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Introduction 
 
In many graphics applications, such as building walkthroughs and first-person games, the 
user moves around the interior of a virtual environment and the computer creates an 
image for each location of the user.  For any given position, the user typically sees only a 
small fraction of the scene.  Thus to speed up the image rendering, an application should 
avoid drawing the primitives in the environment that the user cannot see.  There are 
several classes of algorithms to determine which primitives should be ignored, or culled. 
Back-face culling algorithms determine those primitives that face away from the user.  
View frustum culling determines the primitives that lie outside of the user's field of view.  
Occlusion culling determines the primitives that are occluded by other primitives. 
 
While back-facing and view frustum culling algorithms are trivial, occlusion culling 
algorithms tend to be complex and usually require time consuming preprocessing steps. 
This gem describes two occlusion culling algorithms that are practical, effective, and 
require little preprocessing. The first one is the prioritized-layered projection (PLP) 
algorithm, which is an approximate algorithm that determines, for a given budget, a set of 
primitives that are likely to be visible. The second algorithm, cPLP, is a conservative 
version of PLP that guarantees to find all visible primitives. 
 
The Visibility Problem 
 
Given a scene composed of modeling primitives and a viewing frustum, we need to 
determine which primitive fragments are visible, i.e., connected to the eye-point by a line 
segment that meets the closure of no other primitive [Dobkin97].  Researchers have 
studied this problem extensively and many approaches to solve it exist [Cohen-Or01, 
Durand99].  In their survey on visibility algorithms, Cohen-Or et al. classify algorithms 
according to several criteria.  Next, we briefly summarize those that are of most relevance 
to our gem: 
 
From-point vs. from-region: Some algorithms compute visibility from the eyepoint 
only, while others compute visibility from a region in space. Since the user often stays for 
a while in the same region, the from-region algorithms amortize the cost of visibility 
computations over a number of frames. 
 
Precomputed vs. online: Many algorithms require an off-line computation, 
while others work on the fly. For example, most from-region algorithms require a 
preprocessing step to divide the model in regions, and compute region visibility. 
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Object space vs. image space: Some algorithms compute visibility in object space, using 
the exact original 3D primitives. Others operate in image space, using only the discrete 
rasterization fragments of the primitives. 
 
Conservative vs. approximate: Few visibility algorithms compute exact visibility. Most 
algorithms are conservative, and overestimate the set of visible primitives. Other 
algorithms compute approximate visibility, and do not guarantee finding all visible 
primitives. 
 
In this gem, we describe two visibility algorithms that are simple solutions and work well 
in practice: the prioritized-layered projection algorithm, PLP, and its conservative 
version, cPLP. 
 
The PLP Algorithm 
 
PLP [Klosowski00] is an approximate, from-point, object-space visibility algorithm that 
requires very little preprocessing. PLP may be understood as a simple modification to the 
traditional hierarchical view frustum culling algorithm [Clark76]. The traditional 
algorithm recursively traverses the model hierarchy from the root node down to the leaf 
nodes. If a node is outside the view frustum, we ignore the node and its children. If the 
node is inside or intersects the view frustum, we recursively traverse its children. The 
traversal eventually visits all leaves within the view frustum. The PLP algorithm differs 
from the traditional one in several ways. First, instead of traversing the model hierarchy 
in a predefined order, PLP keeps the hierarchy leaf nodes in a priority queue called the 
front, and traverses the nodes from highest to lowest priority. When we visit a node (or 
project it, in PLP parlance), if it is visible, we add it to the visible set. Then, we remove it 
from the front, and add its layer of unvisited neighbors to the front (hence, the 
algorithm’s name: prioritized-layered projection). Second, instead of traversing the entire 
hierarchy, PLP works on a budget, stopping the traversal after a certain number of 
primitives have been added to the visible set. Finally, PLP requires each node to know 
not only its children, but also all of its neighbors. 
 
