
The PVR System

Cl�audio T. Silva* Arie E. Kaufman* Constantine Pavlakosz

*State University of New York at Stony Brook zSandia National Laboratories

Abstract

PVR (Parallel Volume Rendering) is an object-oriented, client/server system, de-

veloped for high performance volume rendering of very large datasets. Among its

important features are performance, scalability, transparency and extensibility. PVR

is well suited for use in a supercomputing environment, where datasets are too large

to be easily archived and visualized, and where computational steering capabilities are

desired. For the scientist, PVR o�ers transparency from machine architecture details

while achieving high performance visualization. For the tool builder it provides an

easily extensible system architecture.

This paper introduces the system architecture of PVR, its implementation details,

and some performance results. Our goal is to lead potential users in the computational

science community into using direct volume rendering techniques, that before might

have been too slow to be of practical value. With this goal in mind, we provide a short

description of volume rendering and its parallelization. A secondary goal is to present

the design of PVR to tool builders of such systems.

1 Introduction

Volume rendering [3] is a powerful computer graphics technique for the visualization of large

quantities of 3D data. It is especially well suited for the visualization of 3D volumetric

scalar and vector �elds. Fundamentally, it works by modeling the volume as cloud-like cells

composed of semi-transparent material. Each cell emits light, partially transmits light from

other cells, and absorbs some incoming light (see Volume Rendering sidebar).

In order to allow researchers and engineers to make e�ective use of volume rendering in

the study of complex physical and abstract structures, a coherent, powerful, easy-to-use visu-

alization tool is needed. Furthermore, such a tool should allow for interactive visualization,

ideally with support for user-de�ned \computational steering."



There are several issues and challenges in developing such a visualization tool. First, even

with the latest volume-rendering acceleration techniques running on top-of-the-line worksta-

tions, it still takes a few seconds to a few minutes to volume render an image. This is clearly

far from interactive. With the advent of larger parallel machines and better acquisition

devices and instrumentation, larger and larger datasets are being generated (typically on

the order of 32MB to 512MB, ranging to 16GB), some of which would not �t in memory of

a workstation class machine. Second, even if rendering time is not a major concern, large

datasets may be too expensive to hold in storage, and extremely slow to transfer to typical

workstations over network links.

These issues lead to the question of whether the visualization should be performed directly

on the parallel machine which is used to generate the simulation data or sent over to a high

performance graphics workstation for post-processing. First, if the visualization software was

integrated directly with the simulation software, there would be no need for extra storage,

and visualization could be an active part of the simulation. Second, large parallel machines

can render these large datasets faster than workstations can, possibly in real-time, or at least

achieving interactive frame-rates (see the Parallel Volume Rendering sidebar). Finally, the

integration of simulation and visualization in one tool, whenever possible, is highly desirable

because it allows users to interactively \steer" the simulation. With steering, users are able

to terminate or modify parameters in their simulations as the simulations progress, rather

than have to wait for painfully long simulations on extremely expensive machines, with high

storage and transmission costs, only to discover during post-processing that the simulations

are wrong or uninteresting.

The Shastra project at Purdue has developed tools for distributed and collaborative

visualization [1]. The system implements parallel volume visualization with a mix of image-

space and object-space load balancing. Few details of the scheme are given, and they report

using up to four processors for computation, which makes it hard to evaluate the systems

usability in a massively parallel environment. Rowlan et al. [8] describe a distributed volume-

rendering system implemented on the IBM SP-1. Their system seems to have several of the

same characteristics as PVR. In particular, it runs on a massively parallel machine, provides

object-space partitioning, uses separate rendering and compositing nodes and provides a

front-end GUI. Unfortunately, their paper provides few details on the actual architectural

design and implementation, and even the rendering is described very brie
y. As far as

we can detect, their system does not provide the 
exibility, portability and performance

that our system does. For instance, it does not provide support for multiple rendering

or compositing clusters. Another similar system is DISCOVER [4], developed at National

Cheng-Kung University (Taiwan). This system has been developed for custom medical

2



Operating System

DVE

PVR

User

Figure 1: The Relationship of a Distributed Visualization Environment (DVE) System and PVR.

imaging applications and provides mechanisms for the use of remote processor pools. It

provides a client/server architecture for a variety of clients, including support for Microsoft

Windows.

In this paper, we introduce the PVR (Parallel Volume Rendering) system, developed

under collaboration between the State University of New York at Stony Brook and Sandia

National Laboratories. Unlike the other systems PVR is a component approach to building

an interactive distributed volume visualization system. At its topmost level, it provides a


exible and high performance client/server volume rendering architecture with a unique load

balancing scheme which provides a continuum of cost/performance parameters that can be

used to optimize rendering speed.

The rest of the paper introduces the PVR client/server architecture and its components,

with an emphasis on its support for volume rendering.

2 Overview of PVR

The original goals of PVR were to achieve a level of portability and performance for rendering

beyond that of other available systems and to provide a platform that can be used for further

development. In a certain way, PVR is more than a rendering system; its components have

been specially designed to be user-extensible in order to allow for user-de�ned computational

steering. That is, the user can easily add custom computational code to PVR and just link

in the rendering library. Using PVR, it is much easier to build portable, high performance,

complex, distributed visualization systems. Figure 1 displays the relationship between PVR

and a distributed visualization environment.

It is well known that system complexity limits the reliability of large software systems.

3



Distributed systems exacerbate this problem with the introduction of asynchronous and

non-local communication. With all of this in mind, we have used a component approach

in developing our system. PVR attempts to provide just enough functionality in the basic

system to allow for the development of large and complex visualization and computational

steering applications. It is based on a client/server architecture, where there are, on one

side, rendering/computing servers which are coupled, and, on the other side, the user acting

as a client from his workstation.

