Visu-
alization and Computer Graphics, 6(2):98–107, April - June
2000.

[32] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-Core
Streamline Visualization on Large Unstructured Meshes.
IEEE Transactions on Visualization and Computer Graphics,
3(4):370–380, October - December 1997.

(a)
original;T

=
69,451

(b)
w

/o
boundary

quadrics;T=
14,761

(c)
w

/boundary
quadrics;T=

14,761

F
igure

4:
B

unny
m

odel
sim

plified
w

ith
and

w
ithoutthe

surface
bound-

ary
preservation

technique.

(a)
original;T

=
871,306

(b)
w

ithoutclam
ping;T

=
20,292

(c)
w

ith
clam

ping;T
=

20,292

F
igure

5:
U

se
of

constrained
op-

tim
ization

over
cell

boundaries
to

reposition
stray

vertices.

(a) original;T = 467,614,855 (b) without boundary quadrics;T = 26,086,125

(c) with boundary quadrics;T = 94,054,242 (d) with boundary quadrics;T = 26,086,125 (e) with boundary quadrics;T = 6,823,739

Figure 6: Small subset of isosurface of turbulent-mixing fluid dynamics simulation. The triangle counts correspond to simplifications of the entire dataset.

1

External Memory Management and Simplification
of Huge Meshes

P. Cignoni, C. Montani, C. Rocchini, R. Scopigno

Abstract— Very large triangle meshes, i.e. meshes com-
posed of millions of faces, are becoming common in many
applications. Obviously, processing, rendering, transmission
and archival of these meshes are not simple tasks. Mesh sim-
plification and LOD management are a rather mature tech-
nology that in many cases can efficiently manage complex
data. But only few available systems can manage meshes
characterized by a huge size: RAM size is often a severe
bottleneck.
In this paper we present a data structure called Octree-
based External Memory Mesh (OEMM). It supports exter-
nal memory management of complex meshes, loading dy-
namically in main memory only the selected sections and
preserving data consistency during local updates. The func-
tionalities implemented on this data structure (simplifica-
tion, detail preservation, mesh editing, visualization and in-
spection) can be applied to huge triangles meshes on low-
cost PC platforms. The time overhead due to the external
memory management is affordable. Results of the test of
our system on complex meshes are presented.

CR Descriptors: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - Curve, surface, solid and ob-
ject representation; I.3.6 [Computer Graphics]: Methodology
and Techniques.
Additional Keywords: Out-Of-Core Algorithms, Hierarchi-
cal Data Structures, Mesh Simplification, Level of Detail,
3D Scanning, Texture Synthesis.

I. Introduction and state of the art

Very large triangle meshes, i.e. meshes composed of
many millions of faces, are common in many applications:
range scanning, volume data visualization, terrain visual-
ization, etc. For example, huge meshes (up to Giga trian-
gles sizes) can be produced by scanning Cultural Heritage
artifacts [3], [16] or by processing large volumetric dataset
(e.g. the data produced by the Visible Human project or
the DOE ASCII project). Obviously, such complex meshes
introduce severe problems in the archival, manipulation,
visualization and geometric processing. Huge mesh man-
agement encompasses different processing goals:
• Efficient visualization, for selective inspection and pre-
sentation (direct raw mesh visualization is inefficient when
we want to focus on a small dataset region).
• Mesh editing functionalities, to improve the quality of
the data (e.g., 3D scanned meshes need smoothing filters
or operators for the triangulation of holes).
• High quality simplification capabilities, to allow the con-
struction of LOD representations (even if alternative repre-
sentations exist, e.g. based on point-based primitives [24],

Istituto Scienza e Tecnologie dell’Informazione - CNR
(formerly IEI-CNR and CNUCE-CNR), Area della
Ricerca CNR, v. G. Moruzzi 1, 56124 Pisa, ITALY.
E-mail: {cignoni|montani|rocchini}@iei.pi.cnr.it ,
r.scopigno@cnuce.cnr.it .

topology is crucial in a number of applications and triangles
are still the standard graphics primitive).
• Finally, applications’ specific functionalities can be re-
quired (e.g. computing digital measures on the model or
supporting data conversion tools for rapid prototyping).

The adoption of an External Memory (EM) technique is
mandatory whenever we want to process a huge mesh on a
limited core memory footprint. The design of EM solutions
is a very active research area, and many groups are working
on this issue in the graphics community as well. Recent
results are: EM isosurfaces fitting [4], EM reconstruction
of surfaces from point clouds [2], EM visualization [29], or
EM solutions for the simplification of huge meshes [13],
[17], [7], [18], [28]. Let us focus on the mesh simplification
task.

A. Mesh Simplification

In the context of geometric processing, mesh simplifi-
cation can be considered a crucial task, and core mem-
ory is often the bottleneck [10]. Almost all simplification
tools require the whole mesh to be loaded in main memory.
If we consider Quadric Error edge-collapse simplification
[11], the space complexity can be estimated as a factor of
the mesh size (176 byte for each face). Therefore, we can
process around 1.1M-1.3M faces on a system with 256MB
RAM.

Various techniques have been presented to face the prob-
lem of huge mesh simplification: Hoppe’s hierarchical
method for digital terrain management [13], that can be
extended to 3D meshes as shown in [22], [8]; the cluster-
ing solution proposed by Lindstrom [17]; and the spanned
mesh simplification algorithm by El-Sana et al. [7].
Hoppe hierarchically divides the mesh in blocks, simplifies
each block by collapsing edges (the collapse of elements in-
cident on the boundary of the block is forbidden) and then
traverses bottom-up the hierarchical structure by merging
sibling cells and again simplifying. This approach has ei-
ther a bottleneck on the output size (because a complete
bottom-up traversal of the tree is required to remove ele-
ments incident on the inter-cell boundaries) or on the sim-
plification accuracy (intermediate results present unpleas-
ant runs of original high resolution elements located on cells
boundaries). Moreover, this approach cannot be extended
easily to support other geometric processing tasks, because
the elements shared by adjacent blocks cannot be modi-
fied unless the blocks are merged. These disadvantages are
shared with the 3D mesh extensions of the Hoppe’s ap-
proach [8], [22].
The clustering algorithm [23] can be easily implemented
in external memory [17] and guarantees excellent time effi-

James T Klosowski
© 2002 IEEE. Reprinted, with permission, from IEEE Transactions on Visualization and Computer Graphics, to appear.

2

ciency. Unfortunately, the accuracy of the mesh produced
is much lower if compared with the accuracy of methods
based on edge collapse. The simple criterion adopted (unify
all mesh elements that are contained in the same cluster)
implies that every shape feature whose size is smaller than a
cluster cell is removed. Clustering performs an accurate (it
is based on quadric error metrics) but regular sub-sampling
in the model space. Therefore, it is not able to simplify
large sections of the mesh which have a low curvature varia-
tion and span multiple cells. A disadvantage of the original
clustering approach is that intermediate simplification re-
sults are maintained in main memory. This prevents simpli-
fication when an intermediate reduction rate is requested.
This latter problem has been recently solved by Lindstrom
and Silva [18] by storing the output mesh and intermediate
data on disk (out-of-core sorting is used to detect and com-
pose the quadrics associated to each grid cell); output size
independence is obtained at the expenses of two to five
times slower simplification times. Another improvement
over the general Clustering approach has been proposed
recently by Shaffer and Garland [28]. A higher quality ap-
proximation is obtained at the expenses of a small time
overhead (around two times slower than standard cluster-
ing) by replacing the regular grid with an adaptive subdi-
vision based on BSP trees. The external memory imple-
mentation needs multiple scan of the data: initially, a uni-
form grid is used to quantize the input data and compute
quadrics; then, this info allows to build an adaptive subdi-
vision of the space (by a BSP tree), that is used in the last
step to simplify the mesh. Even if this method gives an im-
proved accuracy with respect to standard clustering (given
a budget of K output vertices, these are positioned on the
surface in an adaptive manner), the accuracy is lower than
that produced with edge-collapse methods and the output
is often non-topologically clean, as well as all clustering so-
lutions (see some discussion in Section VIII).
The spanned mesh simplification algorithm by El-Sana et
al. [7] starts from an indexed mesh with explicit topology.
It keeps all the edges of the mesh (with the adjacent faces)
into an external memory heap, ordered according an error
criterion based on edge length (using edge length does not
ensure high accuracy in simplification. Implementing an
ordering criteria based on quadric error metrics [11] is not
easy, due to the more complex data loading required for
the initial evaluation of the QEM for each edge and for the
update of QEM after each edge collapse. Given the k edges
on top of the heap (k depends on the core memory size),
it loads in memory the associated adjacent faces pairs and
reconstructs the mesh portions spanned by these edges.
Then, the edges having all their incident faces loaded in
memory can be collapsed. This approach reaches a good
computational efficiency if we are able to load in memory
a large percentage of the data (i.e. large contiguous re-
gions). In the case of huge meshes the shortest edges could
be uniformly scattered and it could happen that most of
the spanned sub-meshes loaded in memory consist of only
a few triangles, therefore requiring a very frequent load-
ing/unloading of very small regions. A positive advantage

of this method is that the simplification order performed
by the external memory implementation is exactly identical
to the one used by an analogous in-core solution (thus, the
mesh produced by the external memory implementation is
identical to the one of the in-core solution).

Beside the specific limitation of each one of the above
techniques, most of them have been designed to support
just simplification, and extending these approaches to sup-
port also other geometric processing algorithms can be not
straightforward.

B. Objectives

Our goal is therefore to support general huge mesh man-
agement on low-cost platforms, by providing mesh manip-
ulation, editing, filtering, simplification and inspection fea-
tures under the constraint of a limited memory size. None
of the existing systems support these features, especially
if we consider PC-based systems. Our system is based on
a hierarchical data structure, called Octree-based External
Memory Mesh (OEMM). Hierarchical schemes [25] have
been often used in geometric processing and interactive vi-
sualization [1], [8], [9], [13], [15], [22], [24], [29], but in all
these cases the hierarchical structure sets strong limitation
on how and where processing can be performed. For exam-
ple, the hierarchical simplification approach [13], [8], [22]
simplifies some boundary elements only in the very last step
of the bottom-up simplification process (i.e. boundary el-
ements can be managed only when the corresponding leaf
nodes are merged). Our external memory structure is not
just another space subdivision or data paging scheme. Pe-
culiar characteristics of our approach are: (a) it supports
a global indexed representation (built on any huge mesh
given in input as a triangle soup); (b) it allows any partial
data load/update/write-back operation, by performing an
automatic on the fly re-indexing of the loaded data portion:
in this way, any loaded portion is represented in core mem-
ory with indexed lists containing only the loaded vertices
and faces. Data subdivision is performed using a standard
octree-based regular split; elements spanning adjacent cells
are identified in the construction phase, consistent id’s are
assigned to the corresponding vertices in adjacent nodes
(vertex indexing also satisfies the lexical order of the cor-
responding octree nodes) and, finally, each border element
is assigned to a single node of the octree. This allows data
loading of any subset of the mesh, which is converted on
the fly in a single, consistent mesh indexed on the local
subset of vertices. The potential boundary elements con-
tained in the interior of the loaded region can therefore
be treated as any other element, while a tagging strategy
(the peculiar characteristic of our approach) allows easy
detection and management of the elements located on the
boundary of the current region. This makes simple the
design of the external memory version of many geometric
algorithms. Therefore, the underlying space decomposition
is completely hidden (and managed by the data structure),
and coding geometrical algorithms working on data parti-
tions becomes easier.

Thanks to the freedom of accessing any small subset of

3

the mesh consistently, we can easily implement different
mesh processing algorithms on the OEMM data structure,
such as: mesh editing and selective inspection; high qual-
ity mesh simplification (based on the quadric error metric
approach [11]); detail preservation (based on bump- or rgb-
texture resampling, to encode the high frequency detail lost
during simplification [5]). The bottleneck on either input
and output data size is thus removed.

The paper is organized as follows. Some definitions are
introduced in Section II. Then, the OEMM hierarchical
structure is introduced in Section III. Details on the con-
struction of an OEMM representation from a triangle soup
(list of faces, not indexed) are given in Section IV. Sec-
tion V presents the data management procedures (traver-
sal, loading, updating). Section VI describes how to imple-
ment external memory mesh simplification. Other mesh
processing tasks have been implemented on the OEMM
data structure, and are briefly described in Section VII.
Finally, Sections VIII and IX report results and conclu-
sions.

II. Definitions

Mesh Terminology. A mesh is called indexed if all the tri-
angles are encoded by storing a triple of references to their
vertices (either with explicit pointers or with integer in-
dices). Conversely, it is called raw (or triangle soup) if the
triangles are described with a triple of 3D points and shar-
ing of vertices among adjacent triangles is not considered.

Octree Terminology. Given an axis aligned box B contain-
ing the dataset, we recursively partition it in eight sub-
regions [20]. Sub-regions are numbered according to their
relative coordinates in lexicographic order (see Figure 1 for
a 2D example), which defines a total ordering between oc-
tree leaves according to a DFS visit [25]. Given an octree
node n, we denote with Bn the bounding box correspond-
ing to that node. Each bounding box B is identified by two
3D points B.min,B.max.
To avoid ambiguities hereafter when we say that a point p
is contained into a bounding box B we mean that its coor-
dinates are greater than or equal to B.min and less than
B.max. In this way any point is contained in one and only
one leaf node of the octree.

III. Octree-based External Memory Mesh

The Octree-based External Memory Mesh data structure
(OEMM) provides support for the management of generic
processing on huge meshes, under the constraint of limited
core memory. OEMM is based on a hierarchical geomet-
ric partition of the dataset with no vertex replication and
consistent vertex indexing between leaf nodes which shares
a reference to the same vertex. This hierarchy is coupled
with an element tagging strategy that permits to manage
in a straightforward manner the partial knowledge of geom-
etry and topology (a common situation when only a small
portion of the whole mesh is loaded in each instant of time).

A small mesh portion is assigned to each OEMM leaf,
based on regular hierarchical decomposition. Only the hi-

Fig. 1. Flags setting on a section of the mesh currently loaded in
main memory (leaf nodes 1, 30, 31 are the ones loaded). Node
numbering reflects the lexical order of the nodes.

erarchical structure of the octree is maintained in main
memory: each octree leaf holds the external memory ad-
dress of the corresponding portion of the mesh. An impor-
tant feature of the OEMM is that it maintains a globally
indexed representation of the mesh. Therefore, each ver-
tex is uniquely identified by an integer and triangles are
described and stored using just three indices (there is no
vertex duplication). The vertex indices respect the octree
structure and the order defined on the leaves in the follow-
ing sense: each octree leaf node has associated a unique
integer range, and all of its vertex indices lie in this range.

Definition III.1: OEMM leaf node. Each leaf � of the
octree stores a pointer to a secondary memory chunk which
contains:
• vertices - all the vertices contained in the bounding
box of � ; for each vertex v we also store the indices of the
OEMM leaf nodes which contain shared faces incident in
v;
• faces - for each triangle t partially contained in the
bounding box of �, t is stored in � only if � is the minimal
leaf (according to the lexicographic order) which contains
a vertex of t. Therefore, all the triangles completely con-
tained in the bounding box of � are stored in �. In other
words, a face is stored in the lowest index leaf that contains
a vertex of the triangle.

Maintaining the whole octree structure in main memory
is not a memory bottleneck because its memory size is not
very large, even for very large meshes. To give an example,
if we have an average of 16K triangles in each octree leaf,
then the octree structure associated with a 10G faces mesh
requires ≈40 MB.
The data structure encoding each OEMM node on disk is

4

as follows:
OctreeNode{

OctreeNode *parent;
OctreeNode *child[8];
EM_Pointer Mesh; // Pointer to external memory
int vn; // Vertex number
int tn; // Triangle number
int BaseInd; // index range of leaf goes from
int LastInd; // BaseInd to LastInd
vector<int> L; // Set of adjacent leaves with shared data

}
DiskTriangle{
int v[3];
data attributes; // User-defined attributes

}
DiskVertex{
Coord3d p;
unsigned char ol[8]; // Indices of adjacent cells containing

// triangles incident in vertex p
bool deleted;
bool modified;
data attributes; // User-defined attributes (color,

// quadrics, etc.)
}

This gives a minimal representation of a mesh; if needed,
more complex representations (e.g. with explicit topology
links between adjacent faces) can be built on the fly at data
loading time.

The main purpose of this structure is to allow the user
to load in main memory and to modify any small contigu-
ous portion of the mesh, independently of the underlining
hierarchical decomposition. By traversing the OEMM oc-
tree structure and iteratively loading, updating and saving
leaves we are able to apply on very large meshes almost any
kind of geometric algorithm based on local updates. More-
over, some geometric algorithms that need to work on the
whole mesh can be redesigned such that just a portion of
the data should be needed at each instant of time.

Loading just a portion of the mesh force us to cope with
partial knowledge of the mesh elements. As an example,
a vertex on the frontier of the mesh section assigned to
the current leaf may have incident faces which are not con-
tained in the current leaf, or some of the faces on the fron-
tier can be defined by vertices whose geometry has not been
loaded because it is stored in an adjacent, non-loaded cell.
The ol field contained in the vertex data structure encodes
the set of adjacent leaves which contain faces incident in
that vertex. To ensure space efficiency, the ol has been
implemented as a fixed length unsigned char field; the
values contained in ol are indices to a list of adjacent cells
stored in the corresponding leaf node, that is the vector L
of leaf indices (see data structure above). If more than 8 in-
dices are required, they are allocated in a dynamic list (but
this situation never arose in all the tests presented). Note
that it can be proved that if triangles edges are smaller
than half of the smallest octree box, then each vertex can
be referenced by, at most, seven other leaves.

Because we load only a portion of the mesh, we must
maintain explicit information on which operations can be
performed on the currently loaded or referred mesh ele-
ments. For this reason a set of flags are added to the
Vertex and Triangle data structure when data are loaded
in RAM:

Triangle{
vertex* v[3];
int flags;
}
Vertex{
Coord3d p;
int OEMMVertIndex;
int flags;
data attributes; // User-defined attributes

// (color, quadrics, etc.)
}

The vertex flags hold the following values:
• readable and writable: a vertex is readable if it is con-
tained in one of the currently loaded leaves. A vertex is
writable if all of the faces incident in it are contained in
leaves currently loaded. In this way, a vertex that is refer-
enced by some non-loaded triangle is set readable but non
writable, preventing modifications. On the contrary, if a
vertex is not loaded and is referenced by triangles that are
loaded then it is tagged as non readable and non writable.
We implicitly assume that writable implies readable;
• modified: a vertex is modified when either its coordi-
nates or the set of elements incident in it have been mod-
ified or, in some sense, processed (for example, to prevent
multiple redundant processing on the same mesh element).

Conversely, the face flags hold the following values:
• readable and writable: a triangle is readable if it is
contained in one of the currently loaded leaves. A triangle
is writable if all of the vertex-adjacent triangles are readable,
or in other words if all its vertices are writable;
• modified: a triangle is modified when its vertex indices
have been modified.
An example of flags settings is shown in Figure 1. Flags
are initialized by the loading function of the OEMM leaves,
according to: (a) the values of the ol and L fields in the
OEMM representation (see OctreeNode and DiskVertex
data structures), and (b) the current set of leaf nodes
loaded.

IV. Building the OEMM

We assume that the input mesh comes as a large set of
raw, not indexed triangles, stored therefore with just 3D
coordinates. We therefore describe OEMM construction
considering the worst-case input (if we have in input an in-
dexed mesh, some construction steps described below can
be avoided or simplified). In any case, many huge meshes
comes as a set of independent indexed meshes (e.g. pro-
duced by separate runs of a surface fitting code), and there-
fore re-indexing them in a common vertex space is needed.
The OEMM is constructed in two steps:
1. a raw OEMM structure is built in secondary memory
by processing all input triangles; the raw OEMM is a non-
indexed OEMM . Each raw OEMM leaf node � contains
all triangles {ti} such that at least one of the vertices of
ti is contained in the node bounding box B�. Note that
triangles shared by multiple leaf nodes are replicated in all
those nodes of the raw OEMM ;
2. the raw OEMM is traversed and an indexed OEMM
is built, i.e. an octree where triangles are indexed us-

5

ing a global vertex naming strategy. At the end of this
phase, vertices and faces of the mesh are partitioned on
the OEMM leaves according to Definition 3.1, with no re-
dundancy.
In the following paragraph we see some details on how this
building process is performed.

A. Building a raw OEMM

This first construction phase is performed in two steps.
The goal of the first step is to determine the structure of
the OEMM octree: we fix a maximal depth of the OEMM
, we scan all the triangles and count, for each leaf node �
of the OEMM , how many triangles should be assigned to
it. When all faces have been virtually assigned to leaves,
sibling leaf nodes are collapsed into the parent node if and
only if: the sum of the triangles contained is lower than
a user-selected threshold, called max triangles, and the
resulting merged node has adjacent nodes whose depth in
the tree differs from the depth of the current one by no more
than three levels (i.e. we build a restricted octree [25]). The
second condition guarantees that loading a leaf and all of
its adjacent leaf nodes has a bounded space complexity.

In the second step we read again the set of raw triangles
from secondary storage, and distribute them in the sec-
ondary memory buckets corresponding to the octree leaf
nodes.

B. Building an indexed OEMM

To build the indexed OEMM we perform two complete
traversal of the intermediate data structure: firstly, we tra-
verse the raw OEMM to build an intermediate indexed
OEMM where only internal vertices are correctly indexed
(we call internal the vertices contained in the leaf bound-
ing box, and external the others); then, the final indexed
OEMM is built by indexing also the external vertices which
belong to the faces shared by the adjacent leaf nodes.

Indexing internal vertices. The indices of the vertices
should respect the lexicographic order of the leaves of the
OEMM . Therefore, the leaves of the raw OEMM are read
from secondary storage in lexicographic order, and for each
leaf � we assign an unique index to each vertex contained in
the given leaf, and copy them in the indexed OEMM. All
the vertices that are not contained in � are indexed with a
temporary fake value.
In this step we also setup the per-node and per-vertex list
of OEMM leaves that contain faces shared with the current
leaf node. This can be done easily due to the redundant
representation of shared faces in the raw OEMM.

Indexing external vertices. The last step computes a cor-
rect global index for all the external vertices of the shared
faces represented in each leaf. Therefore, each OEMM leaf
node, with the adjacent ones, is read from secondary mem-
ory for the last time, and the global indices assigned to the

internal vertices of a cell are propagated to the adjacent
ones containing shared triangles as follows:
• all the leaf nodes �i which share triangles with � are
loaded;
• for each vertex v �∈ � of a shared triangle t ∈ �, we replace
the fake index initially assigned to v in � with the correct
index assigned to v in the leaf node �j containing v.

V. Working with the OEMM

Working with the OEMM involves the iterative applica-
tion of load/[modify/save] actions onto the OEMM leaves.
Here we describe the details of these steps.

A. Traversal

In order to apply a geometric algorithm over an OEMM
we have to define a visiting strategy such that all the ver-
tices and triangles are seen at least once as readable and
writable. Loading only a leaf at a time does not allow to
get full information on the associated mesh portion and to
modify the triangles which are not completely contained in
the current leaf. The OEMM library implements different
atomic data access rules:
• subtree: load all the leaves contained in the subtree plus
all the leaf nodes adjacent to the nodes of this subtree;
• bounding-box: load the minimal set of leaves such that
all the vertices contained in the given bounding-box and
all the triangles referencing them are loaded.

A geometric algorithm can traverse the OEMM choosing
any of the previous atomic rules depending on the char-
acteristics of the processing to be performed and on the
relative space requirements.

B. Loading Leaves

Loading in main memory a generic set of leaves S =
{�0, .., �k} means to reconstruct a standard indexed mesh
representation from the OEMM loaded leaf nodes. This
task involves the re-indexing of the mesh faces to a new
vertex vector composed only by the loaded vertices (i.e. a
vertex vector much smaller than the global OEMM vertex
list); and to assign the correct flags settings to all faces and
vertices.

Vertices re-indexing can be done in linear time because
the maximum number of adjacent nodes is bounded by a
constant. The original index of each vertex is maintained
(see the int OEMMVertIndex of the Vertex data structure
in Section III), in order to guarantee that non writable ver-
tices could be placed back in the original position of the
corresponding leaf block on secondary memory (see Sec-
tion V-C).

The flag values (readable/writable and modified) are as-
signed as follows (see also Figure 1):
• vertices referenced by triangles outside all �i ∈ S are
tagged not writable.
• vertices stored in non-loaded leaves but referenced by
triangles in �i ∈ S are replaced with dummy vertices and
tagged not readable, non writable.

6

C. Saving Leaves

A modified mesh corresponding to a set of leaf nodes
S = {�0, .., �k} has to be written back on secondary mem-
ory to make these modifications permanent. This step in-
volves a back conversion of the current indexed mesh into
a OEMM mesh chunk indexed with the global OEMM in-
dices. We distribute the vertices to the appropriate OEMM
leaves, and implicitly assign to each vertex the global in-
dex. During the saving step it is important that each vertex
referenced by non loaded triangles (i.e. the ones that we
classify non-writable) keeps its original position in the ver-
tex list of the OEMM leaf node (the global index of each
vertex is implicitly coded with the range of the leaf plus
the vertex position inside the leaf).

Then, we distribute triangles to the appropriate OEMM
leaf; for triangles shared by multiple leaves, the selection
is performed by looking at the global index of the vertices,
according to definition in III.1. Finally, for each face the
indices of its vertices are replaced with the corresponding
new global indices.

To ensure correctness of loaded nodes saving back, the
following situations must be detected:
• vertex indices out of range: if the number of vertices to
be saved back in a OEMM leaf is bigger than the original
leaf range (for example because we updated the leaf to tri-
angulate some mesh holes), then the leaf range should be
expanded. Because assigning a wider range to a leaf is a
costly operation (involving loading and re-indexing multi-
ple leaves), at OEMM creation time we have distributed the
leaf ranges uniformly over the 32 bit integer space. In this
manner, there is plenty of space between any pair of con-
secutive leaf range to slightly widen the range. Obviously,
if leaf nodes size changes in a drastic manner, an update to
the OEMM structure could be needed (see Section V-D);
• vertex coordinates not contained in the current loaded
space: a dangerous situation is when the coordinates of
a modified vertex are not contained in the space corre-
sponding to the loaded OEMM section (i.e. the union of
the bounding box of the loaded leaf nodes). To prevent
this situation, we detect every update which modifies the
mesh by moving vertices in regions that are still not loaded,
abort this update and backtrack.

D. Modifying the OEMM structure

The OEMM structure can be dynamically updated due
to multiple delete/creation actions operated on the loaded
nodes.
Node Merging. Every time a leaf is saved back, we firstly
check if it can be collapsed with its siblings nodes in the
corresponding parent node. When the number of vertices
and triangles of the eight siblings is lower than a given
threshold and all the conditions specified in Section IV-A
hold, we can merge them in a single leaf. Node merging
is as follows: the eight leaves and all other OEMM nodes
referencing their vertices are loaded; the new range of the
vertex indices assigned to the new leaf is computed; vertices
are re-indexed; all the triangles of the loaded leaves are re-
mapped with the new vertex indexing (this can involve the

updating of some ol lists of the adjacent nodes); finally, all
the loaded nodes are saved back.
The merging process is executed frequently during external
memory mesh simplification (see Section VI).
Node Splitting. Node splitting is the inverse of the previous
operation, and it has to be performed when the number of
element in a leaf is higher that the maximum leaf size.
Again, we have to reindex the vertices of the split sections
and to reflect the new vertex indexing on the sibling nodes.

E. OEMM Complexity

While from a theoretic point of view octree’s have not
a good worst case complexity, they perform really well in
practice. Let us assume that the input mesh has some
reasonable characteristics: the number of triangles incident
in a single vertex is bounded by a constant; the size of the
faces is not smaller than a minimal value, and therefore
the maximal depth of the octree is bounded. Then, we can
assert that: loading and saving a leaf node (and some of
the adjacent ones) has a cost linear in the size of the mesh
elements contained in the loaded/saved nodes.

VI. External Memory Mesh Simplification

Given a triangular mesh we want to reduce its size by
adopting a high-quality incremental approach, e.g. based
on the iterative collapse of its edges [11]. Locality of the
simplification method is a must, to allow us to load and pro-
cess the mesh one piece at a time. In particular, a Quadric
Error Metrics (QEM) method has been implemented in our
system, and is described in the next subsection. Each edge
collapse has an error-cost that has to be evaluated for each
candidate edge, both at initial time and during the sim-
plification process (every time the given edge is adjacent
to some modified mesh component). We assume here that
the error-cost can be computed in constant time and that
requires a per-vertex constant space occupation (i.e. it re-
quires only to access a local neighborhood of the collapsed
edge). This last assumption is true for the error estima-
tion techniques used in [27], [11], [19]. At each step of the
simplification process the edge with the minimal error cost
is collapsed (a heap is used to support ordered selection)
and the error evaluation of the adjacent edges is updated.
The overall worst case complexity of such an algorithm is
O(v log v), with v the number of vertices.

A. Quadric Error Simplification in the OEMM framework

Quadrics are included in the OEMM vertex attribute
and used to evaluate edge collapse error. As far concerns
quadrics management, there are mainly two approaches:
storing and updating quadric errors during edge collapse
(see Garland and Heckbert [11]) or re-computing quadrics
on the fly as proposed in the memoryless approach [19].
To describe how do we manage quadrics, we have to dis-
tinguish between what we store on disk, and what we store
in RAM. Both our RAM-QEM and OEMM-QEM use the
approach of Garland-Heckbert (quadrics are saved and up-
dated during the simplification of the currently loaded sec-
tion of the mesh). In the external-memory implementation

7

(OEMM-QEM), when the simplification of the current sec-
tion is terminated we write back on disk just the mesh (and
discard the quadrics). Therefore, when the same leaf is
loaded again and simplified further, we will start from a
set of newly initialized quadrics. Our experience showed
that retaining quadrics on RAM (during simplification of a
mesh portion) can be worthwhile, while it is not worthwhile
to retain them also among different simplification passes
over the same section (due to limited impact on accuracy
and the substantial overhead on data loading/writing) and
it helps to avoid the quadric lock problem [14].

Simplification algorithms usually adopt a priority queue
to choose the next edge to be collapsed; for this reason they
access the mesh with an order that is inherently non-local.
This scattering behavior causes virtual memory trashing,
making any approach based on standard virtual memory
features totally inefficient. Instead of forcing the algorithm
to follow the exact edge collapse order, as done for example
by El-Sana et al. [7], we choose to slightly change the col-
lapse order in order to catch geometric locality. Therefore
we do not keep a global heap with all the possible collapses,
but we traverse the OEMM (following the lexical order of
the leaves) and for each subtree that we load we build a
local priority queue and simplify it separately. We have
verified empirically that this local sorting has a very little
influence over the quality of the resulting simplification.

For each loaded subtree, we also load all the adjacent
leaves of the OEMM . This ensures that all the possible
edges of the current subtree (including the ones on the
boundary of the subtree) are evaluated for a possible col-
lapse. Therefore, at the end of the traversal the mesh is
uniformly simplified (while other hierarchical approaches
are constrained to leave untouched the inter-cell bound-
aries [13], [22], [8]). Let ε be the maximum quadric error
the mesh should satisfy, we produce a small sequence of er-
rors (ε1, .., εn=ε) built using a logarithmic increasing rule
and iterate QEM simplification n times on the mesh. At
each iteration i, we visit all the OEMM leaf nodes follow-
ing the subtree traversal rule (see Section V-A); QEM is
run on each mesh portion as long as accuracy εi is satis-
fied. During QEM run, all the edges that are incident in
writable triangles are evaluated for collapse, and the corre-
sponding forecasted error is stored in the heap. The use of
the readable and writable flags is defined easily. We can col-
lapse an edge only if all the vertices connected by an edge
to any of the edge’s vertices are writable and all the ver-
tices connected with an edge with these ones are readable.
This because for the collapse of an edge we need to modify
(alias writable permission) the vertices at topological dis-
tance 1, and to know the value (alias readable permission)
of the vertices at topological distance 2 (because we need
to know their data to evaluate the new approximation er-
ror of all vertices at topological distance 1).
When we have reached error εi on a given OEMM mesh
portion, we check during the leaf saving procedure (de-
scribed in Subsection V-C) if it is possible to merge any
modified leaf with the siblings leaves, and then we proceed
with the next mesh portion. When the user requests a dras-

tic simplification, the final OEMM can be composed of one
or a few nodes. The traversing scheme ensures that all the
edges whose edge stars span on adjacent OEMM nodes are
considered for collapse at least once in each iteration.

A special case has to be considered, that is the case of
edges whose extremes are not contained in two adjacent
OEMM nodes. This situation is not common in the case of
3D scanned dataset (where data resolution is sufficiently
regular), but can occur on CAD data or on irregularly
shaped meshes where very long or wide faces might have
vertices contained in non-adjacent nodes. In our approach
these faces (spanning non-adjacent OEMM cells) are sim-
plified only when, after some simplification steps, they be-
come part of adjacent leaf nodes. Because siblings leaf
nodes will be automatically merged during simplification,
after a number of steps any “long/wide” face will become
either contained in a single leaf node or shared by adjacent
leaf nodes. One can object that in this manner the order of
simplification of these faces is altered with respect to the
standard error-driven order of an in-core simplifier. This
is true, but we should say that normal meshes contain in
general just a few of these “critical” faces (not hundreds or
thousands), at least if the data producer has used a solid
modeler in a conscious way. Under this assumption and be-
cause of their relative size and small number, postponing
simplification will not have a drastic effect on the output
mesh size/accuracy.

The simplification of mesh topology is needed by many
applications, especially when the input data are very com-
plex assemblies. Extending our external memory simplifier
to support topology simplification could be easy. Follow-
ing the approach proposed in [11], given the set of loaded
OEMM leaf nodes we should only build a uniform grid on
the corresponding mesh vertices. This grid supports an
efficient detection of the pairs of non-adjacent but close
vertices which have to be evaluated for collapse.

B. Detail preservation via resampled textures

Preservation of detail is a must on big meshes, especially
if we want to process data with a very complex surface
texture (see for example Figure 4) or a complex pictorial
detail. In this case, the solutions that evaluate in an in-
tegrated manner the approximation of both the shape and
some other scalar/vetorial field are in general not adequate,
at least if we want to obtain a drastic mesh simplification.
Preservation of mesh attributes can be managed as a post-
processing phase: a texture can be resampled from the
original mesh, containing a discretized representation of the
detail removed during simplification (color, high-frequency
surface perturbations, other scalar/vectorial fields, etc.)
[5]. The resampled texture map is then used at rendering
time to paint the detail of original high resolution mesh
onto the simplified one [5], [26]. This solution is indepen-
dent of the simplification process and thus we can simplify
the mesh by considering only the shape attribute, leading
to very high compression ratios.

The external memory implementation of the detail pre-
serving approach is very easy on the OEMM framework.

8

Given a simplified mesh S, we distribute S in an OEMM
octree having the same structure of the original input mesh
OEMM . Then the two OEMM are traversed in parallel,
each face of S is sampled by considering the correspond-
ing mesh section of the original mesh (which is currently
loaded in RAM) and the corresponding texture chunk is
built. Write back of OEMM leaf nodes of the original mesh
is not needed, because the data encoded in the OEMM is
not modified during this phase.

An example of a resampled bump-texture mapped on a
very simple mesh obtained by simplification is shown in
Figure 7.

VII. Other EM mesh processing tasks

The other tools implemented on top of the OEMM rep-
resentation are described briefly here, for the sake of con-
ciseness.
A mesh editing tool has been defined, that allows the user to
perform many editing actions which are crucial in a number
of applications, e.g. 3D scanning and rapid prototyping.
The editing operators provided include: topological check
of the mesh, detection of non-manifold components, detec-
tion of holes, automatic or user assisted hole-triangulation,
elimination on request of complex vertices/faces and small
components. Implementing these mesh editing operations
on the OEMM representation scheme is straightforward.

Obviously, visualization is an important task for the eval-
uation and the inspection of a mesh. A snapshot of the
main window of an external memory visualization session
is shown in Figure 2. Implementing an external memory
visualizer is straightforward, because we only have to de-
fine an interface which allows the user to select the OEMM
leaf nodes to be visualized. The visualization features pro-
vided in our prototypal system allow to: visualize a huge
mesh by showing the bounding box of all mesh portions
contained in the OEMM leaf nodes; selective visualization
of the mesh sections corresponding to some OEMM leaf
nodes; color-enhanced visualization of mesh components,
to differentiate different topological classes of elements (e.g.
for easy visualization of the holes or of the complex vertices
detected by the mesh editing module); interactive picking
of mesh components; etc. The main goal of this tool is not
the pure presentation of the data (which could be imple-
mented also by adopting a point-based approach [24], [21]),
but the inspection of the geo-topological characteristics of
a given high-resolution mesh (e.g. to evaluate its quality
and, in case, to apply editing actions).

VIII. Results

Among the external memory algorithms presented, the
most complex is the mesh simplification one. We re-
port here the results relative to the simplification of four
meshes, all of them obtained by 3D scanning and avail-
able at the Stanford 3D Scanning Repository (http://www-
graphics.stanford.edu/data/3Dscanrep/):
• the Happy Buddha mesh (543,652 vertices, 1,087,716 tri-
angles);

Input Data Simplification
quadric error size (tr.) time t/sec

S.Matthew 0 → 1e-5 94,116,116 10:57:37 6.8K
1e-5 → 1e-3 25,280,206 2:30:54 7.4K
1e-3 → 1e-1 6,138,792 0:37:05 8.4K

1e-1 → 1 3,119,222 0:07:29 6.5K
1 → 10 1,638,646 0:03:21 7.1K

10 → 100 788,202 0:01:29 9.3K

David 1mm 0 → 1e-2 13,525,698 1:02:24 10.8K
1e-2 → 1e-1 7,565,958 0:12:31 7.7K

1e-1 → 1 3,682,158 0:06:32 9.6K
1 → 10 1,723,895 0:03:07 10.2K

David 2mm 0 → 1 2,517,234 0:07:30 12.5K
1 → 10 1,413,304 0:01:31 11.9K

10 → 100 739,485 0:00:52 12.6K

TABLE II

Results obtained in the simplification of the sample meshes.

