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Abstract

Weproposeadvancing-fronttechniquesfor theproblemof simplificationof densedigitized

terrainmodels. While mostsimplificationalgorithmshave beenbasedon eitherincremental

refinementor decimationtechniques,our Greedy-Cutsalgorithmsusea simpletriangulation-

growth procedure.They work by takinggreedycuts(“bites”) out of a simpleclosedpolygon

thatboundsa connectedcomponentof theyet-to-betriangulatedregion. Themethodbegins

with a largepolygon,boundingthewholeextentof theterrainto betriangulated,andworksits

way inward,performingat eachsteponeof threebasicoperations:earcutting,greedybiting,

andedgesplitting.

In this paper, we presentboth the basicGreedy-Cutsframework (which hasbeenintro-

ducedin our earlierpaper)anda new enhancementof theGreedy-Cutsmethodthatimproves

thequalityof theresultingtriangulation.Thisimprovementis madepossiblethroughthemain-

tenanceof two “fronts”, a real front anda virtual front, thatboundbetweenthema region of

the terrainthat hasonly a tentative triangulation.By allowing simplelocal operations(edge

collapsesandedgeflips) in thetentativetriangulation,weareableto avoid many of theartifacts

of thebasicGreedy-Cutsadvancing-fronttechnique,while not significantlyaffectingmemory

usageor runningtime.

Our implementationof Greedy-Cuts,as well as its multi-front enhancementis publicly

available in the GcTin system. We give experimentalevidenceof the effectivenessof the

multi-front enhancementto the Greedy-Cutsmethodandshow that our methodis competi-

tive with currentalgorithmsin termsof running time. Oneof the major advantagesof our

implementationis thatit requiresvery little memorybeyondthatfor theinput heightarray.
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1 Introduction

The problemof triangulatingdenseterrainmodels,while approximatingthemto within a user-

specifiederror bound,is fundamentalto several GIS applications,andhasbeenstudiedactively

sincetheearly 1970’s. Many algorithmshave exploited thegoodquality propertiesof Delaunay

triangulations;e.g.,onestandard“refinement”approachis basedon building triangulationsincre-

mentallyby insertingverticesinto acoarsetriangulationwhile maintainingtheDelaunayproperty

(e.g.,see[8]). In contrastwith refinementmethods,which startwith a coarsetriangulationand

refine it, decimationtechniquesstartwith a fine triangulation(the original data)and iteratively

remove selectedpoints,resultingin a coarseningof the triangulation[17, 18, 27]. We refer the

readersto therecentsurvey of GarlandandHeckbert[15] or of vanKreveld [31] for anextensive

discussionof prior work.

Thereareseveral tradeoffs betweenincrementalrefinementanddecimationtechniques.If we

seeka coarseapproximation,incrementalrefinementmethodstendto converge faster, sincethey

startalreadywith a very coarsetriangulation. On the otherhand,very accurateapproximations,

with alow errortolerance,arecomputedmostdirectlyusingadecimationprocedure,startingfrom

the full resolutiondata. Memory consumptionis an importantissuein designingtriangulation

methods.Mostof thecurrenttechniquesneedto keepfairly largedatastructuresin memory, since

they rely onhaving thetriangulationin memoryat intermediatestagesof thealgorithm.

Largely due to its low memoryconsumption,we have investigated“advancing-front” tech-

niquesfor terraintriangulation. In short,advancing-fronttechniquesarebasedon incrementally

triangulatingthe terrain,onetriangleat a time, at its final resolution,while advancinga “front”

acrossthedata.Thefront is a setof polygonalcurvesthatrepresenttheboundarybetweentheal-

readytriangulatedregion andtheyet-to-betriangulatedregion. Thememoryconsumptionis low,

sincewe only have to storea representationof thefront in memory;astrianglesarecreated,they

canbeoutput(e.g.,written to a file). Anotherpotentialadvantageof advancing-frontmethodsis

that they lendthemselvesreadily to beingableto handlestructural fidelity constraints(e.g.,river,

road,andfault line boundaries),by insistingthat theseedgesappearasedgeswithin the output

triangulation,while still respectingtheerrorbounds.Themethodalsoreadilypermitsoneto par-

tition thedata,possiblyspecifyinga differenterrorboundin differentregionsof the terrain; this
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maybeusefulin applicationsrequiringreal-timetriangulation.

This paperpresentsour experiencein devising andimplementingadvancing-fronttechniques

for terrain surfaces. We begin with a detaileddiscussionof our basicGreedy-Cutsalgorithm,

as was first reportedin an earlier conferencepaper[29]. While we have boundthat the basic

algorithmhasfavorablepropertiesin termsof memoryconsumptionandtotalnumberof triangles,

it is muchlesseffective at producinghigh quality triangulationsfrom thepoint of view of angles

thatarecloseto zeroor closeto π. Thus,we have developedanenhancedversionof Greedy-Cuts

(asfirst reportedin the conferenceversionof this paper[28]) that addressesthe main weakness

of our earlieradvancingfront technique– trianglequality. Thepotentialfor low trianglequality

is an intrinsic shortcomingof advancingfront methodsthat do not permit backtrackingin their

decisions.Thenovel featureof our new algorithmis thatwe maintaintwo “fronts”, a real front,

anda virtual “back” front, andthe tentative triangulationof the region in between.By allowing

edgecollapsesandflips in theregionbetweenthefronts,weareableto obtainmuchhigherquality

triangulations,while preservingthelow-memoryfeatureof theadvancing-frontmethod.

2 Background and Related Work

A terrain is thegraphof a functionof two variables.Thefunctiongivestheelevationof eachpoint

in thedomain.Terrainmodelsarewidely usedin visualizationandcomputergraphicsapplications,

suchasflight simulators,financialvisualizationtools,strategic military analyzers,geographicin-

formationsystems,andvideogames.Thus,it is of theutmostimportancethatprimitiveoperations

canbeperformedin real-time.Severalfactorsmayaffect theefficiency of algorithmsthatoperate

on terrain;themostimportantareprobablythesizeof theinput andits underlyingdatastructure.

The most commonsourceof digital terrain elevation data is the DEM (Digital Elevation

Model), suppliedby the U.S. GeologicalSurvey. A DEM is basicallya two-dimensionalfloat-

ing point heightarray. It cancontainan extremelyhigh level of redundancy, which, in turn, can

forbid real-timeapplicationsfrom usingit. Severalalternativedatastructureshavebeenproposed,

includingcontourlines,quad-trees,andTINs (Triangular Irregular Networks). TINs standout as

beingoneof themostconvenientto usefor renderingandothergeometricmanipulationoperations.

A TIN is a setof contiguousnon-overlappingtriangleswhoseverticesareplacedadaptively over
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theDEM domain[8]. Theautomaticgenerationof TIN modelsfrom DEM modelsis animportant

areaof researchandis themain topic of this article. Several factorsareimportantin judgingthe

quality of theTIN representationof agivenDEM (list partiallyadaptedfrom [23, 24]):

� Numericalaccuracy– measuredasmaximum,mean,or standarddeviationerror;

� Visualaccuracy– usuallyassessedby inspectionandby numberof “slivery” triangles;

� Sizeof themodel– measuredasthenumberof outputtriangles;

� Algorithmcomplexity – measuredin termsof thetime to generatetheTIN andthememory

requirement.