An implementation of PLP may be simple or sophisticated, depending on the heuristic to 
assign priorities to each node. Several heuristics precompute the initial solidity of a node, 
and accumulate the solidities along a traversal path. The node’s accumulated solidity 
estimates how likely it is for the node to occlude an object behind it [Klosowski00].  In 
this gem, we use an extremely simple heuristic to assign priorities to the nodes. The node 
containing the eyepoint receives priority –1; its neighbors receive priority –2; their 
neighbors –3, and so on. Using this heuristic, the traversal proceeds in layers of nodes 
around the eyepoint. This is simple to implement, very fast, and quite accurate (we will 
show accuracy measurements when we present the run-time results). The only 
precomputation this heuristic requires is the construction of the hierarchy itself. 
 
We use PLP as a front-end to the hardware's implementation of the Z-buffer algorithm 
[Foley90]. For a given budget, PLP gives us the set of primitives it considers most likely 
to maximize image quality. We simply pass these primitives to the graphics hardware.  
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Implementation 
 

class Plp {
public:

explicit Plp(const char *file_name);
void start(const View &view);
bool step();
enum {DEFAULT_BUDGET = 10000};
enum {NS_CLEAN, NS_PROJECTED, NS_ENQUEUED,

NS_UNSEEN};
protected:

void front_push(OctreeNode *node);
OctreeNode *front_pop();
void project(OctreeNode *node);
void add_neighbors_to_front(OctreeNode *node);
bool is_potentially_visible(OctreeNode *node);
typedef set<OctreeNode *,

OctreeNode::CompareSolidity> plp_front_t;
plp_front_t _front;
vector<OctreeNode *> _visible_set;
unsigned _budget, _num_triangles_rendered;
unsigned _time_stamp;
Octree _octree;
const View *_view;
OctreeNode *_closest_leaf;
ImageTileSet _tiles;

};

Plp::Plp(const char *file_name)
: _budget(DEFAULT_BUDGET),
_num_triangles_rendered(0), _time_stamp(0),
_view(NULL), _closest_leaf(NULL)

{
_octree.read(file_name);

}

void Plp::start(const View &view)
{

_view = &view;
_num_triangles_rendered = 0;
_time_stamp = 0;
reset_node_states();
_front.clear();
_visible_set.clear();
_closest_leaf = _octree.find_closest_leaf(_view);
if (_closest_leaf == NULL)

return;
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_closest_leaf->set_solidity(0.0);
_closest_leaf->set_layer(0);
front_push(_closest_leaf);

}

bool Plp::step()
{

if (_front.empty())
return false;

OctreeNode *node = front_pop();
project(node);
add_neighbors_to_front(node);
return _num_triangles_rendered < _budget;

}

void Plp::front_push(OctreeNode *node)
{

node->set_time_stamp(_time_stamp);
_time_stamp++;
_front.insert(node);
set_node_state(node, NS_ENQUEUED);

}

// returns node most likely to be visible
OctreeNode *Plp::front_pop()
{

OctreeNode *node = *(_front.begin());
_front.erase(_front.begin());
return node;

}

bool Plp::is_potentially_visible(OctreeNode *node)
{

return _view->camera().sees_ignoring_near_plane(
node->bounding_box());

}

void Plp::project(OctreeNode *node)
{

set_node_state(node, NS_PROJECTED);
if (is_potentially_visible(node)) {

_visible_set.push_back(node);
_num_triangles_rendered +=

node->num_triangles();
}

}
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void Plp::add_neighbors_to_front(OctreeNode *node)
{

const vector<OctreeNode *> &neighbors =
node->neighbors();

for (unsigned i = 0; i < neighbors.size(); i++) {
OctreeNode *neighbor = neighbors[i];
if (node_state(neighbor) != NS_CLEAN)

continue;
if (!is_potentially_visible(neighbor)) {

set_node_state(neighbor, NS_UNSEEN);
continue;

}
neighbor->set_layer(node->layer() + 1);
neighbor->set_solidity(neighbor->layer());
front_push(neighbor);

}
}

The cPLP Algorithm 
 
Although PLP is in practice quite accurate for most frames, it does not guarantee image 
quality, and some frames may show objectionable artifacts. To circumvent this potential 
problem, we use cPLP [Klosowski01], a conservative extension of PLP. 
 