The PVR client/server architecture is implemented in two main components: the pvrsh,

which runs in the user's workstation, and the PVR renderer, which runs in the parallel

machines. The renderer is implemented as a library and it allows for easy integration of

user-de�ned code that can share the same processors as the rendering code. Communication

across applications written with PVR are performed using the PVR protocol, and in our

implementation communication is handled by separate UNIX processes (see Figure 2).

Renderer

Renderer

Renderer

Tcl/Tk
interpreter

TCP/IP
Connection

TCP/IP
Connection

TCP/IP
ConnectionSession handler

Session handler

Session handler

Display Window

Display Window

Display Window

Display Window

Display Window

File I/O

File I/O

pvrsh

parxp2.ams.sunysb.edu

acoma.cs.sandia.gov

Figure 2: PVR Architecture. The overall structure of the system is shown with an emphasis on the

pvrsh. The Tcl/Tk core acts as glue for all the client components. Everything, with the exception of

the renderers, runs on the user's workstation. The renderers run remotely on the parallel machines.

3 The pvrsh

The pvrsh provides a single new object to the user, the PVR session. The pvrsh is an

augmented Tcl/Tk shell. We chose to use Tcl/Tk as the system glue. Tcl, Tool command

language, is a script language designed to be used as a generic language in application

programs. It is easily extendible with new user commands, in C or Tcl, and coupled with

the graphical environment Tk, it is a powerful graphical user-interface system. The use of the

4



Tcl/Tk, which is a well-designed, debugged application language and graphical environment

has contributed to reducing the overall system complexity.

The PVR session is an object (such as the Tk objects). It contains attributes, and corre-

sponding methods are used to change the attributes. One of the most important attributes

is the one that binds a session to a particular parallel machine. Figure 2 contains an ex-

ample of three sessions, two on acoma.cs.sandia.gov (a large Intel Paragon XP/S with over

1840 nodes running SUNMOS [5], installed at Sandia) and one on parxp2.ams.sunysb.edu

(a small Intel Paragon with 110 nodes running Intel version of OSF/1, installed at Stony

Brook). The system is designed to handle multiple sessions using the same protocol with

machines running di�erent operating systems.

As part of its attributes, a session speci�es the number of nodes it needs and the pa-

rameters that are passed to those nodes. Several pieces of informations are interactively

exchanged between the pvrsh and the PVR renderer, such as rendering con�guration infor-

mation, rendering commands, sequences of images, performance and debugging information.

There is a high amount of 
exibility in the speci�cation of the rendering. Not only can

simple rendering elements, such as changing transformation matrices, transfer functions,

image sizes and datasets be speci�ed, but there are commands (see Table 1) to specify in

a high level format the complete parallel rendering pipeline (see sidebar Parallel Volume

Rendering for details). With these parameters in hand, the pvrsh can be used to specify

almost arbitrary scalable rendering con�gurations (see Section 6).

The pvrsh is implemented as a single process (making ports easier) in about 5,000 lines

of C code. We have augmented the Tcl/Tk interpreter with TCP/IP connection capabilities

(some versions of Tcl/Tk have this built in). In order to support several concurrent sessions,

all the communication is performed asynchronously. We use the Tk CreateFileHandler()

routine to arbitrate between input from the di�erent sessions. A UNIX select call and

polling could be used instead but would make the code harder to understand and, overall,

more complex. Sessions work as interrupt-driven commands, responding to requests one at a

time. Every session can receive events from two sources at the same time: the user keyboard

and the remote machine. Locking and disabling interrupts are needed to ensure consistency

inside critical sessions.

The overall structure of the code allows for user augmentation of a session functionality

either by external or internal means. External augmentation can be performed without re-

compilation, such as that used by the user interface to show images as they are received

asynchronously from the remote parallel server. Internal augmentation requires changes

to the source code. The source code is structured to allow for simple addition of new

5



functionality. Only a single �le needs to be changed to add a new session method. If it

changes the Resource Database [9], two �les need to be changed. New commands are added

using Tcl conventions.

Every PVR message is sent either as a single �xed-length message, or as two messages

(the �rst is used to specify the size of the second). This is used to make redirection easier

and to achieve optimal performance under di�erent con�gurations. Look-up tables are set up

with actions to be taken up on the arrival of each message type. This setup makes additions

to the PVR protocol very simple.

Command Description

:s open M:N M is an internet address; N is a port number.

:s close Close the connection.

:s image window W W is a Tk photo widget.

:s image callback F F is a procedure to be called every time a new image is

received.

:s image �le F F is the name of the local �le name where the video stream

is saved.

:s list status Show the state of the connection and the value of internal

variables.

:s set Option Val Change system status.

:s set -dataset D Sets the dataset to be rendered.

:s set -cluster C Sets the size of clusters.

:s set -group G Used to group multiple clusters, for use in exploiting image-

based parallelism.

:s set -imagesz X,Y Sets the desired image resolution.

:s render rotate X,Y,Z S,E:N Sends a rendering request. The axis of rotation and initial,

end, and incremental angles are speci�ed.

:s performance memory cluster Returns the amount of dataset memory in each cluster.

:s performance comp cluster latency Estimates the latency time to composite images in the current

cluster con�guration.

Table 1: A list of a few external PVR commands. These commands can be typed interactively,

placed in execution �les, or embedded in applications.

6



4 The PVR Renderer

The PVR renderer is the piece of PVR that runs remotely on a parallel machine (see Fig-

ure 2). It is composed of several components, the most complex being the rendering code

itself. In order to start up multiple parallel processes at the remote machine, we use pvrd, the

PVR daemon. This daemon runs on the parallel machine. It waits on a well-known port for

connection requests. Once a request for opening a new session is made, it forks a handling

process that is responsible for allocating processors and communicating with the session on

the client. On the remote machine, the handling process allocates the computing nodes and

runs the renderer code on them. The connection process is illustrated in Figure 3. One pvrd

can allocate several processes; once it is killed, it kills all its children before exiting.