Times are in hh:mm:ss (I/O times included). The simplification

rate is shown in the last colume (t/sec: simplified triangles

per second). The RAM used is around 80 MB.

• the S. Matthew complete model (186,984,410 vertices
and 372,767,445 triangles), representing one of Michelan-
gelo’s unfinished statues scanned by the Digital Michelan-
gelo Project [16];
• two David models reconstructed at 1mm and 2mm ac-
curacy (respectively: 28,184,526 v. 56,230,343 tr., and
4,128,614 v. 8,254,150 tr.), also scanned by the Digital
Michelangelo Project.

We did not considered typical CAD datasets. Even if
very complex datasets are common in CAD applications,
they are usually modeled as a composition (either hierar-
chical or linear) of medium-sized components, which can
often be simplified and managed independently using stan-
dard in-core techniques.

Some numerical data on OEMM construction and mesh
simplification are presented in Tables I and II. The com-
puter used for the tests is a PentiumIII 800 MHz, 256 MB
RAM, 30 GB disk running MS WinNT.
The size of the OEMM representation (in MB) and the time
for the data conversion (from triangle soup to OEMM) are
shown in Table I. As far concerns the size of the octree,
we report here some figures relative to the most complex
dataset used, the S. Matthew mesh: the OEMM is com-
posed of ≈130K nodes, including internal nodes and empty
octree leaves, the triangle per leaf threshold is 16K and the
maximum depth of the octree is 8. OEMM construction
takes a time which is approximately equal to mesh simpli-
fication time, and thus rather long. But OEMM construc-
tion is a data preprocessing phase executed only once, in
the framework of the standard pipeline for processing a
complex scanned mesh: OEMM construction, mesh edit-
ing (fixing topology, closing holes, smoothing, etc), mesh
simplification. The cost of the conversion process is coun-
terbalanced by the locality of the typical geometric compu-
tations (e.g. editing or simplification), which become more
efficient on the OEMM structure and, obviously, require a
small memory footprint. As an example, the simplification

9

Fig. 2. A snapshot of the main window of the external memory visualizer; the loaded mesh section is rendered wireframe, the other OEMM
leaf nodes are represented by wire-frame bounding boxes.

Input Data OEMM Repr.
mesh size raw OEMM index.OEMM raw OEMM index.OEMM

name triangles size size size build time build time

S.Matthew 372,767,445 7.29 GB 12.5 GB 11.94 GB 2:52:35 8:28:07

David 1mm 56,230,343 1.10 GB 1.85 GB 1.77 GB 0:24:23 1:02:24
David 2mm 8,254,150 166 MB 283 MB 268 MB 0:03:13 0:07:20

TABLE I

The table reports the size of the tree sample meshes and of the corresponding OEMM representation. Times are in hh:mm:ss

(I/O times included).

Fig. 3. A comparison of the different quality of some simplified David models (1mm David mesh, 53.6 M faces) using the OEMM quadric
simplification.

of the David and S. Matthew meshes can be performed by
using only 80 MB of core memory.
The use of an out-of-core approach introduces some over-
head when compared to a standard simplification code

working in main memory. We measured empirically the
figures of our OEMM -based external memory simplifier
(OEMM-QEM) with the ones of other codes working in
core memory: QSlim v.2, the original QEM implementa-

10

tion due to M. Garland [12]; RAM-QEM, that is our imple-
mentation of the QEM method, running in main memory;
and finally our implementation of the OutOfCore Cluster-
ing (OOCC) simplifier [17]. Results relative to the Happy
Buddha mesh are presented in Table III.

Moreover, one could be interested to know how a stan-
dard edge-collapse would perform using just the OS paging
mechanism. We run the two in-core solutions, QSlim and
RAM-QEM, and the external-memory OEMM-QEM on a
PIII 800 MHz PC with just 128MB of RAM (where no
more than 80-90MB are available for user processes); Ta-
ble IV presents the corresponding running times and global
amount of virtual memory1 (MEM) asked by the process
to the OS. The exploding increase of running times when
the system starts trashing is evident.

OEMM-QEM and RAM-QEM are based on the same
simplification kernel, that is the classical quadric simpli-
fication error metric with the addition of weighted fac-
tors which take into account the variation of surface nor-
mals and the triangle aspect ratio. The difference be-
tween OEMM-QEM and RAM-QEM is in the different
data traversal and heap management: OEMM-QEM tra-
verses the mesh following the OEMM lexical order, and
adopts local heaps to simplify the loaded mesh sections; on
the other hand, RAM-QEM uses (analogously to QSlim)
a classical global heap and needs to load in memory all of
the mesh to initialize the heap and to run simplification.
In most cases OEMM-QEM and RAM-QEM produce re-
sults (quality and speed) analogous to the ones of QSlim
v.2; in some cases, weighting the normal variation improves
results accuracy (this is mainly evident in the proximity of
discontinue features). Our implementation of the OOCC
was as conforming as possible to its original description,
including the robust quadric inversion technique described
in [17].
The OEMM-QEM consumes around 50% more secondary
memory than standard QEM solutions (but secondary
memory is nowadays quite an inexpensive resource), but
requires a smaller core memory footprint. In any case, con-
sider that the size of the on-disk OEMM representation is
smaller than the core memory required by an in-core QEM.
Therefore, if the core memory is sufficiently large to allow
an in-core simplification, it is also sufficiently large to per-
mit the operating system to cache the OEMM file in RAM.
This explains partially the unexpected results of Table III,
where OEMM-QEM simplification time is shorter than the
RAM-QEM implementation. Moreover, times are shorter
because: the OEMM-QEM local heaps are smaller than
the global one used by RAM-QEM (heap construction has
complexity O(n log n)); processor cache misses are proba-
bly less frequent in the case of OEMM-QEM, because data
structure access is more local than that of RAM-QEM.
On larger meshes, the need to perform multiple passes on
the dataset (to improve the quality of the simplified mesh,
as in the runs reported in Table II) would require mul-

1Please note that in Table IV we reported the working set used
by the simplification process, while the effective maximum size of
required RAM has been presented in Table III.

Happy Buddha (1,087,716 faces)
simpl. RAM time t/sec RMS
faces (sec.) rate err

QSlim v.2.0 18,338 195 MB 60 17.4K 0.0131%

RAM-QEM 18,338 160 MB 58 18K 0.0125%

OEMM-QEM
build (pre-proc) – 4 MB 58 – –
simplify 18,338 60 MB 48 21.7K 0.0129%

OOCC 19,071 36 MB 15 69.5K 0.0245%

TABLE III

Results obtained in the simplification of the Happy Buddha

mesh, using four different simplification codes.

tiple loading of the intermediate OEMM representations
from secondary memory, introducing some overhead with
respect to an ideal in-core solution. In fact, the simpli-
fication rates reported in the Tables II and III degrade
gracefully with the increase of the size of the input mesh.
The accuracy of the simplified meshes has been evaluated
by using the Metro tool [6]. The RMS error (measured as
a percentage of the mesh bounding box) is shown in the
rightmost colummn of Table III. It is worth to note that
OEMM-QEM accuracy is slightly lower than our in-core
RAM-QEM, but at the same time it is still slightly better
than the one of Q-Slim and obviously much better than
OOCC.

The simplified meshes produced are shown in Figures 3,
4, 5, and 6.

We performed an empirical comparison with the Out-Of-
Core Clustering approach (OOCC) [17]. The times of the
OOCC solution are obviously impressive (see the simplifi-
cation rate in Table III). On the other hand, the quality
of the mesh produced is directly dependent of the regu-
lar sub-sampling operated on the mesh (to reach a drastic
simplification of a 3D scanned mesh the cluster cell size is
generally set much larger than the mean face size). The
higher accuracy of the results produced by OEMM-QEM
is shown in the images presented in Figure 6. Moreover,
the meshes produced by the Clustering approach are of-
ten non-manifold, and this may introduce problems when
we have to apply geometric processing on the output mesh.
For example, an OOCC run on the 2mm David mesh (from
8M triangles down to 235K) generates more than 21K non-
manifold vertices.
One can ask if the improved accuracy of OEMM-QEM is
worth the processing overhead (OEMM-QEM is approxi-
mately 3 times slower than OOCC). There are a number
of applications where data accuracy is a must (visual in-
spection, rapid prototyping, shape recognition, 3D recon-
struction from multiple fragments, etc). In all these cases,
a slightly slower simplification time is not a problem: this
process is executed only once, and in any case simplifica-
tion time is a very small fraction of the time needed to
produce the raw data (e.g. by 3D scanning) or to analyze
it.

A comparison of the different visual accuracy provided
by a plain simplified mesh or by the same mesh enhanced

11

Fig. 4. A simplified model of the S. Matthew statue is shown on the left; a small section of the mesh (S. Matthew’s eye and part of the
nose) is shown on the right at different accuracies.

HappyBudda (various mesh sizes)

Input faces: 339,344 408,090 511,138 593,544 746,834
Output faces: 32,760

time MEM time MEM time MEM time MEM time MEM
(h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB) (h:m:s) (MB)

QSlim v.2.0 0:00:15 76 0:00:18 90 0:01:46 115 3:17:28 200 n.a. n.a.

RAM-QEM 0:00:14 94 0:00:16 94 0:00:49 130 0:00:55 180 0:37:19 200

OEMM-QEM 0:00:19 50 0:00:23 50 0:00:29 50 0:00:36 50 0:00:49 50

TABLE IV

The results presented show the poor performances of the in-core solutions (QSlim, RAM-QEM) when the external memory

management is demanded to the standard OS paging system; the meshes used in input are simplified versions of the original

Happy Buddha.

Fig. 5. Results of the simplification of the Happy Buddha mesh.

12

Fig. 6. A comparison of the different quality of the models obtained from the simplification of the 2mm David mesh (8M faces) using the
OOC Clustering solution (top) and the OEMM simplifier (bottom).

with a resampled bump-map is shown in Figure 7. No-
tice how much the visual quality of the drastically simpli-
fied mesh (10K faces) is improved by the resampled bump-
texture; it appears very similar to a more complex model
(1,683K faces) presented in the same image on the left.

Considering data size: the 1024*1024 RGB normal map
size is 1.5MB, when compressed using PNG format and
preserving image quality, and it is texture-mapped to the
10K faces model (size on disk 905KB in un-compressed bi-
nary format). This should be compared with the 1.6M

13

Fig. 7. A comparison of the different visual quality provided by: two simplified David meshes, 1,683K and 10K faces, and the latter enhanced
by mapping a re-sampled bump texture (please note that the image with bump-mapping has been created with a different viewer).

faces mesh, which needs 36MB to be stored on disk.

IX. Concluding Remarks

We have demonstrated that even huge meshes can be suc-
cessfully managed on a low cost architecture. The OEMM,
an external memory data structure, is at the base of our
mesh management and simplification system. It permits to
implement in a memory-efficient manner all geometric algo-
rithms that process the mesh via a local update approach,
by decoupling mesh size from main memory size and dy-
namically loading portions of the dataset from secondary
memory. The OEMM data structure implements an out-
of-core global indexed representation on huge meshes, and
loading/processing of portions of the data is easy thanks to:
the space subdivision embedded in the octree representa-
tion, the automatic re-indexing of the loaded data sections,
and the tagging strategy (readable/writable tags) that al-
lows the easy detection and management of the elements
located on the boundary of the current region. The system
presented provides a valid solution for visual inspection,
editing, and simplification of huge meshes. As an exam-
ple, it permits to manage all the post-acquisition phases
of the 3D scanning pipeline on a low cost machine. With
an acceptable time overhead we can process meshes which
cannot be managed on most other architectures. Manag-

ing the S. Matthew mesh with an in-core simplifier, for
example, would require approximately more than 55GB of
core memory. Moreover, an out-of-core solution usually
requires a much smaller RAM size than the correspond-
ing RAM-based solutions (in our system, the size of the
surface sections loaded can be decided by the user). This
appears clear in the results presented in Table III: the sim-
plification of a medium complexity mesh (around 1M faces)
works in only 60MB of RAM (or even on a smaller foot-
print, depending on the size of the loaded subtree selected
by the user). Conversely, the RAM-based QSlim solution
allocates 195MB to process the same mesh.

It should be noted that the choice of an octree as a parti-
tioning scheme is not mandatory. Depending on the mesh
processing tasks that have to be carried out, other mesh
partitioning schemes can be chosen. For example, if we
consider uniformly sampled meshes and tasks that do not
drastically alter the size of the mesh (like smoothing fil-
ters or hole filling), the octree can be replaced by a simpler
uniform grid partition. In this case the interface between
the mesh processing algorithm and the OEMM remains
the same, because it is based on a generic traversal process
and the element tagging policy (read/write/modified tags)
supported can be easily extended to other decomposition
rules.

14

Possible extensions to the OEMM-based mesh manage-
ment environment are as follows. We are adding more
sophisticated visualization features, which should allow a
naive user to navigate and inspect very complex dataset,
e.g. meshes produced by 3D scanning Cultural Heritage
artefacts, on low cost computers using an LOD approach.
We are designing an external memory multiresolution rep-
resentation, and finally we are planning to include on-the-
fly mesh compression techniques to reduce the storage of
the OEMM leaf nodes.

X. Acknowledgements

We would like to thank Marc Levoy and the Stanford
Computer Graphics Group for providing scanned data, and
for choosing our simplified meshes as the official simplified
models distributed on the project’s web.
We acknowledge the financial support of the Progetto
“RIS+” of the Tuscany Regional Government and of the
EU project IST-2000-28095 “The Virtual Planet”.

References

[1] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erik-
son, K. Hoff, T. Hudson, W. Stürzlinger, R. Bastos, M. Whit-
ton, F. Brooks, and D. Manocha. MMR: An interactive massive
model rendering system using geometric and image-based accel-
eration. In 1999 Symposium on Interactive 3D Graphics, pages
199–206, New York, Apr. 26–28 1999. ACM Press.

[2] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface reconstruc-
tion. IEEE Transactions on Visualization and Computer Graph-
ics, 5(4):349–359, Oct.-Dec. 1999.

[3] F. Bernardini, J. Mittleman, H. Rushmeier, and G. Taubin. Case
study: Scanning Michelangelo’s Florentine Pieta’. In ACM SIG-
GRAPH 99 Course Notes, Course 8, August 1999.

[4] Y. Chiang, C. T. Silva, and W.J. Schroeder. Interactive out-of-
core isosurface extraction. In IEEE Visualization ’98 Proceed-
ings, pages 167–175. IEEE Press, 1998.

[5] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini.
Preserving attribute values on simplified meshes by re-sampling
detail textures. The Visual Computer, 15(10):519–539, 1999.
(preliminary results appeared in IEEE Visualization ’98 Pro-
ceedings).

[6] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measur-
ing error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, June 1998.

[7] J. El-Sana and Y.-J. Chiang. External memory view-dependent
simplification. Computer Graphics Forum, 19(3):139–150, Au-
gust 2000.

[8] Carl M. Erikson. Hierarchical Levels Of Detail To Accelerate
The Rendering Of Large Static And Dynamic Polygonal Envi-
ronments. PhD thesis, Department of Computer Science, Uni-
versity of North Carolina at Chapel Hill, 2000.

[9] T.A. Funkhouser. Database and Display Algorithms for Inter-
active Visualization of Architectural Models. PhD thesis, CS
Division, UC Berkeley, 1993.

[10] M. Garland. Multiresolution modeling: Survey & future op-
portunities. In EUROGRAPHICS’99, State of the Art Report
(STAR). Eurographics Association, Aire-la-Ville (CH), 1999.

[11] M. Garland and P.S. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 209–216. Addison Wesley,
August 1997.

[12] M. Garland and P.S. Heckbert. QSlim v.2 Simplification Soft-
ware. School of Computer Sciences, Carnegie Mellon University,
URL: http://www.cs.cmu.edu/g̃arland/quadrics/qslim.html,
1999.

[13] H. Hoppe. Smooth view-dependent level-of-detail control and
its aplications to terrain rendering. In IEEE Visualization ’98
Conf., pages 35–42, 1998.

[14] H. Hoppe. New quadric metric for simplifying meshes with ap-
pearance attributes. In Proceedings of the 10th Annual IEEE

Conference on Visualization (VIS-99), pages pages 59–66, New
York, October 25–28 1999. ACM Press.

[15] D. Laur and P. Hanrahan. Hierarchical splatting: A progres-
sive refinement algorithm for volume rendering. In Computer
Graphics 25(4) (SIGGRAPH 91 Proceedings), pages 285–288,
July 1991.

[16] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo Project: 3D
scanning of large statues. In SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 131–144.
Addison Wesley, July 24-28 2000.

[17] P. Lindstrom. Out-of-core simplification of large polygonal mod-
els. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH
2000), ACM Press, pages 259–262. Addison Wesley, July 22-28
2000.

[18] P. Lindstrom and C.T. Silva. A memory insensitive technique for
large model simplification. In Proc. IEEE Visualization 2001,
pages 121–126. IEEE Press, October 2001.

[19] P. Lindstrom and G. Turk. Evaluation of memoryless simpli-
fication. IEEE Transactions on Visualization and Computer
Graphics, 5(2), April 1999.

[20] D. Meagher. Geometric modeling using octree encoding. Com-
puter Graphics and Image Processing, 19(2):129–147, 1982.

[21] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In Kurt Akeley, edi-
tor, SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 335–342. ACM Press - Addison Wesley
Longman, 2000.

[22] Chris Prince. Progressive meshes for large models of arbitrary
topology. Master’s thesis, Department of Computer Science and
Engineering, University of Washington, Seattle, August 2000.

[23] J. Rossignac and P. Borrel. Multi-resolution 3D approximation
for rendering complex scenes. In B. Falcidieno and T.L. Kunii,
editors, Geometric Modeling in Computer Graphics, pages 455–
465. Springer Verlag, 1993.

[24] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. In Comp. Graph. Proc., An-
nual Conf. Series (SIGGRAPH 00), pages 343–352. ACM Press,
July 24-28 2000.

[25] H. Samet. The design and Analysis of Spatial Data Structures.
Addison Wesley, Reading, MA, 1990.

[26] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues
Hoppe, and John Snyder. Silhouette clipping. In SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 327–334. Addison Wesley, 2000.

[27] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of
triangle meshes. In Edwin E. Catmull, editor, ACM Computer
Graphics (SIGGRAPH 92 Proceedings), volume 26, pages 65–
70, July 1992.

[28] E. Shaffer and M. Garland. Efficient adaptive simplification of
massive meshes. In Proc. IEEE Visualization 2001, pages 127–
134. IEEE Press, October 2001.

[29] Shyh-Kuang Ueng, Christopher Sikorski, and Kwan-Liu Ma.
Out-of-Core Streamline Visualization on Large Unstructured
Meshes. IEEE Tran. on Visualization & Computer Graphics,
3(4):370–380, October 1997.

Parallel Processing with VTK–1

SC2002
Tutorial M9

Will Schroeder
Kitware, Inc.
will.schroeder@kitware.com

Parallel Processing with VTK

SC2002
Tutorial M9

Credits

Charles Law
Berk Geveci
Ken Martin
Amy Henderson
Sebastien Barre
Brad King
Andy Cedilnik

Jim Ahrens
Randy Frank
Mike Papka
Hank Childs
Gary Templet
Pat McCormick

Kitware, Inc. – These notes taken from VTK Developer’s Course

Parallel Processing with VTK–2

SC2002
Tutorial M9

What is the Problem?

• Analysis codes are producing very large data
sets

• Computing clusters are more affordable and
widely used

• Have an extensive visualization toolkit with
many existing algorithms. We want to
effectively use all of these algorithms with
large data and parallel visualization

SC2002
Tutorial M9

Data Size

• Visible Woman CT Data
870 MBytes 1734 Slices at 512x512x2

Flow Computation:
Robert Meakin

Visualization:
David Kenwright and
David Lane

Numerical Aerodynamic
Simulation Division at NASA
Ames Research Center

• Bell-Boeing V-2 2 tiltrotor
140 Gbytes

Parallel Processing with VTK–3

SC2002
Tutorial M9

Other Large Data

• Modeling turbulence (Ken Jansen RPI)
• 8.5 million tetrahedra, 200 time steps
• 150 million tetrahedra, 2000 time steps (soon)

SC2002
Tutorial M9

What is the Solution?

• Expand the capabilities of VTK to take
advantage of parallel and streaming
visualization

• Use existing tools where they fit, e.g. MPI

Parallel Processing with VTK–4

SC2002
Tutorial M9

Challenges

• Decomposing data into pieces
– Streaming
– Parallel processing

• Communicating among processes
– Synchronization
– Passing pieces back and forth
– Communication

SC2002
Tutorial M9

Challenges (cont.)

• How to define a piece of data?
• How to convert pieces between different data

topologies?
• How to handle boundary conditions?
• How to make the filters operate on pieces?
• How to determine the number of pieces to

use?
• How to support asynchronous execution?
• How to make it easy to use?

Parallel Processing with VTK–5

SC2002
Tutorial M9

Note: Multi-Threading

• Some VTK Filters are multi-threaded
– Imaging
– Streamlines
– Volume rendering

• Multi-Threading is NOT scalable
– Shared memory

• Distributed parallel is preferred because it is
scalable

SC2002
Tutorial M9

Pieces

Imaging: i,j,k extents. Graphics

xMin xMax

yMin

yMin

xMin xMax

yMin

yMin

zMin

zMax

image->SetUpdateExtent(0, 128, 0, 128, 0, 90);
image->Update();

data->SetUpdateExtent(0, 2);
data->Update();

Piece = 0
NumberOfPieces = 2

Parallel Processing with VTK–6

SC2002
Tutorial M9

Defining a Piece of Data

• Extents work for regular implicit topologies but don’t
work for unstructured explicit topologies

• Define a piece by its world coordinate bounds, but
that can be difficult to produce, define, and enforce

• Most general is to define a piece as a portion of the
data (piece N out of M) with no assurances of
topological or geometric coherence

SC2002
Tutorial M9

Converting a Piece

How to convert a request between unstructured
pieces and structured pieces?

• For an unstructured request to structured,
use a consistent rule for mapping piece N to
an (imin, imax, jmin, jmax, kmin, kmax) extent

• For a structured request to unstructured, most
algorithms require all of the data, but it can be
requested in pieces

• Streamlines are a challenge

Parallel Processing with VTK–7

SC2002
Tutorial M9

Converting a Piece

• For some algorithms the atomic unit is a cell,
for others it is a point

• Surface warping based on scalar or vector
data is a point based operation, so is
hedgehogs

• Streamlines, decimation, contouring are cell
based operations

• Glyphing is both, the locations to glyph are
point based operations but the glyph to use is
cell based

SC2002
Tutorial M9

Example
void vtkAppendPolyData::ComputeInputUpdateExtents(vtkDataObject *data)
{
…
output->GetUpdateExtent(piece, numPieces, ghostLevel);
…
if (this->ParallelStreaming)
{
piece = piece * this->NumberOfInputs;
numPieces = numPieces * this->NumberOfInputs;
}

…
// just copy the Update extent as default behavior.
for (idx = 0; idx < this->NumberOfInputs; ++idx)
{
if (this->ParallelStreaming)

{
this->Inputs[idx]->SetUpdateExtent(piece + idx, numPieces, ghostLevel);
}

}
…

Parallel Processing with VTK–8

SC2002
Tutorial M9

Example

void vtkSphereSource::Execute()
{
…

int piece = output->GetUpdatePiece();
int numPieces = output->GetUpdateNumberOfPieces();

…
// Change the ivars based on pieces.
int start, end;
start = piece * localThetaResolution / numPieces;
end = (piece+1) * localThetaResolution / numPieces;
localEndTheta = localStartTheta + (float)(end) * deltaTheta;
localStartTheta = localStartTheta + (float)(start) * deltaTheta;
localThetaResolution = end - start;

…
}

SC2002
Tutorial M9

Handling Boundary Conditions

• Piece invariant results
• Many algorithms require boundary or

neighborhood data to produce the correct
results

• We use ghost levels to specify this
• Structured algorithms change the size of the

update extent to meet their needs
• For unstructured data we add ghost levels

Parallel Processing with VTK–9

SC2002
Tutorial M9

Handling Boundary Conditions

• A central difference gradient
algorithm would request an additional
pixel around its update extent

• Hard boundaries are due to a lack of
data, they can be identified by
looking at the whole extent

• Hard boundaries must be handled by
the algorithm, either reduce the
output size or renormalize, etc.

SC2002
Tutorial M9

Handling Boundary Conditions

• For unstructured data we
specify the number of
ghost levels required

• Each filter can increment
this number

• Computing surface
normals for vertices
requires one level of
ghost cells

Parallel Processing with VTK–10

SC2002
Tutorial M9

Result Invariance

Imaging Graphics

vtkSource::ComputeInputUpdateExtent(vtkDataSet *outdata);

Smooth requires a larger input extent. Some filters require ghost cells.

SC2002
Tutorial M9

Ghost Level

• Ghost cells are marked by a ghost
level field array.

• Filters can strip away ghost cells
when the are finished with them.

Parallel Processing with VTK–11

SC2002
Tutorial M9

vtkGeometryFilter

With Ghost Cells Without Ghost Cells

SC2002
Tutorial M9

Subdivision Surfaces

Without Ghost CellsWith Ghost Cells

Parallel Processing with VTK–12

SC2002
Tutorial M9

vtkPolyDataNormals

With Ghost Cells Without Ghost Cells

SC2002
Tutorial M9

Example
void vtkPolyData::RemoveGhostCells(int level)
{

// Get a pointer to the cell ghost level array.
vtkDataArray* temp = this->CellData->GetArray("vtkGhostLevels");
…
unsigned char* cellGhostLevels =((vtkUnsignedCharArray*)temp)->GetPointer(0);
…
If (this->Polys)

{
newPolys = vtkCellArray::New();
newPolys->Allocate(this->Polys->GetSize());
for (this->Polys->InitTraversal(); this->Polys->GetNextCell(npts, pts);)

{
if (int(cellGhostLevels[inCellId]) < level)

{ // Keep the cell.
newPolys->InsertNextCell(npts, pts);
newCellData->CopyData(this->CellData, inCellId, outCellId);
++outCellId;
} // Keep this cell.

++inCellId;
} // for all cells

this->SetPolys(newPolys);
newPolys->Delete();
newPolys = NULL;
}

…

Parallel Processing with VTK–13

SC2002
Tutorial M9

Example
int vtkExtentTranslator::PieceToExtentThreadSafe(…)
{
memcpy(resultExtent, wholeExtent, sizeof(int)*6);
int ret;
if (byPoints)
{
ret = this->SplitExtentByPoints(piece, numPieces, resultExtent, splitMode);
}

else
{
ret = this->SplitExtent(piece, numPieces, resultExtent, splitMode);
}

…
if (ghostLevel > 0)

{
resultExtent[0] -= ghostLevel;
resultExtent[1] += ghostLevel;
resultExtent[2] -= ghostLevel;
resultExtent[3] += ghostLevel;
resultExtent[4] -= ghostLevel;
resultExtent[5] += ghostLevel;
}

SC2002
Tutorial M9

How Do Filters Handle Pieces

• Many graphics algorithms work without changes
– Hedgehogs, shrinking, warping, contouring

• Some need to specify ghost levels required
– Normal generation, extract faces

• Others are more difficult
– Algorithms that propagate point changes through a mesh --

polygonal smoothing

– Algorithms that propagate topology changes – decimation

– Algorithms that propagate results -- streamlines

Parallel Processing with VTK–14

SC2002
Tutorial M9

How Do Filters Handle Pieces

Some mesh altering algorithms can be handled
with a multipass technique

1. Decimate each piece of a surface but
preserve the boundaries at full resolution

2. Combine the resulting pieces
3. Decimate the result to achieve an even

reduction in mesh detail, essentially
decimate the boundaries

SC2002
Tutorial M9

Parallel Execution Models

• Data Parallelism
• Task Parallelism
• Pipeline Parallelism

Large-scale data visualization using parallel data streaming, Ahrens et al.,

IEEE Computer Graphics and Application, July/August 2001

Parallel Processing with VTK–15

SC2002
Tutorial M9

Data Parallelism

• Identical pipelines execute in parallel
processing different pieces of the data

• Scalable

• Might require load balancing when
processing unstructured data

SC2002
Tutorial M9

Data Parallelism

Render

Isosurface

Read

Render

Isosurface

Read

Render

Isosurface

Read

Display

Sort-last

Composite

Render

Isosurface

Read

Sort-last

Composite

Sort-last

Composite

Sort-last

Composite

Parallel Processing with VTK–16

SC2002
Tutorial M9

Task Parallelism

• Different pipelines work on the same data
performing independent tasks

• Useful when there are multiple resources
with different capabilities

• Maximum parallelism limited to the number
of independent tasks

• Hard to balance

SC2002
Tutorial M9

Render

GeometryFilter

ReadTemp

Render

Shrink

ReadSalinity

Render

Mask

ReadVectors

Display

Sort-last
Composite

ClipPolyData Isosurface Glyph

Sort-last
Composite

Sort-last
Composite

Task Parallelism

Parallel Processing with VTK–17

SC2002
Tutorial M9

Pipeline Parallelism

• Sequence of filters/pipelines execute in parallel on
the same data. Each “module” occupies a different
resource.

• Useful when there are heterogeneous tasks, multiple
heterogeneous resources

• Parallel execution of heterogeneous resources (Ex:
filesystem, processor, graphics card)

• Maximum parallelism limited to pipeline length and
ability to balance pipeline stages

SC2002
Tutorial M9

Pipeline Parallelism

RenderRead Particles Glyph Write Image

Po
rt

Po
rt

Parallel Processing with VTK–18

SC2002
Tutorial M9

Interprocess Communication

vtkCommunicator

vtkMPICommunicator vtkSharedMemoryCommunicator vtkSocketCommunicator

SC2002
Tutorial M9

vtkCommunicator

• Abstract class responsible of interprocess
communication

• Can send/receive C arrays, vtkDataArrays and
vtkDataObjects:
– vtkCommunicator::Send(vtkDataObject*, int remoteId, int tag);
– vtkCommunicator::Send(vtkDataArray*, int remoteId, int tag);
– vtkCommunicator::Send(int*, int length, int remoteId, int tag);

– vtkCommunicator::Receive(vtkDataObject*, int remoteId, int tag);
– vtkCommunicator::Receive(vtkDataArray*, int remoteId, int tag);
– vtkCommunicator::Receive(int*, int length, int remoteId, int tag);

• Sub-classes may have special functionality (for
example, asynchronous message handling)

Parallel Processing with VTK–19

SC2002
Tutorial M9

Parallel Execution / RMI

vtkMultiProcessController

vtkMPIController vtkThreadedController vtkSocketController

SC2002
Tutorial M9

vtkMultiProcessController

• Used to control the flow of multiple processes
triggering registered callbacks (remote
method invocation - RMI)
– Initialize(int* argc, char*** argv);
– Finalize();
– AddRMI(vtkRMIFunctionType*, void* localArg, int tag);

– TriggerRMI(int remoteId, void* arg, int argLen, int tag);
– ProcessRMIs();
– Barrier();

– GetNumberOfProcesses();
– GetLocalProcessId();

Parallel Processing with VTK–20

SC2002
Tutorial M9

Communication Example
(VTK/Parallel/Testing/Cxx/GenericCommunicator.cxx)

int main(int argc, char** argv)
{

vtkMultiProcessController* contr = vtkMultiProcessController::New();
contr->Initialize(&argc, &argv);
contr->CreateOutputWindow();

contr->SetMultipleMethod(0, Process1, 0);
contr->SetMultipleMethod(1, Process2, &args);
contr->MultipleMethodExecute();

contr->Finalize();
contr->Delete();

return 0;
}

SC2002
Tutorial M9

Communication Example (cont.)
void Process1(vtkMultiProcessController *contr, void*)
{

vtkCommunicator* comm = contr->GetCommunicator();

int i;

// Test receiving all supported types of arrays
vtkIntArray* ia = vtkIntArray::New();
if (!comm->Receive(ia, 1, 11))

{
cerr << "Server error: Error receiving data." << endl;
}

for (i=0; i<ia->GetNumberOfTuples(); i++)
{
if (ia->GetValue(i) != i)

{
cerr << "Server error: Corrupt integer array." << endl;
}

}
ia->Delete();

}

void Process2(vtkMultiProcessController *contr, void *)
{
vtkCommunicator* comm = contr->GetCommunicator();

int i;

// Test sending all supported types of arrays
int datai[scMsgLength];
for (i=0; i<scMsgLength; i++)

{
datai[i] = i;
}

vtkIntArray* ia = vtkIntArray::New();
ia->SetArray(datai, 10, 1);
if (!comm->Send(ia, 0, 11))

{
cerr << "Client error: Error sending data." << endl;
}

ia->Delete();
}

Parallel Processing with VTK–21

SC2002
Tutorial M9

Ports

• Output -> input port pairs

• Handles update protocol (using RMIs)

• Modified times in different processes

• Transmitting information and data

• Output ports wait on RMI loop

SC2002
Tutorial M9

Ports Are Flexible

• Data Parallel / Pieces

• Ports allow task parallel

• Pipeline parallelism is possible

Parallel Processing with VTK–22

SC2002
Tutorial M9

vtkOutputPort / vtkInputPort

• vtkOutputPort
– SetInput(vtkDataObject*);
– WaitForUpdate();
– SetPipelineFlag();

• vtkInputPort
– GetPolyDataOutput();
– GetUnstructuredGridOutput()…
– SetRemoteProcessId();

SC2002
Tutorial M9

Port / RMI Example
(VTK/Examples/ParallelProcessing/Generic/Cxx/ParallelIso.cxx)

int main(int argc, char* argv[])
{

vtkMultiProcessController *controller;

// Note that this will create a vtkMPIController if MPI
// is configured, vtkThreadedController otherwise.
controller = vtkMultiProcessController::New();

controller->Initialize(&argc, &argv);

// Use this method to get the place of the data directory.
char* fname = vtkTestUtilities::ExpandDataFileName(argc, argv,

"Data/headsq/quarter");

controller->SetSingleMethod(MyMain, reinterpret_cast<void*>(fname));

controller->SingleMethodExecute();

delete[] fname;

controller->Finalize();
controller->Delete();

return 0;
}

Parallel Processing with VTK–23

SC2002
Tutorial M9

// This will be called by all processes
void MyMain(vtkMultiProcessController *controller, void *arg)
{
….
// Obtain the id of the running process and the total
// number of processes
myid = controller->GetLocalProcessId();
numProcs = controller->GetNumberOfProcesses();

// Create the reader, the data file name might have
// to be changed depending on where the data files are.
reader = vtkImageReader::New();
reader->SetDataByteOrderToLittleEndian();
reader->SetDataExtent(0, 63, 0, 63, 1, 93);
reader->SetFilePrefix(fname);
reader->SetDataSpacing(3.2, 3.2, 1.5);

// Iso-surface.
iso = vtkContourFilter::New();
iso->SetInput(reader->GetOutput());
iso->SetValue(0, ISO_START);
iso->ComputeScalarsOff();
iso->ComputeGradientsOff();

// Compute a different color for each process.
elev = vtkElevationFilter::New();
elev->SetInput(iso->GetOutput());
vtkMath::RandomSeed(myid * 100);
val = vtkMath::Random();
elev->SetScalarRange(val, val+0.001);

Port / RMI Example (cont.)