Fowler andLittle [8] haveintroducedoneof thefirst (andstill verypopular)methodsto address

theproblemof automaticgenerationof TINs directly from DEMs. Their methodis very simple.

First, they classifythepointsby automaticallychoosingsome“important” featuresof theterrain,

suchasridgesandpeaks.They describethis phaseof thealgorithmasconstructingthe“structural

fidelity” of themodel;i.e., theTIN representationshouldhave thesamegeographicalfeaturesas

theDEM. Then,they incrementallycomputea triangulationof thepoints;in their case,they chose

to usethe Delaunaytriangulation. At eachstep,a new point is addedto the triangulationuntil

no pointsarefartherfrom theoriginal surfacethana certainpredefinedthreshold.This phaseis

designedto preserve the“statisticalfidelity” (i.e, to make it fit thespecifiederrorbound).

Franklin [9] hasproposeda similar approachback in 1973. It appearsthat his methodhad

no notionof structuralfidelity, andhedid not usetheDelaunaytriangulationasthebasisfor his

method(althoughhe doesusea local edge-swappingheuristicin orderto preferquality triangu-

lations). A new versionof his codeis publicly available,andwe usedit for comparisonwith our

method.A detaileddescriptionof his algorithmandcodeis givenin Section5. Recently, substan-

tial researchhasbeenconductedon creatinghierarchicalstructureson topof TINs [7, 25], andon

techniquesto improvethequalityof TIN meshes[26]. Scarlatos’dissertation[23] is agoodsurvey

of terrainmodelingandrepresentation.A very recentapproachto building hierarchicalmodelsof

terrainsis givenby deBerg andDobrindt[6], whoapplyahierarchicalrefinementof theDelaunay

triangulationto representterrainTINs at many levelsof detail. Seealso[17, 18] for anapproach

5



calledthe“drop heuristic”andits comparisonwith othermethods.Commonto all theseprevious

methodsis thenecessityto have a completestartingtriangulationthat is eitherrefinedby adding

new points,or decimated[27] by removing redundantpoints. Theseapproachesrequirethat the

algorithmmaintainin memorya completetriangulationrepresentationof theinput,extendedwith

variouspiecesof global information(e.g.,mostdeviant point per triangle). The needfor global

informationimpactstherunningtimeandmemoryrequirementsof thesealgorithms.

Our work is basedon anentirelydifferentapproachfor thetriangulationandsimplificationof

thedata.It is basedonanideain themethoddevelopedby Mitchell andSuri [21], whereagreedy

setcover approachhasbeendevelopedfor approximatingconvex surfaces,andusedrecentlyby

Varshney [32] in heuristicsfor simplifying CAD models.We canconsiderthe input DEM to be

aninstanceof a TIN with very high resolution.In particular, eachpixel of theDEM corresponds

to four elevationdatapoints,andwe considertheseto definetwo adjacenttrianglesof a surface.

(A squarepixel canbetriangulatedin oneof two ways. We triangulateall pixelsuniformly, with

diagonalsat 45-degrees.)Our goal is to simplify this input TIN surfaceto createa new TIN that

hasfar fewer triangles,but is still within a specifiederrorboundof theoriginal surface.Froman

algorithmicpointof view, terrainsimplificationis hard(NP-hard)[4, 5], but somepolynomial-time

algorithmsareknown for computinganearly-optimal(i.e.,nearlyminimum-facet)approximating

surface,guaranteedto bewithin afactorO
�
logn� of optimal(see[1, 3,19,21]),orwithin aconstant

factorof optimal,if thesurfaceis convex (see[2]). Unfortunately, thepolynomial-timeboundsfor

thesetheoreticallygoodapproachesis ratherhigh (at leastcubic). In contrast,from thepractical

point of view, mostof thepreviouscomputergraphicsandgeographyresearchin theareais based

onheuristicsfor generatingtriangulationsthat“fit” theoriginaldata,but havenoguarantees,either

in termsof theclosenessto optimalor in termsof theworst-caserunningtime.

Theprinciple thatdrivesour method(andis relatedto thatof [3, 21, 32]) is thesamegreedy

principle that is usedto computeminimum-link pathsin simplepolygons. This problemis well

studiedin computationalgeometry[14, 20, 30] and can be usedto find an optimal piecewise-

linear approximationto a function of a singlevariable(see[11]). Our problemis of onehigher

dimension.We usea greedy-facetapproach,selectinglarge triangles(bites)by which to extend

anapproximatingsurface,basedon their feasibility (i.e., they mustlie within anε-fatteningof the

original surface)andon their size(e.g.,areaof projectionin the x-y plane). The useof greedy
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algorithmsis known to giveprovablygoodapproximationresultsin many combinatorialoptimiza-

tion problems;for example,thesetcover problemis approximatedwithin a log factorof optimal

by anaturalgreedyalgorithm,andthis factleads[21] to aprovablygoodapproximationalgorithm

for the convex caseof our problem. We have not yet beenableto prove that our algorithmhas

a guaranteedeffectivenesswith respectto optimal,but we arehopefulthat interestingproperties

canbeprovedaboutits performance.Currently, our codeonly handlesinputsin the form of ele-

vationarrays,but in principle,thereis no reasonwhy it cannotbeextendedto arbitrarypolyhedral

terrains,or, for thatmatter, polyhedralsurfacesin general.Extensionsto higherdimensionsalso

seempossible,that is, for simplifying piecewise-linearfunctionsof threevariablesdefinedover

tetrahedralizationsof 3-space.

Insteadof a top-down approachthatstartswith a feasibleDelaunaytriangulationandtries to

generatefiner andfiner Delaunaytriangulationsby addingpointsto thealready-createdtriangula-

tions,our algorithmworksbottom-up.At eachstep,a greedycut is takenfrom anuntriangulated

polygon.Thegreedycutsareanattemptto samplethedataat thelowestpossibleresolution,thus

minimizing thenumberof trianglesin theoutput.

3 The Greedy-Cuts Triangulation Algorithm

ThissectiondescribesthebasicGreedy-Cutsalgorithmin somedetail;seealso[29]. Theproblem

definitionis asfollows:

Givenan input array, H, of heightsH
�
x � y� , 0 � x � m and0 � y � n, whosedatapointsare

sampledfrom aregulargrid onarectangleR, andsomeε � 0 specifyinganerrortolerance.Finda

triangulatedsurface(TIN) thatrepresentsa terrainon R, suchthattheTIN hasa smallnumberof

triangles(Ti), andeachdatapoint givenby thearrayH
�
x � y� lies within verticaldistanceε of the

TIN.

The algorithm maintainsa list of untriangulatedsimplepolygons, � , which representsthe

portionof Roverwhichno triangulatedsurfacehasyetbeenconstructed.At eachstep,ourgoalis

to selecta maximumareatriangleT within oneof thepolygonsP �	� , suchthat (1) thevertices

v1 
 �
x1 � y1 � , v2 
 �

x2 � y2 � , andv3 
 �
x3 � y3 � of T aregrid points(points

�
x � y� for which we have
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the altitude H
�
x � y� ); (2) at least two of theseverticesare verticesof P (i.e., T sharesat least

oneedgewith P); and(3) the triangleT correspondsto a triangleT � in space(with coordinates
�
x1 � y1 � H � x1 � y1 ��� , � x2 � y2 � H � x2 � y2 ��� , � x3 � y3 � H � x3 � y3 ��� ) suchthatT � is “feasible”with respectto ε

(seebelow for a precisedefinition). Becauseinput datais sampledusinga regulargrid, thearea

of T is a goodestimationof its combinatorialcoverage(how many datapoints it covers). The

idealversionof our algorithmsearchesall candidatetrianglesT andpicks thebestat eachstage.