The renderer is the code that actually runs on the parallel nodes. The overall structure

of the code resembles a SIMD machine, where there are high-level commands and low-

level commands. There is one master node, similar to the microcontroller on the CM-2

machines, and several slave nodes. The functions of the slaves are completely dependent on

the master. The master receives commands from the pvrsh, translates them, and takes the

necessary actions, including changing the state of the slaves and sending them a detailed set

of instructions.

For 
exibility and performance, the method of sending instructions to the nodes is

through action tables (similar to SIMD microcode). In order to ask the nodes to perform

some action, the master broadcasts the address of the function to be executed. Upon re-

ceiving that instruction, the slaves execute that particular function. With this method, it is

very simple to add new functionality because any new added functionality can be performed

locally, without the need to change global �les. Also, every function can be optimized inde-

pendently, with its own communication protocol. One shortcoming of this communication

method (as in SIMD machines) is that one has to be careful with non-uniform execution,

in particular because the Intel NX communication library (both OSF and SUNMOS have

support for NX) has limited functionality for handling nodes as groups. For example, in

setting up barriers with NX, it is impossible to select a group from the totality of the allo-

cated nodes. Newer communication libraries, such as MPI [11], solve this shortcoming by

introducing the idea of groups of nodes.

The master intrinsically divides the nodes into clusters. Each cluster has a specialized

computational task, and multiple clusters can cooperate in groups to achieve a larger task.

All that is necessary for cluster con�guration is that the basic functions be speci�ed in

user-de�ned libraries that are linked in a single binary. During runtime, the user can use

7



Handling
Process

Connection
Request

Fork

Processor
Allocation

Renderer

TCP/IP
Connection

:session

pvrd

Figure 3: In order to allocate nodes, the pvrsh sends a command to the pvrd, which in turn creates

a special communication handling process and allocates a partition on the parallel machine.

the master to recon�gure clusters according to immediate goals. The pvrsh can be used to

interactively send such commands. As an example of the use of such a clustering scheme,

see Figure 4, where the rendering con�guration for PVR high performance volume renderer

is depicted.

In order to achieve user-de�ned computational steering, one can use this clustering

paradigm. It is usually necessary to add one's functionality to the action tables (e.g., linking

the computational code with PVR dispatching code), and also add extra options to the pvrsh

(usually through the set command) for modifying the relevant parameters interactively.

PVR volume rendering code was the inspiration for this overall code organization and is

a very good application to demonstrate its features. Because in this paper our focus is on

describing the PVR system, and not on the actual volume rendering code, we only sketch

the implementation to give an insight as to how to add your own code to PVR and to give

you enough information for e�ective use of the PVR rendering facilities.

5 Volume-Rendering Pipeline

The PVR rendering pipeline is composed of three types of nodes (besides the master). These

are the rendering nodes, compositing nodes, and collector nodes (usually just one), (see

Figure 4). This specialization is necessary for optimal rendering performance and 
exibility.

All the clusters work in a simple data
ow mode, where data moves from top to bottom in a

pipeline fashion. Every cluster has its own fan-in and fan-out number and type of messages

(see Figures 15 and 16). The master con�gures (and re-con�gures) the overall data
ow using

a set of user-de�ned and automatic load-balancing parameters.

8



At the top level are the rendering clusters. The nodes in a rendering cluster are respon-

sible for resampling and shading of a given volume dataset. In general, the input is a view

matrix, and the output is a set of sub-images, each of which is a related to a node in the

compositing binary tree. The master can use multiple rendering clusters working on the

same image, but on disjoint scanlines in order to speed up rendering. Once the sub-images

are computed, they are passed down the pipeline to the compositing clusters.

The compositing clusters are organized in a binary tree structure, matching that of the

compositing tree which corresponds to the decomposition of the volume dataset on the

rendering nodes. The number of processors used to do compositing can actually be di�erent

than the number of nodes in the compositing tree, as we can use virtualization to fake

more processors than allocated. Images are pipelined down the tree, with every iteration

combining the results of compositing until �nally all the pixels are a complete depth-ordered

sequence. Those pixels are converted to RGB format and sent to the collector node(s) (at

this time, we just use a single collector node).

The collector node receives RGB images from the compositing nodes and compresses them

using a simple run-length encoding scheme (very fast compression is necessary). Finally, the

images are either sent over to the pvrsh for user viewing (or saving), or locally cached on the

disk. An additional option allows images to be trashed for performance analysis purposes.

The previous discussion is somewhat simplistic. There are several performance issues

related to CPU speed, synchronization, and memory usage that have not been discussed.

For more complete details, we refer the interested reader to [9].

6 Rendering with PVR

Figure 5 shows a simple PVR program. Several important features of PVR are demonstrated:

in particular, the seamless integration with Tcl/Tk, the 
exible load-balancing scheme, and

the interactive speci�cation of parameters. The set command can have several options (in

Figure 5, options are usually speci�ed in multiple lines, but could be speci�ed in a single

line). For instance, -imagesz speci�es the size of the images that are output by the system.

A cluster of multiple nodes and a group of clusters are the two basic components of the

PVR load balancing scheme, and they are used together to specify 
exible con�gurations of

image-space, object-space and time-space parallelism. Rendering clusters can be assigned

di�erent scanlines of an image and each group of clusters is assigned a complete image at a

time by the master node. The -cluster and -group options are used to specify this unique

9



Rendering
Cluster

Rendering
Cluster

Rendering
Cluster

Cluster
Compositing

Cluster
Compositing

Collector
Image

Sequence

Single
Node

Nodes
Multiple

Low Bandwidth

High Bandwidth

High Level
Commands

Low Level Commands

Rendering
Cluster

Rendering Pipeline

Master

Figure 4: The master receives high level commands that are translated into virtual microcode by

the action tables. For rendering, the high level commands are for the generation of animations by

rotations and translations, which are interpreted into simple transformation matrices commands.