SC2002
Tutorial M9

Port / RMI Example (cont.)
if (myid != 0)

{
// If I am not the root process

// Satellite process! Send data through port.
vtkOutputPort *upPort = vtkOutputPort::New();

// Last, set up a RMI call back to change the iso surface value.
// This is done so that the root process can let this process
// know that it wants the contour value to change.
controller->AddRMI(SetIsoValueRMI, (void *)iso, ISO_VALUE_RMI_TAG);

// connect the port to the output of the pipeline
upPort->SetInput(elev->GetPolyDataOutput());

// Multiple ports can go through the same connection.
// This is used to differentiate ports
upPort->SetTag(PORT_TAG);

// Loop which processes RMI requests.
// Use vtkMultiProcessController::BREAK_RMI_TAG to break it.
// The root process with send a ISO_VALUE_RMI_TAG to make this
// process change it's contour value.
upPort->WaitForUpdate();

// We are done. Clean up.
upPort->Delete();
}

else
{
// If I am the root process

// Add my pipeline's output to the append filter
app->AddInput(elev->GetPolyDataOutput());
app->ParallelStreamingOn();

// This is the main thread: Collect the data and render it.
for (i = 1; i < numProcs; ++i)
{
downPort = vtkInputPort::New();
downPort->SetRemoteProcessId(i);

// Multiple ports can go through the same connection.
// This is used to differentiate ports
downPort->SetTag(PORT_TAG);

app->AddInput(downPort->GetPolyDataOutput());

// Reference already incremented by AddInput(). Delete()
// will only decrement the count, not destroy the object.
// The ports will be destroyed when the append filter
// goes away.
downPort->Delete();
downPort = NULL;
}

Parallel Processing with VTK–24

SC2002
Tutorial M9

Port / RMI Example (cont.)
// loop through some iso surface values.

for (j = 0; j < ISO_NUM; ++j)
{
// set the local value
SetIsoValueRMI((void*)iso, NULL, 0, 0);
for (i = 1; i < numProcs; ++i)
{
// trigger the RMI to change the iso surface value.
controller->TriggerRMI(i, ISO_VALUE_RMI_TAG);
}

// Time the rendering. Note that the execution on all processes
// start only after Update()
timer->StartTimer();
app->Update();
timer->StopTimer();
numTris = iso->GetOutput()->GetNumberOfCells();
val = iso->GetValue(0);
cerr << "Update " << val << " took " << timer->GetElapsedTime()

<< " seconds to produce " << numTris << " triangles\n";

// now render the results
renWindow->Render();
}

// call back to set the iso surface value.
void SetIsoValueRMI(void *localArg, void* vtkNotUsed(remoteArg),

int vtkNotUsed(remoteArgLen), int vtkNotUsed(id))
{

float val;

vtkContourFilter *iso;
iso = (vtkContourFilter *)localArg;
val = iso->GetValue(0);
iso->SetValue(0, val + ISO_STEP);

}

SC2002
Tutorial M9

Distributed Rendering

• vtkCompositeManager helper class
• Hooks into rendering and interactor methods
• Uses event notification classes in VTK
• Synchronizes cameras and windows
• Sends/composites color buffer and z buffer
• Can be more efficient than ports
• Communication costs for each render

Parallel Processing with VTK–25

SC2002
Tutorial M9

Example
(VTK/Examples/ParallelProcessing/Generic/Cxx/TaskParallelism.cxx)

// Create the render objects
vtkRenderWindow* renWin = vtkRenderWindow::New();
renWin->SetSize(WINDOW_WIDTH, WINDOW_HEIGHT);

vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);

// This class allows all processes to composite their images.
// The root process then displays it in it's render window.
vtkCompositeManager* tc = vtkCompositeManager::New();
tc->SetRenderWindow(renWin);

// Generate the pipeline see task1.cxx and task2.cxx)
vtkPolyDataMapper* mapper = (*task)(renWin, EXTENT, cam);

// Only the root process will have an active interactor. All
// the other render windows will be slaved to the root.
tc->StartInteractor();

SC2002
Tutorial M9

Example (cont.)

Process 0 Process 1

Parallel Processing with VTK–26

SC2002
Tutorial M9

Issues

• Compositing requires access to a display for
each processor.

• When displaying multiple windows on one
display, overlapping may become an issue.

• Offscreen rendering may be necessary (with
Mesa for example).

SC2002
Tutorial M9

Missing / To Do

• Parallel file formats / readers
• Sources which generate ghost levels
• Parallel algorithms (for example stream

tracing)
• More efficient image compositing
• Better documentation / examples

Parallel Processing with VTK–27

SC2002
Tutorial M9

Example (VTKParallelExample.cxx)

#include "vtkRenderer.h"
#include "vtkMultiProcessController.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkCompositeManager.h"
#include "vtkPolyDataMapper.h"
#include "vtkSphereSource.h"
#include "vtkExtractPolyDataPiece.h"
#include "vtkAssignAttribute.h"

static const int WINDOW_WIDTH = 400;
static const int WINDOW_HEIGHT = 300;

SC2002
Tutorial M9

Example (cont.)

// This function sets up properties common to both processes
// and executes the task corresponding to the current process
void process(vtkMultiProcessController* controller, void* vtkNotUsed(arg))
{

// Create the render objects
vtkRenderWindow* renWin = vtkRenderWindow::New();
renWin->SetSize(WINDOW_WIDTH, WINDOW_HEIGHT);

vtkRenderer* ren = vtkRenderer::New();
renWin->AddRenderer(ren);

vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);

Parallel Processing with VTK–28

SC2002
Tutorial M9

Example (cont.)

// This class allows all processes to composite their images.
// The root process then displays it in it's render window.
vtkCompositeManager* tc = vtkCompositeManager::New();
tc->SetRenderWindow(renWin);

// Create the sphere
vtkSphereSource* sphere = vtkSphereSource::New();
sphere->SetThetaResolution(32);

vtkPolyDataMapper* mapper = vtkPolyDataMapper::New();
mapper->SetInput(sphere->GetOutput());
mapper->SetGhostLevel(1);

vtkActor* actor = vtkActor::New();
actor->SetMapper(mapper);
ren->AddActor(actor);

SC2002
Tutorial M9

Example (cont.)

// Only the root process will have an active interactor. All
// the other render windows will be slaved to the root.
tc->InitializePieces();
tc->StartInteractor();

// Clean-up
actor->Delete();
ren->Delete();
iren->Delete();
mapper->Delete();
sphere->Delete();
renWin->Delete();

}

Parallel Processing with VTK–29

SC2002
Tutorial M9

Example (cont.)

int main(int argc, char* argv[])
{

// Note that this will create a vtkMPIController if MPI
// is configured, vtkThreadedController otherwise.
vtkMultiProcessController* controller = vtkMultiProcessController::New();
controller->Initialize(&argc, &argv);

// When using MPI, the number of processes is determined
// by the external program which launches this application.
// However, when using threads, we need to set it ourselves.
if (controller->IsA("vtkThreadedController"))

{
// Set the number of processes to 2 for this example.
controller->SetNumberOfProcesses(2);
}

int numProcs = controller->GetNumberOfProcesses();

SC2002
Tutorial M9

Example (cont.)

// Execute the function named "process" on both processes
controller->SetSingleMethod(process, 0);
controller->SingleMethodExecute();

// Clean-up and exit
controller->Finalize();
controller->Delete();

return 0;
}

Parallel Processing with VTK–30

SC2002
Tutorial M9

ParaView

• End user tool
• Open source
• Easily extensible
• New filters in VTK easily added to UI
• Data parallel VTK pipeline
• Sort last tree composite rendering
• http://public.kitware.com/ParaView

SC2002
Tutorial M9

ParaView and Tcl

• Based on KW widget set
– C++ obects/widgets driving TK through hidden Tcl

calls

• Uses tcl to create a parallel pipeline
• Uses tcl to identify objects

– No tags or ids are necessary

• Uses tcl to synchronize UI with pipeline.
– Tk -> Tcl -> VTK

Parallel Processing with VTK–31

SC2002
Tutorial M9

Standard Operations

Loading data
Array Calculator
Cutting
Clipping
Threshold
Contour
Glyph
Probe

SC2002
Tutorial M9

Access to VTK Filters

Parallel Processing with VTK–32

SC2002
Tutorial M9

New Filters Added With XML

<Module name="ConeSource" root_name="Cone" output="vtkPolyData"
module_type="Source">

<Source type="vtkConeSource"/>
<VectorEntry variable="Resolution" type="int"/>
<VectorEntry variable="Radius" type="float"/>
<VectorEntry variable="Height" type="float"/>
<LabeledToggle variable="Capping"/>

</Module>

SC2002
Tutorial M9

Level of Detail Rendering

•Decimated models
– Quadric clustering
– Fast

– Parallel

•Frame buffer compression
– Sub sampling

– Pixel replication

Parallel Processing with VTK–33

SC2002
Tutorial M9

VTK Pipeline

• ParaView creates a VTK pipeline and has a
simple pipeline browser.

SC2002
Tutorial M9

Animations and Tcl

Parallel Processing with VTK–34

SC2002
Tutorial M9ParaView Exports Tcl (VTK)

Scripts
ParaView Version 0.1

package require vtktcl_interactor

create a rendering window and renderer

vtkRenderer Ren1

vtkRenderWindow RenWin1

RenWin1 AddRenderer Ren1

vtkRenderWindowInteractor iren

iren SetRenderWindow RenWin1

camera parameters

vtkCamera camera

camera SetPosition 0 0 3.41078

camera SetFocalPoint 0 0 0

camera SetViewUp 0 1 0

camera SetViewAngle 30

camera SetClippingRange 2.41452 4.6731

Ren1 SetActiveCamera camera

Scientists are using computer simulations
to resolve models of real-world phenome-

non, including models of Earth’s environment, accel-
erator physics dynamics, and celestial bodies. With
additional computing power and algorithmic advances,
researchers can resolve these models to more detailed
levels, increasing our understanding of the world
around us. In engineering and product design, simula-

tion continues to replace physical
prototypes, resulting in reduced
design cycle times and costs. The
key to such applications is the visu-
alization and analysis of simulation
results. Simulations are usually run
in parallel on clusters of high-band-
width supercomputers or PCs. The
resulting data sets can be so massive
that they require parallel comput-
ing resources of similar magnitude
to effectively visualize them.

While visualizing large data sets
isn’t a new problem, it remains an
important and difficult one. The tra-
ditional improvements in hardware
capabilities continue to make larger
data sets possible and more accessi-

ble. Improvements in networking software and hardware
are promoting growth in networked computing clusters.
We expect that large data set visualization and the size
of the data sets will continue to grow. As both large- and
small-scale parallel computing resources become com-
monplace for scientists so must parallel visualization
software that effectively uses these resources.

Visualizing large data sets is difficult for many rea-
sons. Current analysis codes produce tera-element data
sets distributed over thousands of processing nodes. In
some cases, many time steps are never stored to disk but
must be visualized while in memory on the processing
nodes. This creates a problem, because the visualization
must share the already limited resources that the simu-
lation is using. This problem is compounded because
the visualization could potentially require more storage

than the simulation. Another difficulty is that some tra-
ditional visualization algorithms, such as streamline
generation or mesh decimation, aren’t well suited for
operating on distributed data or in parallel. Further-
more, visualizations often result in processing mixed
data-set topologies even when the simulation data set
is a uniform topology. An isosurface of a rectilinear grid
is a common example of this.

To solve these problems, we developed a visualization
architecture based on mixed data-set-topology parallel
data streaming. Clearly, any viable solution must support
parallel execution and visualization. Mixed-topology par-
allel data streaming goes beyond this to incorporate data
streaming so that we can keep the storage resources
required for the visualization significantly smaller than
those for the simulation. Additionally, it supports such
streaming even when the data set’s topology changes
from one visualization algorithm to the next.

We implemented our architecture within the Visual-
ization Toolkit (VTK).1 It includes specific additions to
support message passing interfaces (MPIs); memory-
limit-based streaming of both implicit and explicit
topologies; translation of streaming requests between
topologies; and passing data and pipeline control
between shared, distributed, and mixed memory con-
figurations.2 The architecture directly supports both
sort-first and sort-last parallel rendering.3

This article isn’t intended to address some known
issues in large data-set visualization such as massively
parallel I/O, effective load balancing, or parallel ren-
dering, although we briefly discuss their implications.

Related work
While data streaming, parallel visualization, and

mixed-topology visualization are all known techniques,
they can be difficult and combining all three is a signif-
icant challenge.

Researchers have developed a number of out-of-core
algorithms that support efficient streaming of large
data.4,5 The idea behind these approaches is to employ
out-of-core or incremental algorithms with a control-
lable memory footprint. These methods include stream-

0272-1716/01/$10.00 © 2001 IEEE

Large-Scale Data Visualization

34 July/August 2001

We present an architectural

approach based on parallel

data streaming to enable

visualizations on a parallel

cluster. Our approach

requires less memory than

other visualizations while

achieving high code reuse.

James Ahrens and Kristi Brislawn
Los Alamos National Laboratory

Ken Martin, Berk Geveci, and C. Charles Law
Kitware

Michael Papka
Argonne National Laboratory

Large-Scale Data
Visualization Using
Parallel Data
Streaming

lines, isosurfaces (modified marching cubes from disk),
and related computational geometry work.6-11 Typical-
ly, the algorithm will extract pertinent features (for
example, an isosurface) and incrementally write the
output to disk. Feature extraction is then followed by an
interactive visualization of the extracted feature. What
these algorithms lack is an overall architecture. Typi-
cally, they work independently from and to disk storage.
Sometimes the developer can apply them serially but at
the cost of constantly reading and writing the data to
disk between each algorithm, which is a poor use of the
memory hierarchy.

Systems such as Open Data Explorer (OpenDX),
Application Visualization System (AVS), Demand Dri-
ven Visualizer (DDV), and SCIRun provide a pipeline
infrastructure and can support parallel execution.12

OpenDX (formerly IBM Data Explorer) and AVS are
dataflow-based visualization systems, providing numer-
ous visualization and analysis algorithms for their
users.13,14 Both systems’ architectures rely on a central-
ized executive to some degree to instantiate modules,
allocate memory, and execute modules. For example,
they can achieve task parallelism with a remote module
that informs the executive that it’s ready to execute and
waits for a signal from the executive before continuing.15

Both systems handle data parallelism in some form in
the context of a centralized executive.

SCIRun is a dataflow-based simulation and visual-
ization system that supports interactive computational
steering. SCIRun provides threaded-task and data par-
allelism on shared-memory multiprocessors.2,16 An
extension to SCIRun permits distributed-memory task
parallelism.17 SCIRun also uses a centralized executive
and, in this way, resembles OpenDX and AVS.

All these systems provide a tightly integrated pro-
gramming environment that supports interactive pro-
gram construction, execution, and debugging via a
graphical user interface. The existence of a single point
of control for program construction and execution (that
is, a GUI) may have led to the creation of a related cen-
tralized executive. However, designing an efficient
mechanism for controlling many processes from a single
centralized executive is difficult. In contrast to these sys-
tems, our approach avoids using a centralized executive
and therefore provides a more scalable solution.

DDV provides a pipeline-based, demand-driven exe-
cution model that handles large data sets by requesting
only the minimum amount of data required to produce
the results.18 This is a significant advantage for data sets
with a large number of stored or computed fields. DDV
and the others haven’t yet addressed support for mix-
tures of task, data, and pipeline parallelism on both dis-
tributed and shared-memory multiprocessors.

Other solutions, such as pV3 and Ensight, encompass
a variety of techniques and support large or parallel data
but are designed more as turnkey applications.19 pV3 is
an implementation of the Visual3 visualization appli-
cation in the parallel virtual machine (PVM) environ-
ment. The application operates on a network of
heterogeneous computers that process data in pieces,
ultimately sending output to a collector that gathers and
displays the results. Although it’s successful, pV3 a cus-

tom application, not a toolkit. Furthermore, depending
on a collector is problematic in a larger data environ-
ment. Similarly, Ensight is easy to use but lacks our
approach’s flexibility and capabilities.

All the approaches we describe here lack the ability
to stream data in memory when the data set topologies
change. Because many visualization techniques can
change the data’s topology, this is an important consid-
eration. Even when using unstructured grids, which are
general, sometimes using a structured image is more
efficient and best represented as an image and not
another unstructured grid.

Streaming data
Streaming data through a visualization pipeline offers

two main benefits. First, we can run visualization data
that wouldn’t normally fit into memory or swap. Sec-
ond, we can run visualizations with a smaller memory
footprint resulting in higher cache hits and little or no
swapping to disk. To accomplish this, the visualization
software must support breaking the data set into pieces
and correctly processing those pieces. This requires that
the data set and the algorithms that operate on it are
separable, mappable, and result invariant:

� Separable. The algorithm must be able to break the
data into pieces. Ideally, each piece should be coher-
ent in geometry, topology, and/or data structure. Sep-
arating the data should be simple and efficient. In
addition, the algorithms in this architecture must cor-
rectly process pieces of data.

� Mappable. To control the data streaming through a
pipeline, we must be able to determine what portion
of the input data we need to generate a given portion
of the output. This lets us control the size of the data
through the pipeline and configure the algorithms.

� Result invariant. The results should be independent
of the number of pieces and the execution mode (that
is, single threaded or multithreaded). This means that
proper handling boundaries and developing algo-
rithms must be multithread-safe across pieces that
may overlap on their boundaries.

Other researchers have discussed an architecture that
accomplishes this with regularly sampled volumetric
data, such as images and volumes.20 In that architec-
ture, data consumers, such as rendering engines or file
writers, make requests for data that are fulfilled using a
three-step pipeline update mechanism.

The first step, Update Information, determines the
data set’s characteristics. This request is made by the
data’s consumer and travels upstream to the data’s
source. The resulting information contains the native
data type (such as float or short), the largest possible
extent expressed as (imin, imax, jmin, jmax, kmin, kmax), the
number of scalar values at each point, and the pipeline-
modification time. The architecture uses the native data
type and number of scalar values at each point to com-
pute how much memory a given piece of data requires.
The largest possible extent is typically the data set’s size
on a disk. This helps determine how to break the data
set into pieces and where the hard boundaries are (ver-

IEEE Computer Graphics and Applications 35

sus a piece’s boundaries). The architecture uses the
pipeline-modification time to determine when cached
results can be used.

Many algorithms in a visualization pipeline must
modify the information during the Update Information
pass. For example, a two-times image-magnification
algorithm would produce a largest possible extent that
is twice as large as its input. A gradient algorithm would
produce three components of output for every input
component.

The second step, Update Extents, propagates a
request for data (the update extent) up the pipeline (to
the data source). As the request propagates upstream,
each algorithm must determine how to modify the
request—specifically, what input extent is required for
the algorithm to generate its requested update extent.
For many algorithms, this is a simple one-to-one map-
ping. For others, such as a two-times magnification or
gradient computation using central differences, the
required input extent differs from the requested extent.
For this reason, the algorithms must be mappable. A side
effect of the Update Extents pass is that it returns the
total memory required to generate the requested extent.
This enables streaming based on a memory limit. For
example, a simple streaming algorithm would propa-
gate a large update extent that exceeds the user specified
memory limit. Then, it must break the update extent
into smaller pieces until it does fit. This requires that the
data set be separable. More flexible streaming algo-
rithms can switch between dividing a data set by blocks
or slabs and by what axis.

The final step, Update Data, causes the visualization
pipeline to process the data and produce the update
extent requested in step two. These three steps require a
significant amount of code to implement, but surprisingly,
their CPU overhead is negligible. Typically, the perfor-
mance speedup provided by better cache locality more
than compensates for the additional overhead. The excep-
tion is when boundaries cells are recomputed multiple
times, because they’re shared between multiple pieces.
This is typical in neighborhood-based algorithms, and it
creates a tradeoff between piece size (memory con-
sumption) and recomputing shared cells (computation).

This entire three-step process is initiated by the data’s
consumer such as a writer that writes to disk or a map-
per that converts the data into OpenGL calls. In both
these cases, the streaming is effective because the entire
result is never stored in memory at one time. It’s either
written to disk in pieces or sent to the rendering hard-
ware in pieces. It’s also possible to stream in the middle
of a visualization pipeline if there’s an operation that
requires a significant amount of input but produces a
fairly small output.

Streaming within the VTK is simple. Consider the fol-
lowing pseudocode example:

// Create the pipeline

MyDataSource source

source SetStandardDeviation(0.5)

// Iso-surfacing

ContourFilter contour

contour SetInput (source)

contour SetContourValue(220)

// set a memory limit

PolyDataMapper mapper

mapper SetInput (contour)

mapper SetMemoryLimit(50)

An instance of an analytical volumetric source is creat-
ed in this example called source. It’s then connected to
a contour filter that is then connected to a mapper. A 50-
Mbyte memory limit is set on the mapper that will initi-
ate streaming if the memory consumption exceeds that
limit. The mapper converts the resulting contour data
into graphics primitives. The only change made to this
program to support streaming is the SetMemoryLim-
it call on the mapper.

Mixed topologies
The last section described how to stream data, but it

didn’t consider the problems associated with streaming
unstructured data or mixtures of structured and
unstructured data. Streaming unstructured data has
several challenges. First, we must define an extent for
unstructured data sets. With regularly sampled volu-
metric data, such as images, we can use an extent
defined as (imin, imax, jmin, jmax, kmin, kmax), but this
doesn’t work with unstructured data. With unstructured
data a few options exist. One is to use a geometric extent
such as (xmin, xmax, ymin, ymax, zmin, zmax), but it’s an expen-
sive operation to collect the cells that fit into that extent,
and such an extent is difficult to translate into the
extents used for structured data if they aren’t axis
aligned. (Consider a curvilinear grid.)

A more practical approach is defining an unstructured
extent as piece M out of N possible pieces. Dividing the
pieces is done based on cells so that piece 2 of 10 out of
a 1,000-cell data set contains 100 cells. The memory-
limit-based streaming approach is the same for struc-
tured data except that instead of splitting the data into
blocks or slabs, the number of pieces, N, increases. This
fairly basic definition of a piece dictates that there isn’t
any control over what cells a piece will contain, only that
it will represent about 1/N of the data set’s total cells.

This raises the issue of how to support unstructured
algorithms that require neighborhood information. The
solution is to use ghost cells, which aren’t normally part
of the current extent but are included because the algo-
rithm requires them.21 To support this, we extend the
definition of an unstructured extent to be piece M of N
with G ghost levels. This requires that any source of
unstructured grid data be capable of supplying ghost
cells. There’s a related issue in that some unstructured
algorithms, such as contouring, operate on cells while
others, such as glyphing, operate on points. Points on
the boundary between two different extents will be
shared by them, resulting in duplicated glyphs when
processed. To solve this, we indicate which points in an
extent are owned by that extent versus the ones that are
ghost points. This way, point-based algorithms can oper-
ate on the appropriate points and still pass other points
through to the cell-based algorithms that require them.

Large-Scale Data Visualization

36 July/August 2001

In the end, we require both ghost cells and ghost points
to properly process the extents.

Consider Figure 1, which shows one piece of a sphere.
The figure shows the requested extent in red and two
ghost levels of cells in green and blue. The point colors
indicate their ownership: the requested extent owns all
the red points and the green and blue points indicate
ownership of the points by other extents. Note that some
cells use a mixture of points from different extents.

Now that we have defined extents for both structured
and unstructured data, we must define the conversion
between them. For most operations that take in struc-
tured data and produce unstructured data, the archi-
tecture can use a block-based division to divide the
structured data into pieces until there are N pieces as
requested. If this requires ghost cells, the block’s result-
ing extent can be expanded to include them. If ghost-
point information is required, it can be generated
algorithmically based on the largest possible extent and
on some convention regarding what boundary points
belong to which extent.

We can convert an extent from unstructured to struc-
tured data in a similar manner except that it’s inappro-
priate for most algorithms that convert unstructured to
structured data. Consider a gaussian-splatting algo-
rithm that takes an unstructured grid and resamples it
to a regular volume. Producing one part of the resulting
volume requires all the cells of the unstructured grid
that would splat into that extent. With our definition of
an unstructured extent, there’s no guarantee that the
cells in an extent are collocated or topologically relat-
ed. So to generate one extent of structured output
requires that the algorithm examine all the unstructured
data. Although the algorithm can do this within a loop,
our current implementation requires that when trans-
lating from a requested structured extent to an unstruc-
tured extent, the entire structured input is requested.

Supporting parallelism
Most large-scale simulations use parallel processing

and often the results are distributed across many pro-
cessing nodes. This requires that the visualization algo-
rithms be capable of operating in such an environment.
Supporting parallelism requires some of the same con-
ditions as streaming, such as data separability and result
invariance. It also requires asynchronous execution,
data transfer, and collection.

We ensure data transfer by creating input and output
port objects that can communicate between filters (algo-
rithms) in different processes. In turn, we require asyn-
chronous execution so that one process isn’t
unnecessarily blocked, waiting for input from another
process. Consider the pipeline in Figure 2. In this exam-
ple, Filter 3 has two inputs. Its first input, Filter 1, is in
another process, so it requires an input and output port
to manage the interprocess communication. Before Fil-
ter 3 executes, it must make sure both of its inputs have
generated their data. A naive approach would be to sim-
ply ask each input to generate its data in order. The prob-
lem is that while Filter 3 is waiting for Filter 1 to compute
its data, Filter 2 is idle.

To solve this, we made two modifications to the three-

step update process. The first modification was to add a
nonblocking method to the update process called Trig-
ger Asynchronous Update. This method starts the exe-
cution of any inputs in other processes. Essentially, this
method traverses upstream in the pipeline, and when it
encounters a port, the port calls Update Data on its input.

The second modification is to use the locality of the
inputs to determine in what order to invoke Update Data
on them. We define an input’s locality as 1.0 if the input
is generated within the same process, 0.0 if the input is
generated in a different process, and between 0.0 and
1.0 if the input is partially generated in one and partial-
ly in another (such as in a long pipeline where half of
the algorithms are in one process and half in another).
This locality is computed as part of the Update Infor-
mation call. So in Figure 2, Trigger Asynchronous
Update would be sent to Filter 1, which would cause Fil-
ter 1 to start executing because it’s in a different process.
Filter 2 would ignore the Trigger Asynchronous Update
call since there aren’t any ports between it and Filter 3.
Then, Filter 3 would call Update Data on Filter 2 first,
because it has the highest locality. Once Filter 2 has com-
pleted executing, Update Data would be called on Port

IEEE Computer Graphics and Applications 37

Filter 1

Filter 2

Port

Port

Filter 3

Process 1

Process 2

1 Breaking up a
sphere into a
piece (red) and
ghost-level cells
and points (blue
and green).

2 Pipeline
execution
across process
boundaries.

2, which could already have the results in memory if Fil-
ter 1 (which has been executing since the Trigger Asyn-
chronous Update call) has completed executing.

In addition to these infrastructure changes, we encap-
sulated process initialization and communication calls
into a class so that the user doesn’t have to deal with
them directly. We created concrete subclasses for dis-
tributed-memory and shared-memory processes using
MPI and pthreads. Likewise, we wrote a sort-last paral-
lel rendering class that uses interprocess communica-
tion to collect and then composite parallel renderings
into a final image. We support centralized rendering by
collecting the polygonal data together using ports
between processes connected to an append filter in the
collection process. This architecture can also implement
parallel rendering using polygon collection and then
parallel rendering such as WireGL.22

Given this parallel data-streaming architecture, we
can create a data parallel program by simply writing a
function that will execute on each processor. Inside that
function, each processor will request a different extent
of the results based on its processor ID. Each processor
can still take advantage of data streaming if its local
memory isn’t sufficient, letting this architecture process
large-scale visualizations.

Consider modifying the earlier pseudocode example
to support data parallelism and streaming. First, we
define a function called process that contains the bulk

of the pipeline creation and rendering. This function
will be invoked by MultiProcessController,
which encapsulates the setup and initialization of the
processes. In this example, we use the MPIController
subclass of MultiProcessController. It’s passed
into the function as an argument and it provides infor-
mation such as the process ID and total number of
processes. The visualization pipeline is created as usual
but the requested piece (M) and total number of pieces
(N) are set on the mapper. This way the mapper of each
process will only create its piece of the total N pieces.
The memory limit is still set in case generating piece M
of N requires excessive memory. Then, the mapper can
break down the request into smaller subpieces. An
instance of the TreeComposite class is created and
the render window is assigned to it. This class encapsu-
lates the sort-last parallel rendering technique. Then, a
Render call is made to the renderer that will start the
rendering process, streaming, and finally the tree-
compositing. The main() function creates an instance
of MPIController, which is one of the subclasses of
MultiProcessController; assigns a function for it
to execute; and then executes it.

process(MultiProcessController ctrl)

{

myId = ctrl GetLocalProcessId()

numPrcs = ctrl GetNumProcs()

// Create the pipeline

MyDataSource source

source SetStandardDeviation(0.5)

// Iso-surfacing

ContourFilter contour

contour SetInput (source)

contour SetValue(220)

PolyDataMapper mapper

mapper SetInput (contour)

// Set the total number of pieces

mapper SetNumberOfPieces(numProcs

)

mapper SetPiece(myId)

mapper SetMemoryLimit(50000)

Actor actor1

actor1 SetMapper(mapper)

RenderWindow renWin

Renderer renderer1

renWin AddRenderer(renderer1)

renderer AddActor(actor1)

// setup the tree composite and

render

TreeComposite treeComp

treeComp SetRenderWindow(renWin)

renWin Render()

}

main()

Large-Scale Data Visualization

38 July/August 2001

Volume

Isosurface

Gradient
magnitude

Probing

Rendering

3 Data-parallel
visualization
example.

4 Resulting
image from the
data-parallel
example in
Figure 3.

{

MPIController controller

controller Initialize()

ctrl

SingleMethodExecute(

process)

}

Results
The results we report here are based

on using an in-memory analytic function
as a data source. We designed this to
mimic visualizing data from a running
simulation where the simulation data is
in the memory. This also avoids dealing
with issues of massively parallel I/O,
which are beyond the scope of this article. We organized
the data as a regular volumetric data set with a double
precision scalar value computed at each point. We test-
ed three different visualization examples: the first two
on a cluster of eight SGI Origin 2000s, each with 128
shared-memory processors, and the third on a cluster
of eight PCs, each with two shared-memory processors.

The first visualization example was a data-parallel
pipeline that computes an isosurface and gradient mag-
nitude field from the volume. It then color-maps the gra-
dient magnitude onto the isosurface using a probe filter
and renders the result using a sort-last parallel render-
ing technique (see Figures 3 and 4). We ran this exam-
ple with input data sizes of 39 Gbytes, 1.1 Tbytes, and
0.9 Pbytes on configurations between 1 and 1,024
processors. These sizes each represent a single data set,
not multiple time steps. We rendered the polygons pro-
duced in software using Mesa.

The 39-Gbyte run produced 20-million polygons. We
reported its results in terms of efficiency versus the num-
ber of processors (see Figure 5). The efficiency is a mea-
sure of how effectively the additional processors are
being used. An efficiency of 1.0 represents a linear
speedup versus the number of processors. The results
are based on the wall-clock processing time required
and include any time required to start the processes and
allocate memory for each one. The 39-Gbyte test is small
enough that for anything beyond 64 processors the
startup time dominates the actual calculation time. Con-
sider that linear scaling would result in a 10-second exe-
cution on 1,024 processors, while the time required for
MPI to start 1,024 processes and for each of them to allo-
cate their memory is about 90 seconds. The results show
linear performance up to about 64 processors. Beyond
that, the calculation is simply too quick to make using
more processors worthwhile. If the visualization were
to be generated at the end of each time step, so that the
process could be kept running, then using 1,024 process-
es would be valuable.

We provide the results of the 1.1-terabyte run for 16
to 1,024 processors since running on one to eight proces-
sors would be too time consuming (see Figure 6). This
run produced 190-million polygons and with the larger
problem size the results are nearly linear across the
entire range. The worst case is the results for 1,024

processors that show an efficiency of 0.86 for a 418-sec-
ond execution time. We expected this due to the process
initialization time.

We tested the 0.9-petabyte run on 1,024 processors.
It required 360,000 seconds and produced 16-billion
polygons. It’s worth noting that the time required for
this run was nearly linear with respect to the time
required for the 1.1-terabyte run on 1,024 processors.
This is because of the streaming of the data. The 0.9-
petabyte run requires the same memory footprint as the
1.1-terabyte run.

The second visualization example demonstrates task
parallelism, where there are multiple independent
visualization pipelines (see Figure 7). In our example,
there were three pipelines. The first pipeline is the
probed isosurface pipeline that we used in the first

IEEE Computer Graphics and Applications 39

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

Ef
fic

ie
nc

y

1 2 4 8 16 32 64 128 256 512 1,024

5 Results of a 39-Gbyte data-parallel visualization.

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

Ef
fic

ie
nc

y

16 32 64 128 256 512 1,024

6 Results of a
1.1-Tbyte data-
parallel visual-
ization.

0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

Ef
fic

ie
nc

y

32 64 128 256 512 1,024

7 Results of a
1.1-Tbyte task-
parallel visual-
ization.

example. The second pipeline computes a gradient vec-
tor field from the input data. Then, it reduces the res-
olution and creates oriented glyphs at each point. The
third pipeline extracts a cut plane from the input data
and displays it (see Figure 8). In a fully data-parallel
configuration, all three tasks would be run on each
processor similarly to the data-parallel example. For
contrast, in this test, we distributed the tasks across
the processors with the majority of the processors
assigned to generating the probed isosurface. There-
fore, the example is task parallel with each task using
data parallelism across the processors it was allocat-
ed. The results indicate successful task parallelism with
a slightly less than linear speedup because of poor load
balancing between the tasks.

The third example considered pipeline parallelism,
where one processor performs some of the visualization
while another performs the rest of it. This is common in
cases where the graphics resources are available to only
some of the processors. We simulated this case by run-
ning the data-parallel example on a cluster of eight Win-
dows 2000 machines connected via a gigabit Ethernet.
Each machine had two processors and one had an accel-
erated OpenGL graphics card. We decided to use the
screen for hardware-accelerated rendering, which lim-
ited us to eight hardware renderers even though there
were 16 processors. The hardware rendering consumed
less than 1 percent of the total time.

Simple modifications to the first example allowed the
use of both processors on a machine for the computa-
tion, while we only used one processor to transmit the
data to the rendering hardware. We used sort-last com-
positing to combine the eight hardware renderings into
the final buffer. This resulted in a linear speedup from 8
to 16 processors due to the hardware rendering’s high
performance and the shared-memory data transfer’s
low cost. This capability is significant, because in many
cases, the hardware isn’t homogeneous and standard
data parallel approaches won’t fully use the available
resources. In this case, the first processor could render
the data while the second processors was computing the

next piece. For this hardware configuration, it let us use
all 16 processors where otherwise we would have only
used eight.

Discussion
Although this article has addressed some difficult

issues, we are still addressing others. In many simulations
with distributed data, the ghost cells can only be obtained
from other processes. Currently, there isn’t a standard
mechanism for one process to determine where to find
specific ghost cells. Ideally, there would be an efficient
mechanism so that an algorithm that required ghost cells
could determine what process to request them from. Addi-
tionally, some algorithms, such as streamlines, require
parallel-specific versions to be written that can pass infor-
mation concerning when a streamline exits one piece and
enters another. We’re actively researching these issues in
hopes of incorporating such capabilities into our archi-
tecture. �

Acknowledgments
This work was supported in part by grants from the

US Department of Energy ASCI Views program and the
DOE Office of Science. We acknowledge the Advanced
Computing Laboratory of the Los Alamos National Lab-
oratory, where we performed portions of this work on its
computing resources.

References
1. W.J. Schroeder, K.M. Martin, and W.E. Lorensen, The Visu-

alization Toolkit An Object-Oriented Approach to 3D Graph-
ics, Prentice Hall, Upper Saddle River, N.J., 1996.

2. S.G. Parker, D.M. Weinstein, and C.R. Johnson, “The
SCIRun Computational Steering Software System,” Mod-
ern Software Tools in Scientific Computing, E. Arge, A.M.
Brauset, and H.P. Langtangen, eds., Birkhauser Boston,
Cambridge, Mass., 1997, pp. 1-40.

3. S. Molnar et al., “A Sorting Classification of Parallel Ren-
dering,” IEEE Computer Graphics and Applications, vol. 4,
no. 4, July 1994, pp. 23-31.

4. M. Cox and D. Ellsworth, “Application-Controlled Demand
Paging for Out-Of-Core Visualization,” Proc. IEEE Visual-
ization 1997, ACM Press, New York, 1997, pp. 235-244.

5. M. Cox and D. Ellsworth, “Managing Big Data for Scientif-
ic Visualization,” Exploring Gigabyte Datasets in Real-Time:
Algorithms, Data Management, and Time-Critical Design,
Siggraph 97, Course Notes 4, ACM Press, New York, 1997.

6. Y.J. Chiang and C.T. Silva, “Interactive Out-of-Core Iso-
surface Extraction,” Proc. IEEE Visualization 1998, ACM
Press, New York, 1998, pp. 167-174

7. T.A. Funkhouser et al., “Database Management for Mod-
els Larger Than Main Memory,” Interactive Walkthrough of
Large Geometric Databases, Course Notes 32, Siggraph 95,
ACM Press, New York, 1995.

8. I. Itoh and K. Koyamada, “Automatic Isosurface Propaga-
tion Using an Extrema Graph and Sorted Boundary Cell
Lists,” IEEE Trans. Visualization and Computer Graphics,
vol. 1, no. 4, Dec. 1995, pp. 319-327.

Large-Scale Data Visualization

40 July/August 2001

8 Resulting
image from the
combined task-
and data-paral-
lel example.

9. S. Subramanian and S. Ramaswamy, “The P-Range Tree:
A New Data Structure for Range Searching in Secondary
Memory,” Proc. ACM/SIAM Symp. Discrete Algorithms,
SIAM, Philadelphia, Pa., 1995, pp. 378-387.

10. S. Teller et al., “Partitioning and Ordering Large Radiosi-
ty Computations,” Proc. Siggraph 94, ACM Press, New York,
1994, pp. 443-450.

11. S.K. Ueng, K. Sikorski, and K.-L. Ma, “Out-of-Core Stream-
line Visualization on Large Unstructured Meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 3, no. 4,
Oct.–Dec. 1997, pp. 370-380.

12. D. Song and E. Golin, “Fine-Grain Visualization Algorithms
in Dataflow Environments,” Proc. IEEE Visualization 1993,
IEEE CS Press, Los Alamitos, Calif., 1993, pp. 126-133.

13. G. Abrams and L. Trenish, “An Extended Data-Flow Archi-
tecture for Data Analysis and Visualization,” Proc. IEEE
Visualization 1995, IEEE CS Press, Los Alamitos, Calif.,
1995, pp. 263-270.

14. C. Upson et al., “The Application Visualization System: A
Computational Environment for Scientific Visualization,”
IEEE Computer Graphics and Applications, vol. 9, no. 4, July
1989, pp. 30-42.

15. M. Krogh and C. Hansen, “Visualization on Massively Par-
allel Computers using CM/AVS,” AVS Users Conf., 1993, pp.
129-137, http://www.acl.lanl.gov/Viz/abstracts/Parallel
AC-AVS.html.