However, for thesake of efficiency, theimplementedversionof our algorithmdoesnot searchall

possibletrianglesT; instead,we doanapproximate(limited) searchfor thebestT, basedon three

basicoperations,which will bedescribedbelow.

SinceeachpolygonP �
� correspondsto an independentsubproblem,we canwork on each

separately. (Thereis no particularorderingin how we storethepolygonsP �	� .) Thus,at each

stepof the algorithm,a bite (triangle)T is taken out of the polygonP at the headof the list � ,

until P is reducedto a singlefeasibletriangle,or it is dividedinto two new simplepolygons,each

of which is insertedinto thelist. Thefinal resultof our algorithmis thelist of all triangles(bites),
�

. Thereis no needto storein memorythelist
�

of trianglesasit is generated.Eachtrianglecan

bewritten out directly to a file. No triangleconnectivity informationis savedat this point (in our

basicalgorithm;themulti-front enhancementwill includea limited amountof connectivity). Each

polygonP �
� is saved asa simplelist of vertices,in counter-clockwiseorder. Thus,only very

smallandsimpledatastructuresarerequired.

Wedefinepreciselywhatwemeanby a triangle(in space)being“feasible” for input terrainH,

with respectto agivenε. Asalreadymentioned,wecanconsidertheinputDEM H tobeaninstance

of a TIN (a polyhedralsurface,S), even thoughno triangulationis explicitly given. Specifically,

to fix thatoneof the many triangulationswe considerto be the input surface,we considerpoint
�
x � y� H � x � y��� to have six neighbors,namely, thosedatapointscorrespondingto

�
x � 1 � y � 1� (the

standardfour grid neighbors)andthediagonalpoints
�
x � 1 � y � 1� and

�
x � 1 � y � 1� .

We saythata triangleT � (in space)satisfiesweakfeasibilitywith respectto ε if, for every grid

point
�
x � y� that lies within the projectionT of T � onto the

�
x � y� -plane,T � intersectsthe vertical

segmentjoining
�
x � y� H � x � y��� ε � and

�
x � y� H � x � y��� ε � . In otherwords,T � fits thefunctionat the

relevantinternalgrid points.Notethatif T � hasavery “skinny” or “small” projection(e.g.,sothat

T containsnogrid pointsat all), thenit will certainlysatisfyweakfeasibility.
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We saythat triangleT � (in space)satisfiesstrong feasibility with respectto ε if T � lies com-

pletelyabove thesurfaceS� ε andcompletelybelow thesurfaceS� ε, whereS� ε (resp.,S� ε) is the

polyhedralsurface(TIN) obtainedby shifting S downwards(resp.,upwards)by ε. Note that if

T � satisfiesstrongfeasibility, thenit certainlysatisfiesweakfeasibility (but theconverseis clearly

false). The notion of strongfeasibility appliesdirectly to approximatingarbitrary input terrains

(e.g.,givenby aTIN ratherthana DEM).

In orderto testweakfeasibility of T � , we only have to examinethe elevationsat grid points

internalto theprojectedtriangleT. Suchinternalgrid pointsareidentifiedusinga standardscan

conversionof T. In Figure1, we indicatethesegrid pointswith smallsquares.Strongfeasibility,

however, requiresthat we alsocheckthe altitudescorrespondingto thosepoints(indicatedwith

circlesin Figure1) thatlie at theintersectionsof anedgeof T with agrid edge.

Weak-feasibility

Strong-feasibility

Figure1: Weakandstrongfeasibility.

Thealgorithmworksby performingthreebasicoperations,oneat a time: earcutting,greedy

biting, andedgesplitting. Eachoperationis appliedto acurrentactivepolygon.Thenext sections

describeeachof theseoperationsin moredetail.
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Ear Cutting

This operationtraversesa polygonP �	� looking for possible“ears” to cut. An ear of a simple

polygonP is a trianglecontainedwithin P thatsharestwo of its edgeswith P. We simply traverse

theboundaryof thepolygon,“cutting off ” any earwhichwediscoverthatcorrespondsto a feasible

triangle(i.e.,onethatmeetsthefeasibility criterionfor ε). Givena vertex vi , we checkif theedge
�
vi � 1 � vi � 1 � is an internaldiagonalto thepolygon,that is, it is to the insideof thepolygonandit

doesnot intersectany otheredge.SeeFigure3. This operationcaneasilybedonein linear time

by a simpletraversalof the boundaryof P. Using a dynamictriangulationof P, andperforming

“ray shootingqueries”,onecanactuallycheckin timeO
�
logk � if

�
vi � 1 � vi � 1 � is anearof asimple

k-gon [12], but the simplelinear-time methodis likely to be morepractical(sincek is typically

small) andis whatwe currentlyhave implemented.(A potentiallyfasterimplementationmaybe

basedontheuseof simplehashingschemes,asis donein theear-clipping-basedtriangulationcode

of Held [16].)

vi � 1

vi � 1

vi

P

Figure2: Illustration of earcutting:
�
vi � 1 � vi � 1 � is a valid diagonal,so the earwith tip vi canbe

clipped.

Eachcut we performlowersthecomplexity (numberof edges)of polygonP by one,thereby

taking thealgorithmcloserto completion.Earcutting is essentialfor thealgorithmto terminate.

In general,it will be thefinal stepin any run of thealgorithm. Also, it hasa tendency to replace

obtuseangleswith acuteones,which eventually leadsto larger edges(hencetriangles)in the

triangulation. Ear cutting is the mechanismthe algorithmusesto adaptitself to lower sampling

rates(largertriangles).
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Earcutting fails whenno morefeasibleearsexist. This tendsto happenwhenthesizeof the

edgesof P aretoo “large”, andtheearscover “too much” areain thepolygon. In this case,there

mustbesomewayto makeedges“smaller,” whichleadsto highersamplingrates.In orderto adapt

to morecomplicatedterrains,weintroducetwo additionalbasicoperations:greedybiting andedge

splitting.

Greedy Biting

In thisbasicoperation,wefind apointv insidethepolygonP andanedge,
�
vi � vi � 1 � of P, suchthat

�
vi � v� vi � 1 � forms a triangle,T, insideP that meetsthe feasibility criterion. We accomplishtwo

thingswith thisoperation:(1) subdividing anedgeof P in two (replacing
�
vi � vi � 1 � with

�
vi � v� and

�
v� vi � 1 � ), therebyachieving a higher“samplingrate”; and,(2) takinga bite out of thepolygonP,

thusprogressingfurtherin “eatingaway” all of P. Theactualoperationis a bit morecomplicated,

as it needsto handlechoicesof v that may be a vertex of P and lead to P beingsplit into two

disjoint new simplepolygons.