The rendering clusters perform rendering in parallel. The collector receives and groups images

together and sends an ordered image sequence to the client application.

capability of the PVR 
exible load-balancing scheme. With both of these options, the relative

sizes of the rendering and compositing clusters can be speci�ed together with the image

calculation allocation. Several scalability strategies can be used. A rendering cluster needs

to be large enough to hold the entire dataset and at least a copy of the image. By increasing

the size of the cluster (i.e., the number of nodes in the cluster), the amount of memory

needed per node decreases. By grouping clusters (i.e., splitting the image computation

across multiple clusters), the number of scanlines a given cluster is responsible for decreases,

lowering both the image memory requirements and the computational cost, thus speeding

up image calculation.

The same commands can be used to con�gure compositing clusters. Compositing clusters

do not scale at the same rate as rendering clusters, because of the di�erent nature of the task.

Compositing is a relative light computation, high synchronization operation, as opposed to

rendering. Compositing nodes need memory to hold two copies of the images, which can be

quite large (our current parallel machine nodes have only between 16MB to 32MB RAM).

The compositing latency increases as the number of nodes increase (the actual rate of increase

depends on the height of the compositing tree). At this time, we use multiple compositing

clusters in order to composite very large images (e.g., 1024 � 1024 or larger), not because

of the computation bottleneck, but just for the lack of memory on our parallel nodes.

10



toplevel .rgb ; Tcl/Tk stu� { creates necessary windows

photo .rgb.p

pack .rgb.p

toplevel .c

canvas .c.c

pack .c.c

source stat.tcl ; External command speci�ed in stat.tcl

; it will place images that get to the session handler in the

; speci�ed window, and draw a small performance graph

pvr session :brain ; creates a session called \brain"

:brain image window .rgb.p ; speci�es the window that receives

; the images

:brain image callback imgCallback ; speci�es the external command

:brain image dir ./ ; where to place images

:brain open acoma.cs.sandia.gov ; opens a connection with acoma

; using the default number of nodes (100)

; the defaults are in .pvrsh

; if this command succeeds, we are connected

:brain set -dataset brain.slc ; speci�es the dataset

:brain set -cluster r,16 -group 0,0,1,1 ; 4 rendering clusters of 16 nodes

; divided into 2 groups, nodes in a group

; share the same image calculation

:brain set -cluster c -group 0,0 ; 2 compositing clusters of 15 nodes

; each, this allows for the calculation of very

; large images, as each cluster will handle half

; of pixels coming from the rendering nodes

:brain set -imagesz 512,512 ; speci�es the image size

:brain render rotation 0,1,0 15,59:60 ; speci�es the rendering of

; 45 images, starting from one quarter rotation

; along the y axis

Figure 5: A simple PVR program with a set of PVR rendering commands. The commands can be

put in a �le and executed in batch, or can be typed interactively on the keyboard (or mixed). Tcl/Tk

code (for example, \stat.tcl") can be written to take care of portions of the actions.

11



7 Visualization Services

Our system architecture can be used to visualize time-varying data. When rendering time-

varying data, we add a permanent caching cluster to the pipeline in Figure 4 which is

responsible for distributing the volume data to the rendering nodes e�ciently. The caching

nodes are used only as smart memory and they are used to hide I/O latency from disk (or

other sources), and in our content-based load balancing data distribution. This way, the user

can visualize a dataset for as long as it takes a new version of the dataset to come along.

Handling data that changes too rapidly (i.e., faster than we can move it and render it) is

not possible, as it would require large amounts of bu�ering.

Another possible use of our parallel renderer is as a visualization server for large compu-

tational parallel jobs [7]. The basic idea is to pre-allocate a set of nodes that can be shared

to a limited extent by multiple users for visualizing their data. E�ective use as such a server

would also make use of a caching cluster, as described above for time-varying data. The

cluster, in this case, would be used to cache in alternate user datasets.

Distributed visualization environments can be developed by making use of the client/server

metaphor. A DVE developed using Tcl/Tk is very portable, as Tcl/Tk has ports for almost

all of the operating systems available, and TCP/IP (our communication protocol) is virtually

universal. We give more details on the primitives from which DVEs can be built in Table 1.

Figure 13 shows a simple prototype GUI developed at Sandia. The complete interface

is written in Tcl/Tk. The user is able to specify all the necessary rendering parameters

in the right window (including image size, transfer function, etc.) and the load-balancing

parameters in the left window. This simple interface uses only a single session at this time,

but more functionality is currently being added to the system.

Using the prototype GUI, users are able to add their own functionality to the system as

needed. This 
exibility not only makes the system more usable, because redundant bells and

whistles can be discarded, but also new functionality can be added straightforwardly. The

use of a portable and well-documented windows interface (e.g., Tk) is imperative. Not only

do users avoid having to learn yet another programming language and graphical toolkit, but

the use of Tk saved us a lot of implementation and documentation cost (Tcl/Tk is widely

used and well-documented). Another important feature of Tcl/Tk for the development of

prototypes is that it is freely available, enabling us to do the same for PVR.

12



8 Results

The current version of PVR consists of about 25,000 lines of C and Tcl/Tk code. It has

been used at Brookhaven National Labs, Sandia National Labs, and Stony Brook to visualize

large datasets for over a year. Below we discuss a few of the current uses and performance

of PVR. The biggest challenge we have faced so far is the limited amount of memory on our

Paragon nodes. It is very hard from the software engineering point of view to have consistent

and reliable treatment of memory allocation issues, specially when attempting to visualize

very large datasets.

