

Fast and Simple Occlusion Culling 1

Fast and Simple Occlusion Culling
Wagner T. Corrêa – Princeton University – wtcorrea@cs.princeton.edu
James T. Klosowski – IBM Research – jklosow@us.ibm.com
Cláudio T. Silva – AT&T Labs-Research – csilva@research.att.com

Introduction

In many graphics applications, such as building walkthroughs and first-person games, the
user moves around the interior of a virtual environment and the computer creates an
image for each location of the user. For any given position, the user typically sees only a
small fraction of the scene. Thus to speed up the image rendering, an application should
avoid drawing the primitives in the environment that the user cannot see. There are
several classes of algorithms to determine which primitives should be ignored, or culled.
Back-face culling algorithms determine those primitives that face away from the user.
View frustum culling determines the primitives that lie outside of the user's field of view.
Occlusion culling determines the primitives that are occluded by other primitives.

While back-facing and view frustum culling algorithms are trivial, occlusion culling
algorithms tend to be complex and usually require time consuming preprocessing steps.
This gem describes two occlusion culling algorithms that are practical, effective, and
require little preprocessing. The first one is the prioritized-layered projection (PLP)
algorithm, which is an approximate algorithm that determines, for a given budget, a set of
primitives that are likely to be visible. The second algorithm, cPLP, is a conservative
version of PLP that guarantees to find all visible primitives.

The Visibility Problem

Given a scene composed of modeling primitives and a viewing frustum, we need to
determine which primitive fragments are visible, i.e., connected to the eye-point by a line
segment that meets the closure of no other primitive [Dobkin97]. Researchers have
studied this problem extensively and many approaches to solve it exist [Cohen-Or01,
Durand99]. In their survey on visibility algorithms, Cohen-Or et al. classify algorithms
according to several criteria. Next, we briefly summarize those that are of most relevance
to our gem:

From-point vs. from-region: Some algorithms compute visibility from the eyepoint
only, while others compute visibility from a region in space. Since the user often stays for
a while in the same region, the from-region algorithms amortize the cost of visibility
computations over a number of frames.

Precomputed vs. online: Many algorithms require an off-line computation,
while others work on the fly. For example, most from-region algorithms require a
preprocessing step to divide the model in regions, and compute region visibility.

mailto:wtcorrea@cs.princeton.edu
mailto:jklosow@us.ibm.com
mailto:csilva@research.att.com

Fast and Simple Occlusion Culling 2

Object space vs. image space: Some algorithms compute visibility in object space, using
the exact original 3D primitives. Others operate in image space, using only the discrete
rasterization fragments of the primitives.

Conservative vs. approximate: Few visibility algorithms compute exact visibility. Most
algorithms are conservative, and overestimate the set of visible primitives. Other
algorithms compute approximate visibility, and do not guarantee finding all visible
primitives.

In this gem, we describe two visibility algorithms that are simple solutions and work well
in practice: the prioritized-layered projection algorithm, PLP, and its conservative
version, cPLP.

The PLP Algorithm

PLP [Klosowski00] is an approximate, from-point, object-space visibility algorithm that
requires very little preprocessing. PLP may be understood as a simple modification to the
traditional hierarchical view frustum culling algorithm [Clark76]. The traditional
algorithm recursively traverses the model hierarchy from the root node down to the leaf
nodes. If a node is outside the view frustum, we ignore the node and its children. If the
node is inside or intersects the view frustum, we recursively traverse its children. The
traversal eventually visits all leaves within the view frustum. The PLP algorithm differs
from the traditional one in several ways. First, instead of traversing the model hierarchy
in a predefined order, PLP keeps the hierarchy leaf nodes in a priority queue called the
front, and traverses the nodes from highest to lowest priority. When we visit a node (or
project it, in PLP parlance), if it is visible, we add it to the visible set. Then, we remove it
from the front, and add its layer of unvisited neighbors to the front (hence, the
algorithm’s name: prioritized-layered projection). Second, instead of traversing the entire
hierarchy, PLP works on a budget, stopping the traversal after a certain number of
primitives have been added to the visible set. Finally, PLP requires each node to know
not only its children, but also all of its neighbors.