Thegreedybiting operationworksasfollows:

� Bite. For thepolygonP, for eachedge
�
vi � vi � 1 � searchfor apointv � P suchthat

�
vi � v� vi � 1 �

correspondsto a feasibletriangle. For efficiency, our currently implementedalgorithm

searchesfor sucha point v amonga selectsetof candidates,as follows. We searchgrid

pointsthatareapproximatelyalongaline thatis perpendicularto
�
vi � vi � 1 � atthemidpointof

�
vi � vi � 1 � , usinga binarysearch,startingat a point whosedistancefrom

�
vi � vi � 1 � is roughly

�
vivi � 1

�
, then halving the distanceat eachstepuntil a point is found (or we fail). See

Figure3.

� Split. If the“Bite” stepsucceedsin finding a point v for which
�
vi � v� vi � 1 � correspondsto a

feasibletriangle,wewill potentiallysplit polygonP. Wesearchfor theclosestedge
�
v j � v j � 1 �

to v. If thetriangle
�
v j � v� v j � 1 � alsocorrespondsto afeasibletriangle,wesubdivide(split) the

polygonP into two simplepolygons,outputtingbothtriangles(
�
vi � v� vi � 1 � and

�
v j � v� v j � 1 � );

otherwise,wesimplyoutput
�
vi � v� vi � 1 � withoutsplitting P.
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vi � 1

vi v j

v j � 1

P

v

Figure3: Illustrationof greedybiting: Thesearchfor avalid biteteststhepointsdenotedby hollow

squaresuntil thepointv is found,resultingin triangle
�
vi � v� vi � 1 � . Sincethenearbyedge

�
v j � v j � 1 �

definesafeasibletrianglewith v, wealsooutputthetriangle
�
v j � v� v j � 1 � andsplit P into two simple

polygons.

Edge Splitting

It may happenthat both ear clipping and greedybiting fail to find a feasibletriangle. In this

case,our algorithmattemptsto split someedgeof the polygonP. Checkingeachedgeof P in

succession,startingwith thelongest,we look for anedgeto split (roughly) in half (or possiblyin

smallerpieces,if splitting in half fails). Whenwe split edge
�
vi � vi � 1 � at a (grid) point v, we are

actuallycreatinga skinny (feasible)triangle,
�
vi � v� vi � 1 � . Sincethe trianglescreatedin this way

aresmallor “slivery”, we prefernot to performthis operationvery often. Indeed,in practicethis

phaseof thealgorithmis seldomlyneeded.

Initialization

Eachphaseof our algorithmworksto triangulatetheinterior of a simplepolygonP, with feasible

triangles. In orderto generatethefirst suchpolygon,boundingthewholedomainR, we applya

one-dimensionalversionof ouralgorithmin eachof thefour crosssections(definedby thevertical

planesx 
 0 � m, y 
 0 � n) thatcorrespondto theboundaryof the region R. Thealgorithmcanbe

consideredto beasimplifiedversionof thestandardmin-link pathmethodof Suri [30], appliedto

thediscretedatapointsbetweentheoffsetcurvesobtainedby shifting theterrainsurfaceup/down

by ε. SeeFigure4.

12



Figure 4: The vertical solid lines denotethe heightsat points along one boundarysegmentof

R. Thedashedpolygonalchainsshowthe resultof shifting thedatapointsup/down,creatingan

envelopeof ε-feasiblecurves.Thesolidline is calculatedbythesimplegreedymethod,at each step

linking to thedatapoint thatextendstheapproximationasfar aspossible, whilestayingwithin the

dashedenvelope.

Main Algorithm

Thealgorithmsimply appliestheabove threeoperations,oneat a time, giving priority (in order)

to earcutting,greedybiting, andthenedgesplitting. A completedescriptionof our algorithmis

outlinedasfollows:

GreedyCutsAlgorithm

(0) Initialize � to be a list of one element– the single polygon obtainedby the initialization

procedureabove.

(1) While � is notempty, do

(a) Let P ��� .

(b) If P is asinglefeasibletriangle,outputthis triangle,andremoveP from � .

(c) Else,while P is not fully triangulated,

(i) PerformearcuttingonP, until no feasibleearsexist.

(ii) PerformgreedybitingonP. If thisresultsin agreedybitethatsplitsP, thenremove

P from � , addthetwo new polygonsto � , andgoto (1). Otherwise,if at leastone

greedybite is found(for someedgeof P), go to (1) (without splittingP).
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(iii) Performanedgesplit for P.

Terrain Sampling

Oneof themostinterestingpropertiesof our algorithmis theway it samplesthedataset.It gener-

ateslargetrianglesin placesof relatively little changeandsmall trianglesin areasof moreradical

change.It is interestingto try to analyzehow this happens,andhereis wherewe canseethenice

couplingof propertiesbetweenthe earcuttingphaseandthe others. If the terrainis largely uni-

form, earcuttinggenerallyleadsto longerandlongeredgesof P, until we encountera region of

highcomplexity, at whichpoint edgesaresubdividedby greedybiting or edgesplitting (amethod

of increasingthesamplingresolution).Oncewe triangulatethehigh complexity region, earcut-

ting againmakestheedgesontheboundarylargerandlarger, i.e.,makingthetriangleslarger. Our

algorithmthereforehasa naturalmechanismfor attemptingto minimize thenumberof triangles

required.(Of course,aswe have alreadysaid,our algorithmis not guaranteedto find a truemin-

imum (anNP-hardproblem).) Thestrategy of where/whento applyeachof our threeoperations

affectswhich regionsget sampledat higher resolutions.Thus,we continueto experimentwith

furthervariantsof oursearchstrategy in hopesof obtainingbetterandsmallertriangulations.

Maintaining Structural Fidelity

A primaryobjectivein any algorithmthatsimplifies(compresses)datais to maintainasmuchof the

importantstructureof theinputaspossible.OuralgorithmgeneratesaTIN thatis closeto theinput

DEM, accordingto thegiventoleranceε. However, beyondtheconstraintof beingε-close,onemay

wishto placefurtherrestrictionsonthestructuralfidelity; for example,onemaywishto preservea

selectedsetof point featuresor of edgefeatures,requiringthatthesurfaceapproximationinclude

thesepointsandsegmentsin the outputTIN. In top-down algorithms,suchrequirementscanbe

incorporatedusing constraints;for example, line segmentscan be preserved using constrained

Delaunaytriangulation(e.g.,[6]). In ourbottom-upalgorithm,wecanincorporatesuchconstraints

directly, at low cost, within the test for triangle feasibility: A triangle T � is not feasibleif its

projection,T, containsa point featureon its interior or boundary, exceptat a vertex, or intersects

anedgefeature,exceptif theedgeis anedgeof T. Further, ouralgorithmcanmaintainthestructure
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of anedgeor aridge,ata lower resolution(within, say, ε) thanthefull resolution,by executingthe

(lowerdimensional)initializationstepin averticalwall (plane)througheachconstraintedge.