We have demonstrated the capability of rendering a 500MB dataset (the 512 � 512 �

1877 CT visible human dataset from the National Institute of Health { see Figure 14) using

approximately 128 rendering nodes and 127 compositing nodes of the Intel Paragon at Sandia

remotely displaying at Supercomputing '95 in San Diego. The rendering times for a 512 �

512 image are on the order of 5 seconds/frame. It is worth pointing out that the main

bottleneck for this dataset is reading the 500MB of data from the Paragon disks. Currently,

it takes around 15 minutes.

Figure 6 shows the rendering times for each frame of a 72-frame animation sequence of

the visible human dataset. This is a full 360-degree rotation along the y-axis. The times are

wall-clock times calculated at the collector node as it receives the images and saves them to

a local disk. Each image is 400 � 400, with three color channels. For rendering, the images

are represented as an array of pixels, each of which is represented as four 
oating point

numbers (what amounts to 16 bytes per pixel). At 400 � 400, each image is over 2.5MB.

Images are transmitted from the rendering nodes to the compositing nodes, until they reach

the root node of the compositing tree. There, images are converted to RGB format, with

one byte per color channel, and transmitted to the collector node. The �nal images (with

480,000 bytes) are saved to disk by the collector. Computing the complete animation takes

129.23 seconds, or 1.79 seconds per frame, resulting in 32MB of data being saved to disk.

There are noticeable sparks in the image generation rate and these deserve further study.

We hypothesize the source of the stalls in the pipeline are due to load imbalance and also

contention in writing the images to the disk (the collector node stalls the pipeline whenever

an image is received before the previous image is saved). One can see the �rst image takes

considerable longer than the others | this is the pipeline initialization cost.

Our next step is to extend the system to render the full RGB visible human (14GB) with

high temporal resolution (a 72-frame rotation uses 5 degree increments. Smaller increments

are highly desirable, but a 0.5 degree increment would make the animation �les huge, at

13



0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

T
im

e 
(s

ec
on

ds
)

Frame Number (out of 72 frames)

Rendering times for each frame

Figure 6: Rendering times for a 72-frame animation sequence of the 512 � 512 � 1877 visible

human dataset. Each image is 400 � 400.

over 300MB). This requires the use of parallel I/O, a capability that currently we do not

have, and dedicated use of a very large parallel machine, such as the entire 1840-node Intel

Paragon at Sandia.

In order to show the scalability of PVR, we use a 256 � 256 � 937 version of the visible

human dataset. Figure 7 shows the rendering times for 5 di�erent con�gurations, varying the

number of rendering and compositing nodes. The �ve con�gurations are: 16 rendering nodes

and 15 compositing nodes (total rendering time (TRT) is 104.10 seconds, or 1.44 seconds

per frame); 32 rendering nodes (2 clusters of 16) and 15 compositing nodes (TRT is 67.24

seconds, or .93 seconds per frame); 64 rendering nodes (4 clusters of 16) and 15 compositing

nodes (TRT is 56.73 seconds, or .78 seconds per frame); 32 rendering nodes (1 cluster) and

31 compositing nodes (TRT is 71.42 seconds and .99 seconds per frame); 64 rendering nodes

(1 cluster) and 63 compositing nodes (TRT is 58.79 seconds, or .81 seconds per frame). A

simple conclusion that can be drawn from this data is that it is not cost e�ective to increase

the size of the compositing cluster for relatively small images [9].

Figure 9 is a volume rendering of a 1024 � 1024 � 64 digital, 3D 
ourecent microscopy

dataset showing T-cells in a thick section of thymic tissue. Figure 10 is a volume rendering

of a 100 � 110 � 92 dataset showing T-cell receptor density on the surface of a T-cell/B-

cell interaction. The datasets were generated by immuno
uorescence microscopy at the

National Jewish Center for Immunology and Respiratory and prepared for visualization by

deconvolution on Sandia Intel Paragon. The volume rendering animations were generated

at multiple frames per second using PVR [6].

14



0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

T
im

e 
(s

ec
on

ds
)

Frame Number (out of 72 frames)

16 rendering/15 compositing
32 rendering/15 compositing
64 rendering/15 compositing

(a) Scaling the number of clusters in a rendering group.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

T
im

e 
(s

ec
on

ds
)

Frame Number (out of 72 frames)

16 rendering/15 compositing
32 rendering/31 compositing
64 rendering/63 compositing

(b) Scaling both the rendering and compositing nodes.

Figure 7: Rendering times for a 72-frame animation sequence of a 256 � 256 � 937 version of

the visible human dataset. Each image is 250 � 250.

15



9 Conclusions

In this article, we have introduced the PVR system. It has the following key features:

� Transparency - PVR hides most of the hardware dependencies from the DVEs and the

user.

� Performance - PVR provides high speed pipelined ray casting with a unique load-

balancing scheme and mechanisms to �ne tune performance for any given machine

con�guration.

� Scalability - All the algorithms used in the system are gracefully scalable. Scalability

is not only with respect to the machine size, but also allows for growth in dataset size

and image size.

� Extensibility - The PVR architecture can be easily extended, making it easy for the

DVE to add new functionality. Also, it is fairly easy for the user to add new function-

ality to the PVR shell and its corresponding kernel, allowing for user-de�ned \compu-

tational steering" coupled with visualization.

PVR introduces a new level of interactivity to high performance visualization. Larger

DVEs can be built on top of PVR and yet be portable across several architectures. These

DVEs that use PVR are given the opportunity to make e�ective use of available processing

power (up to a few hundred processors), giving a range of cost/performance to end users.

PVR provides a strong foundation for building cost e�ective DVEs.