16. C.R. Johnson and S. Parker, “The SCIRun Parallel Scien-
tific Computing Problem-Solving Environment,” Ninth
SIAM Conf. Parallel Processing for Scientific Computing,
SIAM, Philadelphia, Pa., 1999.

17. M. Miller, C. Hansen, and C. Johnson, “Simulation Steer-
ing with SCIRun in a Distributed Environment,” Applied
Parallel Computing, Fourth Int’l Workshop (PARA 98), Lec-
ture Notes in Computer Science, no. 1541, B. Kagström, J.
Dongarra, E. Elmroth, and J. Wasniewski, eds., Springer-
Verlag, Berlin, 1998, pp. 366-376.

18. P.J. Moran and C. Henze, “Large Field Visualization With
Demand-Driven Calculation,” Proc. IEEE Visualization
1999, ACM Press, New York, 1999, pp. 27-33.

19. R. Haimes and D.E. Edwards, Visualization in a Parallel Pro-
cessing Environment, American Inst. of Aeronautics and
Astronautics, Reston, Va., 1997.

20. C.C. Law et al., “A Multithreaded Streaming Pipeline Archi-
tecture for Large Structured Data Sets,” Proc. IEEE Visual-
ization 1999, ACM Press, New York, 1999, pp. 225-232.

21. W. Gropp, E. Lusk, and A. Skjellum, Using MPI, Portable
Parallel Programming with the Message-Passing Interface,
MIT Press, Cambridge, Mass., 1994.

22. G. Humphreys et al., “Distributed Rendering for Scalable
Displays,” Proc. Supercomputing, CD-ROM, ACM Press,
New York, 2000.

James Ahrens is a technical staff
member at Los Alamos National Lab-
oratory. His research interests
include scientific visualization, com-
puter graphics, parallel and distrib-
uted systems, and component
architectures. He has a PhD in com-

puter science from the University of Washington and is a
member of the IEEE Computer Society.

Kristi Brislawn is a technical staff
member at Los Alamos National Lab-
oratory. She is interested in develop-
ing parallel algorithms and software.
She has an MS in applied math from
the University of Colorado.

Ken Martin is a computer scientist
at Kitware, working in scientific and
medical visualization. His research
interests include computer vision,
computer graphics, and software
architectures. He received his PhD in
computer science from Rensselaer

Polytechnic Institute, studying model-based camera pose
estimation. He is a coauthor of VTK and The Visualization
Toolkit textbook (Prentice Hall, 1997).

Berk Geveci is a research and
development engineer at Kitware.
His research interests include scien-
tific visualization, computational
mechanics, and object-oriented pro-
gramming. He received his MS and
PhD in mechanical engineering from

Lehigh University.

C. Charles Law is a researcher at
Kitware. His interests include paral-
lel and large-data visualization, path
planning, and maintainability
analysis. He has a PhD in neuro-
science from Brown University.

Michael E. Papka is a software
project engineer in the Futures Labo-
ratory of the Mathematics and Com-
puter Science Division at Argonne
National Laboratory. He works with
fellow group members to design new
visualization technologies that com-

bine the use of advanced storage systems, advanced net-
working, virtual-space technology, and high-end virtual
environments to construct advanced tools for scientific
research.

Readers can contact Martin at Kitware, 469 Dlifton Cor-
porate Pkwy., Clifton Park, NY 12065; ken.martin@
kitware.com.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 41

William J Schroeder
© 1999 IEEE. Reprinted, with permission, from Proccedings of IEEE Visualization '99

Page ‹#›

SC 2002
Tutorial M9

Cláudio T. Silva

Oregon Health & Science University

Out-Of-Core Scientific Visualization

SC 2002
Tutorial M9

Outline

• Principles of External Memory Algorithms

• Isosurfaces

• Direct Volume Rendering

Page ‹#›

SC 2002
Tutorial M9

Principles of External Memory
Algorithms

• I/O Computational Model

• Algorithmic Techniques

• Caching & Prefetching

• External Merge Sort

• Out-Of-Core Pointer De-Referencing

• Meta-Cell Technique

• Indexing (B-Tree-Like Data Structures)

SC 2002
Tutorial M9

Volume Rendering vs Isosurfaces

• Direct Volume Rendering
- Volume data ‡ Image

- Looks “inside” the data

• Isosurfaces
- Volume data ‡ Polygon model

- Slice of the data

McPherson, LANL

McPherson, LANL

Page ‹#›

SC 2002
Tutorial M9

Isosurfaces

Query:

- For a query value q, find and display the isosurface
of q: C(q) = {p | F(p) = q}

SC 2002
Tutorial M9

Direct Volume Rendering:
Optical Models

Light

sssIssgsIssI DW-D+=D+)()()()()(

s sD

dx
s

x
dyy

exgsI Ú
Ú W-

=
0

0
)(

)()(

Page ‹#›

SC 2002
Tutorial M9

Volume Rendering

Regular Irregular

RR Æ3:f

SC 2002
Tutorial M9

Out-Of-Core Isosurface
Computations

Page ‹#›

SC 2002
Tutorial M9

I/O-Efficient Hierarchical
Partitioning – Meta-Cells

Meta-cell technique – Chiang-Silva, 98:
- partition dataset into clusters of cells (meta-cells)
- out-of-core k-d-tree-like partition

- each meta-cell has pointer references within the meta-cell:
compact representation, efficient disk space

SC 2002
Tutorial M9

Preprocessing Pipeline

volume
dataset

Meta-cell
Computation

meta-cells

meta-intervals

Tree Construction
binary-blocked
I/O interval treeIsosurface Extraction

Page ‹#›

SC 2002
Tutorial M9

Isosurface Query Pipeline

isovalue q
interval searching

binary-blocked
I/O interval tree

meta-cellsdisk read
 active
meta-cell ID’s

generation phase
(use Vtk)

 active
meta-cells isosurface

SC 2002
Tutorial M9

Out-Of-Core Volume Rendering

Page ‹#›

SC 2002
Tutorial M9

Volume Rendering:
(Intersection) Sampling + Sorting

SC 2002
Tutorial M9

Graphics Pipeline

Application

Command

Geometry

Rasterization

Texture

Fragment

Display

Akeley and Hanrahan, Stanford

Page ‹#›

SC 2002
Tutorial M9

Sampling:
Triangle-Based Approach

Class 1; (+, +, +, -)

Class 2; (+, +, -, -)

Projected Tetrahedra [Shirley-Tuchman 90]

SC 2002
Tutorial M9

Sorting

Application

Rasterization

Display

Object-Space
Sorting

Image Space

i.e., let’s sort the geometry!

Page ‹#›

SC 2002
Tutorial M9

Volume Rendering:
Cell-Projection

1
2

4
3

6

7 5
B

p

A

A < Bp

SC 2002
Tutorial M9

Object-Order Sorting
Williams’ MPVO

A

B

C

E

D

F

Viewing direction

A

B

C

E

D

F

B < A
A < C

B < E

C < E

C < D

E < F

D < F

Idea: Define ordering relations
by looking at shared faces.

Page ‹#›

SC 2002
Tutorial M9

MPVO Limitations

Missing relations!

SC 2002
Tutorial M9

MPVONC Rendering Errors

SXMPVO MPVONC ERRORS

Page ‹#›

SC 2002
Tutorial M9

Sorting

Application

Rasterization

Display

Object Space

Image-Space
Sorting i.e., let’s sort the pixes!

SC 2002
Tutorial M9

Image-Order Sorting:
Carpenter’s A-Buffer

Idea: Keep a list of intersections for each pixel.

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Page ‹#›

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Not sorted!

SC 2002
Tutorial M9

Cell-Projection With An A-Buffer

Sorted!

Page ‹#›

SC 2002
Tutorial M9

A-Buffer Limitations

c cells

N-by-N pixels

Number of Intersections: O(c N)2

Problems:
1. Time: sorting intersections takes too long!

2. Memory: storage too high!

SC 2002
Tutorial M9

A-Buffer Hardware Designs

- Wittenbrink’s F-Buffer, GHW01
‡Proposes to use d2 passes by using hardware-based

selection sort

- Compaq Research’s Neon, GHW00
‡Limited to fixed depth

Page ‹#›

SC 2002
Tutorial M9

Sorting

Application

Rasterization

Display

Image-Space
Sorting

Object-Space
Sorting

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1

Page ‹#›

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2
3

Page ‹#›

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2
3

4
5

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2
3

4
5 6 7

Page ‹#›

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2
3

4
5 7 6

A Solution: Use an insertion-sort A-buffer!

SC 2002
Tutorial M9

Approximate Object-Space Sorting

1 2
3

4
5 7 6

What about the space problem ?
 ‡ Use a conservative bound on the intersections

Page ‹#›

SC 2002
Tutorial M9

ZSWEEP:
Sort in Image and Object Space

Do an approximate sorting of the cells (e.g., based on the order of
the vertices), and use an insertion sort for the intersections –
solves the sorting overhead

Propose a conservative technique for limiting the memory usage,
by performing compositing on the intersections, anytime the
lists become “too large” – solves the memory overhead

[Farias, Mitchell, Silva 2000]

SC 2002
Tutorial M9

ZSWEEP - DEMO

Page ‹#›

SC 2002
Tutorial M9

Blocking for Out-Of-Core Rendering

Meta-cell

Chiang, Silva, Schroeder 1998

SC 2002
Tutorial M9

Out-Of-Core ZSWEEP:
Data Management

Meta-cell

Event: fetch A

fetch B

dump A

dump B

Sweep Plane

[Farias and Silva 2001a]

Page ‹#›

SC 2002
Tutorial M9

Tile-Based ZSWEEP

SGI R10K L2 – 2MB

ZSWEEP: 56% hit rate

TB-ZSWEEP: 94% hit rate

[Farias and Silva 2001b]

SC 2002
Tutorial M9

Generating 2048x2048 Image (sec)

Blunt Fin
Combustion Chamber

Oxygen Post
Delta Wing

Original ZSWEEP OOC-ZSWEEP

Memory Time Memory Time

330

330

350

380

386

407

775

639

6.2

6.2

13.2

24.2

331

423

667

537

Out-Of-Core ZSWEEP Results

Page ‹#›

SC 2002
Tutorial M9

Acknowledgments

• DOE/MICS and Sandia National Laboratory

• NSF

Interactive Out-Of-Core Isosurface Extraction
Yi-Jen Chiang� Cláudio T. Silvay William J. Schroederz

Polytechnic University IBM T. J. Watson Research Center Kitware

Abstract

In this paper, we present a novelout-of-coretechnique for the inter-
active computation of isosurfaces from volume data. Our algorithm
minimizes the main memory and disk space requirements on the
visualization workstation, while speeding up isosurface extraction
queries. Our overall approach is atwo-level indexingscheme. First,
by our meta-celltechnique, we partition the original dataset into
clusters of cells, calledmeta-cells. Secondly, we producemeta-
intervalsassociated with the meta-cells, and build an indexing data
structure on the meta-intervals. Weseparatethe cell information,
kept only in meta-cells in disk, from the indexing structure, which is
also in disk and only contains pointers to meta-cells. Our meta-cell
technique is an I/O-efficient approach for computing ak-d-tree-like
partition of the dataset. Our indexing data structure, thebinary-
blocked I/O interval tree, is a new I/O-optimal data structure to per-
form stabbing queriesthat report from a set of meta-intervals (or
intervals) those containing a query valueq. Our tree is simpler to
implement, and is also more space-efficient in practice than the ex-
isting structures. To perform an isosurface query, we first query the
indexing structure, and then use the reported meta-cell pointers to
read from disk theactivemeta-cells intersected by the isosurface.
The isosurface itself can then be generated from active meta-cells.
Rather than being a single-cost indexing approach, our technique
exhibits asmooth trade-offbetween query time and disk space.

Keywords: Isosurface Extraction, Marching Cubes, Out-Of-Core
Computation, Interval Tree, Scientific Visualization.

1 Introduction

Isosurface extraction represents one of the most effective and
widely used techniques for the visualization of volume datasets.
Formally, a scalar volume datasetconsists of tuples(x;F(x)),
wherex is a 3D point andF is a scalar function defined over 3D
points. Given an isovalueq, extracting the isosurface ofq is to
compute the isosurfaceC(q) = fxjF(x) = qg. The computation
process can be divided into two phases: First, one finds theactive
cells that are intersected by the isosurface (thesearch phase), and
then, one can compute the isosurface from the active cells (thegen-
eration phase). Most of the isosurface algorithms require the entire
dataset to be kept in main memory, which is a severe limitation on
their applicability, especially for large scientific applications.

In this paper, we present an isosurface technique whose main
memory and disk space requirements on the visualization work-
station are minimized, while speeding up the isosurface extraction
procedure. In the same flavor as the methods of [10, 11], we in-
dex the dataset cells to achieve output-sensitive searches. Also, as
in [10, 11], we keep both the indices (i.e., intervals obtained from
the cells) and the original dataset indisk, rather than in main mem-
ory. Moreover, during isosurface queries only a small portion of
the dataset is touched and brought to main memory, by performing

�yjc@photon.poly.edu
ycsilva@watson.ibm.com
zwilliam.schroeder@kitware.com

(using an indexing data structure)stabbing queriesthat report from
a set of intervals those containing the query valueq.

In [10, 11], to avoid inefficientpointer referencesin disk, thedi-
rect cell informationis stored with its interval, in the indexing data
structure. This is very inefficient in disk space, since the vertex
information is duplicated many times, once for each cell sharing
the vertex. Moreover, in the indexing structures [3, 18] used, each
interval is stored three times in practice, increasing the duplica-
tions of vertex information by another factor of three. To eliminate
this inefficiency, our indexing scheme uses atwo-levelstructure.
First, we partition the original dataset into clusters of cells, called
meta-cells. Secondly, we producemeta-intervalsassociated with
the meta-cells, and build our indexing data structure on the meta-
intervals. Weseparatethe cell information, kept only in meta-cells
in disk, from the indexing structure, which is also in disk and only
contains pointers to meta-cells. Isosurface queries are performed
by first querying the structure, then using the reported meta-cell
pointers to read from disk theactivemeta-cells intersected by the
isosurface, which can then be generated from the active meta-cells.

While we need to performpointer referencesin disk from the in-
dexing structure to meta-cells, thespatial coherencesof isosurfaces
and of our meta-cells ensure that each meta-cell being read contains
manyactive cells, so such pointer references are efficient. Also,
a meta-cell is always read as a whole, hence we can use pointers
within a meta-cell to store each meta-cell compactly. In this way,
we obtain efficiencies inbothquery time and disk space. Two new
techniques lie at the heart of this paper. One is themeta-celltech-
nique that computes the spatially coherent meta-cells. The other is
the binary-blocked I/O interval tree, a new I/O-optimal stabbing-
query data structure that is simpler to implement and more space-
efficient in practice than those in [3, 18]. We believe both tech-
niques will find applications other than efficient out-of-core isosur-
face extraction.

We summarize the contributions of this work as follows.

� We present a novel out-of-core isosurface technique that im-
proves [10, 11]. While keeping the querying time and main
memory requirement small, the disk space overhead is re-
duced by more than one order of magnitude.

� We give a newmeta-celltechnique that partitions a volume
dataset into spatially coherent meta-cells. This can be viewed
as an out-of-corek-d-tree-like partition, and is efficiently car-
ried out by performing external sorting a few times.

� We propose thebinary-blocked I/O interval tree, a new I/O-
optimal stabbing-query data structure. Previous such struc-
tures [3, 18] both have three types of secondary lists, but our
tree has only two types of lists (as in the original main mem-
ory interval tree of [14]), so it has the tree size reduced by a
factor of 2/3 in practice, and is also simpler to implement.

Previous Related Work

We first briefly review the work on out-of-core, orI/O techniques.
In addition to early work on sorting and scientific computing, re-
cently there have been I/O algorithms for graphs and for compu-
tational geometry; see [10, 11] for the references. Although most

James T Klosowski
© 1998 IEEE. Reprinted, with permission, from IEEE Visualization 1998, pp. 167-179, 1998.

of the results are theoretical, the experiments of Chiang [8], Ven-
groff and Vitter [27], and Argeet al. [2] on some of these tech-
niques show that they result in significant improvements over tra-
ditional algorithms in practice. Telleret al. [24] describe a sys-
tem to compute radiosity solutions for polygonal environments
larger than main memory, and Funkhouseret al. [15] present
prefetching techniques for interactive walk-throughs in large archi-
tectural virtual environments. Very recently, Pharret al. [21] give
memory-coherent ray-tracing algorithms, Cox and Ellsworth [13]
present application-controlled demand paging methods, and Ueng
el al. [25] propose out-of-core streamline techniques.

As for isosurface extraction, there is a very rich literature. Here
we only briefly review the results that focus on speeding up the
search phase. We letN denote the number of cells in the dataset,
andK the number of active cells. In Marching Cubes [20], all
cells are searched for isosurface intersection, and thusO(N) time
is needed. Techniques avoiding exhaustive scanning include using
an octree [28], identifying a collection ofseed cellsand performing
contour propagation from the seed cells [4, 17, 26], NOISE [19],
and other nearly optimal isosurface extraction methods [23]. The
first optimal isosurface extraction algorithm was given by Cignoni
et al. [12], based on the following two ideas. First, for each cell,
they produce an intervalI = [min;max] wheremin andmax are
the minimum and maximum of the scalar values in the cell ver-
tices. Then the active cells are exactly those cells whose intervals
containq. Searching active cells then amounts to performing stab-
bing queries. Secondly, the stabbing queries are solved by using
an internal-memory interval tree [14]. After anO(N logN)-time
preprocessing, active cells can be found in optimalO(logN +K)
time.

The firstout-of-coreisosurface technique was given by Chiang
and Silva [10]. They follow the ideas of Cignoniet al. [12], but use
the I/O-optimal interval tree of [3] to solve the stabbing queries.
In their follow-up paper [11], they replaced the I/O interval tree
of [3] with the metablock tree [18]. With their techniques, datasets
much larger than main memory can be visualized very efficiently.
The major drawback is the large overhead in disk space to hold
the search structure, and the disk scratch space needed to build the
structure. Another out-of-core isosurface technique, based on con-
tour propagation from seed cells, is recently proposed in [5] (where
no out-of-core implementation is reported).

2 Main Techniques

In this section we present our isosurface algorithm. There are two
major techniques: themeta-celltechnique, which is used to con-
structmeta-cellsfrom dataset cells, and thebinary-blocked I/O in-
terval tree, which is a new I/O-optimal stabbing-query data struc-
ture, used to serve as anindexingstructure for the meta-cells. We
show the preprocessing pipeline of our overall algorithm in Fig. 1.
The main tasks are as follows:

(1) Group spatially neighboring cells intometa-cells. The total
number of vertices in each meta-cell is roughly the same, so
that during queries each meta-cell can be retrieved from disk
with approximately the same I/O cost. Each cell is assigned
to exactly one meta-cell.

(2) Compute and store in disk the meta-cell information for each
meta-cell.

(3) Computemeta-intervalsassociated with each meta-cell. Each
meta-interval is an interval[min;max], to be defined later.

(4) Build in disk a binary-blocked I/O interval tree on meta-
intervals. For each meta-interval, only itsmin andmax val-

volume
dataset

Meta-Cell
Computation

meta-cells

Tree Construction

I/O interval tree
binary-blocked

meta-intervals

Figure 1: The preprocessing pipeline of our isosurface technique.

ues and the meta-cell ID are stored in the tree, where meta-cell
ID is a pointer to the corresponding meta-cell record in disk.

We describe the representation of meta-cells. Each meta-cell has
a list of vertices, where each vertex entry contains itsx-, y-, z-
and scalar values, and a list of cells, where each cell entry con-
tains pointers to its vertices in the vertex list. In this way, a vertex
shared by many cells in the same meta-cell is stored justonce in
that meta-cell. The only duplications of vertex information occur
when a vertex belongs to two cells indifferentmeta-cells; in this
case we let both meta-cells include that vertex in their vertex lists,
so that each meta-cell hasself-containedvertex and cell lists. We
store the meta-cells, one after another, in disk.

The purpose of meta-intervals for a meta-cell is analogous to that
of interval for a cell: a meta-cell isactive, i.e., intersected by the iso-
surface ofq, if and only if one of its meta-intervals containsq. Intu-
itively, we could just take the minimum and maximum scalar values
among the vertices to define the meta-interval (as cell intervals),
but such big range would containgaps� in which no cell interval
lies. Therefore, we break such big range into pieces, each a meta-
interval, by the gaps. Formally, we define themeta-intervalsof a
meta-cell as theconnected componentsamong the intervals of the
cells in that meta-cell. With this definition, searching active meta-
cells amounts to performing stabbing queries on the meta-intervals.
The query pipeline of our overall algorithm is shown in Fig. 2. We
have the following steps:

(1) Find all meta-intervals (and the corresponding meta-cell ID’s)
containingq, by querying the binary-blocked I/O interval tree
in disk.

(2) (Internally) sort the reported meta-cell ID’s. This makes the
subsequent disk reads for active meta-cellssequential(except
for skipping inactive meta-cells), and minimizes the disk-head
movements.

(3) For each active meta-cell, read it from disk to main memory,
identify active cells and compute isosurface triangles, throw
away the current meta-cell from main memory and repeat the
process for the next active meta-cell. At the end, patch the
generated triangles and perform the remaining operations in
the generation phase to generate and display the isosurface.

Now we argue that in step (3) the pointer references in disk to
read meta-cells are efficient,i.e., there are many active cells in an
active meta-cell. Intuitively, by the way we construct the meta-
cells, we can think of each meta-cell as a cube, with roughly the
same number of cells in each dimension. Also, by thespatial co-
herenceof an isosurface, usually there are not many meta-cells that

�Gaps only occur when disconnected components of cells belong to the
same meta-cell.

active
meta-cell ID’s

active
meta-cells

I/O interval tree
binary-blocked

meta-cellsdisk read

isovalue q
stabbing query

isosurfacegeneration phase

Figure 2: The query pipeline of our isosurface technique.

are cutonly through cornersby the isosurface. Thus by a dimension
argument, if an active meta-cell hasC cells, for most times the iso-
surface cuts throughC2=3 cells. This is similar to the argument that
usually there are�(N2=3) active cells in anN -cell volume dataset.
Then this means that we readC cells (a whole meta-cell) for ev-
eryC2=3 active cells,i.e., we traverse athicknessof C1=3 layers of
cells, for one layer of isosurface. Therefore we readC1=3 � (K=B)

disk blocks forK active cells, which is a factor ofC1=3 from op-
timal (B is the number of cells fitting in one disk block). Notice
that when the size of meta-cells is increased, the number of dupli-
cated vertices is decreased (less vertices in meta-cell boundaries),
and the number of meta-intervals is also decreased (less meta-cells),
while the numberC is increased. Hence we have atrade-offbe-
tween space and query time, by varying the meta-cell size. Since
the major cost in disk reads is indisk-head movements(e.g., reading
two disk blocks takes approximately the same time as reading one
block, after moving the disk head), we can increase meta-cell sizes
while keeping the effect of the factorC1=3 negligible. (We shall
see the actual trade-off between disk space and query time when
we present the experimental results in Section 3.)

2.1 Meta-Cell Computation

The efficient subdivision of the dataset into meta-cells lies at the
heart of our overall isosurface algorithm. The computation is simi-
lar to the partition induced by ak-d-tree [6], but we do not need to
compute the multiple levels. Since direct random access to vertices
is very inefficient in disk, we develop a new technique that is I/O-
efficient, by essentially performing external sorting a few times. We
assume that the input dataset is in a general “index cell set” (ICS)
format, i.e., there is a list of vertices, each containing itsx-, y-, z-
and scalar values, and a list of cells, each containing pointers to its
vertices in the vertex list. We want to partition the dataset intoH3

meta-cells, whereH is a parameter we can adjust to vary the meta-
cell sizes, usually several disk blocks. The final output of meta-cell
computation is a single file that contains all meta-cells, one after
another, each anindependentICS file (i.e., the pointer references
from cells of a meta-cell arewithin the meta-cell). We also produce
meta-intervals for each meta-cell.

For simplicity, we assume that the input cell list contains cells
of the same type (e.g., tetrahedral cells). If this is not the case, we
can first scan the cell list and put different types of cells into differ-
ent cell lists. In the following, we refer to meta-cell ID’s as num-
bers0; 1; � � � to number the meta-cells; we refer to them aspointers
to the meta-cell positions in disk, as we previously do, only after
the meta-cell computation is complete. Our meta-cell computation
consists of the following steps.

1. Partition vertices into clusters of equal size.This is thekeystep
in constructing meta-cells. We use each resulting cluster to define a
meta-cell, whose vertices are those in the cluster, plus somedupli-
catedvertices to be constructed later. Observe that meta-cells may
differ dramatically in their volumes, but their numbers of vertices
are roughly the same. The partitioning method is very simple. We

first externally sort all vertices by thex-values, and partition them
into H consecutive chunks. Then, for each such chunk, we exter-
nally sort its vertices by they-values, and partition them intoH
chunks. Finally, we repeat the process for each refined chunk, ex-
cept that we externally sort the vertices by thez-values. We take the
final chunks as clusters. Clearly, each cluster has spatially neigh-
boring vertices. The computing cost is bounded by three passes of
external sorting. This step actuallyassignsvertices to meta-cells.
We produce avertex-assignmentlist with entries(vid;mid), indi-
cating that vertexvid is assigned to meta-cellmid.

2. Assign cells to meta-cells and duplicate vertices.Our assign-
ment of cells to meta-cells attempts to minimize the wasted space.
The basic coverage criterion is to see how a cell’s vertices have
been mapped to meta-cells. A cell whose vertices all belong to the
same meta-cell is assigned to that meta-cell. Otherwise, the cell
is in the boundary, and a simple voting scheme is used: the meta-
cell that contains themostvertices owns that cell, and themissing
vertices of the cell have to be duplicated and inserted to this meta-
cell. We break ties arbitrarily. In order to determine this assign-
ment, we need to obtain for each cell, the destination meta-cells of
its vertices. For in-core computation, this is easily computed by a
pointer de-reference. But the out-of-core counterpart of this com-
putation is not so simple. Our basic operation is thejoin operation
(commonly used in database), using the vertex ID as thekey, in
both the cell list and the vertex-assignment list. The join operation
can be performed I/O-efficiently, by externally sorting both lists by
the key, and scanning through both lists to fill in the information
needed [7, 9]. For example, to fill in the destination meta-cell ID
of the first vertex in each cell, we sort the cell records in the cell
list by the vertex ID’s of theirfirst vertices, so that the first group
contains the cells whose first vertices are vertex 1, the second group
contains the cells whose first vertices are vertex 2, and so on. We
also sort the vertex-assignment list by vertex ID, so that we know
the destination meta-cell ID’s of vertex 1, of vertex 2, etc., in that
sequential order. We then scan through both lists and fill in the des-
tination meta-cell ID of the first vertex, for each cell in the cell list.
We need to perform as many join operations as the degree of the
cell (i.e., for tetrahedra we need to perform four joins). Once all the
vertex-to-meta-cell assignments have been propagated to the cell
list, a single scan is enough not only to assign cells to meta-cells,
but also to decide which vertices to duplicate and insert to which
meta-cells. For the latter, we produce avertex-duplicationlist with
entries(vid; mid), indicating that vertexvid has to be duplicated
and inserted to meta-cellmid.

3. Compute the vertex and cell lists for each meta-cell.To ac-
tually duplicate vertices and insert them to appropriate meta-cells,
we first need to de-reference the vertex ID’s (to obtain thecom-
pletevertex information) from the vertex-duplication list. We can
do this by using one join operation, using vertex ID as the key, on
the original input vertex list and the vertex-duplication list. Now
the vertex-duplication list contains for each entry the complete ver-
tex information, together with the ID of the meta-cell to which the
vertex must be inserted. We also have a list for assigning cells to
meta-cells. To finish the generation of meta-cells, we use a main
join operation on these lists, using meta-cell ID as the main key.
To avoid possible replications of the same vertex inside a meta-cell,
we use vertex ID’s as the secondary key during the sorting for the
join operation. Finally, we update the vertex pointers for the cells
within each meta-cell. This can be easily done since each meta-cell
can be kept in the main memory.

4. Compute meta-intervals for each meta-cell.Since each meta-
cell can fit in main memory, this step only involves in-core compu-
tation. First, we compute the interval for each cell in the meta-
cell. Then we sort all interval endpoints. We scan through the
endpoints, with a counter initialized to 0. A left endpoint encoun-
tered increases the counter by 1, and a right endpoint decreases the

counter by 1. A “0 ! 1” transition gives the beginning of a new
meta-interval, and a “1 ! 0” transition gives the end of the current
meta-interval. We can easily see that the computation is correct,
and the computing time is bounded by that of internal sorting.

2.2 Binary-Blocked I/O Interval Tree

Now we present ourbinary-blocked I/O interval tree. Since it is a
general stabbing-query data structure, we use the general termin-
terval to refer to the underlying intervals or meta-intervals being
manipulated. We useunique cell ID’sto break a tie between end-
point values. In the case of meta-intervals and meta-cells, it is easy
to see that each entry of (endpoint value, meta-cell ID) is distinct.
We useN to denote the total number of intervals considered, and
M andB the numbers of intervals fitting in main memory and in
one disk block, respectively. One I/O operation reads or writes one
disk block.

Our interval tree is I/O-optimal in space, query, and preprocess-
ing, and is an extension of the original (main memory, binary) inter-
val tree of [14]. Ourbranching factor Bf(i.e., the maximum number
of children of an internal node) is increased from 2 to�(B), to re-
duce the tree height fromO(log

2
N) toO(logB N), like B-trees.

We remark that the previous I/O-optimal interval tree of [3] also
increasesBf (to �(

p
B)) to make tree heightO(logB N), but an

additional type of secondary lists is introduced, which potentially
increases the space by a factor of 3/2 (originally the binary interval
tree has two types of secondary lists). Our tree does not introduce
any new type of lists, so is simpler to implement and also is more
space-efficient in practice.

2.2.1 Data Structure

Before describing our binary-blocked I/O interval tree, we first re-
view the original (main memory) interval tree of [14]. Given a set
of N intervals, such interval treeT is defined recursively as fol-
lows. If there is only one interval, then the current noder is a leaf
containing that interval. Otherwise, noder stores as a key the me-
dian valuem that partitions the interval endpoints into two slabs,
each having the same number of endpoints that are smaller (resp.
larger) thanm. The intervals that containm are assigned to node
r. The intervals with both endpoints smaller thanm are assigned
to the left slab; similarly, the intervals with both endpoints larger
thanm are assigned to the right slab. The left and right subtrees
of r are recursively defined as the interval trees on the intervals in
the left and right slabs, respectively. In addition, each internal node
u of T has two secondary lists: theleft list, which stores the in-
tervals assigned tou, sorted inincreasing left endpoint values, and
the right list, which stores the same set of intervals, sorted inde-
creasing right endpoint values. It is easy to see that the tree height
isO(log

2
N). Also, each interval is assigned to exactly one node,

and is stored either twice (when assigned to an internal node) or
once (when assigned to a leaf), and thus the overall space isO(N).

In our binary-blocked I/O interval tree,T , each node is one disk
block, capable of holdingB items. We want to increase the branch-
ing factorBf so that the tree height isO(logB N). The intuition of
our method is extremely simple: weblock a subtree of the binary
interval treeT into one node ofT (see Fig. 3). In the following, we
refer to the nodes ofT assmall nodes. We take the branching factor
Bf to be�(B). Then in an internal node ofT , there areBf�1 small
nodes, each having a key, a pointer to its left list and a pointer to its
right list, where all left and right lists are stored in disk.

Now we give a more formal definition of treeT . First, we sort
all left endpoints of theN intervals in increasing order from left to
right, into setE. We use (meta-)cell ID’s to break ties. SetE is
used to define the keys in small nodes. Then treeT is recursively
defined as follows. If there are no more thanB intervals, then the
current nodeu is a leaf node storing all intervals. Otherwise,u is

Figure 3: Intuition of binary-blocked I/O interval treeT : each cir-
cle is a node in the binary interval treeT , and each rectangle, which
blocks a subtree ofT , is a node ofT .

an internal node. We takeBf � 1 median values fromE, which
partitionE into Bf slabs, each with the same number of endpoints.
We store sorted, in non-decreasing order, theseBf�1 median values
in nodeu, which serve as the keys of theBf� 1 small nodes inu.
We implicitly build a subtree ofT on theseBf� 1 small nodes, by
a binary-search scheme: the root key is the median of theBf � 1
sorted keys, the key of the left child of the root is the median of the
lower half keys, and the right-child key is the median of the upper
half keys, and so on. Now consider the intervals. The intervals that
contain one or more keys ofu are assigned tou. In fact, each such
intervalI is assigned to thehighestsmall node (in the subtree inu)
whose key is contained inI; we storeI in the corresponding left
and right lists of that small node. For the remaining intervals, each
has both endpoints in the same slab and is assigned to that slab. We
recursively define theBf subtrees of nodeu as the binary-blocked
I/O interval trees on the intervals in theBf slabs.

Notice that with the above binary-search scheme for implicitly
building a (sub)tree on the keys stored in an internal nodeu, Bf
does not need to be a power of 2 — we can makeBf as large as
possible, as long as theBf� 1 keys, the2(Bf� 1) pointers to the
left and right lists, and theBf pointers to the children, etc., can all
fit into one disk block. As a comparison, in the I/O interval tree
of [3], each internal node has�(Bf) left lists,�(Bf) right lists, and
additional�(Bf2) multi lists, and thusBf is taken as�(

p
B). Also,

an interval can be stored up to three times. It is easy to see that our
treeT has heightO(logB N), and the overall space complexity is
optimalO(N=B) disk blocks.

2.2.2 Query Algorithm

Our query algorithm for the binary-blocked I/O interval treeT is
very simple and mimics the query algorithm for the binary interval
treeT . Given a query pointq, we perform the following recursive
process starting from the root ofT . For the current nodeu, we
readu from disk. Now consider the subtreeTu implicitly built on
the small nodes inu by the binary-search scheme. Using the same
binary-search scheme, we follow a root-to-leaf path inTu. Let r
be the current small node ofTu being visited, with key valuem. If
q = m, then we report all intervals in the left (or equivalently, right)
list of r and stop. Ifq < m, we scan and report the intervals in
the left list ofr, until the first interval with left endpoint larger than
q is encountered. Recall that the left lists are sorted by increasing
left endpoint values. After that, we proceed to the left child ofr
in Tu. Similarly, if q > m, we scan and report the intervals in
the right list ofr, until the first interval with right endpoint smaller
thanq is encountered. Then we proceed to the right child ofr in
Tu. At the end, ifq is not equal to any key inTu, the binary search
on theBf� 1 keys locatesq in one of theBf slabs. We then visit
the child node ofu in T which corresponds to that slab, and apply
the same process recursively. Finally, when we reach a leaf node of
T , we check theO(B) intervals stored to report those that contain
q, and stop. Although the tree height isO(logB N), in the worst-

case we might need to perform a total ofO(log
2
(N=B) +K=B)

I/O operations for a query. We can improve this bound to optimal
O(logB N +K=B) I/O’s by using thecorner structures[18]; we
omit the details here in order to stay within the page limitations.

2.2.3 Preprocessing Algorithm

We describe our preprocessing algorithm for building the treeT .
It is based on thescan and distributeparadigm originated from the
distribution sweepI/O technique [8, 16]. Our algorithm follows
the definition ofT given in Section 2.2.1. In the first phase, we
sort (using external sorting) allN input intervals in increasingleft
endpoint values from left to right, into a setS. We use (meta-)cell
ID’s to break a tie. We also copy theleft endpoints, in the same
sorted order, fromS to another setE. The setE is used to define
median values to partitionE into slabs throughout the process.

The second phase is a recursive process. If there are no more
thanB intervals, then we make the current nodeu a leaf, store all
intervals inu and stop. Otherwise, nodeu is an internal node. We
first take theBf � 1 median values fromE that partitionE into
Bf slabs, each containing the same number of endpoints. We store
sorted inu, in non-decreasing order from left to right, these median
values as the keys in the small nodes ofu. We now scan all intervals
(from S) to distribute them to nodeu or to one of theBf slabs. We
maintain a temporary list for nodeu, and also a temporary list for
each of theBf slabs. For each temporary list, we keep one block
in the main memory as abuffer, and keep the remaining blocks in
disk. Each time an interval is distribute to nodeu or to a slab, we
put that interval to the corresponding buffer; when a buffer is full, it
is written to the corresponding list in disk. The distribution of each
interval I is carried out by thebinary-search schemedescribed in
Section 2.2.1, which implicitly defines a balanced binary treeTu on
theBf� 1 keys and the corresponding small nodes inu. We per-
form this binary search on these keys to find the highest small node
r whose key is contained inI, in which case we assignI to small
noder (and also to the current nodeu), by appending the small
node ID ofr to I and putting it to the temporary list for nodeu, or
to find that no such small node exists and both endpoints ofI lie in
the same slab, in which case we distributeI to that slab by putting
I to the corresponding temporary list. When all intervals inS are
scanned and distributed, each temporary list has all its intervals, au-
tomatically sorted in increasing left-endpoint values. Now we sort
the intervals belonging to nodeu by small node ID as the first key
and the left-endpoint value as the second key, in increasing order,
so that intervals assigned to the same small node are put together,
sorted in increasing left-endpoint values. We read these intervals to
set up the left lists of all small nodes inu. Then we copy each such
left list to its corresponding right list, and sort the right list by de-
creasing right-endpoint values. The corner structure for nodeu, if
we want to construct, can be built at this point. This completes the
construction of nodeu. Finally, we perform the process recursively
on each of theBf slabs, using the intervals in the corresponding
temporary list as input, to build each subtree of nodeu.