Termination

It is importantto considerwhetheror not our algorithmever terminates.Couldit everget“stuck”

andfail to generateany further triangles,eventhoughthe list of untriangulatedregions, � , is not

empty? The answeris “no” for the caseof the weakfeasibility condition,assumingthat greedy

biting is doneby searchingoverall possiblebites.As a proof,considera polygonP ��� . If P has

no grid points,thenany earof P is feasible. (Any simplepolygonwith at least4 verticeshasat

leasttwo ears,by the“Two EarsTheorem”[22].) If P hasgrid pointsin its interior, thentheremust

exist atriangulationof thesepointswithin P (sinceany polygonaldomaincanbetriangulated).All

trianglesin this triangulationmustobey weakfeasibility. In particular, theremustexist a triangle

T thatsharesat leastoneof its edgeswith P. Sucha triangleis eithera (feasible)earof P (found

in earcutting)or a potentialbite (foundin greedybiting, assumingthatwe do a full search).This

provestermination.

In the strongfeasibility case,however we get a differentsituation. Becauseof the discrete

natureof the allowed output(i.e., trianglesmustuseoriginal datapoints,sincewe do not allow

Steinerpoints), and the continuousnatureof the strongfeasibility condition (which joins data

pointsto form apolyhedralsurfaceconstraint),thereare(rare)instancesin whichthealgorithm,as

implemented,cangetstuckwhenusingstrongfeasibility. In responseto this,wehaveimplemented

asimplefeaturethatwill guaranteeterminationin all cases.If thealgorithmcannotfind a feasible

triangle,thenit relaxesthe feasibility conditionin earcutting,andfinds, instead,an earthathas

thesmallestdeviation from theoriginal DEM. (This samefeatureallows usto limit our searchin

greedybiting andstill guaranteeterminationin theweakfeasibility case.)

Complexity

Wefirst remarkthatouralgorithmusesverylittle internalmemory. Otherthantheinputdataarray,

wekeeptrackonly of thelist � of polygons,eachof which is (typically) verysmall.Trianglesthat

we generatedo not needto bestored,but canbewritten out directly to disk. In contrast,methods
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thatrely on triangulationrefinementmustmaintainsomesortof topologicaldatastructurefor the

full setof triangles.Typically, onewould expectthat if theoutputsize(numberof triangles)is k,

thentheboundaryof thepolygons� atany giveninstantwill have roughlysize � k.

It is difficult to proveaboundontheexpectedruntimeof thealgorithm.Clearly, theworst-case

runningtime is polynomialin theinputsize,sinceeachprimitivetestor computationcaneasilybe

performed,usuallyin worst-caselineartime(linear, generally, in thesizeof P ��� ). However, our

experimentalevidencesuggeststhatthealgorithmrunsin time roughlylinearin theinput size.

Theoutputcomplexity for our algorithmis againhardto estimatefrom a theoreticalpoint of

view. The problemwe are trying to solve approximatelyis known to be NP-hard,in general.

Thus,the bestwe canhopefor is that we may be ableto prove a worst-caseboundon the ratio

of our outputsize(numberof triangles)to the numberof trianglesin an optimal TIN. Thereis

goodtheoreticalbasis(e.g.,from greedysetcover heuristics)to suggestthatour algorithm(or a

closevariantthereof)will neverproducemorethanasmall(e.g.,logarithmic)factormoretriangles

thanis possiblefor a givenε. Proving sucha factremainsanopen(theoretical)problem.Perhaps

thebestindicationwehaveof theeffectivenessof thealgorithmis theexperimentaldatawehave,

whichsuggeststhatouralgorithmis obtainingsubstantiallyfewer(roughly20-30percent)triangles

thanthecompetingalgorithm,for thesameerrortoleranceε.

4 The Multi-Front Greedy-Cuts Triangulation

Themainshortcomingof thebasicGreedy-Cutstriangulationalgorithmdescribedin theprevious

sectionis thatit is notpossibleto backtrackat all duringthegenerationof triangles:Eachtriangle

thatis generatedis committed,with no possibilityto modify it later. Thiscanleadto poortriangle

quality, particularlyin thecaseof “bottlenecks,” asillustratedin Figure5. Thebottleneckproblem

happenswhenoneportion of the boundaryinterfereswith the progressof the triangulationnear

anotherportion of the boundary. The bottleneckproblemmay be causedby two portionsof the

front comingclose,while having substantiallydifferentsamplingrates(resolutions)– onesideis a

polygonalcurvehaving verticesplacedmuchmorecloselyalongthecurve thanthoseon theother

side. Then,it is difficult to completethetriangulationwithout doingmany splitsor creatingvery

skinny triangles.Thebottleneckproblemcanalsoariseif thesamplingratesarecomparable,but
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Figure5: Illustration of the bottleneckproblem. (a) The “C” part of the boundaryof the front,

interfereswith the“A” partasit attemptsto grow. Insteadof thetriangulationbeingableto close

neatlywith few trianglesbeinggenerated,thecurve “A” will approach“C”, by closerandcloser

curves, suchas “B”, generatinga large numberof small andbadly shapedtriangles. This can

happeneven if the terrain is perfectly flat in the neighborhoodof the subcurves. (b) Snapshot

(perspectiveprojection)of apartialtriangulationdepictingthebottleneckproblemin practice.

theportionsof thefront havegottensoclosetogetherin forming thebottleneckthatno earcutsor

high-qualitybitesarepossible.

In fact, any advancingfront techniquemay suffer from the bottleneckproblem,andrelated

issues,sincedecisionsthat aremadeearly in the triangulationprocessmay force the algorithm

into a difficult situationto resolve later. Incrementalrefinementanddecimationmethodsavoid

this issueby being “global” algorithmsthat are allowed to make changesanywherewithin the

triangulation.

Our new techniqueis basedon a hybrid approach,which attemptsto exploit the advantages

of boththe(local) advancing-frontapproachandthe(global)refinement/decimationmethods.We

accomplishthis by providing a simpleandefficient partial backtrackingmechanismfor Greedy-

Cuts,which allows the quality of the triangulationto be improved as the algorithmprogresses,
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giving a meansof keepinga goodtriangulationthroughoutthe execution. In order to keepthe

memorycomplexity low, we allow for only a limited amountof backtracking.In particular, we

considertheterrainto bepartitionedinto threetypesof regions:regionswith afinal triangulation,

regionswith a tentativetriangulation,andthe yet-to-betriangulatedregions. The region with a

tentative triangulationis kept “small,” includingonly thosetrianglesthatareadjacentto vertices

on the (true) front. The boundariesbetweenthe threetypesof regions are determinedby two

“fronts” – theusualfront (which we will simply call the front), delineatingtheboundarybetween

the triangulatedregion andthe yet-to-betriangulatedregion, anda secondfront (which we will

call the back front), delineatingthe boundarybetweenthe tentative triangulationand the final

triangulation.The tentative triangulationlies in the region betweenthe front andthe backfront;

we canthink of the backfront as“lagging behind” the front, in the expansionof the region that

we triangulate.Sincethetentative triangulationthatwemaintainis verysmall(proportionalto the

complexity of thefront), we areableto preserve thelow memoryoverheadof theadvancing-front

technique.