PVR introduces a simple way to create user interfaces. No longer does one have to spend

time coding in X/MOTIF (or Windows) to create the desired user interface. The Tcl/Tk

combination is much simpler, gives more 
exibility, and is nearly as powerful as the other

alternatives. Tcl/Tk is becoming as popular as UNIX shell programming. Di�erent sites

should be easily able to create and/or customize their own versions of the systems.

Even though we have completed a usable and e�cient system, much work remains to be

done. We are working to make the system stable enough for general distribution, and are

creating a more complete DVE (using VolVis [2] as a reference) on top of PVR.

Some functionality is missing from PVR and needs to be incorporated. The most impor-

tant element is probably the support for multiple data sets in a session. The implementation

of this capability may make the load-balancing scheme much more complicated, and simple

heuristics might not generate well-balanced decomposition schemes. If the volumes were

16



allowed to overlap (as in VolVis), the problem would be even harder, and the solution would

require heavier processing on the compositing end. It might be necessary to have a recon-

�guration phase each time a new volume is introduced into the picture. It is not yet clear

how this could be done e�ciently.

Research is currently underway to incorporate irregular grid rendering in PVR. We are

currently looking to incorporate a recent algorithm [10] that is able to exploit a high level

of locality, which should ultimately lead to more e�cient communication schemes. We are

currently porting PVR to use MPI as the communication layer, instead of NX.

Acknowledgments

We would like to thank Maurice Fan Lok who co-wrote the �rst version of PVR, Brian

Wylie who supported the project and the development of the user interface, and Dirk Bartz,

Tzi-cker Chiueh, Pat Crossno, Steve Dawson, Juliana Freire, Tong Lee, Ron Peierls, and

Amitabh Varshney for useful discussions about the PVR system and this paper. The port

of PVR to SUNMOS was only possible due to the help of Kevin McCurley, Rolf Riesen,

Lance Shuler from Sandia, and Edward J. Barragy from Intel. The MRI head dataset is

courtesy of Siemens. The visible human data is courtesy of the National Institute of Health.

The cell and tissue data are courtesy of Colin Monks from the National Jewish Center

for Immunology and Respiratory Medicine and George Davidson from Sandia. C. Silva is

partially supported by CNPq-Brazil under a PhD fellowship, Sandia National Labs, and the

Department of Energy Mathematics, Information and Computer Science O�ce, and by the

National Science Foundation (NSF), grant CDA-9626370. A. Kaufman is partially supported

by NSF under grants CCR-9205047, DCA 9303181, MIP-9527694 and by the Department of

Energy under the PICS grant.

References

[1] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore. Distributed and collaborative

visualization. IEEE Computer, 27(7):37{43, 1994.

[2] R. Avila, T. He, L. Hong, A. Kaufman, H. P�ster, C. Silva, L. Sobierajski, and S. Wang.

VolVis: A diversi�ed volume visualization system. In IEEE Visualization '94, pages 31{

38. IEEE CS Press, October 1994.

17



[3] A. E. Kaufman. Volume Visualization. IEEE Computer Society Press, Los Alamitos,

CA, 1991.

[4] P.-W. Liu, L.-S. Chen, S.-C. Chen, J.-P. Chen, F.-Y. Lin, and S.-S. Hwang. Distributed

computing: New power for scienti�c visualization. IEEE Computer Graphics and Ap-

plications, 16(3):42{51, 1996.

[5] A. Maccabe, K. McCurley, R. Riesen, and S. Wheat. Sunmos for the Intel Paragon

- A Brief User's Guide. In Proceedings of the Intel Supercomputer Users' Group 1993

Annual North America Users' Conference, October 1993.

[6] C. Monks, P. Crossno, G. Davidson, C. Pavlakos, A. Kupfer, C. Silva and B. Wylie.

Three Dimensional Visualization of Proteins in Cellular Interactions. In IEEE Visual-

ization '96. (To appear)

[7] C. Pavlakos, L. Schoof, and J. Mareda. A visualization model for supercomputing

environments. IEEE Parallel & Distributed Technology, 1(4):16{22, 1996.

[8] J. Rowlan, E. Lent, N. Gokhale, and S. Bradshaw. A distributed, parallel, interactive

volume rendering package. In IEEE Visualization '94, pages 21{30. IEEE CS Press,

October 1994.

[9] C. Silva. Parallel Volume Rendering of Irregular Grids. Ph.D. thesis, Department of

Computer Science, State University of New York at Stony Brook, 1996.

[10] C. Silva, J. S. B. Mitchell, and A. E. Kaufman. Fast rendering of irregular grids. In

IEEE/ACM Volume Visualization Symposium '96. (To appear)

[11] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The

Complete Reference. MIT Press, 1995.

18



Sidebar: Electronic Information

PVR Information, including related publications, images, animations, can be found in [1, 2].

The source code (Paragon version only) is currently available for users willing to provide

feedback to our beta testing program. (Send mail to csilva@cs.sunysb.edu.) Information

on the visible human project is available from [3], and on the Helper T-Cell/B-Cell interaction

from [4, 5].

Several animations are available from our web sites. All these animation are best viewed

on high quality MPEG viewers, such as the SGI movieplayer.

� http://www.cs.sunysb.edu/~csilva/mpeg/Yhead-350.mpeg

This animation shows the e�ect of our content-based load balancing approach for a

MRI head dataset using 8 processors. In particular, one can see that the amount of

\volume" given in each subdivision is proportional to the amount of non-empty voxels

in the subdivision.

� http://www.cs.sunysb.edu/~csilva/mpeg/human.mpeg

This is an animation of a volume rendering of the frozen CT visible human dataset.

Some registration artifacts can be seen in the animation.

� http://www.cs.sandia.gov/VIS/mpeg/xcell.mpg

This is an animation of the volume rendering of a single cell.

� http://www.cs.sandia.gov/VIS/mpeg/tissue.mpg

This is an animation of the volume rendering of the thymus tissue.