We remark that in the abovescan and distributeprocess, instead
of keeping all intervals assigned to the current nodeu in onetem-
porary list, we could maintainBf� 1 temporary lists for theBf� 1
small nodes ofu. This would eliminate the subsequent sorting by
small node ID’s (which is used tore-distributethe intervals ofu
into individual small nodes). But for the actual implementation,
our method is used to address the system issue that a process can-
not open too many files simultaneously, while avoiding a blow-up
in disk scratch space. It can be shown that the overall preprocess-
ing takes nearly optimalO(N

B
logB N) I/O’s. We can also make the

bound optimal (O(N
B
logM

B

N
B
), as the external sorting bound [1],

whereM is the number of intervals fitting in main memory) by the
tree-height conversion method in [10].

3 Experimental Results and Analysis

In this section, we attempt to experimentally assess the advantages
and shortcomings of our new technique, in particularly as compared
to our previous work [10, 11]. We consider five datasets in our
study. Four of them were used in our previous papers [10, 11], and
a new, larger dataset, Cyl3 with about 5.8M cells has been added to
our test set. Table 1 summarize their properties.

Our experimental set-up is similar to the one we used in [10,
11]. Our benchmark machine is an off-the-shelf PC: a Pentium Pro,
200MHz with 128M of RAM, and 768M of swap space. Using
Linux, we booted the machine in two different configurations, with
64M and 128M of main memory. For preprocessing, we used the
machine with only 64M of main memory, and for computing the
isosurfaces we varied the amount of main memory. Because of the
usage of the operating system and X-windows, we estimate that
only half to two thirds of main memory was actually available for
computations.

Meta-cell Generation

Computing the meta-cells is a core operation of our technique, and
one of the main differences between our new method and [10, 11].
Meta-cell generation is basically divided into five parts: (1) normal-
izing the original file, which involves separating the vertices and
each type of cells into their own files, (2) mapping the vertices into
meta-cells, (3) mapping the cells into meta-cells, (4) completing
the meta-cell information and writing to the meta-cell file, and (5)
computing the meta-intervals used for indexing. As can be seen in
Tables 2 and 3, meta-cell generation can be expensive, in particular
for large datasets, such as Cyl3. The main reason for this is that we
do not assume any kind of pre-determined spatial coherence in our
input, forcing us to perform severalexternal sortson differentkeys,
over very large files.

There are several ways to make this faster. The most obvious
would be to use a larger machine with enough main memory for
the computation. In this case, the geometric hashing we are us-
ing becomes trivial, and clearly can be performed very efficiently.
A less obvious observation is that due to the fact that we are es-
sentially performing a global geometric hashing operation, given
information about the relative positions of the vertices (basically,
rough bounding boxes), the computation can be performed more
efficiently. For instance, if we already have some meta-cell subdivi-
sion, we do not need to recompute another one from scratch, instead
it is possible to either refine a coarser subdivision, or join multiple
fine subdivisions into coarser ones. We conjecture (though have not
tried yet) that we should be able to manage multi-gigabyte scientific
datasets computed in distributed memory parallel machines, by run-
ning our meta-cell generation on each piece individually, since, in
general, they are organized in mostly disjoint chunks of spatially
coherent data.

Tables 2 and 3 give some important performance statistics. In
Table 2, a global view of the performance of our technique can
be seen on four different datasets. It is interesting to note that by
varying the number of meta-cells, we can effectively control the
disk space overhead. In general, the smaller number of cells in a
meta-cell, the faster the querying and fetching, and also the more
accurate the isosurface search. In Table 3 we vary the number of
meta-cells used for the Delta dataset. This table shows that our
algorithm scales well with increasing meta-cell sizes. The most
important feature is the linear dependency of the querying accuracy
versus the disk space overhead. For example, using a total of 146
meta-cells (at 7% disk overhead), for a given isosurface, we need
3.34s to find the active cells. When using 30,628 meta-cells (at
63% disk overhead), we only need 1.18s to find the correct cells.
Basically, the more meta-cells, the more accurate our active-cell
searchers, and the less amount of data we need to fetch from disk.

Name # of Cells Original Size Binary Size
Blunt Fin 187K 5.8M 3.7M

Comb. Chamber 215K 6.8M 4.2M
Liquid Oxygen Post 513K 16.4M 10M

Delta Wing 1M 33.8M 19.4M
Cyl3 5.8M 337M 152M

Table 1: A list of the datasets used for testing. Original size is the
file size as an ASCII “.scalar” or “.vtk” file.

Blunt Chamber Post Cyl3

of meta-cells 737 1009 1870 27896
Normalization 3.1s 3.5s 8.8s 158s
Vertex Map 2.8s 3.6s 8.3s 382s
Cell Map 19s 24.1s 58.1s 783s
Meta-Cell Info 20.8s 24s 67.8s 1179s
Meta-Intervals 4.2s 4.8s 11.7s 147s
Total 50s 60s 154.8s 3652s
Original Size 3.65M 4.19M 10M 152M
Meta-Cell Size 4.39M 5M 12.2M 271M
Avg Vertex 118.1 102.1 133.2 399
Avg Cell 254.2 213.1 274.5 208
Increase 20% 21% 22% 78%
BBIO Tree (size) 29K 28K 84K 1.7M
BBIO Tree (time) 0.35s 0.67s 1.23s 43s

Table 2: Statistics for preprocessing isosurfaces on different
datasets. First, we show the number of meta-cells used for parti-
tioning the dataset, followed by the times for each step of the meta-
cell computation and its total time. Secondly, the original dataset
size and the size of the meta-cell file are shown. We also show
the average numbers of vertices and of cells per meta-cell, and the
overall increase in storage. Finally, we show the size (in bytes) of
the BBIO tree and its construction time.

An interesting point is that the more data fetched, the more work
(and main memory usage) for the isosurface generation engine. By
paying the 63% disk overhead, we only need to fetch 16% of the
dataset into main memory, which is clearly a substantial saving.

Figs. 4a and 5a show the bounding boxes of two meta-cell de-
compositions on the same dataset. The dataset used was a low res-
olution version of the dataset Cyl3 used in Tables 2 and 4 to avoid
cluttering. One can see from the two figures that our algorithm sam-
ples the higher-resolution areas with more meta-cells, while using
lower numbers of meta-cells in areas with less details.

Meta-cell Indexing

The number of meta-intervals generated is directly proportional to
the number of meta-cells. The size of the interval tree (denoted by
BBIO tree) increases when the dataset gets larger (e.g., for the Cyl3
dataset shown in Table 2 is 1.7M), and may be well beyond the main
memory size for larger dataset. This is the major reason why we
need the BBIO tree, to ensure the scalability for a large number of
meta-intervals being indexed. In addition, as opposed to in-core in-
dexing structures, we need not spend the time to build/load the tree
in main memory every time the process starts to run. Tables 2 and 3
also contain information related to the construction of the trees, and
their respective sizes. Having the indexing data structure separated
from the meta-cells is important, since in several applications mul-
tiple indexing structures can point to the same set of meta-cells. For
instance, in handling time-varying datasets, one can keep a single

copy of the geometric data (in the meta-cells), and have multiple
BBIO trees for indexing different time steps.

Isosurface Extraction Queries

Table 3 already presents some limited querying information that
demonstrates the effectiveness of the meta-cell blocking as a func-
tion of the disk space overhead. Particularly interesting are the
data given in Table 3, which shows how the isosurface extraction
cost changes with meta-cell sizes. As the number of meta-cells in-
creases (and the disk space overhead also increases due to more
vertex replications), the query time decreases. This shows that our
technique provides a smooth trade-off between disk space overhead
and querying performance. A visual representation of this effect
can be seen from Figs. 4b and 5b, which show the bounding boxes
of the fetched (i.e., active) meta-cells during the query of the iso-
surface with value 0.0623775 in the Cyl dataset. Figs. 4c and 5c
show the actual isosurfaces superimposed to the active meta-cells.
Even for this down-sampled dataset and the coarse meta-cells, one
can see the effect of more meta-cells in culling away larger portions
of the dataset not containing the isosurface. Note the difference be-
tween Figs. 4b and 5b in the middle of the dataset where the cells do
not get touched. As the number of meta-cells increases, the active
meta-cells are refined and resemble the isosurface.

It is important to study the overall performance of the isosurface
extraction query pipeline. Ideally, we would like to compare four
different techniques: (1) the plain Vtk [22] pipeline; (2) an output-
sensitive in-core isosurface algorithm (such as the one presented
in [12]); (3) our previous work [10, 11]; (4) our new algorithm.
Unfortunately, we do not have (2)y. With respect to the compar-
isons with (3) [10], we will not be able to compare for the Cyl3
dataset, since we would need over 2.4GB of disk to perform the
preprocessing (and several hours).

Table 4 summarizes our benchmarks. Points worth noting:

� Our previous technique,ioQuery [10], performs better
than bothmcQuery (our new code) andvtkIso (the pure
Vtk code) in all cases. This is not really a surprise, since
ioQuery performs an exact search, only bringing active cells
into main memory. Thus, it does not waste either disk band-
width or main memory space. Unfortunately, as we pointed
out before,ioQuery is not practical, since it uses about 8
times as much disk space as the original dataset to keep the
search structure, and it needs 16 times as much disk scratch
space for preprocessing.

� Our new querying code,mcQuery , performs better than
vtkIso for most examples. In particular, for Cyl3, it is over
20 times faster than pure Vtk, and even in cases where there is
enough main memory such as for the Delta dataset, with only
63% disk overhead, it is about five times faster than Vtk. In
fact, in some cases (such as for Post and Delta), we are able
to finish querying while Vtk is still reading the dataset.

One last note about the implementation. Some might be won-
dering how come Vtk needs so much main memory to compute
isosurfaces. In fact, it might require two to three times as much
main memory as the original dataset. Without further study, we can
only speculate. There are several main memory overheads for iso-
surface calculation, besides the isosurface itself. For instance, one

yWe believe techniques such as [12] have active cell search times at least
comparable to the ones we have, but in general, these other techniques need
the whole dataset to be loaded into main memory, and the preprocessing has
to be done each time the dataset is loaded. Also, the indexing data structures
increase the amount of main memory needed (if only by a small amount),
thus making these methods less likely to be used for very large datasets.

of meta-cells 146 361 1100 2364 3600 8400 30628
Total Time 618s 427.4s 346s 331s 331s 347s 376s
Meta-Cell Size 20.8M 21.5M 22.6M 23.7M 24.6M 26.7M 31.7M
Avg Vertex 2032.8 940.1 370.4 202.8 148.2 79.3 31.4
Avg Cell 6888.1 2785.8 914.2 425.4 279.35 119.7 32.8
Increase 7% 10% 16% 22% 26.9% 37.9% 63%
BBIO Tree (size) 4K 16K 48K 112K 168K 640K 1.7M
BBIO Tree (time) 0.42s 0.61s 1.51s 1.94s 3.78s 13.1s 31.9s

Query (act) 49.3K 49.3K 49.3K 49.3K 49.3K 49.3K 49.3K
Query (fetch) 704K 560K 418K 345K 320K 247K 167K
Query (mc) 87 189 414 754 1094 1996 4923
Perc. (mc) 59% 52% 37% 31% 30% 23% 16%
Query Time 3.34s 2.76s 2.09s 1.82s 1.73s 1.5s 1.18s

Table 3: Statistics for preprocessing and querying isosurfaces on the Delta dataset (original binary file size 19.4M). The entries for prepro-
cessing are as defined in Table 2. We also show the performance of a representative isosurface query with 64M of RAM: number of active
cells (“act”), number of cells fetched (“fetch”), number of fetched (i.e., active) meta-cells (“mc”), the ratio between the numbers of active and
overall meta-cells (“Perc. (mc)”), and finally the time for finding the active cells (the time for actual isosurface generation is not included).

is the Vtk “locator” class, which is used to avoid outputting multiple
vertices for the same spatial location.

4 Conclusions

In this paper we present a new out-of-core algorithm for output-
sensitive isosurface extraction. In our tests, our algorithm has
shown to be both robust and effective in optimizing isosurface
queries. Regardless of the size of the dataset, our techniques pro-
vide a cost-effective method to speed up isosurface extraction from
volume data. The actual code can be made much faster by fine tun-
ing the disk I/O. This is an interesting but hard and time-consuming
task, and might often be non-portable across platforms, since the in-
terplay among the operating system, the algorithms, and the disk is
non-trivial to optimize. We believe that a substantial speed-up can
be achieved by optimizing the external sorting and the file copying
primitives.

In the process, we developed two new techniques of independent
interest. First, our binary-blocked I/O interval is easier to imple-
ment, and uses less disk space than the existing external-memory
stabbing-query data structures. Secondly, the technique we use to
compute the meta-cells has a wider applicability in the preprocess-
ing of general cell structures larger than main memory. For ex-
ample, one could use our technique to break polyhedral surfaces
larger than main memory into spatially coherent sections for sim-
plification, or to break large volumetric grids into smaller ones for
rendering purposes.

We believe this work brings efficient out-of-core isosurface tech-
niques closer to practicality. One remaining challenge is to improve
the preprocessing times for large datasets, which, even though is
much lower than the ones presented in [10, 11], is still fairly costly.

Acknowledgments

Yi-Jen Chiang was supported in part by NSF Grant DMS-9312098.
The work of Cláudio T. Silva was partially supported by Sandia
National Labs and the Dept. of Energy Mathematics, Information,
and Computer Science Office, and by NSF Grant CDA-9626370.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems.Commun. ACM, 31(9):1116–1127, 1988.

[2] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter.
Theory and practice of I/O-efficient algorithms for multidimensional
batched searching problems. InProc. ACM-SIAM Symp. on Discrete
Algorithms, 1998.

[3] L. Arge and J. S. Vitter. Optimal interval management in external
memory. InProc. IEEE Foundations of Comp. Sci., pages 560–569,
1996.

[4] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring
for improved interactivity. In1996 Volume Visualization Symposium,
pages 39–46, October 1996.

[5] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for
structured and unstructured meshes in any dimension. InProc. Late
Breaking Hop Topics, pages 25–28, 1997.

[6] J. L. Bentley. Multidimensional binary search trees used for associa-
tive searching.Commun. ACM, 18(9):509–517, 1975.

[7] Y.-J. Chiang. Dynamic and I/O-efficient algorithms for computational
geometry and graph problems: theoretical and experimental results.
Ph.D. Thesis, Technical Report CS-95-27, Dept. Computer Science,
Brown University, 1995.

[8] Y.-J. Chiang. Experiments on the practical I/O efficiency of geomet-
ric algorithms: Distribution sweep vs. plane sweep.Computational
Geometry: Theory and Applications, 9(4):211–236, 1998.

[9] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Ven-
groff, and J. S. Vitter. External-memory graph algorithms. InProc.
ACM-SIAM Symp. on Discrete Algorithms, pages 139–149, 1995.

[10] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In
Proc. IEEE Visualization, pages 293–300, 1997.

[11] Y.-J. Chiang and C. T. Silva. Isosurface extraction in large scientific
visualization applications using the I/O-filter technique. Technical Re-
port, University at Stony Brook, 1997.

[12] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosur-
face extraction from irregular volume data. In1996 Volume Visualiza-
tion Symposium, pages 31–38, October 1996.

[13] M. Cox and D. Ellsworth. Application-controlled demand paging for
out-of-core visualization. InProc. IEEE Visualization, pages 235–
244, 1997.

[14] H. Edelsbrunner. A new approach to rectangle intersections, Part I.
Internat. J. Comput. Math., 13:209–219, 1983.

[15] T. A. Funkhouser, S. Teller, C. H. S´equin, and D. Khorramabadi.
Database management for models larger than main memory.Pres-
ence: Teleoperators and Virtual Environments, Vol.5, No.1, 1996.

Blunt Chamber Post Delta Cyl3

of meta-cells 737 1009 1870 30628 27896
mc disk overhead 20% 21% 22% 63% 78%
Iso value 0.67 0.30 0.10 0.21 0.062
Act. cells 20K 37K 16.4K 49K 100K
% fetched 50% 74% 38% 17% 19%
Fetched cells 93K 160K 193K 167K 1.1M
mcQuery - 64MB 4.8s 6.97s 6.7s 16.4s 60s
BBIO 0.1s 0.01s 0.1s 0.1s 0.3s
Disk I/O 2.1s 0.74s 0.9s 1.6s 11.4s
Iso comp. 2.68s 6.2s 5.8s 14.7s 48s
mcQuery - 128MB 3.29s 6.8s 6.6s 15.5s 38s
BBIO 0.1s 0.1s 0.05s 0.1s 0.1s
Disk I/O 0.53s 0.92s 0.82s 1s 11.3s
Iso comp. 2.75s 5.86s 5.78s 14.4s 26.8s

vtkIso - 64MB 5.7s 8.1s 124s 432s 2032s
Disk I/O 4.02s 4.39s 10.8s 23s 428s
Iso comp. 1.69s 3.69s 113s 409s 1604s
vtkIso - 128MB 5.7s 8.13s 123s 425s 1337s
Disk I/O 4.04s 4.41s 11.3s 21.6s 255s
Iso comp. 1.73s 3.72s 112s 403s 1082s

ioQuery - 64MB 1.7s 2s 1.7s 11.7s NA
Disk I/O 0.5s 0.7s 0.5s 1.7s NA
Iso comp. 1.2s 1.3s 1.2s 10s NA
ioQuery - 128MB 1.5s 1.5s 1.4s 11.8s NA
Disk I/O 0.3s 0.2s 0.2s 1.7s NA
Iso comp. 1.2s 1.3s 1.2s 10s NA

Table 4: Statistics for querying isosurfaces on different datasets using 3 different codes:mcQuery , vtkIso , and ioQuery , under two
different main memory configurations (64M and 128M). On the top, we specify the datasets, the total number of meta-cells, the meta-cell
disk space overhead, the isosurface value being queried, the number of active cells for the particular isovalue, the percentage of the dataset
that was fetched during querying, and the actual number of fetched cells. We highlight in bold the overall isosurface generation time for each
run. Below we break the times up into its major components. “Iso comp.” is always the time to actually compute the isosurface (depending
on the method, the number of cells being used for the computation varies). FormcQuery , BBIO is the time it takes to query the BBIO tree;
Disk I/O is the time to bring the active meta-cells into main memory. ForvtkIso , Disk I/O is the time to read the dataset from disk. For
ioQuery , Disk I/O is the time to search (and fetch at the same time) the active cells from disk. Note thatmcQuery reduces the disk space
overhead ofioQuery by more than one order of magnitude.

[16] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. InIEEE Foundations of Comp. Sci.,
pages 714–723, 1993.

[17] T. Itoh and K. Koyamada. Automatic isosurface propagation using
an extrema graph and sorted boundary cell lists.IEEE Transactions
on Visualization and Computer Graphics, 1(4):319–327, December
1995.

[18] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. In-
dexing for data models with constraints and classes. InProc. ACM
Symp. on Principles of Database Sys., pages 233–243, 1993.

[19] Y. Livnat, H.-W. Shen, and C.R. Johnson. A near optimal isosurface
extraction algorithm using span space.IEEE Transactions on Visual-
ization and Computer Graphics, 2(1):73–84, March 1996.

[20] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm.Proceedings of SIGGRAPH ’87,
pages 163–169, July 1987.

[21] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering
complex scenes with memory-coherent ray tracing.Proceedings of
SIGGRAPH ’97, pages 101–108, August 1997.

[22] W. Schroeder, K. Martin, and W. Lorensen.The Visualization Toolkit.
Prentice-Hall, 1996.

[23] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing
in span space with utmost efficiency (ISSUE). InProc. IEEE Visual-
ization, 1996.

[24] S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan. Partitioning and
ordering large radiosity computations.Proceedings of SIGGRAPH
’94, pages 443–450. July 1994.

[25] S. K. Ueng, K. Sikorski, and K.-L. Ma. Out-of-core streamline visu-
alization on large unstructured meshes.IEEE Transactions on Visual-
ization and Computer Graphics, 3(4):370–380, 1997.

[26] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Contour trees and small seed sets for isosurface traversal.
In Proc. ACM Symp. on Comput. Geom., pages 212–220, 1997.

[27] D. E. Vengroff and J. S. Vitter. I/O-efficient scientific computation
using TPIE. InProc. IEEE Symp. on Parallel and Distributed Com-
puting, 1995.

[28] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface genera-
tion. In Computer Graphics (San Diego Workshop on Volume Visual-
ization), volume 24, pages 57–62, November 1990.

(a) (b) (c)

Figure 4: Illustration for the distribution of63 meta-cells: (a) the bounding boxes of the meta-cells; (b) the bounding boxes of the fetched
meta-cells during a query; (c) the fetched meta-cells superimposed with the isosurface.

(a) (b) (c)

Figure 5: Illustration for the distribution of103 meta-cells in the same dataset as in Fig. 4.

The need to visualize unstructured volu-
metric data arises in a broad spectrum of

applications including structural dynamics, structural
mechanics, thermodynamics, fluid mechanics, and
shock physics. One of the most powerful visualization
techniques is direct volume rendering, a set of render-
ing techniques that avoids generating intermediary sur-
face representations of the volume data. Direct volume
rendering techniques are based on creating optical

models that determine how the vol-
ume data interacts with light. By
changing the modeling, it’s possible
to render different features of the
volume.1

Here we address the problem of
direct volume rendering of large,
unstructured volumetric grids on
machines with limited memory. This
problem is interesting because such
data sets are likely to come from
computations generated on super-
computers, while visualization often
happens on smaller, desktop
machines. Our work also comple-
ments the recent trend of develop-

ing efficient out-of-core scientific visualization
techniques. Given large, unstructured grids, currently
several external memory visualization tools exist (such
as isosurface computation,2 streamline computation,3

and surface simplification4) that help scientists visual-
ize their large data sets on machines with limited mem-
ory. For instance, by coupling the techniques of
Lindstrom4 and Chiang, Silva, and Schroeder,2

researchers can compute and simplify isosurfaces of arbi-
trarily large data sets, effectively visualizing such large
data sets on any machine with enough disk space. Our
work adds direct volume-rendering algorithms to this
already powerful toolbox. (See the “Related Work” side-
bar for more background information.)

We present two techniques that vary in rendering
speed, disk and memory usage, ease of implementation,
and preprocessing costs. The first is a memory-insensi-
tive rendering (MIR) technique that is completely disk-
based and requires a small amount of constant main
memory. The second technique is based on our ZSweep
algorithm. It’s more involved in its preprocessing, imple-
mentation, and main-memory requirements but can be
substantially faster.

Memory-insensitive rendering
In developing efficient external memory algorithms,

users must know some characteristics of computer disks
and their differences from the in-core main-memory
system we’re all accustomed to. The basic difference is
that disks aren’t efficient for random access to locations
because “seeks” require a large amount of mechanical
movement (of the heads). For sequential access, disks
are fast, with a raw bandwidth within a factor of 20 of
the main-memory system. Also, we can increase disk
bandwidth inexpensively by using several disks in par-
allel. The appeal of hard drives is that the cost is much
lower—on the order of 100 times cheaper than main
memory. The need for sequential access when using
disks has profound implications for external memory
algorithms.

First, the file formats used for out-of-core algorithms
must be different and generally more redundant.
Indexed mesh formats are common for main-memory
techniques. For instance, it’s common to save a list of
the vertices represented with four floats: the position
(x, y, z); scalar field value; and a list of tetrahedra, ref-
erenced by four integers that refer to the vertices defin-
ing the given tetrahedron. Before we can use such data
sets in our algorithm, they must be normalized—a
process that dereferences the pointers to vertices. (The
Chiang, Silva, and Schroeder paper thoroughly explains
this process.2)

For completeness, we’ll briefly explain how to nor-

0272-1716/01/$10.00 © 2001 IEEE

Large-Scale Data Visualization

2 July/August 2001

We address the problem of

rendering large, unstructured

volumetric grids and present

a set of techniques that

render arbitrarily large data

sets on machines with limited

memory.

Ricardo Farias
State University of New York at Stony Brook

Cláudio T. Silva
AT&T

Out-Of-Core
Rendering of
Large,
Unstructured Grids

James T Klosowski
© 2001 IEEE. Reprinted, with permission, from IEEE Computer Graphics and Applications, 21 (4), pp. 42-50, 2001.

IEEE Computer Graphics and Applications 3

The work we describe in this article is mainly
related to techniques for rendering unstructured
grids and out-of-core visualization techniques.
Both are active research areas in scientific visual-
ization. In this sidebar, we briefly review each of
these areas.

Unstructured-grid volume rendering
Here we consider existing unstructured-grid

volume-rendering techniques from a memory-
usage point of view, their applicability to render
large grids, and potential extensions for out-of-
core rendering. The memory usage of current
techniques vary widely, and a straightforward
classification of the different techniques isn’t
possible. Here are some of the various charac-
teristics that generally affect the memory usage of
existing techniques:

� the data set’s size, in terms of its number and type
of cells and vertices. (Given a mesh with t tetra-
hedra and n vertices, the minimum memory nec-
essary to hold it—assuming uncompressed data
and 32 bits for integers and floating-point num-
bers—is 16(t + n) bytes.)

� screen resolution and the data set’s image-space
depth. (In image space, the memory costs depend
on the screen resolution and the data set’s thick-
ness along the z direction. Some techniques com-
pute slices along z by intersecting discrete buffers
of the same resolution as the screen with the
unstructured grid. Assuming 1 byte per color
channel, for computing an image of size N-by-N
with s slices, we need 4sN2 bytes. We note that s
should vary with the resolution of the data set in
z. That is, if a ray that intersects the data set in smax

cells exists, then the closer s gets to smax the more
accurate the image we can obtain.)

� the use of mesh connectivity information. Some
techniques explicitly use connectivity information,
while others use different means of inferring it
(such as discrete buffers used for determining
depth information) or completely avoid using any
kind of connectivity.

� the underlying data structures used for efficiency
or accuracy. For instance, some techniques cache
extra information per cell or per face of the data
set for efficiency.

Researchers have developed several efficient
algorithms for rendering irregular grids. One class
of algorithms is based on adapting ray-tracing
techniques for rendering unstructured grids, such
as in the works of Garrity,1 Uselton,2 and Bunyk,
Kauman, and Silva.3 In general, these techniques
require random access to the cells, connectivity
information, and in some cases, extra memory to
optimize the computation of intersections of rays
with faces of the cell complex. Yang, Mitra, and

Chiueh’s paper4 proposes an optimization for the
technique in the Bunyk paper3 that attempts to
reduce the memory requirements by compositing
samples as early as possible, but the proposed
view-independent traversal doesn’t limit the
overall memory use. (The work of Hong and
Kaufman,5 although similar to that in the Bunyk
paper,3 is optimized for curvilinear grids. They
used considerably less memory because their
system uses the grid structure and doesn’t
explicitly store cell or connectivity information.)

Researchers have developed other techniques
that use scan-line algorithms, which sweep the
data with a plane perpendicular to the image
plane.6 Some of these techniques7 are designed to
be memory efficient but still use the mesh’s
connectivity. Others, such as those proposed by
Giertsen8 and Westermann and Ertl,9 use discrete
buffers to determine the compositing order and
completely avoid the need for connectivity infor-
mation. Using discrete buffers in z potentially
lowers the accuracy of these techniques, and the
buffers themselves can require a substantial
amount of memory.

Some methods6,10 employ a different kind of
sweep algorithm and sweep planes in z. Yagel et
al.11 sample the irregular grid with a fixed number
of planes that are later composited together. Their
technique doesn’t use connectivity, but the space
to keep the planes can be substantial because it
amounts to computing and caching many images.
Farias, Mitchell, and Silva10 developed ZSweep,
which is also based on sweeping a plane in the z
direction.

Another approach for rendering irregular grids is
using face projection, or feed-forward, methods12-14

in which the cells are projected onto the screen one
by one. Most of these techniques exploit the
graphics hardware to compute the volumetric
lighting models13 by first computing a visibility
ordering12,15,16 and incrementally accumulating
their contributions to the final image. With respect
to memory usage, we can separate the visibility
ordering algorithms into two classes: those that use
connectivity to compute the ordering12,16 and those
that use some form of power-sorting.14 The power
sorting techniques only require an extra floating-
point number per cell, and they don’t use connec-
tivity information. In general, those techniques
aren’t guaranteed to generate correct sorting
results for a wide class of grids.

One simple approach17 is to naively compute all
intersections between each ray cast with all the
cells and perform a postsorting to compute the
image. That is, given an N-by-N image and n cells,
for each of the N2 rays, compute the O(n)
intersections with cell facets in time O(n) and then
sort these crossing points in O(n log n) time.

Related Work

continued on p. 4

Large-Scale Data Visualization

4 July/August 2001

However, this results in overall time O(N2n log n)
and doesn’t take advantage of coherence in the
data—the sorted order of cells crossed by one ray
isn’t used in any way to assist in the processing of
nearby rays.

Ma and Crockett18 used this approach in the
context of parallel architectures. Their technique
distributes the cells among processors in a round-
robin fashion. For each viewpoint, each processor
independently computes the ray intersections,
which are later composited in the algorithm’s
second phase. To avoid storing many ray inter-
sections, Ma and Crockett cleverly schedule the
computation using a k-d tree.

Out-of-core scientific visualization
For a general introduction to out-of-core

scientific visualization theory and practice of
external memory algorithms, readers should see
Abello and Vitter.19

Cox and Ellsworth20 propose a general frame-
work for the systems based on application-
controlled demand paging. Leutenegger and Ma21

propose using R-trees22 to optimize searching
operations on large unstructured data sets. Ueng,
Sikorski, and Ma23 use an octree partition to
restructure unstructured grids, optimizing the
computation of streamlines. Shen, Chiang, and
Ma24 and Sutton and Hansen25 have developed
techniques for indexing time-varying data sets.
Shen, Chiang, and Ma24 apply their technique for
volume rendering, while Sutton and Hansen25

focus on isosurface computations.
Chiang and Silva26 worked on I/O-optimal

algorithms for isosurface generation. Their work
assumes that even the preprocessing is performed
completely on a machine with limited memory.
Although their technique is fast in terms of actually
computing the isosurfaces, the disk and prepro-
cessing overhead of their technique is substantial.
This led to further research27 on techniques that can
trade disk overhead for time in the querying for the
active cells. They developed a set of useful metacell
preprocessing techniques. Recently, Lindstrom28

and El-Sana and Chiang29 developed external
memory algorithms for surface simplification. The
technique in Lindstrom30 simplifies arbitrarily large
data sets on machines with just enough memory to
hold the output triangle mesh.

References
1. M. Garrity, “Raytracing Irregular Volume Data,” Com-

puter Graphics (San Diego Workshop Volume Visual-
ization), vol. 24, no. 5, Nov. 1990, pp. 35-40.

2. S. Uselton, Volume Rendering for Computational Fluid

Dynamics: Initial Results, tech. report RNR-91-026,
NASA Ames Research Center, Moffett Field, Calif., 1991.

3. P. Bunyk, A. Kaufman, and C. Silva, “Simple, Fast, and
Robust Ray Casting of Irregular Grids,” Scientific Visu-

alization (Proc. Dagstuhl 97), IEEE CS Press, Los Alami-
tos, Calif., 2000, pp. 30-36.

4. C.-K. Yang, T. Mitra, and T. Chiueh, “On-the-Fly Ren-
dering of Losslessly Compressed Irregular Volume
Data,” Proc. IEEE Visualization 2000, ACM Press, New
York, 2000.

5. L. Hong and A. Kaufman, “Accelerated Ray-Casting for
Curvilinear Volumes,” Proc. IEEE Visualization 98, ACM
Press, New York, 1998, pp. 247-254.

6. J. Wilhelms et al., “Hierarchical and Parallelizable Direct
Volume Rendering for Irregular and Multiple Grids,”
Proc. IEEE Visualization 96, ACM Press, New York, 1996,
pp. 57-64.

7. C. Silva and J. Mitchell, “The Lazy Sweep Ray Casting
Algorithm for Rendering Irregular Grids,” IEEE Trans.

Visualization and Computer Graphics, vol. 3, no. 2,
Apr.–Jun. 1997, pp. 104-157.

8. C. Giertsen, “Volume Visualization of Sparse Irregular
Meshes,” IEEE Computer Graphics and Applications, vol.
12, no. 2, Mar. 1992, pp. 40-48.

9. R. Westermann and T. Ertl, “The VSbuffer: Visibility
Ordering of Unstructured Volume Primitives By Poly-
gon Drawing,” Proc. IEEE Visualization 97, ACM Press,
New York, 1997, pp. 35-42.

10. R. Farias, J. Mitchell, and C. Silva, “ZSweep: An Effi-
cient and Exact Projection Algorithm for Unstructured
Volume Rendering,” Proc. 2000 Volume Visualization

Symp., ACM Press, New York, 2000, pp. 91-99.
11. R. Yagel et al., “Hardware Assisted Volume Rendering

of Unstructured Grids by Incremental Slicing,” Proc.

1996 Volume Visualization Symp., ACM Press, New
York, 1996, pp. 55-62.

12. P.L. Williams, “Visibility-Ordering Meshed Polyhedra,”
ACM Trans. Graphics, vol. 11, no. 2, Apr. 1992,
pp. 103-126.

13. P. Shirley and A. Tuchman, “A Polygonal Approxima-
tion to Direct Scalar Volume Rendering,” Computer

Graphics (San Diego Workshop Volume Visualization),
vol. 24, no. 5, Nov. 1990, pp. 63-70.

14. N. Max, P. Hanrahan, and R. Crawfis, “Area and Vol-
ume for Efficient Visualization of 3D Scalar Functions,”
Computer Graphics (San Diego Workshop Volume Visu-
alization), vol. 24, no. 5, Nov. 1990, pp. 27-33.

15. C. Stein, B. Becker, and N. Max, “Sorting and Hard-
ware Assisted Rendering for Volume Visualization,”
Proc. 1994 Symp. Volume Visualization, ACM Press, New
York, 1994, pp. 83-90.

16. J. Comba et al., “Fast Polyhedral Cell Sorting for Inter-
active Rendering of Unstructured Grids,” Computer

Graphics Forum, vol. 18, no. 3, Sept. 1999, pp. 369-376.
17. C. Silva, J. Mitchell, and A. Kaufman, “Fast Rendering

of Irregular Grids,” Proc. 1996 Volume Visualization

Symp., ACM Press, New York, 1996, pp. 15-22.
18. K.-L. Ma and T.W. Crockett, “A Scalable Parallel Cell-

Projection Volume Rendering Algorithm for Three-
Dimensional Unstructured Data,” Proc. IEEE Parallel

Rendering Symp., IEEE CS Press, Los Alamitos, Calif.,
1997, pp. 95-104.

continued from p. 3

malize such a file, with v vertices and t tetrahedra. In an
initial pass, we create two binary files: one with the list
of vertices and another with the list of tetrahedra. Next,
in four passes, we dereference each tetrahedral file index
and replace it with the actual position and scalar field
values for the vertex. To do this efficiently, we first exter-
nally sort the current version of the tetrahedra file in the
index we intend to dereference. This takes time O(t log
t) using an external memory merge–sort. Then, we per-
form a synchronous scan of both the vertex and sorted
tetrahedra file, reading one record at a time and appro-
priately outputting the deferenced value for the vertex.
Note that we can do this efficiently in time O(v + t)
because all the references for vertices are sorted. When
we’re done with all four passes, the tetrahedra file will
contain t records with the value (not reference) of each

of its four vertices.
In our first out-of-core rendering technique, MIR, the

algorithm receives a transformation matrix, screen res-
olution, the normalized tetrahedron file, and associat-
ed transfer functions for lighting calculations as input.

1. The first step in our algorithm is to read each cell
(tetrahedron) from the normalized file, transform it
with the specified transformation matrix, and com-
pute all its ray intersections. For each pixel ρi, which
intersects the cell in the interval (z0, z1), we output
two records (ρi, z0) and (ρi, z1). For color calcula-
tions, we also save an interpolated scalar field value.
This allows for fast regeneration of images with dif-
ferent transfer functions or (with some changes) the
efficient rendering of time-varying data sets. The
amount of memory necessary to perform this step is
minimal; it’s just enough to hold the cell’s descrip-
tion and enough temporary storage to compute one
intersection, because they’re written to disk one by
one as they’re computed. The amount of disk space
required is proportional to the number of actual ray
stabbings between rays and cells.

2. The second (and generally, most time consuming)
step consists of sorting the file with the ray inter-
sections computed in the previous step, using an
appropriate compare function. The compare func-
tion we use sorts primarily on the pixel identifica-
tion ρi and secondarily on the depth of intersection
z. In other words, after the file is sorted and the
records for a particular pixel are together (that is,
they appear sequentially in the file), the records are
ordered in increasing depth.

3. The third and final step in our scheme is to traverse
the ordered file generated in the previous step, use
the transfer functions to light, and composite the
samples, which are already in the correct order.

Our simple algorithm is essentially an external mem-
ory version of a technique previously considered by other
researchers.5,6 One group5 discarded the technique as
too inefficient because it didn’t use coherency between
rays. Ma and Crockett6 used this technique for its good
load-balancing characteristics. However, to make it prac-
tical, they had to optimize it to save space. No space opti-
mizations are necessary for the out-of-core version to be
useful. With this scheme, we can render an arbitrarily
large image of an arbitrarily large data set if enough disk
space exists to save the intersection crossings. It’s also
simple to implement. It doesn’t use any random access
to the data set, and its implementation only requires an
external sort routine and code to perform ray-cell inter-
section.

Out-of-core ZSweep
Our second technique is slightly more complex but is

often a more efficient out-of-core unstructured grid ren-
derer. It’s based on our ZSweep algorithm7 (see Figure
1, next page, for an overview).