An implementation of PLP may be simple or sophisticated, depending on the heuristic to
assign priorities to each node. Several heuristics precompute the initial solidity of a node,
and accumulate the solidities along a traversal path. The node’s accumulated solidity
estimates how likely it is for the node to occlude an object behind it [Klosowski00]. In
this gem, we use an extremely simple heuristic to assign priorities to the nodes. The node
containing the eyepoint receives priority –1; its neighbors receive priority –2; their
neighbors –3, and so on. Using this heuristic, the traversal proceeds in layers of nodes
around the eyepoint. This is simple to implement, very fast, and quite accurate (we will
show accuracy measurements when we present the run-time results). The only
precomputation this heuristic requires is the construction of the hierarchy itself.

We use PLP as a front-end to the hardware's implementation of the Z-buffer algorithm
[Foley90]. For a given budget, PLP gives us the set of primitives it considers most likely
to maximize image quality. We simply pass these primitives to the graphics hardware.

Fast and Simple Occlusion Culling 3

Implementation

class Plp {
public:

explicit Plp(const char *file_name);
void start(const View &view);
bool step();
enum {DEFAULT_BUDGET = 10000};
enum {NS_CLEAN, NS_PROJECTED, NS_ENQUEUED,

NS_UNSEEN};
protected:

void front_push(OctreeNode *node);
OctreeNode *front_pop();
void project(OctreeNode *node);
void add_neighbors_to_front(OctreeNode *node);
bool is_potentially_visible(OctreeNode *node);
typedef set<OctreeNode *,

OctreeNode::CompareSolidity> plp_front_t;
plp_front_t _front;
vector<OctreeNode *> _visible_set;
unsigned _budget, _num_triangles_rendered;
unsigned _time_stamp;
Octree _octree;
const View *_view;
OctreeNode *_closest_leaf;
ImageTileSet _tiles;

};

Plp::Plp(const char *file_name)
: _budget(DEFAULT_BUDGET),
_num_triangles_rendered(0), _time_stamp(0),
_view(NULL), _closest_leaf(NULL)

{
_octree.read(file_name);

}

void Plp::start(const View &view)
{

_view = &view;
_num_triangles_rendered = 0;
_time_stamp = 0;
reset_node_states();
_front.clear();
_visible_set.clear();
_closest_leaf = _octree.find_closest_leaf(_view);
if (_closest_leaf == NULL)

return;

Fast and Simple Occlusion Culling 4

_closest_leaf->set_solidity(0.0);
_closest_leaf->set_layer(0);
front_push(_closest_leaf);

}

bool Plp::step()
{

if (_front.empty())
return false;

OctreeNode *node = front_pop();
project(node);
add_neighbors_to_front(node);
return _num_triangles_rendered < _budget;

}

void Plp::front_push(OctreeNode *node)
{

node->set_time_stamp(_time_stamp);
_time_stamp++;
_front.insert(node);
set_node_state(node, NS_ENQUEUED);

}

// returns node most likely to be visible
OctreeNode *Plp::front_pop()
{

OctreeNode *node = *(_front.begin());
_front.erase(_front.begin());
return node;

}

bool Plp::is_potentially_visible(OctreeNode *node)
{

return _view->camera().sees_ignoring_near_plane(
node->bounding_box());

}

void Plp::project(OctreeNode *node)
{

set_node_state(node, NS_PROJECTED);
if (is_potentially_visible(node)) {

_visible_set.push_back(node);
_num_triangles_rendered +=

node->num_triangles();
}

}

Fast and Simple Occlusion Culling 5

void Plp::add_neighbors_to_front(OctreeNode *node)
{

const vector<OctreeNode *> &neighbors =
node->neighbors();

for (unsigned i = 0; i < neighbors.size(); i++) {
OctreeNode *neighbor = neighbors[i];
if (node_state(neighbor) != NS_CLEAN)

continue;
if (!is_potentially_visible(neighbor)) {

set_node_state(neighbor, NS_UNSEEN);
continue;