The main idea of cPLP is to use the visible set given by PLP as an initial guess, and keep 
adding nodes to the visible set until the front (the priority queue with nodes) is empty. 
This guarantees that the final visible set is conservative [Klosowski01]. There are many 
ways to implement cPLP, including exploiting new platform-dependent hardware 
extensions for visibility computation. The implementation we describe in this gem uses 
an item-buffer technique that is portable to any system that supports OpenGL. 
 
The cPLP main loop consists of two steps. First, we determine the nodes in the front that 
are visible. We draw the bounding box of each node in the front using flat shading and a 
color equal to its identification number. We then read back the color buffer, and 
determine the nodes seen. Second, for each front node found to be visible, we project it 
(maybe adding it to the visible set), remove it from the front, and add its unvisited 
neighbors to the front. We iterate the main loop until the front is empty.  The bottleneck 
of the item buffer-based implementation of cPLP is reading back the color buffer. To 
avoid reading the entire color buffer at each step, we break the screen into tiles. Tiles that 
are not modified in one step may be ignored in subsequent steps. 
 
Implementation 
 

void Plp::find_visible_front()
{

// save masks
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GLboolean cmask[4], dmask;
glGetBooleanv(GL_COLOR_WRITEMASK, cmask);
glGetBooleanv(GL_DEPTH_WRITEMASK, &dmask);
// empty front, and remember nodes to render
vector<OctreeNode *> nodes;
while (!_front.empty()) {

OctreeNode *node = front_pop();
set_node_state(node, NS_CLEAN);
nodes.push_back(node);

}
// render front
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_FALSE);
glClear(GL_COLOR_BUFFER_BIT);
for (unsigned i = 0; i < nodes.size(); i++) {

OctreeNode *node = nodes[i];
// 0 is background

unsigned j = i + 1;
GLubyte r = j & 0x000000FF;
GLubyte g = j & 0x0000FF00;
GLubyte b = j & 0x00FF0000;
glColor3ub(r, g, b);
node->render_solid_box();

}
// determine visible front
_tiles.read_active();
list<ImageTile *>::iterator li =

_tiles.active_tiles().begin();
while (li != _tiles.active_tiles().end()) {

ImageTile *tile = *li;
Image &img = tile->image();
GLubyte *p = img.pixels();
unsigned n = img.num_pixels();
bool tile_active = false;
for (unsigned i = 0; i < n; i++) {

GLubyte r = *p++;
GLubyte b = *p++;
GLubyte g = *p++;
GLubyte a = *p++;
unsigned j = r | g << 8 | b << 16;
if (j == 0)

continue;
tile_active = true;
j--;
OctreeNode *node = nodes[j];
if (node_state(node) != NS_ENQUEUED)

front_push(node);
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}
list<ImageTile *>::iterator t = li;
li++;
if (!tile_active)

_tiles.deactivate(t);
}
// restore masks
glColorMask(cmask[0], cmask[1], cmask[2],

cmask[3]);
glDepthMask(dmask);

}

void Plp::conservative_finish()
{

const Viewport &v = _view->viewport();
_tiles.realloc(v.x_min(), v.y_min(), v.width(),

v.height());
_tiles.activate_all();
// save state
glPushAttrib(GL_ENABLE_BIT);
GLboolean cmask[4], dmask;
glGetBooleanv(GL_COLOR_WRITEMASK, cmask);
glGetBooleanv(GL_DEPTH_WRITEMASK, &dmask);
// compute z-buffer for approximate visible set
glDisable(GL_LIGHTING);
glClear(GL_DEPTH_BUFFER_BIT);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,

GL_FALSE);
glDepthMask(GL_TRUE);
for (unsigned i = 0; i < _visible_set.size(); i++)

_visible_set[i]->render_geometry();
while (!_front.empty()) {

find_visible_front();
// empty front, and remember nodes to project
vector<OctreeNode *> nodes;
while (!_front.empty()) {

OctreeNode *node = front_pop();
nodes.push_back(node);

}
// project nodes, and determine new front
for (unsigned i = 0; i < nodes.size(); i++)
{

OctreeNode *node = nodes[i];
project(node);
add_neighbors_to_front(node);
node->render_geometry();

}
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}
// restore state
glPopAttrib();
glColorMask(cmask[0], cmask[1], cmask[2],

cmask[3]);
glDepthMask(dmask);

}

Discussion 
 
PLP and cPLP are attractive visibility algorithms for several reasons: 
 

• PLP and cPLP are from-point algorithms, and they make no assumption about the 
model. In contrast, some from-region algorithms assume the model consists of 
axis-aligned rooms and portals [Teller91, Funkhouser93], which may be a big 
restriction. 