References

[1] http://www.cs.sunysb.edu/~csilva/claudio-pvr.html

[2] http://www.cs.sandia.gov/VIS

[3] http://www.nlm.nih.gov/extramural research.dir/visible human.html

[4] http://www.cs.sandia.gov/VIS/colin.html

[5] http://www.njc.org/profinfohtml/SC95.html

19



Sidebar: Volume Rendering

Volume rendering accumulates information from all voxels in the 3D dataset to produce

a 2D image, enabling a comprehensive examination of the structures in a dataset. The

technique works by modeling the volumetric dataset as a cloud-like material that scatters,

emits and absorbs light [3]. Ray casting is one volume rendering algorithm. For every

pixel in the image a ray is cast in object space (or volume space). Roughly speaking, for

each ray, the rendering equation
R
x

0 e�
R

t

0
�(s)dsI(t)dt is integrated, where I(t) represents the

intensity of light emanating from a given portion of the volume and �(s) is the di�erential

absorption of light (used to calculate attenuation along the viewing direction). The integral is

usually calculated by a simple numerical quadrature scheme, most commonly a set of uniform

samples are taken. I(t) and �(t) are usually calculated by assigning transfer functions.

Transfer functions are table lookups based on the original volume data f(x; y; z), which

is computed by trilinearly interpolating the eight values de�ned at the closest points in a

volume. Sometimes a light dependent term is added to I(t), usually by the use of Phong

shading. Each sample contains the color and opacity at a certain distance from the eye (see

Figure 8). With the color and opacity in hand, it is very simple to accumulate the �nal pixel,

either back-to-front or front-to-back. This accumulation process is called \compositing" and

can be de�ned using the well known over operator.

Eye

Ray
Voxels samples

Current sample

Figure 8: A typical ray is shown, together with its samples.

For instance, Figure 8 depicts a back-to-front compositing. If C is the color of the current

voxel, � its opacity, and I the incoming intensity of color at the current voxel. The outgoing

intensity, I 0 is given by the over operator:

I 0 = C + I(1� �) = C over I (1)

In these equations the colors are saved pre-multiplied by the opacities (i.e., the actual

color is C=�), this saves one multiplication per compositing operation. It is easy to see that

20



compositing is associative, that is, ((A over B) over C) produces the same result as (A over

(B over C)). This property is important in the parallelization of volume rendering.

Transfer functions are used to specify what portions of the volume are relevant to be vi-

sualized. Transfer functions acts just like color maps, they specify color (RGB) and opacity

for each voxel in the volume. In looking for interesting properties in the data, it is imper-

ative to be able to try di�erent combinations of transfer functions and viewing parameters

(see Figure 11). In cases where the data is very complex without visible hard edges, one

e�ective way to see patterns in the data is by using motion. Our eyes are very well trained

to extract 3-dimensional information from animations (such as rotations). Unfortunately,

volume rendering is typically very slow, even for small datasets, and especially when the

volume is relatively transparent. For instance, using VolVis [1], a state-of-the-art volume

visualization system developed at Stony Brook, it takes hours to generate animations of all

the datasets shown in this paper. Performing visualization in such a manner is of limited

use as it is counter-productive to have to wait hours for animations that might not contain

useful information. By using the new Parallel Volume Rendering system (PVR), we are

able to generate even the largest animations in a few seconds to a few minutes because the

system easily scales to provide the desirable performance (e.g., the larger the dataset, the

more nodes we use).

Further information on obtaining VolVis (free with full source code) is available by send-

ing e-mail to volvis@cs.sunysb.edu or at http://www.cs.sunysb.edu/~volvis. The sur-

vey by Kaufman [2] provides papers and further pointers on volume rendering.

References

[1] R. Avila, T. He, L. Hong, A. Kaufman, H. P�ster, C. Silva, L. Sobierajski, and S. Wang.

VolVis: A diversi�ed volume visualization system. In IEEE Visualization '94, pages 31{

38. IEEE CS Press, October 1994.

[2] A. E. Kaufman. Volume Visualization. IEEE Computer Society Press, Los Alamitos,

CA, 1991.

[3] N. Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics, 1(2):99{108, June 1995.

21



Sidebar: Parallel Volume Rendering

The need for faster rendering of very large datasets coupled with the wider availability

of parallel and distributed machines are the main push behind parallel volume rendering

research.

In parallel volume rendering, three main types of parallelism can be exploited:

� Object-space parallelism, where each rendering node gets a portion of the dataset.

� Image-space parallelism, where di�erent nodes compute disjoint parts of the image.

� Time-space or temporal parallelism, where di�erent portions of the rendering pipeline

are divided in a pipeline fashion among independent set of nodes.

There are several di�erent parallel algorithms that have been developed based on these

types of parallelism. A recent survey on parallel rendering by Tom Crockett [1] is a good

starting point for the interested reader. The Parallel Rendering Symposia ('93, '95), the

ACM Volume Visualization Symposia and the IEEE Visualization Conferences are further

sources for current information on parallel volume rendering. In a nutshell, large datasets

are usually divided up among nodes, or group of nodes, where pieces of images are rendered

independently and later composited together.

Our particular interest is in ray casting methods that run on distributed memory ma-

chines, such as the Intel Paragon and the ASCI Tera
op machine. In ray casting, rays are

cast into the volume for each pixel position and samples are calculated along the ray, at

equally spaced positions. Each sample represents a shaded color and opacity. After all these

calculations, they are composited into a single image (see the Volume Rendering sidebar).

In a distributed memory machine, where each node has memory access limited to its local

memory, it is necessary to divide the dataset among computing nodes. In turn, this subdi-

vision requires that the volume samples be grouped back together in an image. All the ray

casting parallel methods di�er primarily in the way they handle these two primitives. Here,

because of space constraints, we only provided an overview of the parallelization method

used in PVR, which is based on a combination of the dataset load balancing proposed in [5],

and the compositing method proposed in [2].