Data Structures. Insteadof explicitly keepingthetwo frontsandthetentative triangulation,we

only keepa list of associatedverticesandtriangles.TheTriangle andPoint datastructures

are(roughly)asfollows:

typedef struct point {

Point2 position;

int refCount;

int nTriangle;

Triangle *triList;

} Point;

typedef struct triangle {

struct point *p[3];

int refCount;

} Triangle;

The verticesare instantiatedonly during greedybites(which now includethe edgesplit op-

eration). When a triangle is created,it is not immediatelywritten to the output; initially, it is
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consideredto be tentative (we saythat it is active), andit is flushedto the outputonly whenall

of its correspondingverticesno longerbelongto the outer front. Eachtrianglehasa pointer to

eachof its correspondingvertices,andalsoan independentreferencecount(refCount ). Also,

eachvertex haspointersto eachtrianglein its “useset” (alsoknown asthe “star” of thevertex),

triList . Whena vertex is “output” in theearcutting phase(seebelow), eachof the triangles

in its usesetis “dereferenced”(its refCount is decrementedby one);similarly, whena triangle

is dereferenced,eachof its verticesis dereferenced(by decrementingnTriangle ). Whenthe

referencecount(refCount ) of a trianglehits zero,its storagecanbesafelyreclaimedandit can

be written to a file. Sincea vertex canbe on morethanoneconnectedcomponentof the front,

a secondreferencecount (refCount ) is usedto keeptrack of the numberof active boundary

componentscontainingthevertex. A vertex is written to theoutputwhenits refCount hitszero.

Triangle Quality. In generatingour triangles,insteadof simply usinga greedyselection,asin

theprevioussection,we now enforcea quality criterionbasedon Gueziec’s notionof “compact-

ness”[13]. Givena trianglewith edgelengthsl0 � l1 � l2, thecompactnessmeasureg is givenby

g 
 4 � 3A

l2
0 � l2

1 � l2
2

� (1)

whereA is the (positive) areaof the triangle. Note that0 � g � 1, andasg getscloserto 1, the

trianglegetscloserto an equilateraltriangle. Basically, whengeneratingnew triangles,we give

preferenceto earcutsandgreedybitesthat result in a trianglewhosecompactnessis closeto 1

(within auser-specifiedtolerance).

Ear Cutting. Theearcuttingprocedurehastwo new features:

(1) Wecomputethecompactnessmeasureoneachcandidateeartriangle.

(2) Beforeperformingan earcut, we first attemptto advancethe front by an edge collapseop-

erationon anedgeof the front, in which onefront vertex is movedon top of anotherfront

vertex, andtheincidentedgesareadjustedaccordingly. This edgecollapseis consideredto

befeasibleonly if theresultingnew trianglesalsomeetthequalitystandard.

In Figure6a,weillustrateastandardearcut,whichgeneratestriangle
�
p � q � r � , while causingvertex

q to beremovedfrom theactive list. Figure6b illustratestheresultof performinginsteadanedge
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collapseon
�
q � r � . This edgecollapseis possible,usingour datastructures,becausewe have not

discardedany trianglesthat containa vertex that still belongsto theactive front boundary. Note

that the edgecollapseoperationsavesthe creationof a new triangle. We will alsoseelater that

thisnew localedgecollapseoperationduringanearcutworksnicely in concertwith thenew edge

split operation.

q r

p

(a)

q 
 r

p

(b)

Figure6: (a). A standardearcut resultsin theadditionof theedge
�
p � r � andthecreationof the

new triangle
�
p � q � r � . (b). An edgecollapse,of edge

�
q � r � , resultsin thetriangulationshown.

Greedy Biting and Edge Splitting. As with earcutting, our new greedybiting procedurehas

somenew features:

(1) Wecomputethecompactnessmeasureoneachcandidatetriangle.

(2) We integratenow theedgesplitting processinto thegreedybiting, asfollows: If thereis not

a “good” bite (accordingto the quality measure)from a baseedgee that is on the front,

thenweautomaticallyperformanedgesplit on e. (Therationaleis thatif e is unsuitablefor

biting now, thenit is “too long,” in a sense;sinceit will remainunsuitableasthealgorithm

progresses,wemayaswell do thesplit now.) An edgesplit involvescreatinganew vertex m

nearthemiddleof theedgee 
 �
p � r � ; however, now thatwehaveavailableto usthetriangles

20



p

rq

m

(a)

rq

m

p

(b)

Figure7: Edgesplitting: If no feasiblebite is possiblefrom thebaseedgee 
 �
p � r � , thene is split

at a nearbypoint m. Theprior Greedy-Cutsmethodcreatesa very skinny triangle
�
p � m� r � , asin

(a), sincetherewasnot anoptionto changetheexisting triangle
�
p � q � r � . Now, we allow anedge

swapto takeplace,removing
�
p � r � , andadding

�
q � m� instead,asin (b).

thatareincidenton the front, we areableto performanedge swapin conjunctionwith the

edgesplit, allowing usto avoid creatingvery skinny trianglesin theprocess.SeeFigure7.

Notethatthesplit only happensif triangles
�
p � q � m� and

�
q � m� r � arefeasible.

(3) Thepolygonsplittingthattakesplacein theprevioussectionwhenabiteresultsin anew vertex

closeto anexisting (opposite)front edgeis now replacedby anedgecollapseoperation.

Whengeneratinga new triangleby greedybiting, our algorithmattemptsto avoid creatinga

triangle(evena nicely shapedtriangle)that leavesbehindsmallanglesin the front, asthesewill

endup forcing small angleslater in the triangulationprocess(e.g.,by way of an earcut). For

example,in Figure8, we mayavoid usingvertex a to createa trianglewith baseqr, eventhough

the triangle
�
q � a � r � is almostequilateral,becausetheangle

�
p � q � a� might be too small; we may

prefercreatingtriangle
�
q � b � r � in this situation.

Initial Boundary Smoothing. During theinitialization phaseof thebasicGreedy-Cuts,we per-

form a curve fitting for theboundaryof theterrain,finding a minimum-link approximationof the
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Figure8: Angle considerationsin selectinga new triangle. A quality measureis usedin orderto

biasthealgorithmin favor of nicelyshapedtrianglesduringtriangulation.

boundary, subjectto theerrortoleranceε. (RecallFigure4.) Theresultingapproximateboundary

servesasaninitial front, which is thenadvancedinwards.Unfortunately, this level of greediness

hasthe undesirableeffect of potentially oversimplifying the boundary, making it difficult later

to utilize high-qualitytrianglesto triangulatebetweenthe boundaryandsomenearbyportion of

higherterraincomplexity. Thus,in our new algorithmweperforma“smoothing”operationon the

simplifiedboundary. Specifically, we split edgesasneededin orderto have a boundon theratio

of the lengthof any oneboundaryedgeandthe lengthof its predecessoror successoredgealong

theboundary(i.e., so that l i � l i � 1 � A and l i � 1 � l i � A, wherel i is the lengthof the ith edgein the

approximatingchain,andA is a parametercontrolling thedegreeof smoothing).This procedure

ensuresa logarithmicscaleon thesizeof theedges.

5 Experimental Results

Our Greedy-Cutsmethodsare relatively simple to implement. Our C implementationhasonly

about4,000lines of code. The codeusesseveral computationalgeometryprimitives,many of

which comefrom O’Rourke [22], includingsegmentintersectiontesting,diagonalclassification,

pointclassification(pointlocationwith respectto asimplepolygon).With theseprimitivesin hand,

androutinesto handlesimplepolygonoperations(e.g.,splitting an edgeof a polygon,inserting
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a vertex.), it is fairly easyto implementthe algorithmsdescribedhere. As with all geometric

algorithms,carehasto betakenwith special(degenerate)casesthatarisefrom collinearities.