}
neighbor->set_layer(node->layer() + 1);
neighbor->set_solidity(neighbor->layer());
front_push(neighbor);

}
}

The cPLP Algorithm

Although PLP is in practice quite accurate for most frames, it does not guarantee image
quality, and some frames may show objectionable artifacts. To circumvent this potential
problem, we use cPLP [Klosowski01], a conservative extension of PLP.

The main idea of cPLP is to use the visible set given by PLP as an initial guess, and keep
adding nodes to the visible set until the front (the priority queue with nodes) is empty.
This guarantees that the final visible set is conservative [Klosowski01]. There are many
ways to implement cPLP, including exploiting new platform-dependent hardware
extensions for visibility computation. The implementation we describe in this gem uses
an item-buffer technique that is portable to any system that supports OpenGL.

The cPLP main loop consists of two steps. First, we determine the nodes in the front that
are visible. We draw the bounding box of each node in the front using flat shading and a
color equal to its identification number. We then read back the color buffer, and
determine the nodes seen. Second, for each front node found to be visible, we project it
(maybe adding it to the visible set), remove it from the front, and add its unvisited
neighbors to the front. We iterate the main loop until the front is empty. The bottleneck
of the item buffer-based implementation of cPLP is reading back the color buffer. To
avoid reading the entire color buffer at each step, we break the screen into tiles. Tiles that
are not modified in one step may be ignored in subsequent steps.

Implementation

void Plp::find_visible_front()
{

// save masks

Fast and Simple Occlusion Culling 6

GLboolean cmask[4], dmask;
glGetBooleanv(GL_COLOR_WRITEMASK, cmask);
glGetBooleanv(GL_DEPTH_WRITEMASK, &dmask);
// empty front, and remember nodes to render
vector<OctreeNode *> nodes;
while (!_front.empty()) {

OctreeNode *node = front_pop();
set_node_state(node, NS_CLEAN);
nodes.push_back(node);

}
// render front
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_FALSE);
glClear(GL_COLOR_BUFFER_BIT);
for (unsigned i = 0; i < nodes.size(); i++) {

OctreeNode *node = nodes[i];
// 0 is background

unsigned j = i + 1;
GLubyte r = j & 0x000000FF;
GLubyte g = j & 0x0000FF00;
GLubyte b = j & 0x00FF0000;
glColor3ub(r, g, b);
node->render_solid_box();

}
// determine visible front
_tiles.read_active();
list<ImageTile *>::iterator li =

_tiles.active_tiles().begin();
while (li != _tiles.active_tiles().end()) {

ImageTile *tile = *li;
Image &img = tile->image();
GLubyte *p = img.pixels();
unsigned n = img.num_pixels();
bool tile_active = false;
for (unsigned i = 0; i < n; i++) {

GLubyte r = *p++;
GLubyte b = *p++;
GLubyte g = *p++;
GLubyte a = *p++;
unsigned j = r | g << 8 | b << 16;
if (j == 0)

continue;
tile_active = true;
j--;
OctreeNode *node = nodes[j];
if (node_state(node) != NS_ENQUEUED)

front_push(node);

Fast and Simple Occlusion Culling 7

}
list<ImageTile *>::iterator t = li;
li++;
if (!tile_active)

_tiles.deactivate(t);
}
// restore masks
glColorMask(cmask[0], cmask[1], cmask[2],

cmask[3]);
glDepthMask(dmask);

}

void Plp::conservative_finish()
{

const Viewport &v = _view->viewport();
_tiles.realloc(v.x_min(), v.y_min(), v.width(),

v.height());
_tiles.activate_all();
// save state
glPushAttrib(GL_ENABLE_BIT);
GLboolean cmask[4], dmask;
glGetBooleanv(GL_COLOR_WRITEMASK, cmask);
glGetBooleanv(GL_DEPTH_WRITEMASK, &dmask);
// compute z-buffer for approximate visible set
glDisable(GL_LIGHTING);
glClear(GL_DEPTH_BUFFER_BIT);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,