In PVR, we implement a parallel volume rendering pipeline in the canonical way (see

Figures 15 and 16), the rendering nodes receive portions of the dataset, divided in such a

way as to optimize the global load balancing. Every rendering node receives a portion of

22



the dataset that has approximately the same number of non-empty voxels (see Figure 12).

Other approaches, such as giving the exact same amount of volume to each node is also

feasible (and is used in [2], among others). Dynamic load balancing schemes have been tried

[4], but are harder to implement, specially for extremely large datasets, or in machines with

very limited memory resources.

The PVR rendering nodes are responsible for sampling and compositing their part of a

ray. In order to avoid global communication, each sub-volume region assigned to a rendering

node is convex, and belongs to a global BSP-tree, which makes compositing simpler (see

Figure 15). The compositing nodes are responsible for regrouping all the sub-rays back

together in a consistent manner, in order to keep image correctness. This calculation is only

possible because composition is an associative operation, so if we have to sub-ray samples

where one ends and the other starts, it is possible to combine their samples into one sub-ray

recursively until we have a value that constitutes the full ray contribution to a pixel.

Ma et al. [2] use a di�erent approach to compositing, where instead of having separate

compositing nodes, the rendering nodes switch between rendering and compositing. Our

method is more e�cient (in his latest paper, Ma [3] adopts a similar decomposition of the

nodes into two classes) because we can use the special structure of the sub-ray composi-

tion to yield a high performance pipeline, where multiple nodes are used to implement the

complete pipeline (see Figure 16). Also, the structure of compositing requires synchronized

operation (e.g., there is an explicit structure to the composition, that needs to be guaranteed

for correctness purposes), and light weight computation, making it much less attractive for

parallelization over a large number of processors, specially on machines with slow communi-

cation compared to CPU speeds (almost all current machines).

In summary, our implementation of volume rendering divides the processors into two

distinct groups of nodes: rendering and compositing nodes. This �ts well with our clustering

scheme explained before. The rendering nodes get portions of the dataset, the compositing

nodes are responsible for turning a collection of sub-ray images into a complete and correct

image for viewing.

The structure of the PVR rendering pipeline makes it possible to exploit all the three

types of parallelism. For instance, by using more than a single rendering cluster to compute

an image, we are making use of \image-space paralellism" (in PVR, it is possible to specify

that each cluster compute disjoint scanlines of the same image; see [6] for the issues related

to image-space parallelism). The clustering approach coupled with the inherent pipeline

parallelism available in the compositing process (because of its recursive structure) gives rise

to \time-space paralellism". In the latter, we can exploit multiple clusters by concurrently

23



calculating sub-rays for several images at once, that can be sent down the compositing

pipeline concurrently. Here, it is important for the correctness of the images, that each

composition step be done in lockstep, in order to avoid mixing of images.

References

[1] T. W. Crockett. Parallel rendering. In A. Kent and J. G. Williams, editors, Encyclopedia

of Computer Science and Technology, volume 34, Supp. 19, A., pages 335{371. Marcel

Dekker, 1996. (Also available as ICASE Report No. 95-31 (NASA CR-195080), April

1995.).

[2] K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using binary-

swap compositing. IEEE Computer Graphics and Applications, 14(4):59{68, 1994.

[3] K. Ma. Parallel volume rendering for unstructured-grid data on distributed memory

machines. In IEEE/ACM Parallel Rendering Symposium '95, pages 23{30, 1995.

[4] U. Neumann. Parallel volume-rendering algorithm performance on mesh-connected mul-

ticomputers. In 1993 Parallel Rendering Symposium Proceedings, pages 97{104. ACM

Press, October 1993.

[5] C. Silva and A. Kaufman. Parallel performance measures for volume ray casting. In

IEEE Visualization '94, pages 196{203. IEEE CS Press, October 1994.

[6] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance

and architectural implications. IEEE Computer, 27(7):45{55, 1994.

24



Figure 9: Volume rendering of the Thy-

mus tissue. An (512 � 512, 72 frame)

animation was produced in just about 3

minutes using PVR on the Paragon.

Figure 10: A volume rendering showing

T-cell receptors on an immuno-
ourecent

microscopy dataset.

Figure 11: Volume rendering of MR data

from a human head using an unconven-

tional transfer function in order to illus-

trate the 
exibility of volume rendering.

Figure 12: A subdivision of the MR data

for 8 processors is shown, illustrating our

content-based load balancing.

25



Figure 13: A snapshot of the simple PVR GUI, with three windows. The main interface window

on the right, where the user can specify general rotations. The cluster con�guration window, on

the left. The third window is the image of a cell calculated with PVR.

Figure 14: Volume rendering of the 512 � 512 � 1877 visible human.

26



Ray 

00

010

000 001

010

011

A

B

C

D

E

F

G

H

Figure 15: Data partitioning shown in two dimensions. The dataset is partitioned into 8 pieces

(marked A . . .H) in a canonical hierarchical manner by the 7 lines (planes in 3D) represented by

binary numbers. Once such a decomposition is performed, it is relatively easy to see how the samples

get composited back into a single value.

A B C D E F G H

00 01

0

010 011000 001

Compositing Cluster

Rendering Cluster

Figure 16: The internal structure of one compositing cluster, one rendering cluster and their

interconnection is shown. In PVR, the communication between the compositing and the rendering

clusters is very 
exible, with several rendering clusters being able to work together in the same image.

This is accomplished by using a set of tokens that are handled by the �rst level of the compositing

tree in order to guarantee consistency. Because of its tree structure, one properly synchronized

compositing cluster can work on several images at once, depending on its depth. The compositing

cluster shown is relative to the decomposition shown in Figure 15.

27