In order to study its performance,we have conductedtestsof our algorithm andcompared

it with Franklin’s algorithm, which is a top-down approach. We comparedthe speed,average

errorbound(over all the triangles),andthecomplexity of theoutput(measuredin thenumberof

triangles).Weranbothalgorithmsonthefollowing typesof input: realterraindatasets,artificially

generatedterrainsarisingfrom performingcutsto generatefaults,andartificially generatedterrains

arisingfrom lifting triangulations.

Franklin’s Algorithm. Franklin’salgorithm[9] is anincrementalrefinementmethod,with addi-

tionaldiagonalswappingheuristicsincludedin orderto generatehopefullygoodquality triangles.

Initially, the algorithmapproximatesthe DEM by 2 triangles. Then,a generalstepof the algo-

rithm involvesfinding the mostdeviant point within eachcurrenttriangleandinsertingthis new

point into the triangulation,splitting one triangle into three. Eachtime a point is inserted,the

algorithmcheckseachquadrilateralthat is formedby a pair of adjacenttriangles,at leastoneof

which is a new triangle (oneof the threeincidenton the new point). A local conditionon the

quadrilateraldetermineswhetheror not to performa diagonalswapto improve thequality of the

triangles. The original codeworks by performinga predeterminednumberof splits. We have

modifiedslightly thecodeto makeasmany splitsasnecessaryin orderto meetaprespecifiederror

boundε. Franklin’s implementationis donecarefully, with emphasisonefficiency. For thesakeof

speed,it usesinternalmemoryasmuchaspossible.

Delaunay-based Triangulation and Scape. We usethecodewritten by GarlandandHeckbert

[10] which implementsanextremelyfastversionof thealgorithmoriginally proposedby Fowler

andLittle [8]. This providesuswith anothercomparisonpoint for thealgorithmsproposedin this

paper.

Experimental Setup. OurexperimentswereconductedonaSiliconGraphicsO2,equippedwith

oneR5000processorand192MBof RAM.

In Table 1, we show the resultsof running on seven real terrain datasetseachof the four
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Terrain ε Franklin GcTin MF-GcTin Scape

Buffalo 2.5 2K (1.1s) 2.2K (7.5s) 2.8K (5s),2.8K (6s) 2K (0.2s)

Denver 2.5 2.7K (2s) 2.8K (9.6s) 3.4K (6.8s),3K (5s) 2.6K (0.2s)

EaglePass 1.5 1.5K (1s) 1.6K (3s) 2.1K (3.2s),1.7K (2s) 2K (0.2s)

GrandCanyon 15 2.8K (2.2s) 3.1K (13.7s) 3.7K (9.6s),3.3K (7s) 2K (0.2s)

Jackson 0.5 1.4K (1.1s) 1.1K (1.3s) 1K (2.5s),1.5K (1.8s) 3.1K (0.3s)

Moab 15 2.6K (1.8s) 2.4K (7.4s) 2.5K (5s),2.6K (4.8s) 2.5K (0.2s)

Seattle 5 2.7K (2.8s) 2.7K (9.5s) 2.5K (4.8s),3K (5s) 2.4K (0.2s)

Table1: Experimentalresultsof approximations,trianglecounts,andrunningtimes:Thetriangle

countsfor thenew algorithmareshown with strongandthenweakfeasibility.

algorithms:Franklin’salgorithm,theoriginalGcTin , ournew MF-GcTin algorithm,andGarland

and Heckbert’s Scape . The table shows the choiceof ε, and the total numberof trianglesin

the outputTIN, for eachof the seven terrains. All the input terrainswere120-by-120elevation

arrays.SeeFigure9(a)–(d)for screenshotsof partial triangulationsof theDenver terrainduring

therunningof thenew algorithm.

GcTin with weak-feasibilityresultsin a lower trianglecountthanFranklin’s code,in all in-

stances.Here,weareapplyingstrong-feasibilitywith GcTin andbothstrongandweakfeasibility

with our new algorithm. In termsof trianglecount,whenusingstrongfeasibility both GcTin

andMF-GcTin areshowing a slightly higher trianglecount thanFranklin’s, which essentially

usesweakfeasibility. However, notethat the trianglecountsof our new algorithm,MF-GcTin ,

underweakfeasibilityaresubstantiallylowerthanthoseunderstrongfeasibility, andcomparevery

favorably to thoseof Franklin’s algorithm. Note,however, that with our new algorithm,making

directcomparisonsis somewhatcomplicatedby theadditionaltrianglequality parameters(bound

ong). Theresultsin Table1 arebasedonusingg 
 0 � 5. Overall,wehavebeenableto improveon

boththenumberof trianglesgeneratedaswell astheirnumber, with respectto theoriginalGcTin

code.

The Scape codeis by far the fastest. Often, it generatestriangulationswith very similar

trianglecountsastheotherones,althoughsometimes,suchasfor theJacksonterrain,it generates
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Terrain ε Franklin GcTin MF-GcTin Scape

µ σ µ σ µ σ µ σ

Buffalo 2.5 0.74 0.22 0.64 0.29 0.76 0.20 0.77 0.17

Denver 2.5 0.73 0.23 0.64 0.29 0.75 0.21 0.77 0.17

EaglePass 1.5 0.72 0.22 0.60 0.30 0.75 0.21 0.75 0.18

GrandCanyon 15 0.71 0.24 0.61 0.30 0.77 0.20 0.75 0.18

Jackson 0.5 0.63 0.27 0.54 0.33 0.67 0.28 0.70 0.20

Moab 15 0.70 0.23 0.59 0.32 0.73 0.21 0.74 0.18

Seattle 5 0.71 0.24 0.63 0.30 0.76 0.20 0.75 0.18

Table2: Summaryof trianglequality measures.We reportthemedianµ andstandarddeviation σ

for thetriangulationsshown in Table1.

more than3 timesasmany triangles. We believe this is due to the Delaunayconstraintwhich

forcesthetriangulationto have strict (projected)shape.Notethat for othermeshes,theDelaunay

triangulationsyieldsmuchfewertriangles,suchasfor theGrandCanyondataset.Thetriangulation

quality of theDelaunaytriangulationis quitegood,andquitesimilar to MF-GcTin .

Memory Usage. Thememorycostof MF-GcTin is aboutthesameasGcTin , with only avery

slight increase,sincewe are storing a small numberof (tentative) triangles. By instrumenting

malloc() , we wereableto determinethatFranklin’scodeusesbetween13 to 17 timesasmuch

memoryasGcTin ; thus,our techniquesuseanorderof magnitudelessmemorythanFranklin’s

code. Scape usesquite a bit of memory;GarlandandHeckbert[10] report that for generating

anapproximationwith m (output)pointsof a meshwith n (input) points,their algorithmrequires

3n � 292m bytes. That is, thememorycostgreatlyincreaseswith the size(andaccuracy) of the

output.Weshouldnotethatour algorithmsdo not haveany significantmemorycostrelatedto the

sizeof theoutput,thusmakingit possibleto generateaccuratetriangulationsof very largeterrains

with little memoryoverhead.
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Triangle Quality Measures. Figs.13–18show histogramsof Gueziec’s quality measurefor six

(of the seven) terrains. Table2 summarizesthe results. It is clear that the new algorithmgives

a substantiallybetterdistribution of trianglequality that eitherFranklin’s algorithmor our basic

GcTin . In particular, we canseethat the numberof goodtriangles(the major peak)is always

higher in the (c) column. In fact, the new algorithm gives triangle quality comparableto the

Delaunaymethod(Scape ), while using far lessmemoryand, on somedatasets(e.g., Jackson

terrain),usingfewer triangles.