GL_FALSE);
glDepthMask(GL_TRUE);
for (unsigned i = 0; i < _visible_set.size(); i++)

_visible_set[i]->render_geometry();
while (!_front.empty()) {

find_visible_front();
// empty front, and remember nodes to project
vector<OctreeNode *> nodes;
while (!_front.empty()) {

OctreeNode *node = front_pop();
nodes.push_back(node);

}
// project nodes, and determine new front
for (unsigned i = 0; i < nodes.size(); i++)
{

OctreeNode *node = nodes[i];
project(node);
add_neighbors_to_front(node);
node->render_geometry();

}

Fast and Simple Occlusion Culling 8

}
// restore state
glPopAttrib();
glColorMask(cmask[0], cmask[1], cmask[2],

cmask[3]);
glDepthMask(dmask);

}

Discussion

PLP and cPLP are attractive visibility algorithms for several reasons:

• PLP and cPLP are from-point algorithms, and they make no assumption about the
model. In contrast, some from-region algorithms assume the model consists of
axis-aligned rooms and portals [Teller91, Funkhouser93], which may be a big
restriction.

• PLP and cPLP require little preprocessing. For most heuristics, the
precomputation consists of creating the model hierarchy and computing simple
summary statistics per node, such as the total number of primitives. This can be
done quickly, even for a large model. On the other hand, other techniques
[Teller91, Hong97, Zhang97] may require preprocessing times in the order of
hours or days, even for relatively small models.

• Although occlusion culling algorithms, such as PLP, avoid rendering unseen
geometry, they still may render small primitives that have little effect on the final
image. As shown by El-Sana et al. [El-Sana01], PLP can be easily integrated with
level-of-detail management.

• PLP is suitable for time-critical rendering. Even if we use the lowest levels of
detail, the number of visible primitives in a given frame may overwhelm a low-
end graphics card. The PLP budget gives the user a convenient way to
compromise between accuracy and speed. The impact of slightly incorrect images
on the user's perception of the walkthrough is often far less than the impact of low
frame rates [Funkhouser96].

PLP is most useful when higher frame rates are more important than absolute accuracy,
e.g., when the user is moving fast to get to a certain point. On the other hand, cPLP is
necessary when artifacts are not acceptable, e.g., the user has reached its target and is
closely examining its details. Ideally, an application should allow the user to switch back-
and-forth between PLP and cPLP on the fly.

Experimental Results

To show what PLP and cPLP can do, we have run tests using the 13 million-triangle
UNC power plant model, on a Pentium III 733MHz computer with Nvidia GeForce2
graphics. We collected statistics for both PLP and cPLP using a 500-frame path. Figure 1
shows a typical frame of this path, using a budget of 140,000 triangles per frame.

Fast and Simple Occlusion Culling 9

Figure 1. Walking through the UNC power plant [Walkthru01].

For PLP, the average frame rate was 10.1Hz, and for 75% of the times, the frame rate
was above 9.3Hz. These rates give the user the illusion of a smooth walkthrough. For
cPLP, the average frame rate was 2.1Hz and for 75% of the times, the frame rate was
above 1.5Hz. Although the rates for cPLP are lower than the rates for PLP, the system is
still usable, and produces images guaranteed to be 100% correct.

We measured the accuracy of PLP by counting the number of incorrect pixels in the
images it generated versus the correct images. The average accuracy for PLP was 96.3%,
and for 75% of the times, the accuracy was above 94.9%. Because of the layered traversal
of the model hierarchy, the wrong pixels tend to be at regions far from the eyepoint.
Sometimes the artifacts are noticeable, but they are usually tolerable, and have a small
impact on the user experience. Recall that we achieved this level of accuracy with the
embarrassingly simple heuristic of traversing the model hierarchy one layer at a time. We
believe this accuracy can be even better with more sophisticated heuristics.