The in-core ZSweep algorithm is based on sweeping
the data with a plane parallel to the viewing plane (see
the blue plane in Figure 1a) in order of increasing z, pro-

IEEE Computer Graphics and Applications 5

19. J. Abello and J. Vitter, External Memory Algorithms,
American Mathematical Soc., Providence, R.I., 1999.

20. M. Cox and D. Ellsworth, “Application-Controlled
Demand Paging for Out-of-Core Visualization,” Proc.

IEEE Visualization 97, ACM Press, New York, 1997,
pp. 235-244.

21. S. Leutenegger and K.-L. Ma, “Fast Retrieval of Disk-
Resident Unstructured Volume Data for Visualiza-
tion,” External Memory Algorithms and Visualization,

Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS) Book Series, vol. 50,
American Mathematical Soc., Providence, R.I., 1999.

22. A. Guttman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD Conf. Princi-

ples Database Systems, ACM Press, New York, 1984,
pp. 47-57.

23. S.-K. Ueng, C. Sikorski, and K.-L. Ma, “Out-of-Core
Streamline Visualization on Large Unstructured
Meshes,” IEEE Trans. Visualization and Computer

Graphics, vol. 3, no. 4, Oct.–Dec. 1997, pp. 370-380.
24. H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A Fast Vol-

ume Rendering Algorithm for Time-Varying Fields
Using A Time-Space Partitioning (TSP) Tree,” Proc.

IEEE Visualization 99, ACM Press, New York, 1999,
pp. 371-378.

25. P.M. Sutton and C.D. Hansen, “Accelerated Isosur-
face Extraction in Time-Varying Fields,” IEEE Trans.

Visualization and Computer Graphics, vol. 6, no. 2,
Apr.–Jun. 2000, pp. 98-107.

26. Y.-J. Chiang and C.T. Silva, “I/O Optimal Isosurface
Extraction,” IEEE Visualization 97, ACM Press, New
York, 1997, pp. 293-300.

27. Y.-J. Chiang, C.T. Silva, and W.J. Schroeder, “Inter-
active Out-of-Core Isosurface Extraction,” Proc. IEEE

Visualization 98, ACM Press, New York, 1998,
pp. 167-174.

28. P. Lindstrom, “Out-of-Core Simplification of Large
Polygonal Models,” Computer Graphics (Proc. Sig-
graph 2000), ACM Press, New York, 2000,
pp. 259-262.

29. J. El-Sana and Y.-J. Chiang, “External Memory View-
Dependent Simplification,” Computer Graphics

Forum, vol. 19, no. 3, Aug. 2000, pp. C-139–C-150.

jecting the faces of cells that are incident to vertices as
they’re encountered by the sweep plane. ZSweep’s face
projection differs from the ones used in other projective
methods.8 During face projection, we compute the inter-
section of the ray emanating from each pixel and store
their z-value and other auxiliary information in a sort-
ed list of intersections for the given pixel. Our data struc-
ture for keeping the intersections is similar to an
A-buffer.9 We defer the lighting calculations1 to a later
phase (see Figure 1b). The algorithm performs com-
positing when it reaches the target Z plane (see the gray
plane in Figure 1a). The efficiency arises because the
algorithm exploits the implicit (approximate) global
ordering that the vertices’ z-ordering induces on the
cells that are incident on them. This leads to only a few
ray intersections that must be processed out of order.
The efficiency also arises from using early compositing,
which makes the algorithm’s memory footprint quite
small. The key properties for ZSweep’s efficiency is that
given a mesh with v vertices and c cells, the amount of

sorting ZSweep does is O(v log v) in practice. Depend-
ing on the number of ray intersections, this is substan-
tially lower than the amount necessary to sort all the
intersections for each pixel.

ZSweep has two sources of main-memory usage: the
pixel intersection lists and the actual data set. The data-
set storage requirements represent our largest memory
use. Besides the storage for the actual vertices and cells,
we must also keep each vertex’s use set—that is, the cells
incident to each vertex.

The basic idea in our out-of-core technique is to break
the data set into chunks of fixed size that we can render
independently without using more than a constant
amount of memory. To further limit the amount of mem-
ory necessary, we subdivide the screen into tiles, and for
each tile, we render the chunks that project into it in a
front-to-back order. This gives us the same optimiza-
tions as the in-core ZSweep algorithm where we’ve
shown that image tiling leads to substantial perfor-
mance improvement because of better cache coher-

Large-Scale Data Visualization

6 July/August 2001

(a)

(b)

Z

XX

V

tTarget Z

Sweep
direction

Pixel
list

PP

1 The in-core ZSweep algorithm.
(a) 3D sweep portion of ZSweep. In
blue, we show the sweep plane. The
swept points are in black, and
points that haven’t been touched
yet are in red. We highlight the
tetrahedra incident on the current
event point. The newly found faces
(which generate new intersections)
are in yellow, and the old faces are
in cyan. (b) ZSweep compositing in
2D (that is, along a plane perpen-
dicular to the viewing direction) for
clarity. The current event point v is
in yellow. We also show the newly
found faces and the intersections
along a general ray. Each intersec-
tion contributes a color and has to
be composited in the correct order.
The ordering computed with an
insertion sort is on the right.

ence.10 Subdividing the screen into tiles and the data set
into chunks that are rendered independently has suc-
cessfully been applied to a parallelization of ZSweep.

We divided our algorithm into two parts: a view-inde-
pendent preprocessing phase, which must be performed
only once and generates a data file on disk that we can
use for all rendering requests, and a view-dependent
rendering algorithm.

Preprocessing
Our preprocessing is simple, and it resembles the

metacell creation in the Chiang article.2 Basically, we
break the data-set file into several metacells of small,
roughly fixed size. (The metacells and their construction
are slightly different in Chiang,2 because each cell
belongs to a single metacell. In our case, a cell belongs
to as many metacells as it spatially intersects. This isn’t a
substantial difference, and the normalization techniques
described there still apply.) Given a target number of ver-
tices per metacell m out of v total vertices, we first exter-
nally sort all vertices by the x-values and partition them
into 3√v/m consecutive parts. Then, for each such chunk,
we externally sort its vertices by the y-values and parti-
tion them into 3√v/m parts. Finally, we repeat the process
for each refined part, except that we externally sort the
vertices by the z-values. We take the final parts as chunks.
This is the main step in constructing the chunks because
it determines their shape and location in space. Chunks
might differ dramatically in their volumes, but their
numbers of vertices are roughly the same.

In general, the number of metacells is relatively small,
so we can safely assume they fit in the memory. To ren-
der a metacell, ZSweep must have all the cells that spa-
tially intersect that metacell and all the vertices that
belong to those cells. These computations can be effi-
ciently computed in external memory. (For full details,
see the Chiang article.2) Our preprocessing outputs two
files. The small one is a high-level description of the
metacells, including their bounding box, number of ver-
tices, number of cells, and a pointer to the start of the
data for the metacell in the main data file. The larger
data file is a list of the vertices and cells for each meta-
cell. Note that several vertices and cells are repeated
(possibly multiple times) in this data file, because each
metacell is a self-contained unit.

Rendering algorithm
Our rendering algorithm is simple. Basically, we

divide the screen into tiles and render the image tile by
tile. For each tile, we compute the metacells that inter-
sect that tile, sort the metacells in a front-to-back order,
and render it using the ZSweep algorithm.

Figure 2 shows the details. For each tile, we find M,
the set of the metacells that project into it. Then, we sort
the vertices of the bounding boxes of M in front-to-back
order by inserting them on a queue Q. The queue is used
for sweeping the vertices, which have several marks. In
particular, we tag vertices based on whether they’re
bounding-box or data-set vertices. When the sweep
plane touches the first bounding-box vertex of a meta-
cell m, we retrieve all the vertices and cells of m from
disk, transform the vertices, and insert them on Q, tag-

ging them as data-set vertices. Out-of-core ZSweep pro-
cessing is essentially the same as the in-core algorithm,
but it performs reading operations lazily. As it reaches
vertices, it projects faces; Figure 1 shows the overall
operation. As the algorithm touches bounding-box ver-
tices, we keep track of the number of bounding-box ver-

IEEE Computer Graphics and Applications 7

A

B

aB

bA dA

cAaA

cBdB

bBB

(a)

(b)

2 The render-
ing portion of
out-of-core
ZSweep, which
is performed in
(a) tiles.
(b) After reach-
ing eight
bounding-box
vertices of a
given metacell,
we can safely
deallocate the
metacell.

tices of a given metacell that we’ve seen so far. When
this number reaches eight, we can safely deallocate the
metacell (see Figure 2b). When we reach vertex da, we
can free the memory from metacell a.

Experimental results
Here we report results for our two out-of-core ren-

dering techniques and the in-core ZSweep algorithm.
When not indicated, we obtained our results on a PC-
class machine equipped with an AMD K7 Thunderbird
1-GHz processor, one IDE disk, and 1 Gbyte of main
memory running Linux. To limit the amount of main
memory available for testing purposes, we used the
Linux kernel to indicate the amount of main memory to
use by specifying the boot parameters directly into Linux
Loader (lilo)—for example, specifying linux mem=32M
at the boot prompt. (Chiang, Silva, and Schroeder use a
similar methodology.2 Simply limiting the amount of
memory generally isn’t enough because the operating
system is likely to perform aggressive caching if enough
memory is available, thus effectively transferring the
data set into memory implicitly.) Table 1 has informa-
tion about the data sets we used in our tests. The first
four are tetrahedralized versions of the well-known

NASA data sets. SPX is an unstructured grid (see Figure
1a and 2a) composed of tetrahedra. We subdivided each
tetrahedron into eight for each version of the last
three—that is, SPX3 is 512 times larger than SPX.

MIR
We’ve generated several images of the benchmark

data sets using our MIR rendering algorithm. Theoret-
ically, MIR shouldn’t depend on the amount of main
memory available (see Table 2). The four columns in
Table 2 for each image dimension show the time it took
to project the cells on the screen, the time to order the
projection file, the time to compose all intersections, and
the total render time.

In all our experiments, our code never used more than
5 Mbytes of main memory. It takes the normalized file
as its input. Given a new point of view, it rotates the cells
one by one and projects their faces on the screen with a
scan conversion that’s directly saved in the projection
file. The projection file’s size depends on the image’s
dimension and also on the number of segments gener-
ated for each pixel. It can get large, but the algorithm
works the same. Note that the cost of the algorithm’s
last step, the compositing, also depends on the average

Large-Scale Data Visualization

8 July/August 2001

Table 1. Main data sets we used for benchmarking.

Data Number of Number of Metacell File Metacell Data Normalized
Set Vertices (1,000) Cells (1,000) (Kbytes) (Mbytes) File (Mbytes)

Blunt Fin 41 187 40 26 12.7
Combustion Chamber 47 215 40 23 14.6
Oxygen Post 109 513 110 82 34
Delta Wing 212 1,005 254 205 68
SPX 2.9 13 2.6 1.2 0.8
SPX1 20 103 15 12 8
SPX2 150 830 63 110 71
SPX3 1,150 6,620 56 706 641

Table 2. Rendering times (in seconds) for our memory-insensitive irregular grid rendering algorithm.

Screen Resolution 512 x 512
Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 45 10 81 103
Time to order 213 19 386 412
Compositing time 44 6 75 79
Total time 302 35 542 594

Screen Resolution 1024 x 1024
Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 171 24 291 338
Time to order 1,030 82 1,747 1,965
Compositing time 180 26 316 322
Total time 1,381 132 2,354 2,625

Screen Resolution 2048 x 2048†

Data Set Blunt fin Combustion chamber Oxygen post Delta wing
Projection time 254 52 435 496
Time to order 589 190 922 1,062
Compositing time 233 55 422 430
Total time 1,076 297 1,779 1,988

† We obtained the times for the 2,048 × 2,048 on a SGI R12K 400-Mhz system, with a fast SCSI disk array. Faster disks on
the SGI lead to substantially improved times.

length of segments. Depending on the data set and
image size, MIR can use a lot of disk space. For exam-
ple, for the Delta, the projection file has 304 Mbytes for
a 512 × 512 image, 1.2 Gbytes for a 1024 × 1024, and 4.8
Gbytes for a 2048 × 2048.

Large images
We ran some tests with a large data set (not included

in Table 1) containing roughly 1.5 million vertices and
8.5 million cells. Generating a 5000 × 5000 image (which
takes up more than 70 Mbytes of disk) took MIR 224 sec-
onds on a SGI Origin 3000 equipped with R12K 400-Mhz
processors and a fast SCSI disk array. This is faster than
our other data sets because the number of ray intersec-
tions is small. We also generated a 10,000 × 10,000 image
from the same data set that took 824 seconds. In this
case, the image occupies 300 Mbytes of disk.

Out-of-core ZSweep
Tables 3 and 4 show some results for our out-of-core

ZSweep code. Out-of-core ZSweep has constant mem-
ory usage per data set, irrespective of the size of the
images being generated, and can generate images that
the original in-core ZSweep couldn’t. For a 2048 × 2048
image of the Delta, the in-core ZSweep would need
more than 380 Mbytes of memory, but the out-of-core
ZSweep only needs about 24 Mbytes.

Our experiments show that MIR and out-of-core
ZSweep are practical techniques we can use under dif-
ferent conditions. Out-of-core ZSweep is usually more
efficient than MIR, sometimes by a factor of 10 or more,
but it requires that we preprocess the files with the meta-
cell technique before rendering. However, out-of-core
ZSweep uses more memory than MIR. For generating a
few high-resolution images of large data sets, MIR might
be a good choice.

The MIR code is considerably slower because it per-
forms more sorting and disk I/O. MIR might be partic-
ularly useful when trying to render a data set from the
same viewpoint with a different transfer function.
Because the mapping from scalar values to color (as
specified in the transfer function file) is performed dur-
ing compositing, we can effectively generate images
with different classifications efficiently. Also, it would
be efficient to render time-varying data sets because the
expensive ordering doesn’t need to be redone.

Conclusions
We presented two out-of-core volume techniques,

which we implemented and tested against one another,
and compared their rendering times and memory
requirements against the in-core ZSweep algorithm.7

The simplest technique, MIR, is useful when the amount
of memory available is highly limited or only a few
images of a given data set are necessary. We can also use
MIR to compute several images of a given data set from
the same viewpoint with different classifications (such
as transfer functions). For using our out-of-core ZSweep,
it would be best if the data’s metacell representation is
already available. Because such representations are use-
ful for other purposes, such as isosurface generation,2

we believe this scheme will prove beneficial.
We are currently exploring several extensions of our

work. One of the simplest is using prefetching and multi-
threading to speedup the rendering further in out-of-core
ZSweep, especially when multiple processors are avail-
able. For real-time rendering, it would be interesting to
develop a time-critical version of out-of-core ZSweep,11

which trades accuracy for speed during rendering. �

Acknowledgments
We thank Peter Williams and Will Schroeder for inter-

esting data sets and NASA for the Blunt Fin, Liquid Oxy-
gen Post, and Delta Wing data sets. Ricardo Farias
acknowledges partial support from CNPq-Brazil under
a PhD fellowship. This work was made possible by the
generous support of Sandia National Labs and the US
Department of Energy Mathematics, Information, and
Computer Science Office.

References
1. N. Max, “Optical Models for Direct Volume Rendering,”

IEEE Trans. Visualization and Computer Graphics, vol. 1, no.
2, June 1995, pp. 99-108.

2. Y.-J. Chiang, C.T. Silva, and W.J. Schroeder, “Interactive
Out-of-Core Isosurface Extraction,” IEEE Visualization 98,
ACM Press, New York, 1998, pp. 167-174.

3. S.-K. Ueng, C. Sikorski, and K.-L. Ma, “Out-of-Core Stream-
line Visualization on Large Unstructured Meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 3, no. 4,
Oct.–Dec. 1997, pp. 370-380.

4. P. Lindstrom, “Out-of-Core Simplification of Large Polyg-
onal Models,” Computer Graphics (Proc. Siggraph 2000),
ACM Press, New York, 2000, pp. 259-262.

5. C. Silva, J.S.B. Mitchell, and A.E. Kaufman, “Fast Render-
ing of Irregular Grids,” 1996 Volume Visualization Symp.,
ACM Press, New York, 1996, pp. 15-22.

6. K.-L. Ma and T.W. Crockett, “A Scalable Parallel Cell-Pro-
jection Volume Rendering Algorithm for Three-Dimen-

IEEE Computer Graphics and Applications 9

Table 3. Rendering times (in seconds) for the in-
core ZSweep code running with 1 Gbyte of RAM.

Data Set 5122 10242 20482

SPX 7 26 118
SPX1 14 46 203
SPX2 29 93 383
SPX3 107 238 834

Table 4. Rendering times for the out-of-core
ZSweep using 128 Mbytes of RAM. We show the
time (in seconds) to generate the image and the
cost per cell (in µs).

Data Set 5122 10242 20482

SPX 8 615 34 2,615 154 11,846
SPX1 24 233 72 699 305 2,961
SPX2 78 93 160 192 595 716
SPX3 289 43 418 63 1,157 174

sional Unstructured Data,” Proc. IEEE Parallel Rendering
Symposium, IEEE CS Press, Los Alamitos, Calif., 1997, pp.
95-104.

7. R. Farias, J. Mitchell, and C. Silva, “ZSweep: An Efficient
and Exact Projection Algorithm for Unstructured Volume
Rendering,” Proc. 2000 Volume Visualization Symp., ACM
Press, New York, 2000, pp. 91-99.

8. P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” Computer Graphics, vol.
24, no. 5, Nov. 1990, pp. 63-70.

9. L. Carpenter, “The A-buffer, An Antialiased Hidden Sur-
face Method,” Computer Graphics (Proc. Siggraph 1984),
ACM Press, New York, 1984, pp. 103-108.

10. R. Farias and C. Silva, “Parallelizing the ZSweep Algorithm
for Distributed-Shared Memory Architectures,” to be pub-
lished in Proc. Int’l Volume Graphics Workshop, 2001.

11. R. Farias et al., “Time-Critical Rendering of Irregular
Grids,” Proc. SIBGRAPI 2000 (Brazilian Computer Graph-
ics Conference), IEEE CS Press, Los Alamitos, Calif., 2000,
pp. 243-250.

Ricardo Farias is a PhD student
in operations research in the Applied
Math Department at the State Uni-
versity of New York at Stony Brook.
His primary research is on visual-
ization of large volumetric data sets
and high-performance computing.

He has a BS in physics from Fluminense Federal Universi-
ty (Rio de Janeiro, Brazil) and an MS in computer vision
from the Graduate School and Research in Engineering
Institute (COPPE) of the Federal University of Rio de
Janeiro (UFRJ).

Cláudio Silva is a senior member
of the technical staff in the Informa-
tion Visualization Research Depart-
ment at AT&T Labs–Research. His
main research interests are in
graphics, visualization, applied com-
putational geometry, and high-per-

formance computing. His current research focuses on
architectures and algorithms for building scalable displays,
rendering techniques for large data sets, 3D scanning, and
algorithms for graphics hardware. He has a BS in mathe-
matics from the Federal University of Ceará, Brazil. He has
an MS and a PhD in computer science from the State Uni-
versity of New York at Stony Brook. He is an ACM, IEEE,
and Eurographics member.

Readers can contact Silva at AT&T Labs–Research, 180
Park Ave., Room D265, Florham Park, NJ 07932, email
csilva@research.att.com.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Large-Scale Data Visualization

10 July/August 2001

Out-Of-Core Algorithms for Scientific Visualization and Computer
Graphics

Cláudio T. Silva

CSE/OGI/OHSU∗

Yi-Jen Chiang

Polytechnic University

Jihad El-Sana

Ben-Gurion University

Peter Lindstrom

LLNL†

Abstract

Recently, several external memory techniques have been developed for a wide variety of graphics
and visualization problems, including surface simplification, volume rendering, isosurface generation,
ray tracing, surface reconstruction, and so on. This work has had significant impact given that in re-
cent years there has been a rapid increase in the raw size of datasets. Several technological trends are
contributing to this, such as the development of high-resolution 3D scanners, and the need to visualize
ASCI-size (Accelerated Strategic Computing Initiative) datasets. Another important push for this kind of
technology is the growing speed gap between main memory and caches, such a gap penalizes algorithms
which do not optimize for coherence of access. Because of these reasons, much research in computer
graphics focuses on developing out-of-core (and often cache-friendly) techniques.

This paper surveys fundamental issues, current problems, and unresolved solutions, and aims to
provide students and graphics researchers and professionals with an effective knowledge of current tech-
niques, as well as the foundation to develop novel techniques on their own.

Keywords: Out-of-core algorithms, scientific visualization, computer graphics, interactive rendering, vol-
ume rendering, surface simplification.

1 INTRODUCTION

Input/Output (I/O) communication between fast internal memory and slower external memory is a major
bottleneck in many large-scale applications. Algorithms specifically designed to reduce the I/O bottleneck
are called external-memory algorithms.

This paper focusses on describing techniques for handling datasets larger than main memory in scientific
visualization and computer graphics. Recently, several external memory techniques have been developed for
a wide variety of graphics and visualization problems, including surface simplification, volume rendering,
isosurface generation, ray tracing, surface reconstruction, and so on. This work has had significant impact
given that in recent years there has been a rapid increase in the raw size of datasets. Several technological
trends are contributing to this, such as the development of high-resolution 3D scanners, and the need to
visualize ASCI-size (Accelerated Strategic Computing Initiative) datasets. Another important push for this
kind of technology is the growing speed gap between main memory and caches, such a gap penalizes algo-
rithms which do not optimize for coherence of access. Because of these reasons, much research in computer
graphics focuses on developing out-of-core (and often cache-friendly) techniques.

∗Oregon Health & Science University
†Lawrence Livermore National Laboratory

The paper reviews fundamental issues, current problems, and unresolved solutions, and presents an
in-depth study of external memory algorithms developed in recent years. Its goal is to provide students
and graphics professionals with an effective knowledge of current techniques, as well as the foundation to
develop novel techniques on their own.

It starts with the basics of external memory algorithms in Section 2. Then in the remaining sections, it
reviews the current literature in other areas. Section 4 covers surface simplification algorithms. Section 3
covers work in scientific visualization, including isosurface computation, volume rendering, and streamline
computation. Section 5 discusses rendering approaches for large datasets. Finally, Section 6 talks about
computing high-quality images by using global illumination techniques.

2 EXTERNAL MEMORY ALGORITHMS

The field of external-memory algorithms started quite early in the computer algorithms community, es-
sentially by the paper of Aggarwal and Vitter [3] in 1988, which proposed the external-memory computa-
tional model (see below) that has been extensively used today. (External sorting algorithms were developed
even earlier—though not explicitly described and analyzed under the model of [3]; see the classic book of
Knuth [57] in 1973.) Early work on external-memory algorithms, including Aggarwal and Vitter [3] and
other follow-up results, concentrated largely on problems such as sorting, matrix multiplication, and FFT.
Later, Goodrich et al. [47] developed I/O-efficient algorithms for a collection of problems in computational
geometry, and Chiang et al. [17] gave I/O-efficient techniques for a wide range of computational graph prob-
lems. These papers also proposed some fundamental paradigms for external-memory geometric and graph
algorithms. Since then, developing external-memory algorithms has been an intensive focus of research, and
considerable results have been obtained in computational geometry, graph problems, text string processing,
and so on. We refer to Vitter [84] for an extensive and excellent survey on these results. Also, the volume [1]
is entirely devoted to external-memory algorithms and visualization.

Here, we review some fundamental and general external-memory techniques that have been demon-
strated to be very useful in scientific visualization and computer graphics. We begin with the computational
model of Aggarwal and Vitter [3], followed by two major computational paradigms:

(1) Batched computations, in which no preprocessing is done and the entire data items must be processed.
A common theme is to stream the data through main memory in one or more passes, while only
keeping a relatively small portion of the data related to the current computation in main memory at
any time.

(2) On-line computations, in which computation is performed for a series of query operations. A common
technique is to perform a preprocessing step in advance to organize the data into a data structure stored
in disk that is indexed to facilitate efficient searches, so that each query can be performed by searching
in the data structure that examines only a very small portion of the data. Typically an even smaller
portion of the data needs to be kept in main memory at any time during each query. This is in a similar
spirit of performing queries in database.

We remark that the preprocessing step mentioned in (2) is actually a batched computation. Other general
techniques such as caching and prefetching may be combined with the above computational paradigms to
obtain further speed-ups (e.g., by reducing the necessary I/O’s for blocks already in main memory and/or by
overlapping I/O operations with main-memory computations), again via exploiting the particular computa-
tional properties of each individual problem as part of the algorithm design.

In Sec. 2.1, we present the computational model of [3]. In Sec. 2.2, we review three techniques in
batched computations that are fundamental for out-of-core scientific visualization and graphics: external
merge sort [3], out-of-core pointer de-referencing [14,17,18], and the meta-cell technique [20]. In Sec. 2.3,
we review some important data structures for on-line computations, namely the B-tree [9,26] and B-tree-like
data structures, and show a general method of converting a main-memory, binary-tree structure into a B-tree-
like data structure. In particular, we review the BBIO tree [19, 20], which is an external-memory version of
the main-memory interval tree [33] and is essential for isosurface extraction, as a non-trivial example.

2.1 Computational Model

In contrast to random-access main memory, disks have extremely long access times. In order to amortize
this access time over a large amount of data, a typical disk reads or writes a large block of contiguous data
at once. To model the behavior of I/O systems, Aggarwal and Vitter [3] proposed the following parameters:

N = # of items in the problem instance

M = # of items that can fit into main memory

B = # of items per disk block

where M < N and 1 � B ≤ M=21. Each I/O operation reads or writes one disk block, i.e., B items of
data. Since I/O operations are much slower (typically two to three orders of magnitude) than main-memory
accesses or CPU computations, the measure of performance for external-memory algorithms is the number
of I/O operations performed; this is the standard notion of I/O complexity [3]. For example, reading all of the
input data requires N=B I/O’s. Depending on the size of the data items, typical values for workstations and
file servers in production today are on the order of M = 106 to M = 108 and B = 102 to B = 103. Large-scale
problem instances can be in the range N = 1010 to N = 1012.

We remark that sequentially scanning through the entire data takes Θ(N
B) I/O’s, which is considered as

the linear bound, and external sorting takes Θ(N
B log M

B

N
B) I/O’s [3] (see also Sec. 2.2.1), which is considered

as the sorting bound. It is very important to observe that randomly accessing the entire data, one item at a
time, takes Θ(N) I/O’s in the worst case and is much more inefficient than an external sorting in practice.
To see this, consider the sorting bound: since M=B is large, the term log M

B

N
B is much smaller than the term

B, and hence the sorting bound is much smaller than Θ(N) in practice. In Sec. 2.2.2, we review a technique
for a problem that greatly improves the I/O bound from Ω(N) to the sorting bound.

2.2 Batched Computations

2.2.1 External Merge Sort

Sorting is a fundamental procedure that is necessary for a wide range of computational tasks. Here we
review the external merge sort [3] under the computational model [3] presented in Sec. 2.1.

The external merge sort is a k-way merge sort, where k is chosen to be M=B, the maximum number of
disk blocks that can fit in main memory. It will be clear later for this choice. The input is a list of N items
stored in contiguous places in disk, and the output will be a sorted list of N items, again in contiguous places
in disk.

1An additional parameter, D, denoting the number of disks, was also introduced in [3] to model parallel disks. Here we consider
the standard single disk model, i.e., D = 1, and ignore the parameter D. It is common to do so in the literature of external-memory
algorithms.

The algorithm is a recursive procedure as follows. In each recursion, if the current list L of items is
small enough to fit in main memory, then we read this entire list into main memory, sort it, and write it back
to disk in contiguous places. If the list L is too large to fit in main memory, then we split L into k sub-lists
of equal size, sort each sub-list recursively, and then merge all sorted sub-lists into a single sorted list. The
major portion of the algorithm is how to merge the k sorted sub-lists in an I/O-optimal way. Notice that
each sub-list may also be too large to fit in main memory. Rather than reading one item from each sub-list
for merging, we read one block of items from each sub-list into main memory each time. We use k blocks
of main memory, each as a 1-block buffer for a sub-list, to hold each block read from the sub-lists. Initially
the first block of each sub-list is read into its buffer. We then perform merging on items in the k buffers,
where each buffer is already sorted, and output sorted items, as results of merging, to disk, written in units
of blocks. When some buffer is exhausted, the next block of the corresponding sub-list is read into main
memory to fill up that buffer. This process continues until all k sub-lists are completely merged. It is easy to
see that merging k sub-lists of total size |L| takes O(|L|=B) I/O’s, which is optimal—the same I/O bound as
reading and writing all sub-lists once.

To analyze the overall I/O complexity, we note that the recursive procedure corresponds to a k-ary tree
(rather than a binary tree as in the two-way merge sort). In each level of recursion, the total size of list(s)
involved is N items, and hence the total number of I/O’s used per level is O(N=B). Moreover, there are
O(logk

N
B) levels, since the initial list has N=B blocks and going down each level reduces the (sub-)list size

by a factor of 1=k. Therefore, the overall complexity is O(N
B logk

N
B) I/O’s. We want to maximize k to

optimize the I/O bound, and the maximum number of 1-block buffers in main memory is M=B. By taking
k = M=B, we get the bound of O(N

B log M
B

N
B) I/O’s, which is optimal2 [3].

Note the technique of using a 1-block buffer in main memory for each sub-list that is larger than
main memory in the above merging step. This has lead to the distribution sweep algorithm developed in
Goodrich et al. [47] and implemented and experimented in Chiang [15] for the 2D orthogonal segment in-
tersection problem, as well as the general scan and distribute paradigm developed by Chiang and Silva [18]
and Chiang et al. [20] to build the I/O interval tree [6] used in [18] and the binary-blocked I/O interval tree
(the BBIO tree for short) developed and used in [20], for out-of-core isosurface extraction. This scan and
distribute paradigm enables them to perform preprocessing to build these trees (as well as the metablock
tree [54]) in an I/O-optimal way; see Chiang and Silva [19] for a complete review of these data structures
and techniques.

2.2.2 Out-of-Core Pointer De-Referencing

Typical input datasets in scientific visualization and computer graphics are given in compact indexed forms.
For example, scalar-field irregular-grid volume datasets are usually represented as tetrahedra meshes. The
input has a list of vertices, where each vertex appears exactly once and each vertex entry contains its x-,
y-, z- and scalar values, and a list of tetrahedral cells, where each cell entry contains pointers/indices to its
vertices in the vertex list. We refer to this as the index cell set (ICS) format. Similarly, in an indexed triangle
mesh, the input has a list of vertices containing the vertex coordinates and a list of triangles containing
pointers/indices to the corresponding vertex entries in the vertex list.

The very basic operation in many tasks of processing the datasets is to be able to traverse all the tetra-
hedral or triangular cells and obtain the vertex information of each cell. While this is trivial if the entire
vertex list fits in main memory—we can just follow the vertex pointers and perform pointer de-referencing,
it is far from straightforward to carry out the task efficiently in the out-of-core setting where the vertex list

2A matching lower bound is shown in [3].

or both lists do not fit. Observe that following the pointers results in random accesses in disk, which is very
inefficient: since each I/O operation reads/writes an entire disk block, we have to read an entire disk block
of B items into main memory in order to just access a single item in that block, where B is usually in the
order of hundreds. Suppose the vertex and cell lists have N items in total, then this would require Ω(N)
I/O’s in the worst case, which is highly inefficient.

An I/O-efficient technique to perform pointer de-referencing is to replace (or augment) each vertex
pointer/index of each cell with the corresponding direct vertex information (coordinates, plus the scalar
value in case of volumetric data); this is the normalization process developed in Chiang and Silva [18],
carried out I/O-efficiently in [18] by applying the technique of Chiang [14, Chapter 4] and Chiang et al. [17]
as follows. In the first pass, we externally sort the cells in the cell list, using as the key for each cell the
index (pointer) to the first vertex of the cell, so that the cells whose first vertices are the same are grouped
together, with the first group having vertex 1 as the first vertex, the second group having vertex 2 as the first
vertex, and so on. Then by scanning through the vertex list (already in the order of vertex 1, vertex 2, etc.
from input) and the cell list simultaneously, we can easily fill in the direct information of the first vertex
of each cell in the cell list in a sequential manner. In the second pass, we sort the cell list by the indices
to the second vertices, and fill in the direct information of the second vertex of each cell in the same way.
By repeating the process for each vertex of the cells, we obtain the direct vertex information for all vertices
of each cell. Actually, each pass is a joint operation (commonly used in database), using the vertex ID’s
(the vertex indices) as the key on both the cell list and the vertex list. In each pass, we use O(N

B log M
B

N
B)

I/O’s for sorting plus O(N=B) I/O’s for scanning and filling in the information, and we perform three or four
passes depending on the number of vertices per cell (a triangle or tetrahedron). The overall I/O complexity
is O(N

B log M
B

N
B), which is far more efficient than Ω(N) I/O’s.

The above out-of-core pointer de-referencing has been used in [18, 20] in the context of out-of-core
isosurface extraction, as well as in [34,62] in the context of out-of-core simplification of polygonal models.
We believe that this is a very fundamental and powerful technique that will be essential for many other
problems in out-of-core scientific visualization and computer graphics.

2.2.3 The Meta-Cell Technique

While the above normalization process (replacing vertex indices with direct vertex information) enables us
to process indexed input format I/O-efficiently, it is most suitable for intermediate computations, and not
for a final database or final data representation stored in disk for on-line computations, since the disk space
overhead is large—the direct vertex information is duplicated many times, once per cell sharing the vertex.

Aiming at optimizing both disk-access cost and disk-space requirement, Chiang et al. [20] developed the
meta-cell technique, which is essentially an I/O-efficient partition scheme for irregular-grid volume datasets
(partitioning regular grids is a much simpler task, and can be easily carried out by a greatly simplified ver-
sion of the meta-cell technique). The resulting partition is similar to the one induced by a k-d-tree [10], but
there is no need to compute the multiple levels. The meta-cell technique has been used in Chiang et al. [20]
for out-of-core isosurface extraction, in Farias and Silva [40] for out-of-core volume rendering, and in Chi-
ang et al. [16] for a unified infrastructure for parallel out-of-core isosurface extraction and volume rendering
of unstructured grids.

Now we review the meta-cell technique. Assume the input dataset is a tetrahedral mesh given in the
index cell set (ICS) format consisting of a vertex list and a cell list as described in Sec. 2.2.2. We cluster
spatially neighboring cells together to form a meta-cell. Each meta-cell is roughly of the same storage size,
usually in a multiple of disk blocks and always able to fit in main memory. Each meta-cell has self-contained
information and is always read as a whole from disk to main memory. Therefore, we can use the compact

ICS representation for each meta-cell, namely a local vertex list and a local cell list which contains pointers
to the local vertex list. In this way, a vertex shared by many cells in the same meta-cell is stored just once
in that meta-cell. The only duplications of vertex information occur when a vertex belongs to two cells in
different meta-cells; in this case we let both meta-cells include that vertex in their vertex lists to make each
meta-cell self-contained.

The meta-cells are constructed as follows. First, we use an external sorting to sort all vertices by their
x-values, and partition them evenly into k chunks, where k is a parameter that can be adjusted. Then, for
each of the k chunks, we externally sort the vertices by the y-values and again partition them evenly into k
chunks. Finally, we repeat for the z-values. We now have k3 chunks, each having about the same number
of vertices. Each final chunk corresponds to a meta-cell, whose vertices are the vertices of the chunk (plus
some additional vertices duplicated from other chunks; see below). A cell with all vertices in the same meta-
cell is assigned to that meta-cell; if the vertices of a cell belong to different meta-cells, then a voting scheme
is used to assign the cell to a single meta-cell, and the missing vertices are duplicated into the meta-cell that
owns this cell. We then construct the local vertex list and the local cell list for each meta-cell. Recall that k
is a parameter and we have k3 meta-cells in the end. When k is larger, we have more meta-cell boundaries
and the number of duplicated vertices is larger (due to more cells crossing the meta-cell boundaries). On the
other hand, having a larger k means each meta-cell is more refined and contains less information, and thus
disk read of a meta-cell is faster (fewer number of disk blocks to read). Therefore, the meta-cell technique
usually leads to a trade-off between query time and disk space.

The out-of-core pointer de-referencing technique (or the joint operation) described in Sec. 2.2.2 is es-
sential in various steps of the meta-cell technique. For example, to perform the voting scheme to assign cells
to meta-cells, we need to know, for each cell, the destination meta-cells of its vertices. Recall that in the
input cell list, each cell only has the indices (vertex ID’s) to the vertex list. When we obtain k3 chunks of
vertices, we assign the vertices to these k3 meta-cells by generating a list of tuples (vid ,mid), meaning that
vertex vid is assigned to meta-cell mid . Then a joint operation using vertex ID’s as the key on this list and
the cell list completes the task by replacing each vertex ID in each cell with the destination meta-cell ID of
the vertex. There are other steps involving the joint operation; we refer to [20] for a complete description of
the meta-cell technique. Overall, meta-cells can be constructed by performing a few external sortings and a
few joint operations, and hence the total I/O complexity is O(N

B log M
B

N
B) I/O’s.

2.3 On-Line Computations: B-Trees and B-Tree-Like Data Structures

Tree-based data structures arise naturally in the on-line setting, since data items are stored sorted and queries
can typically be performed by efficient searches on the trees. The well-known balanced multiway B-tree [9,
26] (see also [27, Chapter 18]) is the most widely used data structure in external memory. Each tree node
corresponds to one disk block, capable of holding up to B items. The branching factor, Bf, defined as the
number of children of each internal node, is Θ(B) (except for the root); this guarantees that the height of a B-
tree storing N items is O(logB N) and hence searching an item takes optimal O(logB N) I/O’s. Other dynamic
dictionary operations, such as insertion and deletion of an item, can be performed in optimal O(logB N) I/O’s
each, and the space requirement is optimal O(N=B) disk blocks.