In Figure10 we compareFranklin’s algorithmto ourson a challengingdatasetconsistingof a

clif f. Franklin’salgorithmfails to triangulateproperly. A similarexperimentona“bump” is shown

in Figure11. Here,neithertechniqueperformsverywell, but bothresultsareacceptable,andMF-

GcTin generatesa largernumberof well-shapedtriangles.Finally, in Figure12,we comparethe

Denver terraintriangulatedwith GcTin , andour new multi-front extension,MF-GcTin .

6 Conclusions and Future Work

We have presenteda new methodto generateTriangularIrregular Networks (TINs) from dense

terraingrids. Our algorithmdiffers from previousmethodsin its useof a bottom-upapproachto

terrainsampling.Its key featuresinclude:

� LowComplexity OutputTIN. Ourmethodgeneratesvery few trianglesfor agivenε. Indeed,

a primaryobjective in usingthegreedyoptimizationstepis theminimizationof thenumber

of trianglesin theoutput.

� MemoryEfficiency. It canberun on very large terrains,potentiallyeventhosewhosegrids

cannotsimultaneouslyfit in memory.

� Maintenanceof Structural Fidelity. Our methodis able to maintainwith very little addi-

tional overheadany pre-specifiedsetof featuresof the terrain,without theneedfor adding

additional(Steiner)points.

� Speed. Our running times are comparableto the fastestavailable methods,and we can

probablyimprovetheperformancedramaticallywith acarefulrefinementof our code.
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Our experimentalresultsso far have focussedon the quality of the outputTIN. The running

time cancertainlybe improvedthroughmorecarefulcoding. Also, furtherexperimentationwith

theheuristics,especiallythegreedybiting operation,shouldyield evenbetterresultswith respect

to theoutputsize. On the theoreticalside,we arealsoattemptingto prove worst-caseboundson

theperformanceof theapproximation(e.g.,thatweobtainanumberof trianglesthatis guaranteed

to bewithin asmallfactorof optimal).

A straightforwardmodificationof our codewill permitthealgorithmto work onarbitraryTIN

terraininputs,ratherthanjust on DEM arrays.Conceptually, thereareno changesneededto the

algorithm. A somewhat lesstrivial modificationwill be to generalizethe algorithmto approxi-

matearbitrary (non-terrain)polyhedralsurfacesandto find approximationsto a minimum-facet

separatingsurface(asdonein [2, 3, 21], in theconvex case).

Another straightforward extensionof our methodallows one to useit to build hierarchical

representationsof terrain. For example,we cansimply startwith an extremelycrudeterrainap-

proximation(e.g., just two triangles),andthenadjustε to be smallerandsmaller, makingeach

correspondingTIN a refinementof the previous one,until we have the full resolutiongrid. An

idealsuchhierarchywould have logarithmicheight,e.g.,for intermediateTINs having sizes2, 4,

8, 16,etc.

Our methodsapplyalsoto hugedatasetsthathave beencut into smallerblocks. Specifically,

alongtheboundaryof eachblockweperformthecurvefitting for thecorresponding“slice” of the

terrain,andusethis to initialize thefront propagationinto eachof the(up to) two blocksthatshare

theboundary. If wewantto permitedgeswapsacrossblockboundaries,in thespirit of MF-GcTin ,

thenwe canmaintain(at a small increasein thetotal storage)thatportionof thetriangulationthat

is incidenton thepointsalongtheblockboundaries,andthenperformlocaloperationsto improve

this portion of the triangulation,either at the beginning of the front propagation,or as a final

postprocessingstep.

Anotherextensionthatwearepursuingis to approximatefunctions(terrains)of threevariables.

Approximatingsuchfunctionsis veryimportantin scientificvisualization.Onecanapplyoursame

paradigmto this problem,biting off tetrahedrathatsatisfytheε-fitnesscriterion. Thetricky issue

in implementingthis algorithmis in maintainingtheregions � of untetrahedralizeddomain,since

this will beapolyhedralspace,possiblyof highgenus.
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Preliminaryinput from our currentusershave beenvery favorableon thereleased(basic)ver-

sion of GcTin . We plan to releasea new versionof the software, with the new MF-GcTin

algorithm,andseveralimprovements(andnew features)basedontheircomments.Wewouldvery

muchlike to know moreabouthow effectiveGcTin canbein realGIS applications.

The web site (http://www.ams.sunysb.edu/ c̃silva/gctin.tgz) containsthe currentGcTin

codeandwill bekeptup to datewith futurereleases.
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(a) (b)

(c) (d)

Figure9: Screenshotsduring the triangulationof the Denver terrain,using the new algorithm.

Colorscorrespondto thecurrentstateof a triangle:light green(3 verticesonthefront), darkgreen

(2 verticeson the front), red (1 vertex on the front), or gray (fully committed– no vertex on the

front). (Seecolorversiononourwebsite.) (a). earlystagesof thealgorithm;(b). atasplit; (c). the

triangulationaroundasplit; (d). anearlystageof thealgorithmwithoutquality measuresimposed

on triangles.
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(a) (b)

Figure10: Quality comparisonusinga “Clif f ” dataset.(a) Franklin’salgorithm.(b) MF-GcTin .

(a) (b)

Figure11: Qualitycomparisonusinga“Bump” dataset.(a)Franklin’salgorithm.(b) MF-GcTin .

(a) (b)

Figure12: Quality comparisonusingthe “Denver” dataset.(a) ThebasicGcTin algorithm. (b)

Thenew multi-front technique,MF-GcTin .
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Figure13: Histogramof Gueziec’s quality measurefor Buffalo terrain. Franklin’s algorithmis

shown in (a). TheoriginalGcTin in (b), andournew MF-GcTin algorithmin (c), andScape in

(d).
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Figure14: Histogramof Gueziec’s quality measurefor Denver terrain. Franklin’s algorithm is

shown in (a). TheoriginalGcTin in (b), andour new MF-GcTin algorithmin (c) andScape in

(d).
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Figure15: Histogramof Gueziec’s quality measurefor EaglePassterrain.Franklin’s algorithmis

shown in (a). TheoriginalGcTin in (b), andour new MF-GcTin algorithmin (c) andScape in

(d).
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Figure16: Histogramof Gueziec’squalitymeasurefor GrandCanyonterrain.Franklin’salgorithm

is shown in (a). TheoriginalGcTin in (b), andour new MF-GcTin algorithmin (c) andScape

in (d).
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Figure 17: Histogramof Gueziec’s quality measurefor Moab terrain. Franklin’s algorithm is

shown in (a). TheoriginalGcTin in (b), andour new GcTin algorithmin (c) andScape in (d).
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Figure18: Histogramof Gueziec’s quality measurefor Seattleterrain. Franklin’s algorithm is

shown in (a). TheoriginalGcTin in (b), andour new MF-GcTin algorithmin (c) andScape in

(d).
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