Conclusion

PLP and cPLP are practical solutions to the ubiquitous visibility problem. PLP allows the
user to tradeoff speed and accuracy. Although there is no guarantee of image quality, in
practice it is good enough to give the user a sense of smooth navigation. Whenever 100%
accuracy is critical, the user may switch to cPLP, and still be able to walk through the
model at slower frame rates.

There are several ways to improve upon what we present in this gem. First, we present
only one simple heuristic for estimating the visibility of a node. More sophisticated

Fast and Simple Occlusion Culling 10

heuristics exist [El-Sana01], and there is still room for improvement. Second, these
algorithms may be combined with level-of-detail management [El-Sana01]. Third, these
algorithms may be used to drive caching schemes to handle models that are larger than
the available main memory. Finally, these algorithms may be parallelized to exploit the
power of a parallel machine or a cluster of PCs.

References

[Clark76] James H. Clark, “Hierarchical Geometric Models for Visible Surface
 Algorithms,” Communications of the ACM, 19(10):547-554, October 1976.
[Cohen-Or01] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva, and Frédo

Durand, “A Survey of Visibility for Walkthrough Applications,” to appear in
IEEE Transactions on Visualization and Computer Graphics.

[Dobkin97] David Dobkin and Seth Teller, Handbook of Discrete and Computational
Geometry, chapter Computer Graphics, CRC Press, 1997.

[Durand99] Frédo Durand, 3D Visibility: Analytical study and Applications, PhD thesis,
Université Joseph Fourier, Grenoble, France, 1999.

[El-Sana01] Jihad El-Sana, Neta Sokolovsky, and Cláudio T. Silva, “Integrating
Occlusion Culling with View-Dependent Rendering, Proceedings of IEEE
Visualization 2001, pp. 371-378.

[Foley90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes,
Computer Graphics: Principles and Practice, Addison-Wesley, 2nd. edition,
1990.

[Funkhouser93] Thomas A. Funkhouser and Carlo H. Séquin, “Adaptive Display
Algorithm for Interactive Frame Rates During Visualization of Complex Virtual
Environments, Computer Graphics Proceedings (SIGGRAPH 1993), pp. 247-254.

[Funkhouser96] Thomas A. Funkhouser, “Database Management for Interactive Display
of Large Architectural Models,” Proceedings of Graphics Interface '96, pp. 1-8.

[Hong97] Lichan Hong, Shigeru Muraki, Arie E. Kaufman, Dirk Bartz, and Taosong He,
“Virtual Voyage: Interactive Navigation in the Human Colon,” Computer
Graphics Proceedings (SIGGRAPH 1997), pp. 27-34.

[Klosowski00] James T. Klosowski and Cláudio T. Silva, “The Prioritized-Layered
Projection Algorithm for Visible Set Estimation,” in IEEE Transactions on
Visualization and Computer Graphics, 6(2):108-123, April-June 2000.

[Klosowski01] James T. Klosowski and Cláudio T. Silva, “Efficient Conservative
Visibility Culling Using the Prioritized-Layered Projection Algorithm,” in IEEE
Transactions on Visualization and Computer Graphics, 7(4):365-379, October-
December 2001.

[Teller91] Seth Teller and Carlo H. Séquin, “Visibility Preprocessing for Interactive
Walkthroughs,” Computer Graphics Proceedings (SIGGRAPH 1991), pp. 61-69.

[Walkthru01] The Walkthru Project at UNC Chapel Hill, “Power Plant Model,” available
online at http://www.cs.unc.edu/~geom/Powerplant/.

[Zhang97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III,
“Visibility Culling Using Hierarchical Occlusion Maps,” Computer Graphics
Proceedings (SIGGRAPH 1997), pp. 77-88.

http://www.cs.unc.edu/~geom/Powerplant/

	Implementation
	Implementation