Typical trees in main memory have branching factor 2 (binary tree) or some small constant (e.g., 8 for
an octree), and each node stores a small constant number of data items. If we directly map such a tree to
external memory, then we get a sub-optimal disk layout for the tree: accessing each tree node takes one I/O,
in which we read an entire block of B items just to access a constant number of items of the node in the
block. Therefore, it is desirable to externalize the data structure, converting the tree into a B-tree-like data
structure, namely, to increase the branching factor from 2 (or a small constant) to Θ(B) so that the height of

a balanced tree is reduced from O(logN) to O(logB N), and also to increase the number of items stored in
each node from O(1) to Θ(B).

A simple and general method to externalize a tree of constant branching factor is as follows. We block
a subtree of Θ(log B) levels of the original tree into one node of the new tree (see Fig. 1 on page 8), so
that the branching factor is increased to Θ(B) and each new tree node stores Θ(B) items, where each new
tree node corresponds to one disk block. This is the basic idea of the BBIO tree of Chiang et al. [19, 20]
to externalize the interval tree [33] for out-of-core isosurface extraction, and of the meta-block tree of El-
Sana and Chiang [34] to externalize the view-dependence tree [37] for external memory view-dependent
simplification and rendering. We believe that this externalization method is general and powerful enough to
be applicable to a wide range of other problems in out-of-core scientific visualization and graphics.

We remark that the interval tree [33] is more difficult to externalize than the view-dependence tree [37].
When we visit a node of the view-dependence tree, we access all information stored in that node. In contrast,
each internal node in the interval tree has secondary lists as secondary search structures, and the optimal
query performance relies on the fact that searching on the secondary lists can be performed in an output-
sensitive way—the secondary lists should not be visited entirely if not all items are reported as answers to
the query. In the rest of this section, we review the BBIO tree as a non-trivial example of the externalization
method.

2.3.1 The Binary-Blocked I/O Interval Tree (BBIO Tree)

The binary-blocked I/O interval tree (BBIO tree) of Chiang et al. [19,20] is an external-memory extension of
the (main-memory) binary interval tree [33]. As will be seen in Sec. 3, the process of finding active cells in
isosurface extraction can be reduced to the following problem of interval stabbing queries [22]: given a set of
N intervals in 1D, build a data structure so that for a given query point q we can efficiently report all intervals
containing q. Such interval stabbing queries can be optimally solved in main memory using the interval
tree [33], with O(N) space, O(N log N) preprocessing time (the same bound as sorting) and O(logN + K)
query time, where K is the number of intervals reported; all bounds are optimal in terms of main-memory
computation. The BBIO tree achieves the optimal performance in external-memory computation: O(N=B)
blocks of disk space, O(logB N+ K

B) I/O’s for each query, and O(N
B log M

B

N
B) I/O’s (the same bound as external

sorting) for preprocessing. In addition, insertion and deletion of intervals can be supported in O(logB N)
I/O’s each. All these bounds are I/O-optimal.

We remark that the I/O interval tree of Arge and Vitter [6] is the first external-memory version of
the main-memory interval tree [33] achieving the above optimal I/O-bounds, and is used in Chiang and
Silva [18] for the first work on out-of-core isosurface extraction. Comparing the BBIO tree with the I/O
interval tree, the BBIO tree has only two kinds of secondary lists (the same as the original interval tree [33])
rather than three kinds, and hence the disk space is reduced by a factor of 2/3 in practice. Also, the branching
factor is Θ(B) rather than Θ(

√
B) and hence the tree height is halved. The tree structure is simpler; it is easier

to implement, also for handling degenerate cases.
Here we only review the data structure and the query algorithm of the BBIO tree; the preprocessing is

performed by the scan and distribute paradigm mentioned at the end of Sec. 2.2.1 and is described in [19,20].
The algorithms for insertions and deletions of intervals are detailed in [19].

2.3.1.1 Review: the Binary Interval Tree
We first review the main-memory binary interval tree [33]. Given a set of N intervals, such interval tree T
is defined recursively as follows. If there is only one interval, then the current node r is a leaf containing

Figure 1: Intuition of a binary-blocked I/O interval tree (BBIO tree) T : each circle is a node in the binary
interval tree T , and each rectangle, which blocks a subtree of T , is a node of T .

that interval. Otherwise, r stores as a key the median value m that partitions the interval endpoints into two
slabs, each having the same number of endpoints that are smaller (resp. larger) than m. The intervals that
contain m are assigned to the node r. The intervals with both endpoints smaller than m are assigned to the
left slab; similarly, the intervals with both endpoints larger than m are assigned to the right slab. The left
and right subtrees of r are recursively defined as the interval trees on the intervals in the left and right slabs,
respectively. In addition, each internal node u of T has two secondary lists: the left list, which stores the
intervals assigned to u, sorted in increasing left endpoint values, and the right list, which stores the same set
of intervals, sorted in decreasing right endpoint values. It is easy to see that the tree height is O(log2 N).
Also, each interval is assigned to exactly one node, and is stored either twice (when assigned to an internal
node) or once (when assigned to a leaf), and thus the overall space is O(N).

To perform a query for a query point q, we apply the following recursive process starting from the root
of T . For the current node u, if q lies in the left slab of u, we check the left list of u, reporting the intervals
sequentially from the list until the first interval is reached whose left endpoint value is larger than q. At this
point we stop checking the left list since the remaining intervals are all to the right of q and cannot contain
q. We then visit the left child of u and perform the same process recursively. If q lies in the right slab of u
then we check the right list in a similar way and then visit the right child of u recursively. It is easy to see
that the query time is optimal O(log2 N +K), where K is the number of intervals reported.

2.3.1.2 Data Structure
Now we review the BBIO tree, denoted by T , and recall that the binary interval tree is denoted by T . Each
node in T is one disk block, capable of holding B items. We want to increase the branching factor Bf so
that the tree height is O(logB N). The intuition is very simple—we block a subtree of the binary interval
tree T into one node of T (see Fig. 1), as described in the general externalization method presented in the
beginning of Sec. 2.3. In the following, we refer to the nodes of T as small nodes. We take the branching
factor Bf to be Θ(B). In an internal node of T , there are Bf−1 small nodes, each having a key, a pointer to
its left list and a pointer to its right list, where all left and right lists are stored in disk.

Now we give a more formal definition of the tree T . First, we sort all left endpoints of the N intervals
in increasing order from left to right, into a set E . We use interval ID’s to break ties. The set E is used to
define the keys in small nodes. The BBIO tree T is recursively defined as follows. If there are no more than
B intervals, then the current node u is a leaf node storing all intervals. Otherwise, u is an internal node. We
take Bf−1 median values from E , which partition E into Bf slabs, each with the same number of endpoints.
We store sorted, in non-decreasing order, these Bf−1 median values in the node u, which serve as the keys
of the Bf−1 small nodes in u. We implicitly build a subtree of T on these Bf−1 small nodes, by a binary-
search scheme as follows. The root key is the median of the Bf−1 sorted keys, the key of the left child of the

root is the median of the lower half keys, and the right-child key is the median of the upper half keys, and so
on. Now consider the intervals. The intervals that contain one or more keys of u are assigned to u. In fact,
each such interval I is assigned to the highest small node (in the subtree of T in u) whose key is contained in
I; we store I in the corresponding left and right lists of that small node in u. For the remaining intervals that
are not assigned to u, each has both endpoints in the same slab and is assigned to that slab; recall that there
are Bf slabs induced by the Bf−1 keys stored in u. We recursively define the Bf subtrees of the node u as the
BBIO trees on the intervals in the Bf slabs. Notice that with the above binary-search scheme for implicitly
building a (sub)tree of small nodes on the keys stored in an internal node u of T , Bf does not need to be a
power of 2—we can make Bf as large as possible, as long as the Bf− 1 keys, the 2(Bf− 1) pointers to the
left and right lists, and the Bf pointers to the children, etc., can all fit into one disk block.

It is easy to see that T has height O(logB N): T is defined on the set E with N left endpoints, and is
perfectly balanced with Bf = Θ(B). To analyze the space complexity, observe that there are no more than
N=B leaves and thus O(N=B) disk blocks for the tree nodes of T . For the secondary lists, as in the binary
interval tree T , each interval is stored either once or twice. The only issue is that a left (right) list may have
very few (<< B) intervals but still needs one disk block for storage. We observe that an internal node u has
2(Bf−1) left plus right lists, i.e., at most O(Bf) such underfull blocks. But u also has Bf children, and thus
the number of underfull blocks is no more than a constant factor of the number of child blocks—counting
only the number of tree nodes suffices to take into account also the number of underfull blocks, up to some
constant factor. Therefore the overall space complexity is optimal O(N=B) disk blocks.

As we shall see in Sec. 2.3.1.3, the above data structure supports queries in non-optimal O(log2
N
B +K=B)

I/O’s (where K is the number of intervals reported), and we can use the corner structures [54] to achieve
optimal O(logB N +K=B) I/O’s while keeping the space complexity optimal.

2.3.1.3 Query Algorithm
The query algorithm for the BBIO tree T is very simple and mimics the query algorithm for the binary
interval tree T . Given a query point q, we perform the following recursive process starting from the root of
T . For the current node u, we read u from disk. Now consider the subtree Tu implicitly built on the small
nodes in u by the binary-search scheme. Using the same binary-search scheme, we follow a root-to-leaf
path in Tu. Let r be the current small node of Tu being visited, with key value m. If q = m, then we report
all intervals in the left (or equivalently, right) list of r and stop. (We can stop here for the following reasons.
(1) Even some descendent of r has the same key value m, such descendent must have empty left and right
lists, since if there are intervals containing m, they must be assigned to r (or some small node higher than
r) before being assigned to that descendent. (2) For any non-empty descendent of r, the stored intervals
are either entirely to the left or entirely to the right of m = q, and thus cannot contain q.) If q < m, we
scan and report the intervals in the left list of r, until the first interval with the left endpoint larger than q is
encountered. Recall that the left lists are sorted by increasing left endpoint values. After that, we proceed
to the left child of r in Tu. Similarly, if q > m, we scan and report the intervals in the right list of r, until
the first interval with the right endpoint smaller than q is encountered. Then we proceed to the right child of
r in Tu. At the end, if q is not equal to any key in Tu, the binary search on the Bf− 1 keys locates q in one
of the Bf slabs. We then visit the child node of u in T which corresponds to that slab, and apply the same
process recursively. Finally, when we reach a leaf node of T , we check the O(B) intervals stored to report
those that contain q, and stop.

Since the height of the tree T is O(logB N), we only visit O(logB N) nodes of T . We also visit the
left and right lists for reporting intervals. Since we always report the intervals in an output-sensitive way,
this reporting cost is roughly O(K=B), where K is the number of intervals reported. However, it is possible

that we spend one I/O to read the first block of a left/right list but only very few (<< B) intervals are
reported. In the worst case, all left/right lists visited result in such underfull reported blocks and this I/O
cost is O(log2

N
B), because we visit one left or right list per small node and the total number of small nodes

visited is O(log2
N
B) (this is the height of the balanced binary interval tree T obtained by “concatenating”

the small-node subtrees Tu’s in all internal nodes u’s of T). Therefore the overall worst-case I/O cost is
O(log2

N
B +K=B).

We can improve the worst-case I/O query bound. The idea is to check a left/right list of a small node from
disk only when it is guaranteed that at least one full block is reported from that list; the underfull reported
blocks of a node u of T are collectively taken care of by an additional corner structure [54] associated with
u. A corner structure can store t intervals in optimal space of O(t=B) disk blocks, where t is restricted to be
at most O(B2), so that an interval stabbing query can be answered in optimal O(k=B + 1) I/O’s, where k is
the number of intervals reported from the corner structure. Assuming all t intervals can fit in main memory
during preprocessing, a corner structure can be built in optimal O(t=B) I/O’s. We refer to [54] for a complete
description of the corner structure.

We incorporate the corner structure into the BBIO tree T as follows. For each internal node u of T , we
remove the first block from each left and right lists of each small node in u, and collect all these removed
intervals (with duplications eliminated) into a single corner structure associated with u; if a left/right list
has no more than B intervals then the list becomes empty. We also store in u a “guarding value” for each
left/right list of u. For a left list, this guarding value is the smallest left endpoint value among the remaining
intervals still kept in the left list (i.e., the (B+1)-st smallest left endpoint value in the original left list); for a
right list, this value is the largest right endpoint value among the remaining intervals kept (i.e., the (B+1)-st
largest right endpoint value in the original right list). Recall that each left list is sorted by increasing left
endpoint values and symmetrically for each right list. Observe that u has 2(Bf− 1) left and right lists and
Bf = Θ(B), so there are Θ(B) lists in total, each contributing at most a block of B intervals to the corner
structure of u. Therefore, the corner structure of u has O(B2) intervals, satisfying the restriction of the
corner structure. Also, the overall space needed is still optimal O(N=B) disk blocks.

The query algorithm is basically the same as before, with the following modification. If the current node
u of T is an internal node, then we first query the corner structure of u. A left list of u is checked from
disk only when the query value q is larger than or equal to the guarding value of that list; similarly for the
right list. In this way, although a left/right list might be checked using one I/O to report very few (<< B)
intervals, it is ensured that in this case the original first block of that list is also reported, from the corner
structure of u. Therefore we can charge this one underfull I/O cost to the one I/O cost needed to report
such first full block (i.e., reporting the first full block needs one I/O; we can multiply this one I/O cost by
2, so that the additional one I/O can be used to pay for the one I/O cost of the underfull block). This means
that the overall underfull I/O cost can be charged to the K=B term of the reporting cost (with some constant
factor), so that the overall query cost is optimal O(logB N +K=B) I/O’s.

3 SCIENTIFIC VISUALIZATION

Here, we review out-of-core work done in the area of scientific visualization. In particular, we cover recent
work in I/O-efficient volume rendering, isosurface computation, and streamline computation. Since 1997,
this area of research has advanced considerably, although it is still an active research area. The techniques
described below make it possible to perform basic visualization techniques on large datasets. Unfortunately,
some of the techniques have substantial disk and time overhead. Also, often the original format of the data is
not suited for visualization tasks, leading to expensive pre-processing steps, which often require some form

of data replication. Few of the techniques described below are suited for interactive use, and the development
of multi-resolution approaches that would allow for scalable visualization techniques is still an elusive goal.

Cox and Ellsworth [29] propose a framework for out-of-core scientific visualization systems based on
application-controlled demand paging. The paper builds on the fact that many important visualization tasks
(including computing streamlines, streaklines, particle traces, and cutting planes) only need touch a small
portion of large datasets at a time. Thus, the authors realize that it should be possible to page in the necessary
data on demand. Unfortunately, as the paper shows, the operating system paging sub-system is not effective
for such visualization tasks, and leads to inferior performance. Based on these premises and observations,
the authors propose a set of I/O optimizations that lead to substantial improvements in computation times.
The authors modified the I/O subsystem of the visualization applications to explicitly take into account the
read and caching operations. Cox and Ellsworth report on several effective optimizations. First, they show
that controlling the page size, in particular using page sizes smaller than those used by the operating system,
leads to improved performance since using larger page sizes leads to wasted space in main memory. The
second main optimization is to load data in alternative storage format (i.e., 3-dimensional data stored in sub-
cubes), which more naturally captures the natural shape of underlying scientific data. Furthermore, their
experiments show that the same techniques are effective for remote visualization, since less data needs to be
transmitted over the network and cached at the client machine.

Ueng et al. [82] present a related approach. In their work Ueng et al. focussed on computing streamlines
of large unstructured grids, and they use an approach somewhat similar to Cox and Ellsworth in that the
idea is to perform on-demand loading of the data necessary to compute a given streamline. Instead of
changing the way the operating system handles the I/O, these authors decide to modify the organization of
the actual data on disk, and to come up with optimized code for the task at hand. They use an octree partition
to restructure unstructured grids to optimize the computation of streamlines. Their approach involves a
preprocessing step, which builds an octree that is used to partition the unstructured cells in disk, and an
interactive step, which computes the streamlines by loading the octree cells on demand. In their work, they
propose a top-down out-of-core preprocessing algorithm for building the octree. Their algorithm is based
on propagating the cell (tetrahedra) insertions on the octree from the root to the leaves in phases. In each
phase (recursively), octree nodes that need to be subdivided create their children and distribute the cells
among them based on the fact that cells are contained inside the octree node. Each cell is replicated on the
octree nodes that it would potentially intersect. For the actual streamline computation, their system allows
for the concurrent computation of mutliple streamlines at the same time based on user input. It uses a multi-
threaded architecture with a set of streamline objects, three scheduling queue (wait, ready, and finished),
free memory pool and a table of loaded octants.

Leutenegger and Ma [59] propose to use R-trees [48] to optimize searching operations on large unstruc-
tured datasets. They arge that octrees (such as those used by Ueng et al. [82]) are not suited for storing
unstructured data because of imbalance in the structure of such data making it hard to efficiently pack the
octree in disk. Furthermore, they also argue that the low fan-out of octrees leads to a large number of inter-
nal nodes, which force applications into many unnecessary I/O fetches. Leutenegger and Ma use an R-tree
for storing tetrahedral data, and present experiemntal results of their method on the implementation of a
multi-resolution splatting-based volume renderer.

Pascucci and Frank [67] describe a scheme for defining hierarchical indices over very large regular grids
that leads to efficient disk data layout. Their approach is based on the use of a space-filling curve for defining
the data layout and indexing. In particular, they propose an indexing scheme for the Lebesgue Curve which
can be simply and efficient computed by using bit masking, shifting, and addition. They show the usefulness
of their approach in a progresive (real-time) slicing application which exploits their indexing framework for

the multi-resolution computation of arbitrary slices of very large datasets (one example in the paper has
approximately one half tera nodes).

Bruckschen et al. [13] describes a technique for real-time particle traces of large time-varying datasets.
They argue that it is not possible to perform this computation in real-time on demand, and propose a solution
where the basic idea is to pre-compute the traces from fixed positions located on a regular grid, and to
save the results for efficient disk access in a way similar to Pascucci and Frank [67]. Their system has
two main components, a particle tracer and encoder, which runs as a preprocessing step, and a renderer,
which interactively reads the precomputed particle traces. Their particle tracer computes traces for a whole
sequence of time steps by considering the data in blocks. It works by injectign particles at grid locations and
computing their new positions until the particles have left the currrent block.

Chiang and Silva [18, 20] proposed algorithms for out-of-core isosurface generation of unstructured
grids. Isosurface generation can be seen as an interval stabbing problem [22] as follows: first, for each cell,
produce an interval I = [min,max] where min and max are the minimum and maximum among the scalar
values of the vertices of the cell. Then a cell is active if and only if its interval contains the isovalue q. This
reduces the active-cell searching problem to that of interval search: given a set of intervals in 1D, build
a data structure to efficiently report all intervals containing a query point q. Secondly, the interval search
problem is solved optimally by using the main-memory interval tree [33]. The first out-of-core isosurface
technique was given by Chiang and Silva [18]. They follow the ideas of Cignoni et al. [22], but use the I/O-
optimal interval tree [6] to solve the interval search problem. An interesting aspect of the work is that even
the preprocessing is assumed to be performed completely on a machine with limited main memory. With
this technique, datasets much larger than main memory can be visualized efficiently. Though this technique
is quite fast in terms of actually computing the isosurfaces, the associated disk and preprocessing overhead
is substantial. Later, Chiang et al. [20] further improved (i.e., reduced) the disk space overhead and the
preprocessing time of Chiang and Silva [18], at the cost of slightly increasing the isosurface query time, by
developing a two-level indexing scheme, the meta-cell technique, and the BBIO tree which is used to index
the meta-cells. A meta-cell is simply a collection of contiguous cells, which is saved together for fast disk
access.

Along the same lines, Sulatycke and Ghose [77] describe an extension of Cignoni et al. [22] for out-
of-core isosurface extraction. Their work does not propose an optimal extension, but instead proposes a
scheme that simply adapts the in-core data structure to an out-of-core setting. The authors also describe
a multi-threaded implementation that aims to hide the disk I/O overhead by overlapping computation with
I/O. Basically, the authors have an I/O thread that reads the active cells from disk, and several isosurface
computation threads. Experimental results on relatively small regular grids are given in the paper.

Bajaj et al. [8] also proposes a technique for out-of-core isosurface extraction. Their technique is an
extension of their seed-based technique for efficient isosurface extraction [7]. The seed-based approach
works by saving a small set of seed cells, which can be used as starting points for an arbitrary isosurface
by simple contour propagation. In the out-of-core adaptation, the basic idea is to separate the cells along
the functional value, storing ranges of contiguous ranges together in disk. In their paper, the authors also
describe how to parallelize their algorithm, and show the performance of their techniques using large regular
grids.

Sutton and Hansen [78] propose the T-BON (Temporal Branch-On-Need Octree) technique for fast
extraction of isosurfaces of time-varying datasets. The preprocessing phase of their technique builds a
branch-on-need octree [87] for each time step and stores it to disk in two parts. One part contains the
structure of the octree and does not depend at all on the specific time step. Time-step specific data is saved
separately (including the extreme values). During querying, the tree is recursively traversed, taking into

account the query timestep and isovalue, and brought into memory until all the information (including all
the cell data) has been read. Then, a second pass is performed to actually compute the isosurface. Their
technique also uses meta-cells (or data bricking) [20] to optimize the I/O transfers.

Shen et al. [75] proposes a different encoding for time-varying datasets. Their TSP (Time-Space Par-
tioning) tree encodes in a single data structure the changes from one time-step to another. Each node of the
octree has not only a spatial extend, but also a time interval. If the data changes in time, a node is refined
by its children, which refine the changes on the data, and is annotated with its valid time range. They use
the TSP tree to perform out-of-core volume rendering of large volumes. One of the nice properties is that
because of its encoding, it is possible to very efficiently page the data in from disk when rendering time
sequences.

Farias and Silva [40] presents a set of techniques for the direct volume rendering of arbitrarily large
unstructured grids on machines with limited memory. One of the techniques described in the paper is a
memory-insensitive approach which works by traversing each cell in the dataset, one at a time, sampling its
ray span (in general a ray would intersect a convex cell twice) and saving two fragment entries per cell and
pixel covered. The algorithm then performs an external sort using the pixel as the primary key, and the depth
of the fragment as the secondary key, which leads to the correct ray stabbing order that exactly captures the
information necessary to perform the rendering. The other technique described is more involved (but more
efficient) and involves extending the ZWEEP algorithm [39] to an out-of-core setting.

The main idea of the (in-core) ZSWEEP algorithm is to sweep the data with a plane parallel to the
viewing plane in order of increasing z, projecting the faces of cells that are incident to vertices as they
are encountered by the sweep plane. ZSWEEP’s face projection consists of computing the intersection
of the ray emanating from each pixel, and store their z-value, and other auxiliary information, in sorted
order in a list of intersections for the given pixel. The actual lighting calculations are deferred to a later
phase. Compositing is performed as the “target Z” plane is reached. This algorithm exploits the implicit
(approximate) global ordering that the z-ordering of the vertices induces on the cells that are incident on
them, thus leading to only a very small number of ray intersection are done out of order; and the use of
early compositing which makes the memory footprint of the algorithm quite small. There are two sources
of main memory usage in ZSWEEP: the pixel intersection lists, and the actual dataset. The basic idea in
the out-of-core technique is to break the dataset into chunks of fixed size (using ideas of the meta-cell work
described in Chiang et al. [20]), which can be rendered independently without using more than a constant
amount of memory. To further limit the amount of memory necessary, their algorithm subdivides the screen
into tiles, and for each tile, which are rendered in chunks that project into it in a front-to-back order, thus
enabling the exact same optimizations which can be used with the in-core ZSWEEP algorithm.

4 SURFACE SIMPLIFICATION

In this section we review recent work on out-of-core simplification. In particular, we will focus on methods
for simplifying large triangle meshes, as these are the most common surface representation for computer
graphics. As data sets have grown rapidly in recent years, out-of-core simplification has become an in-
creasingly important tool for dealing with large data. Indeed, many conventional in-core algorithms for
visualization, data analysis, geometric processing, etc., cannot operate on today’s massive data sets, and are
furthermore difficult to extend to work out of core. Thus, simplification is needed to reduce the (often over-
sampled) data set so that it fits in main memory. As we have already seen in previous sections, even though
some methods have been developed for out-of-core visualization and processing, handling billion-triangle
meshes, such as those produced by high resolution range scanning [60] and scientific simulations [66], is still

challenging. Therefore many methods benefit from having either a reduced (albeit still large and accurate)
version of a surface, or having a multiresolution representation produced using out-of-core simplification.

It is somewhat ironic that, whereas simplification has for a long time been relied upon for dealing with
complex meshes, for large enough data sets simplification itself becomes impractical, if not impossible. Typ-
ical in-core simplification techniques, which require storing the entire full-resolution mesh in main memory,
can handle meshes on the order of a few million triangles on current workstations; two to three orders of
magnitude smaller than many data sets available today. To address this problem, several techniques for out-
of-core simplification have been proposed recently, and we will here cover most of the methods published
to date.

One reason why few algorithms exist for out-of-core simplification is that the majority of previous meth-
ods for in-core simplification are ill-suited to work in the out-of-core setting. The prevailing approach to
in-core simplification is to iteratively perform a sequence of local mesh coarsening operations, e.g., edge
collapse, vertex removal, face clustering, etc., that locally simplify the mesh, e.g., by removing a single
vertex. The order of operations performed is typically determined by their impact on the quality of the
mesh, as measured using some error metric, and simplification then proceeds in a greedy fashion by always
performing the operation that incurs the lowest error. Typical error metrics are based on quantities such
as mesh-to-mesh distance, local curvature, triangle shape, valence, an so on. In order to evaluate (and re-
evaluate) the metric and to keep track of which simplices (i.e., vertices, edges, and triangles) to eliminate in
each coarsening operation, virtually all in-core simplification methods rely on direct access to information
about the connectivity (i.e., adjacency information) and geometry in a neighborhood around each simplex.
As a result, these methods require explicit data structures for maintaining connectivity, as well as a priority
queue of coarsening operations, which amounts to O(n) in-core storage for a mesh of size n. Clearly this
limits the size of models that can be simplified in core. Simply offloading the mesh to disk and using virtual
memory techniques for transparent access is seldom a realistic option, as the poor locality of greedy simpli-
fication results in scattered accesses to the mesh and excessive thrashing. For out-of-core simplification to
be viable, such random accesses must be avoided at all costs. As a result, many out-of-core methods make
use of a triangle soup mesh representation, where each triangle is represented independently as a triplet of
vertex coordinates. In contrast, most in-core methods use some form of indexed mesh representation, where
triangles are specified as indices into a non-redundant list of vertices.

There are many different ways to simplify surfaces. Popular coarsening operations for triangle meshes
include vertex removal [73], edge collapse [53], half-edge collapse [58], triangle collapse [49], vertex pair
contraction [44], and vertex clustering [71]. While these operations vary in complexity and generality, they
all have one thing in common in that they partition the set of vertices from the input mesh by grouping
them into clusters (Figure 2).3 The simplified mesh is formed by choosing a single vertex to represent each
cluster (either by selecting one from the input mesh or by computing a new, optimal position). For example,
the edge collapse algorithm conceptually forms a forest of binary trees (the clusters) in which each edge
collapse corresponds to merging two children into a single parent. Here the cluster representatives are the
roots of the binary trees. In the end, it matters little what coarsening operation is used since the set partition
uniquely defines the resulting connectivity, i.e., only those triangles whose vertices belong to three different
clusters “survive” the simplification. In this sense, mesh simplification can be reduced to a set partioning
problem, together with rules for choosing the position of each cluster’s representative vertex, and we will
examine how different out-of-core methods perform this partitioning. Ideally the partitioning is done so
as to minimize the given error measure, although because of the complexity of this optimization problem

3Technically vertex removal is a generalization of half-edge collapse with optional edge flipping. Due to its ability to arbitrarily
modify the connectivity, vertex removal does not produce a canonical partition of the set of vertices.

atomic vertex clustering

iterative vertex pair contraction

Figure 2: Vertex clustering on a 2D uniform grid as a single atomic operation (top) and as multiple pair con-
tractions (bottom). The dashed lines represent the space-partitioning grid, while vertex pairs are indicated
using dotted lines. Note that spatial clustering can lead to significant topological simplification.

heuristics are often used. There are currently two distinct approaches to out-of-core simplification, based on
spatial clustering and surface segmentation. Within these two general categories, we will also distinguish
between uniform and adaptive partitioning. We describe different methods within these frameworks below,
and conclude with a comparison of these general techniques.

4.1 Spatial Clustering

Clustering decisions can be based on either the connectivity or the geometry of the mesh, or both. Because
computing and maintaining the connectivity of a large mesh out of core can often be a difficult task in and
of itself, perhaps the simplest approach to clustering vertices is based solely on spatial partitioning. The
main idea behind this technique is to partition the space that the surface is embedded in, i.e., R

3, into simple
convex 3D regions, and to merge the vertices of the input mesh that fall in the same region. Because the mesh
geometry is often specified in a Cartesian coordinate system, the most straightforward space partitioning is
given by a rectilinear grid (Figure 2). Rossignac and Borrel [71] used such a grid to cluster vertices in an
in-core algorithm. However, the metrics used in their algorithm rely on full connectivity information. In
addition, a ranking phase is needed in which the most “important” vertex in each cluster is identified, and
their method, as stated, is therefore not well suited for the out-of-core setting. Nevertheless, Rossignac and
Borrel’s original clustering algorithm is the basis for many of the out-of-core methods discussed below. We
note that their algorithm makes use of a uniform grid to partition space, and we will discuss out-of-core
methods for uniform clustering first.

4.1.1 Uniform Spatial Clustering

To extend the clustering algorithm in [71] to the out-of-core setting, Lindstrom [61] proposed using Garland
and Heckbert’s quadric error metric [44] to measure error. Lindstrom’s method, called OoCS, works by
scanning a triangle soup representation of the mesh, one triangle at a time, and computing a quadric matrix
Qt for each triangle t. Using an in-core sparse grid representation (e.g., a dynamic hash table), the three
vertices of a triangle are quickly mapped to their respective grid cells, and Qt is then distributed to these
cells. This depositing of quadric matrices is done for each of the triangle’s vertices whether they belong
to one, two, or three different clusters. However, as mentioned earlier, only those triangles that span three
different clusters survive the simplification, and the remaining degenerate ones are not output. After each
input triangle has been read, what remains is a list of simplified triangles (specified as vertex indices) and
a list of quadric matrices for the occupied grid cells. For each quadric matrix, an optimal vertex position is
computed that minimizes the quadric error [44], and the resulting indexed mesh is then output.

Lindstrom’s algorithm runs in linear time in the size of the input and expected linear time in the output.
As such, the method is efficient both in theory and practice, and is able to process on the order of a quarter
million triangles per second on a typical PC. While the algorithm can simplify arbitrarily large meshes, it
requires enough core memory to store the simplified mesh, which limits the accuracy of the output mesh. To
overcome this limitation, Lindstrom and Silva [62] proposed an extension of OoCS that performs all com-
putations on disk, and that requires only a constant, small amount of memory. Their approach is to replace
all in-core random accesses to grid cells (i.e., hash lookups and matrix updates) with coherent sequential
disk accesses, by storing all information associated with a grid cell together on disk. This is accomplished
by first mapping vertices to grid cells (as before) and writing partial per-cluster quadric information in the
form of plane equations to disk. This step is followed by a fast external sort (Section 2.2.1) on grid cell ID of
the quadric information, after which the sorted file is traversed sequentially and quadric matrices are accu-
mulated and converted to optimal vertex coordinates. Finally, three sequential scan-and-replace steps, each
involving an external sort, are performed on the list of output triangles, in which cluster IDs are replaced
with indices into the list of vertices.

Because of the use of spatial partitioning and quadric errors, no explicit connectivity information is
needed in [61, 62]. In spite of this, the end result is identical to what Garland and Heckbert’s edge collapse
algorithm [44] would produce if the same vertex set partitioning were used. On the downside, however, is
that topological features such as surface boundaries and nonmanifold edges, as well as geometric features
such as sharp edges are not accounted for. To address this, Lindstrom and Silva [62] suggested computing
tangential errors in addition to errors normal to the surface. These tangential errors cancel out for man-
ifold edges in flat areas, but penalize deviation from sharp edges and boundaries. As a result, boundary,
nonmanifold, and sharp edges can be accounted for without requiring explicit connectivity information. An-
other potential drawback of connectivity oblivious simplification—and most non-iterative vertex clustering
algorithms in general—is that the topology of the surface is not necessarily preserved, and nonmanifold
simplices may even be introduced. On the other hand, for very large and complex surfaces, modest topol-
ogy simplification may be desirable or even necessary to remove noise and unimportant features that would
otherwise consume precious triangles.

4.1.2 Adaptive Spatial Clustering

The general spatial clustering algorithm discussed above does not require a rectilinear partitioning of space.
In fact, the 3D space-partitioning mesh does not even have to be conforming (i.e., without cracks or T-
junctions), nor do the cells themselves have to be convex or even connected (although that may be prefer-

(a) Original (b) Edge collapse [63] (c) Uniform clustering [61]

Figure 3: Base of Happy Buddha model, simplified from 1.1 million to 16 thousand triangles. Notice the
jagged edges and notches in (c) caused by aliasing from using a coarse uniform grid. Most of these artifacts
are due to the geometry and connectivity “filtering” being decoupled, and can be remedied by flipping edges.

able). Because the amount of detail often varies over a surface, it may be desirable to adapt the grid cells
to the surface shape, such that a larger number of smaller cells are used to partition detailed regions of the
surface, while relatively larger cells can be used to cluster vertices in flat regions.

The advantage of producing an adaptive partition was first demonstrated by Shaffer and Garland in [74].
Their method makes two passes instead of one over the input mesh. The first pass is similar to the OoCS
algorithm [61], but in which a uniform grid is used to accumulate both primal (distance-to-face) and dual
(distance-to-vertex) quadric information. Based on this quadric information, a principal component analysis
(PCA) is performed that introduces split planes that better partition the vertex clusters than the uniform
grid. These split planes, which are organized hierarchically in a binary space partitioning (BSP) tree, are
then used to cluster vertices in a second pass over the input data. In addition to superior qualitative results
over [61], Shaffer and Garland report a 20% average reduction in error. These improvements come at the
expense of higher memory requirements and slower simplification speed.

In addition to storing the BSP-tree, a priority queue, and both primal and dual quadrics, Shaffer and
Garland’s method also requires a denser uniform grid (than [61]) in order to capture detailed enough in-
formation to construct good split planes. This memory overhead can largely be avoided by refining the
grid adaptively via multiple passes over the input, as suggested by Fei et al. [41]. They propose uniform
clustering as a first step, after which the resulting quadric matrices are analyzed to determine the locations
of sharp creases and other surface details. This step is similar to the PCA step in [74]. In each cell where
higher resolution is needed, an additional split plane is inserted, and another pass over the input is made
(processing only triangles in refined cells). Finally, an edge collapse pass is made to further coarsen smooth
regions by making use of the already computed quadric matrices. A similar two-phase hybrid clustering and
edge collapse method has recently been proposed by Garland and Shaffer [45].

The uniform grid partitioning scheme is somewhat sensitive to translation and rotation of the grid, and
for coarse grids aliasing artifacts are common (see Figure 3). Inspired by work in image and digital signal
processing, Fei et al. [42] propose using two interleaved grids, offset by half a grid cell in each direction,
to combat such aliasing. They point out that detailed surface regions are relatively more sensitive to grid
translation, and by clustering the input on both grids and measuring the local similarity of the two resulting
meshes (again using quadric errors) they estimate the amount of detail in each cell. Where there is a large
amount of detail, simplified parts from both meshes are merged in a retriangulation step. Contrary to [41,
45, 74], this semi-adaptive technique requires only a single pass over the input.

partition
mesh

pre-simplify
blocks

simplify blocks
& save ecol’s

stitch blocks into
larger blocks

simplify
top-level block

ecolA

ecolB

ecolS

apply bottom-up recursion

Figure 4: Height field simplification based on hierarchical, uniform surface segmentation and edge collapse
(figure courtesy of Hugues Hoppe).

4.2 Surface Segmentation

Spatial clustering fundamentally works by finely partitioning the space that the surface lies in. The method
of surface segmentation, on the other hand, partitions the surface itself into pieces small enough that they
can be further processed independently in core. Each surface patch can thus be simplified in core to a given
level of error using a high quality simplification technique, such as edge collapse, and the coarsened patches
are then “stitched” back together. From a vertex set partition standpoint, surface segmentation provides
a coarse division of the vertices into smaller sets, which are then further refined in core and ultimately
collapsed. As in spatial clustering, surface segmentation can be uniform, e.g., by partitioning the surface
over a uniform grid, or adaptive, e.g., by cutting the surface along feature lines. We begin by discussing
uniform segmentation techniques.