• PLP and cPLP require little preprocessing. For most heuristics, the 
precomputation consists of creating the model hierarchy and computing simple 
summary statistics per node, such as the total number of primitives. This can be 
done quickly, even for a large model. On the other hand, other techniques 
[Teller91, Hong97, Zhang97] may require preprocessing times in the order of 
hours or days, even for relatively small models. 

• Although occlusion culling algorithms, such as PLP, avoid rendering unseen 
geometry, they still may render small primitives that have little effect on the final 
image. As shown by El-Sana et al. [El-Sana01], PLP can be easily integrated with 
level-of-detail management. 

• PLP is suitable for time-critical rendering. Even if we use the lowest levels of 
detail, the number of visible primitives in a given frame may overwhelm a low-
end graphics card. The PLP budget gives the user a convenient way to 
compromise between accuracy and speed. The impact of slightly incorrect images 
on the user's perception of the walkthrough is often far less than the impact of low 
frame rates [Funkhouser96]. 

 
PLP is most useful when higher frame rates are more important than absolute accuracy, 
e.g., when the user is moving fast to get to a certain point. On the other hand, cPLP is 
necessary when artifacts are not acceptable, e.g., the user has reached its target and is 
closely examining its details. Ideally, an application should allow the user to switch back-
and-forth between PLP and cPLP on the fly. 
 
Experimental Results 
 
To show what PLP and cPLP can do, we have run tests using the 13 million-triangle 
UNC power plant model, on a Pentium III 733MHz computer with Nvidia GeForce2 
graphics. We collected statistics for both PLP and cPLP using a 500-frame path. Figure 1 
shows a typical frame of this path, using a budget of 140,000 triangles per frame. 
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Figure 1. Walking through the UNC power plant [Walkthru01]. 
 
For PLP, the average frame rate was 10.1Hz, and for 75% of the times, the frame rate 
was above 9.3Hz. These rates give the user the illusion of a smooth walkthrough. For 
cPLP, the average frame rate was 2.1Hz and for 75% of the times, the frame rate was 
above 1.5Hz. Although the rates for cPLP are lower than the rates for PLP, the system is 
still usable, and produces images guaranteed to be 100% correct. 
  
We measured the accuracy of PLP by counting the number of incorrect pixels in the 
images it generated versus the correct images. The average accuracy for PLP was 96.3%, 
and for 75% of the times, the accuracy was above 94.9%. Because of the layered traversal 
of the model hierarchy, the wrong pixels tend to be at regions far from the eyepoint. 
Sometimes the artifacts are noticeable, but they are usually tolerable, and have a small 
impact on the user experience. Recall that we achieved this level of accuracy with the 
embarrassingly simple heuristic of traversing the model hierarchy one layer at a time. We 
believe this accuracy can be even better with more sophisticated heuristics. 
 
Conclusion 
 
PLP and cPLP are practical solutions to the ubiquitous visibility problem. PLP allows the 
user to tradeoff speed and accuracy. Although there is no guarantee of image quality, in 
practice it is good enough to give the user a sense of smooth navigation. Whenever 100% 
accuracy is critical, the user may switch to cPLP, and still be able to walk through the 
model at slower frame rates. 
 
There are several ways to improve upon what we present in this gem.  First, we present 
only one simple heuristic for estimating the visibility of a node. More sophisticated 
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heuristics exist [El-Sana01], and there is still room for improvement. Second, these 
algorithms may be combined with level-of-detail management [El-Sana01]. Third, these 
algorithms may be used to drive caching schemes to handle models that are larger than 
the available main memory. Finally, these algorithms may be parallelized to exploit the 
power of a parallel machine or a cluster of PCs. 
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