4.2.1 Uniform Surface Segmentation

Hoppe [52] described one of the first out-of-core simplification techniques based on surface segmentation
for the special case of height fields. His method performs a 2D spatial division of a regularly gridded terrain
into several rectangular blocks, which are simplified in core one at a time using edge collapse until a given
error tolerance is exceeded. By disallowing any modifications to block boundaries, adjacent blocks can then
be quickly stitched together in a hierarchical fashion to form larger blocks, which are then considered for fur-
ther simplification. This allows seams between sibling blocks to be coarsened higher up in in the hierarchy,
and by increasing the error tolerance on subsequent levels a progressively coarser approximation is obtained
(see Figure 4). Hoppe’s method was later extended to general triangle meshes by Prince [69], who uses
a 3D uniform grid to partition space and segment the surface. Both of these methods have the advantage
of producing not a single static approximation but a multiresolution representation of the mesh—a pro-
gressive mesh [50]—which supports adaptive refinement, e.g., for view-dependent rendering. While being
significantly slower (by about two orders of magnitude) and requiring more (although possibly controllable)
memory than most spatial clustering techniques, the improvement in quality afforded by error-driven edge
collapse can be substantial.

Bernardini et al. [11] developed a strategy similar to [52,69]. Rather than constructing a multiresolution
hierarchy, however, a single level of detail is produced. Seams between patches are coarsened by shifting the

single-resolution grid (somewhat akin to the approach in [42]) after all patches in the current grid have been
simplified. In between the fine granularity provided by a progressive mesh [69] and the single-resolution
meshes created in [11], Erikson et al. [38] proposed using a static, discrete level of detail for each node in
the spatial hierarchy. As in [11, 52, 69], a rectilinear grid is used for segmentation in Erikson’s method.

One of the downsides of the surface segmentation techniques described above is the requirement that
patch boundaries be left intact, which necessitates additional passes to coarsen the patch seams. This re-
quirement can be avoided using the OEMM mesh data structure proposed by Cignoni et al. [23]. As in [69],
an octree subdivision of space is made. However, when processing the surface patch for a node in this
tree, adjacent nodes are loaded as well, allowing edges to be collapsed across node boundaries. Some extra
bookkeeping is done to determine which vertices are available for consideration of an edge collapse, as well
as which vertices can be modified or removed. This general data structure supports not only out-of-core
simplification but also editing, visualization, and other types of processing. Other improvements over [69]
include the ability to adapt the octree hierarchy, such that child nodes are collapsed only when the parent
cell contains a sufficiently small number of triangles.

4.2.2 Adaptive Surface Segmentation

Some of the surface segmentation methods discussed so far already support adapting the vertex set partition
to the shape of the surface (recall that this partitioning is the goal of triangle mesh simplification). For
example, simplification within a patch is generally adaptive, and in [23] the octree space partition adapts
to the local complexity of the surface. Still, using the methods above, the surface is always segmented by
a small set of predefined cut planes, typically defined by an axis-aligned rectilinear grid. In contrast, the
out-of-core algorithm described by El-Sana and Chiang [34] segments the surface solely based on its shape.
Their technique is a true out-of-core implementation of the general error-driven edge collapse algorithm.
Like in other methods based on surface segmentation, edge collapses are done in batches by coarsening
patches, called sub-meshes, up to a specified error tolerance, while making sure patch boundaries are left
intact. In contrast to previous methods, however, the patch boundaries are not defined via spatial partitioning,
but by a set of edges whose collapse costs exceed a given error threshold. Thus patch boundaries are not
artificially constrained from being coarsened, but rather delineate important features in the mesh that are to
be preserved. Rather than finding such boundaries explicitly, El-Sana and Chiang sort all edges by error
and load as many of the lowest-cost edges, called spanning edges, and their incident triangles as can fit
in main memory. The highest-cost spanning edge then sets the error threshold for the current iteration of
in-core simplification. In this process, patches of triangles around spanning edges are loaded and merged
whenever possible, creating sub-meshes that can be simplified independently by collapsing their spanning
edges. When the sub-meshes have been simplified, their edges are re-inserted into the priority queue, and
another iteration of sub-mesh construction and simplification is performed. As in [69], the final output of
the algorithm is a multiresolution mesh.

To support incidence queries and an on-disk priority queue, El-Sana and Chiang make use of efficient
search data structures such as B-trees (see also Section 2). Their method is surprisingly fast and works
well when sufficient memory is available to keep I/O traffic to a minimum and enough disk space exists for
storing connectivity information and an edge collapse queue for the entire input mesh.

Iterative simplification of extremely large meshes can be a time consuming task, especially when the
desired approximation is very coarse. This is because the number of coarsening operations required is
roughly proportional to the size of the input. In such situations, it may be preferable to perform the inverse of
simplification, refinement, by starting from a coarse representation and adding only a modest amount detail,
in which case the number of refinement operations is determined by the size of the output. Choudhury and

Figure 5: Submesh for a set of spanning edges (shown as thick lines) used in El-Sana and Chiang’s simpli-
fication method.

Watson [21] describe an out-of-core version of the RSimp refinement method [12] that they call VMRSimp
(for Virtual Memory RSimp). Rather than using sophisticated out-of-core data structures, VMRSimp relies
on the virtual memory mechanism of the operating system to handle data paging. As in the original method,
VMRSimp works by incrementally refining a partition of the set of input triangles. These triangle sets are
connected and constitute an adaptive segmentation of the surface. The choice of which triangle patch to
refine is based on the amount of normal variation within it (essentially a measure of curvature defined over a
region of the surface). VMRSimp improves upon RSimp by storing the vertices and triangles in each patch
contiguously in virtual memory. When a patch is split in two, its constituent primitives are reorganized to
preserve this locality. As patches are refined and become smaller, the locality of reference is effectively
increased, which makes the virtual memory approach viable. Finally, when the desired level of complexity
is reached, a representative vertex is computed for each patch by minimizing a quadric error function. Even
though the simplification happens in “reverse,” this method, like all others discussed here, is yet another
instance of vertex set partitioning and collapse.

4.3 Summary of Simplification Techniques

In this section we have seen a variety of different out-of-core surface simplification techniques, and we
discussed how these methods partition and later collapse the set of mesh vertices. All of these methods have
shown to be effective for simplifying surfaces that are too large to fit in main memory. The methods do
have their own strengths and weaknesses, however, and we would like to conclude with some suggestions
for when to a certain technique may be preferable over another.

Whereas spatial clustering is generally the fastest method for simplification, it often produces lower qual-
ity approximations than the methods based on surface segmentation. This is because surface segmentation
allows partitioning the vertex set based directly on error (except possibly along seams) using an iterative
selection of fine-grained coarsening operations. Spatial clustering, on the other hand, typically groups a
large number of vertices, based on little or no error information, in a single atomic operation. The incre-
mental nature of surface segmentation also allows constructing a multiresolution representation of the mesh
that supports fine-grained adaptive refinement, which is important for view-dependent rendering. Indeed,
several of the surface segmentation methods discussed above, including [23, 34, 38, 52, 69], were designed
explicitly for view-dependent rendering. Finally, because surface segmentation methods generally maintain
connectivity, they support topology-preserving simplification.

category method
peak mem. usage (MB) peak disk usage (GB) speed
theoretical example theoretical example (Ktri/s)

spatial clustering

[61] 144Vout 257 0 0 100–250a

[41] ' 200Vout ' 356 0 0 65–150
[74] ≥ 464Vout ≥ 827 0 0 45–90
[62] O(1) 8 120–370Vin 21–64 30–70

surface segmentation

[23] O(1) 80 ' 68Vin 12 6–13b

[34] O(1) 128 Ω(Vin) ? 5–7
[21] O(1)c 1024 ≥ 86Vin ≥ 15 4–5
[69] O(1) 512 Ω(Vin) ? 0.8–1

aSpeed of author’s current implementation on an 800 MHz Pentium III.
bWhen the one-time OEMM construction step is included in the simplification time, the effective speed drops to 4–6 Ktri/s.
cThis method is based on virtual memory. Thus all available memory is generally used during simplification.

Table 1: Simplification results for various methods. These results were obtained or estimated from the
original publications, and are only approximate. When estimating memory usage, here expressed in number
of input (Vin) and output (Vout) vertices, we assume that the meshes have twice as many triangles as vertices.
The results in the “example” columns correspond to simplifying the St. Matthew data set [60], consisting
of 186,810,938 vertices, to 1% of its original size. For methods with constant (O(1)) memory usage, we
list the memory configuation from the original publication. The disk usage corresponds to the amount
of temporary space used, and does not include the space needed for the input and output mesh. For the
clustering techniques, the speed is measured as the size of the input over the simplification time. Because
the surface segmentation methods work incrementally, the size of the output greatly affects the speed. Thus,
for these methods the speed is measured in terms of the change in triangle count.

Based on the observations above, it may seem that surface segmentation is always to be favored over
spatial clustering. However, the price to pay for higher quality and flexibility is longer simplification times,
often higher resource requirements, and less straightforward implementations. To get a better idea of the
resource usage (RAM, disk, CPU) for the various methods, we have compiled a table (Table 1) based on
numerical data from the authors’ own published results. Note that the purpose of this table is not to allow
accurate quantitative comparisons between the methods; clearly factors such as quality of implementation,
hardware characteristics, amount of resource contention, assumptions made, data sets used, and, most im-
portant, what precisely is being measured have a large impact on the results. However, with this in mind, the
table gives at least a rough idea of how the methods compare. For example, Table 1 indicates that the spa-
tial clustering methods are on average one to two orders of magnitude faster than the surface segmentation
methods. Using the 372-million-triangle St. Matthew model from the Digital Michelangelo Project [60] as
a running example, the table suggests a difference between a simplification time of half an hour using [61]
and about a week using [69]. For semi-interactive tasks that require periodic user feedback, such as large-
isosurface visualization where on-demand surface extraction and simplification are needed, a week’s worth
of simplification time clearly isn’t practical.

In terms of resource usage, most surface segmentation methods make use of as much RAM as possible,
while requiring a large amount of disk space for storing the partially simplified mesh, possibly including
full connectivity information and a priority queue. For example, all surface segmentation methods discussed
above have input-sensitive disk requirements. Finally, certain types of data sets, such as isosurfaces from
scientific simulations [66] and medical data [2], can have a very complicated topological structure, resulting

either from noise or intrinsic fine-scale features in the data. In such cases, simplification of the topology is
not only desirable but is necessary in order to reduce the complexity of the data set to an acceptable level.
By their very nature, spatial clustering based methods are ideally suited for removing such small features
and joining spatially close pieces of a surface.

To conclude, we suggest using spatial clustering for very large surfaces when time and space are at a
premium. If quality is the prime concern, surface segmentation methods perform favorably, and should be
chosen if the goal is to produce a multiresolution or topology-equivalent mesh. For the best of both worlds,
we envision that hybrid techniques, such as [41, 45], that combine fast spatial clustering with high-quality
iterative simplification, will play an increasingly important role for practical out-of-core simplification.

5 INTERACTIVE RENDERING

The advances in the tools for 3D modeling, simulation, and shape acquisition have led to the generation of
very large 3D models. Rendering these models at interactive frame rates has applications in many areas,
including entertainment, computer-aided design (CAD), training, simulation, and urban planning.

In this section, we review the out-of-core techniques to render large models at interactive frame rates
using machines with small memory. The basic idea is to keep the model on disk, load on demand the parts
of the model that the user sees, an display each visible part at a level of detail proportional to its contribution
to the image being rendered. The following subsections describe the algorithms to efficiently implement
this idea.

5.1 General Issues

Building an Out-Of-Core Representation for a Model At preprocessing time, an out-of-core render-
ing system builds a representation for the model on disk. The most common representations are bound-
ing volume hierarchies (such as bounding spheres [72]) and space partitioning hierarchies (such as and
k-D trees [43, 80], BSP trees [85], and octrees [4, 23, 28, 82, 83]).

Some approaches assume that this preprocessing step is performed on a machine with enough memory to
hold the entire model [43,83]. Others make sure that the preprocessing step can be performed on a machine
with small memory [23, 28, 85].

Precomputing Visibility Information One of the key computations at runtime is determining the visible
set — the parts of the model the user sees. Some systems precompute from-region visibility, i.e., they split
the model into cells, and for each cell they precompute what the user would see from any point within
the cell [4, 43, 80]. This approach allows the system to reuse the same visible set for several viewpoints,
but it requires long preprocessing times, and may cause bursts of disk activity when the user crosses cell
boundaries.

Other systems use from-point visibility, i.e., they determine on-the-fly what the user sees from the current
viewpoint [28, 85]. Typically, the only preprocessing required by this approach is the construction of a
hierarchical spatial decomposition for the model. Although this approach needs to compute the visible set
for every frame, it requires very little preprocessing time, and reduces the risk of bursts of disk activity,
because the changes in visibility from viewpoint to viewpoint tend to be much smaller than the changes in
visibility from cell to cell.

View-Frustum Culling Since the user typically has a limited field of view, a very simple technique, that
perhaps all rendering systems use, is to cull away the parts of the model outside the user’s view frustum. If
a hierarchical spatial decomposition or a hierarchy of bounding volumes is available, view-frustum culling
can be optimized by recursively traversing the hierarchy from the root down to the leaves, and culling away
entire subtrees that are outside the user’s view frustum [24].

Occlusion Culling Another technique to minimize the geometry that needs to be loaded from disk and
sent to the graphics hardware is to cull away geometry that is occluded by other geometry. This is a hard
problem to solve exactly [56, 80, 85], but fast and accurate approximations exist [35, 55].

Level-of-Detail Management (or Contribution Culling) The amount of geometry that fits in main mem-
ory typically exceeds the interactive rendering capability of the graphics hardware. One approach to alleviate
this problem is to reduce the complexity of the geometry sent to the graphics hardware. The idea is to dis-
play a certain part of the model using a level of detail (LOD) that is proportional to the part’s contribution
to the image being rendered. Thus, LOD management is sometimes referred to as contribution culling.

Several level of detail approaches have been used in the various walkthrough systems. Some systems
use several static levels of detail, usually 3-10, which are constructed off-line using various simplification
techniques [25, 36, 44, 70, 81]. Then at real-time, an appropriate level of detail is selected based on various
criteria such as distance from the user’s viewpoint and screen space projection. Other systems use a multi-
resolution hierarchy, which encodes all the levels of detail, and is constructed off-line [31,37,50,51,64,89].
Then at real-time, the mesh adapts to the appropriate level of detail in a continuous, coherent manner.

Overlapping Concurrent Tasks Another technique to improve the frame rates at runtime is to perform
independent operations in parallel. Many systems use multi-processor machines to overlap visibility com-
putation, rendering, and disk operations [4, 43, 46, 83, 88]. Corrêa et al. [28] show that these operations can
also be performed in parallel on single-processor machines by using multiple threads.

Geometry Caching The viewing parameters tend to change smoothly from frame to frame, specially in
walkthrough applications. Thus, the changes in the visible set from frame to frame tend to be small. To
exploit this coherence, most systems keep in main memory a geometry cache, and update the cache as
the viewing parameters change [4, 28, 43, 83, 85]. Typically these systems use a least recently used (LRU)
replacement policy, keeping in memory the parts of the model most recently seen.

Speculative Prefetching Although changes in the visible set from frame to frame tend to be small, they
are occasionally large, because even small changes in the viewing parameters can cause large visibility
changes. Thus, although most frames require to perform few or no disk operations, a common behavior of
out-of-core rendering systems is that some frames require to perform more disk operations that can be done
during the time to render a frame. The technique to alleviate these bursts of disk activity is to predict (or
speculate) what parts of the model are likely to become visible in the next few frames and prefetch them
from disk ahead of time. Prefetching amortizes the cost of the bursts of disk operations over the frames that
require few or no disk operations, and produces much smoother frame rates [4, 28, 43, 83]. Traditionally,
prefetching strategies have relied on from-region visibility algorithms. Recently, Corrêa et al. [28] showed
that prefetching can be based on from-point visibility algorithms.

Replacing Geometry with Imagery Image-based rendering techniques such as texture-mapped impostors
can be used to accelerate the rendering process [5,30,65,76]. These texture-mapped impostors are generated
either in a preprocessing step or at runtime (but not every frame). These techniques are suitable for outdoor
models. Textured depth meshes [4, 30, 76] can also be used to replace far geometry. Textured depth meshes
are an improvement over texture-mapped impostors, because textured depth meshes provide perspective
correction.

5.2 Detailed Discussions

Funkhouser [43] has developed an interactive display system that allows interactive walkthrough large build-
ings. In an off-line stage a display database is constructed for the given architectural model. The display
database stores the building model as a set of objects which are represented at multiple level of detail. It
is include a space partition constructed by subdividing the space into cells along the major axis-aligned
polygons of the building model. The display database also stores visibility information for each cell. The
precomputed visibility determines the set of cells (cell-to-cell visibility) and objects (cell-to-object) which
are visible form any cell. The visibility computation is based on the algorithm of Teller and Sequin [80].

In real time the system relies on the precomputed display database to allow interactive walkthrough large
building models. For each change in the viewpoint or view direction system performs the following steps.

• It computes the set of potentially visible objects to render. Such set is always a proper subset of the
cell-to-object set.

• For each potentially visible object it selects the appropriate level-detail representation for rendering.
The screen space projection is used to select the LOD range, and then an optimization algorithm is
used to reduce the LOD range to maintain bounded frame rates.

• The potentially visible objects, each in its appropriate level of detail, are sent to the graphics hardware
for rendering.

To support the above rendering scheme for large building models, the system manages the display
database in an out-of-core manner. The system uses prediction to estimate the observer viewpoint to pre-
fetch objects which are likely to become visible in the upcoming future. The system uses the observer
viewpoint, movement, and rotation to determine the observer rang that includes the observer viewpoints
possible in the next n frames. The observer range is weighted based on the direction of travel and the solid
behavior of the walls.

The cell-to-cell and cell-to-object are used to predict a superset of the objects potentially visible from
the observer range. For each frame they computer the set of range cells that include the observer range by
performing shortest path search of the cell adjacency graph. Then they add the objects in the cell-to-object
visibly of each newly discovered cell to the lookahead set. After adding an object to the lookahead set the
system claims all its LODs. The rendering process select the appropriate static level of detail for each object
based on precomputed information and the observer position.

Aliaga et al. [4] have presented a system, which renders large complex model at interactive rates. As
preprocessing, the input models space is portioned into virtual cells that do not need to coincide with wall
or other large occluders. A cull box is placed around each virtual cell. The cull box partitions the space into
near (inside the box) and far (outside the box) geometry. Instead of rendering the far geometry, the system
generates textured depth mesh for the inside faces of the cell. Then the outside of the box as viewed from
the cell center-point. For the near geometry, they compute four level of detail for each object, and select

potential occluders in the preprocess stage. At run time, they cull to the view frustum, cull back facing, and
select the appropriate level of detail for the potentially visible objects. To balance the quality of the near and
far geometry they have used a pair of error metrics for each cell-a cull box size and the LOD error threshold.
The system stores the model in a scene graph hierarchy. They use the model’s grouping as the upper layer,
and below that they maintain an octree-like bounding volumes. They store the geometry in the leaf nodes
in a triangle strips form. Since large fraction of the model database is stored in an external media. The
prefetch performed based on the potentially visible near geometry for each cell, which is computed in the
preprocessing. At run time, the system maintains a list of cell the user may visit. The prediction algorithm
takes into account the user’s motion speed, velocity, and view direction.

Correa et al. [28] have developed the iWalk, which allows users to walkthrough large models at interac-
tive rates using typical PC. iWalk has presented a complete out-of-core process that include an out-of-core
preprocessing and out-of-core real-time multi-threaded rendering approach. The out-of-core preprocessing
algorithm creates a disk hierarchy representation of the input model. The algorithm first breaks the model
into sections that fit in main memory, and then incrementally builds the octree on disk. The preprocessing
algorithm also generates hierarchical structure file that include information concern the spatial relationship
of the nodes in the hierarchy. Hierarchical structure is a small footprint of the models and for that reason
they have assumed that it fits in local memory. At run time the algorithm utilizes the created hierarchy in
an out-of-core manner for multi-threaded rendering. It uses PLP [55] to determine the set of nodes which
are visible form user’s viewpoint. For each newly discovered node the system sends a fetch request, which
is processed by the fetch thread by loading the node from the disk into a memory cache. They system used
least recently used policy for node replacement. To minimize the I/O overhead, a look-ahead thread is used
to utilizes the user motion to predict the future user’s viewpoint, use the PLP [55] to determine the set of
potentially visible nodes, and send fetch request for these nodes.

Varadhan and Manocha [83] has developed an algorithm to render large geometric models at interactive
rates. Their algorithm assumes that the scene graph has been constructed and the space was portioned
appropriately. However, the algorithm precomputed static levels of detail for each object and associate them
with the leaf nodes. At run time the algorithm traverses the scene graph from the root node at each frame.
For each visited node it performs a culling tests to determine whether it needs to recursively scan the visited
node or not. These culling tests include view frustum culling, simplification culling, and occlusion culling.
Upon the completion of the traversal the algorithm computes the list of object representations that need to
be rendering in the current frame. They refer to the list of object as the front. As the user changes its view
position and direction objects representation in the front list may changes its level of detail or visibility
status.

The traversal of the scene graph in an out-of-core manner is achieved by maintaining a scene graph
skeleton that includes the nodes, connectivity information, bounding boxes, and error metrics. The resulting
skeleton typically include small fraction of the scene graph. At run time, they use two processes, one for
rendering and the other manages the disk I/O. During the rendering of one frame the I/O process goes into
three stages- continue prefetching for the previous frame, fetching, and prefetching for the current frame.
The goal of the prefetching is to increase the hit rate during the fetch stage. The prefetching takes into
account the speed and the direction of the users’ motion to estimate the appropriate representation for each
object and potentially visible objects in the next frames. To further optimize the prefetching process by
prioritizing the different object representations in the front the prefetch selects them based on their priority.
The least recently used policy is used to remove object representation from the cache.

6 GLOBAL ILLUMINATION

Teller et al. [79] describe a system for computing radiosity solutions of large environments. Their system
is based on partitioning the dataset into small pieces, and ordering the radiosity computation in such a way
as to minimize the amount of data that needs to be in memory at any given size. They exploit the fact that
when computing radiosity computation for a given patch only requires information about other parts of the
model that can be seen from that patch, which often is only a small subset of the whole dataset.

Pharr et al. [68] describe techniques for ray tracing very complex scenes. Their work is based on the
caching and reodering computations. Their approach uses three different types of caches: ray, geometry,
and texture caches. In order to optimize the use of the cache, they developed a specialized scheduler that
reorders the way the rendering computations are performed in order to minimize I/O operations by exploiting
computational decomposition, ray grouping, and voxel scheduling.

Wald et al. [85,86] present a real-time ray tracing system for very-large models. Their system is similar
in some respects to Pharr et al., and it is also based on the reordering of ray computations (ray grouping)
and voxel caching. By exploting parallelism both at the microprocessor level (with MMX/SSE instructions)
and at the machine level (PC clusters), Wald et al. are able to compute high-quality renderings of complex
scenes in real time (although the images are relatively low resolution).

ACKNOWLEDGEMENTS

We would like to thank Wagner Corrêa (Princeton University) for writing Section 5.1.

References

[1] J. Abello and J. Vitter. External Memory Algorithms and Visualization, vol. 50 of DIMACS Series.
American Mathematical Society, 1999.

[2] M. J. Ackerman. The Visible Human Project. Proceedings of the IEEE, 86(3):504–511, Mar. 1998.
URL http://www.nlm.nih.gov/research/visible.

[3] A. Aggarwal and J. S. Vitter. The Input/Output Complexity of Sorting and Related Problems. Com-
munications of the ACM, 31(9):1116–1127, 1988.

[4] D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson, K. H. III, T. Hudson, W. Sturzlinger,
R. Bastos, M. Whitton, F. B. Jr., and D. Manocha. MMR: an interactive massive model rendering
system using geometric and image-based acceleration. Symposium on Interactive 3D Graphics, 199–
206. 1999.

[5] D. G. Aliaga and A. A. Lastra. Architectural Walkthroughs Using Portal Textures. IEEE Visualization
’97, 355–362. 1997.

[6] L. Arge and J. S. Vitter. Optimal Interval Management in External Memory. Proc. 37th Annu. IEEE
Sympos. Found. Comput. Sci., 560–569. 1996.

[7] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast Isocontouring for Improved Interactivity. 1996
Volume Visualization Symposium, 39–46. 1996.

[8] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang. Parallel Accelerated Isocontouring for
Out-of-Core Visualization. Symposium on Parallel Visualization and Graphics, 97–104. 1999.

[9] R. Bayer and McCreight. Organization of large ordered indexes. Acta Inform., 1:173–189, 1972.

[10] J. L. Bentley. Multidimensional binary search trees used for associative search ing. Commun. ACM,
18(9):509–517, Sep. 1975.

[11] F. Bernardini, J. Mittleman, and H. Rushmeier. Case Study: Scanning Michelangelo’s Florentine Pietà.
SIGGRAPH 99 Course #8, Aug. 1999. URL http://www.research.ibm.com/pieta.

[12] D. Brodsky and B. Watson. Model Simplification Through Refinement. Graphics Interface 2000,
221–228. May 2000.

[13] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. Real-time out-of-core visualization of particle
traces. IEEE Parallel and Large-Data Visualization and Graphics Symposium 2001, 45–50. 2001.

[14] Y.-J. Chiang. Dynamic and I/O-efficient algorithms for computational geometry and graph problems:
theoretical and experimental results. Ph.D. Thesis, Technical Report CS-95-27, Dept. Computer Sci-
ence, Brown University, 1995. Also available at http://cis.poly.edu/chiang/thesis.html.

[15] Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: Distribution sweep
vs. plane sweep. Computational Geometry: Theory and Applications, 9(4):211–236, 1998.

[16] Y.-J. Chiang, R. Farias, C. Silva, and B. Wei. A Unified Infrastructure for Parallel Out-Of-Core Iso-
surface Extraction and Volume Rendering of Unstructured Grids’. Proc. IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, 59–66. 2001.

[17] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-
Memory Graph Algorithms. Proc. ACM-SIAM Symp. on Discrete Algorithms, 139–149. 1995.

[18] Y.-J. Chiang and C. T. Silva. I/O Optimal Isosurface Extraction. IEEE Visualization 97, 293–300, Nov.
1997.

[19] Y.-J. Chiang and C. T. Silva. External Memory Techniques for Isosurface Extraction in Scientific
Visualization. External Memory Algorithms and Visualization, DIMACS Series, 50:247–277, 1999.

[20] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive Out-Of-Core Isosurface Extraction. IEEE
Visualization 98, 167–174, Oct. 1998.

[21] P. Choudhury and B. Watson. Completely Adaptive Simplification of Massive Meshes. Tech. Rep.
CS-02-09, Northwestern University, Mar. 2002. URL http://www.cs.northwestern.edu/∼watsonb/
school/docs/vmrsimp.t%r.pdf.

[22] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding Up Isosurface Extraction
Using Interval Trees. IEEE Transactions on Visualization and Computer Graphics, 3(2):158–170,
April - June 1997.

[23] P. Cignoni, C. Rocchini, C. Montani, and R. Scopigno. External Memory Management and Simpli-
fication of Huge Meshes. IEEE Transactions on Visualization and Computer Graphics, 2002. To
appear.

[24] J. H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms. Communications of the
ACM, 19(10):547–554, Oct. 1976.

[25] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P. Brooks, Jr., and W. V. Wright.
Simplification Envelopes. Proceedings of SIGGRAPH ’96 (New Orleans, LA, August 4–9, 1996), 119
– 128. August 1996.

[26] D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11:121–137, 1979.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 2nd Ed.. MIT
Press, 2001.

[28] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. iWalk: Interactive Out-Of-Core Rendering of Large
Models. Technical Report TR-653-02, Princeton University, 2002.

[29] M. B. Cox and D. Ellsworth. Application-Controlled Demand Paging for Out-of-Core Visualization.
IEEE Visualization 97, 235–244, Nov. 1997.

[30] L. Darsa, B. Costa, and A. Varshney. Navigating Static Environments Using Image-Space Simplifica-
tion and Morphing. Proceedings, 1997 Symposium on Interactive 3D Graphics, 28 – 30. 1997.

[31] L. De Floriani, P. Magillo, and E. Puppo. Efficient Implementation of Multi-Triangulation. Proceed-
ings Visualization ’98, 43–50. October 1998.

[32] D. Ebert, H. Hagen, and H. Rushmeier, eds. IEEE Visualization ’98. IEEE, Oct. 1998.

[33] H. Edelsbrunner. A new approach to rectangle intersections, Part I. Internat. J. Comput. Math.,
13:209–219, 1983.

[34] J. El-Sana and Y.-J. Chiang. External Memory View-Dependent Simplification. Computer Graphics
Forum, 19(3):139–150, Aug. 2000.

[35] J. El-Sana, N. Sokolovsky, and C. T. Silva. Integrating occlusion culling with view-dependent render-
ing. IEEE Visualization 2001, 371–378. Oct. 2001.

[36] J. El-Sana and A. Varshney. Topology Simplification for Polygonal Virtual Environments. IEEE
Transactions on Visualization and Computer Graphics, 4, No. 2:133–144, 1998.

[37] J. El-Sana and A. Varshney. Generalized View-Dependent Simplification. Computer Graphics Forum,
18(3):83–94, Aug. 1999.

[38] C. Erikson, D. Manocha, and W. V. Baxter III. HLODs for Faster Display of Large Static and Dynamic
Environments. 2001 ACM Symposium on Interactive 3D Graphics, 111–120. Mar. 2001.

[39] R. Farias, J. Mitchell, and C. Silva. ZSWEEP: An Efficient and Exact Projection Algorithm for Un-
structured Volume Rendering. Volume Visualization Symposium, 91–99. 2000.

[40] R. Farias and C. T. Silva. Out-Of-Core Rendering of Large, Unstructured Grids. IEEE Computer
Graphics & Applications, 21(4):42–51, July / August 2001.

[41] G. Fei, K. Cai, B. Guo, and E. Wu. An Adaptive Sampling Scheme for Out-of-Core Simplification.
Computer Graphics Forum, 21(2):111–119, Jun. 2002.

[42] G. Fei, N. Magnenat-Thalmann, K. Cai, and E. Wu. Detail Calibration for Out-of-Core Model Simpli-
fication through Interlaced Sampling. SIGGRAPH 2002 Conference Abstracts and Applications, 166.
Jul. 2002.

[43] T. A. Funkhouser. Database Management for Interactive Display of Large Architectural Models.
Graphics Interface ’96, 1–8. 1996.

[44] M. Garland and P. S. Heckbert. Surface Simplification Using Quadric Error Metrics. Proceedings of
SIGGRAPH 97, 209–216. Aug. 1997.

[45] M. Garland and E. Shaffer. A Multiphase Approach to Efficient Surface Simplification. IEEE Visual-
ization 2002. Oct. 2002. To appear.

[46] B. Garlick, D. R. Baum, and J. M. Winget. Interactive Viewing of Large Geometric Databases Us-
ing Multiprocessor Graphics Workstations. SIGGRAPH 90 Course Notes (Parallel Algorithms and
Architectures for 3D Image Generation), 239–245. ACM SIGGRAPH, 1990.

[47] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-Memory Computational Geometry.
IEEE Foundations of Comp. Sci., 714–723. 1993.

[48] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD Conf.
Principles Database Systems, 47–57. 1984.

[49] B. Hamann. A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design,
11(2):197–214, 1994.

[50] H. Hoppe. Progressive Meshes. Proceedings of SIGGRAPH 96, 99–108. Aug. 1996.

[51] H. Hoppe. View-Dependent Refinement of Progressive Meshes. Proceedings of SIGGRAPH ’97, 189
– 197. August 1997.

[52] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering.
Ebert et al. [32], 35–42.

[53] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh Optimization. Proceedings
of SIGGRAPH 93, 19–26. Aug. 1993.

[54] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for Data Models with
Constraints and Classes. Journal of Computer and System Sciences, 52(3):589–612, 1996.

[55] J. T. Klosowski and C. T. Silva. The Prioritized-Layered Projection Algorithm for Visible Set Estima-
tion. IEEE Transactions on Visualization and Computer Graphics, 6(2):108–123, Apr. 2000.

[56] J. T. Klosowski and C. T. Silva. Efficient Conservative Visibility Culling Using the Prioritized-Layered
Projection Algorithm. IEEE Transactions on Visualization and Computer Graphics, 7(4):365–379,
Oct. 2001.

[57] D. Knuth. The Art of Computer Programming Vol. 3: Sorting and Searching. Addison-Wesley, 1973.

[58] L. Kobbelt, S. Campagna, and H.-P. Seidel. A General Framework for Mesh Decimation. Graphics
Interface ’98, 43–50. Jun. 1998.

[59] S. Leutenegger and K.-L. Ma. External Memory Algorithms and Visualization, vol. 50 of DIMACS
Book Series, chap. Fast Retrieval of Disk-Resident Unstructured Volume Data for Visualization. Amer-
ican Mathematical Society, 1999.

[60] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo Project: 3D Scanning of Large
Statues. Proceedings of SIGGRAPH 2000, 131–144. Jul. 2000. URL http://graphics.stanford.edu/
projects/mich.

[61] P. Lindstrom. Out-of-Core Simplification of Large Polygonal Models. Proceedings of SIGGRAPH
2000, 259–262. 2000.

[62] P. Lindstrom and C. T. Silva. A memory insensitive technique for large model simplification. IEEE
Visualization 2001, 121–126. Oct. 2001.

[63] P. Lindstrom and G. Turk. Fast and Memory Efficient Polygonal Simplification. Ebert et al. [32],
279–286.

[64] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast Evaluation of Potentially Visible Sets.
Proceedings, 1995 Symposium on Interactive 3D Graphics, 105 – 106. 1995.

[65] P. W. C. Maciel and P. Shirley. Visual Navigation of Large Environments Using Textured Clus-
ters. Symposium on Interactive 3D Graphics, 95–102, 211. 1995. URL citeseer.nj.nec.com/
cardosomaciel95visual.html.

[66] A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dimitis, M. A. Duchaineau, D. E.
Eliason, D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Woodward, L. J. Shieh, and S. W. White.
Very High Resolution Simulation of Compressible Turbulenceon the IBM-SP System. Proceedings of
Supercomputing 99. Nov. 1999.

[67] V. Pascucci and R. Frank. Global Static Indexing for Real-time Exploration of Very Large Regular
Grids. Proc. SC 2001, High Performance Networking and Computing. 2001.

[68] M. Pharr, C. Kolb, R. Gershbein, and P. M. Hanrahan. Rendering Complex Scenes with Memory-
Coherent Ray Tracing. Proceedings of SIGGRAPH 97, 101–108. August 1997.

[69] C. Prince. Progressive Meshes for Large Models of Arbitrary Topology. Master’s thesis, University of
Washington, 2000.

[70] J. Rossignac and P. Borrel. Multi-Resolution 3D Approximations for Rendering. Modeling in Com-
puter Graphics, 455–465. June–July 1993.

[71] J. Rossignac and P. Borrel. Multi-Resolution 3D Approximations for Rendering Complex Scenes.
Modeling in Computer Graphics, 455–465. Springer-Verlag, 1993.

[72] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering System for Large Meshes.
Proceedings of SIGGRAPH 2000, 343–352. 2000.

[73] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of Triangle Meshes. Computer Graphics
(Proceedings of SIGGRAPH 92), vol. 26, 65–70. Jul. 1992.

[74] E. Shaffer and M. Garland. Efficient Adaptive Simplification of Massive Meshes. IEEE Visualization
2001, 127–134. Oct. 2001.

[75] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A Fast Volume Rendering Algorithm for Time-Varying Fields
Using a Time-Space Partitioning (TSP) Tree. IEEE Visualization 99, 371–378, Oct. 1999.

[76] F. Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor Manipulation for Real-Time Visualization
of Urban Scenery. Computer Graphics Forum, 16(3):C207–C218, 1997.

[77] P. Sulatycke and K. Ghose. A fast multithreaded out-of-core visualization technique. Proc. 13th
International Parallel Processing Symposium, 569–575. 1999.

[78] P. M. Sutton and C. D. Hansen. Accelerated Isosurface Extraction in Time-Varying Fields. IEEE
Transactions on Visualization and Computer Graphics, 6(2):98–107, Apr. 2000.

[79] S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan. Partitioning and Ordering Large Radiosity
Computations. Proceedings of SIGGRAPH 94, 443–450. July 1994.

[80] S. Teller and C. Séquin. Visibility preprocessing for interactive walkthroughs. Computer Graphics,
25(4):61–68, 1991.

[81] G. Turk. Re-tiling polygonal surfaces. Computer Graphics: Proceedings SIGGRAPH ’92, vol. 26, No.
2, 55–64. 1992.

[82] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-Core Streamline Visualization on Large Unstructured
Meshes. IEEE Transactions on Visualization and Computer Graphics, 3(4):370–380, Oct. 1997.

[83] G. Varadhan and D. Manocha. Out-of-Core Rendering of Massive Geometric Environments. IEEE
Visualization 2002. 2002. To appear.

[84] J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with MASSIVE DATA. ACM
Computing Surveys, 33(2):209–271, 2001.

[85] I. Wald, P. Slusallek, and C. Benthin. Interactive Distributed Ray Tracing of Highly Complex Models.
Rendering Techniques 2001, 277–288, 2001.

[86] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering with Coherent Ray Tracing.
Computer Graphics Forum, 20(3):153–164, 2001.

[87] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface generation. ACM Transactions on Graphics,
11(3):201–227, July 1992.

[88] P. Wonka, M. Wimmer, and F. Sillion. Instant Visibility. Computer Graphics Forum, 20(3):411–421,
2001.

[89] J. Xia, J. El-Sana, and A. Varshney. Adaptive Real-Time Level-of-detail-based Rendering for Polygo-
nal Models. IEEE Transactions on Visualization and Computer Graphics, 171 – 183, June 1997.

	disclaimer: © 2001 IEEE. Reprinted, with permission, from IEEE Computer Graphics and Applications, Volume 21, Number 4, July/August 2001.

