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Abstract

We proposeadwancing-frontechniquegor theproblemof simplificationof densedigitized
terrainmodels. While mostsimplificationalgorithmshave beenbasedon eitherincremental
refinementbor decimationtechniquespur Greedy-Cutsalgorithmsusea simpletriangulation-
growth procedure.They work by taking greedycuts (“bites”) out of a simpleclosedpolygon
thatboundsa connecteccomponenbf the yet-to-betriangulatedregion. The methodbegins
with alarge polygon,boundingthewhole extentof theterrainto betriangulatedandworksits
way inward, performingat eachsteponeof threebasicoperationsearcutting, greedybiting,
andedgesplitting.

In this paper we presentboth the basic Greedy-Cutdramevork (which hasbeenintro-
ducedin our earlierpaper)anda nev enhancemertf the Greedy-Cutsnethodthatimproves
thequality of theresultingtriangulation.Thisimprovementis madepossiblehroughthe main-
tenanceof two “fronts”, a realfront anda virtual front, thatboundbetweenthema region of
the terrainthat hasonly a tentatie triangulation. By allowing simplelocal operationgedge
collapsesandedgeflips) in thetentatve triangulation we areableto avoid mary of theartifacts
of thebasicGreedy-Cutadwancing-fronttechniquewhile not significantlyaffectingmemory
usageor runningtime.

Our implementationof Greedy-Cutsaswell asits multi-front enhancemenis publicly
availablein the GcTin system. We give experimentalevidenceof the effectivenessof the
multi-front enhancemento the Greedy-Cutanethodand shav that our methodis competi-
tive with currentalgorithmsin termsof runningtime. One of the major adwvantagesof our

implementations thatit requiresvery little memorybeyondthatfor theinput heightarray



1 Introduction

The problemof triangulatingdenseterrain models,while approximatingthemto within a user
specifiederror bound,is fundamentato several GIS applications,and hasbeenstudiedactively
sincethe early 1970s. Many algorithmshave exploited the good quality propertiesof Delaunay
triangulationse.g.,onestandardrefinement’approachs basedon building triangulationsncre-
mentallyby insertingverticesinto a coarsdriangulationwhile maintainingthe Delaunayproperty
(e.g.,see[8]). In contrastwith refinementmethods,which startwith a coarsetriangulationand
refineit, decimationtechniquesstartwith a fine triangulation(the original data)and iteratively
remove selectedooints, resultingin a coarseningof the triangulation[17, 18, 27]. We referthe
readergo therecentsurwey of GarlandandHeckbert15] or of vanKreveld [31] for anextensve
discussiorof prior work.

Thereareseveraltradeofs betweenncrementarefinementanddecimationtechniquesif we
seeka coarseapproximationjncrementarefinementmethodsendto corverge fastey sincethey
startalreadywith a very coarsetriangulation. On the otherhand,very accurateapproximations,
with alow errortolerancearecomputedmostdirectly usinga decimationprocedurestartingfrom
the full resolutiondata. Memory consumptionis an importantissuein designingtriangulation
methods Most of the currenttechniqueseedto keepfairly large datastructuresn memory since
they rely on having thetriangulationin memoryatintermediatestagesf thealgorithm.

Largely dueto its low memory consumptionwe have investigated‘advancing-front” tech-
niquesfor terraintriangulation. In short,advancing-fronttechniquesare basedon incrementally
triangulatingthe terrain, onetriangle at a time, at its final resolution,while adwancinga “front”
acrossghedata. Thefrontis a setof polygonalcurvesthatrepresenthe boundarybetweerthe al-
readytriangulatedregion andthe yet-to-betriangulatedregion. The memoryconsumptioris low,
sincewe only have to storearepresentationf the front in memory;astrianglesarecreatedthey
canbe output(e.g.,written to afile). Anotherpotentialadvantageof advancing-frontmethodss
thatthey lendthemselesreadilyto beingableto handlestructural fidelity constraintge.g.,river,
road,andfault line boundaries)by insisting that theseedgesappearas edgeswithin the output
triangulation,while still respectinghe errorbounds.The methodalsoreadily permitsoneto par

tition the data,possiblyspecifyinga differenterror boundin differentregionsof the terrain;this



may be usefulin applicationgequiringreal-timetriangulation.

This paperpresentur experiencein devising andimplementingadvancing-fronttechniques
for terrain surfaces. We begin with a detaileddiscussionof our basic Greedy-Cutsalgorithm,
aswasfirst reportedin an earlier conferencepaper[29]. While we have boundthat the basic
algorithmhasfavorablepropertiesn termsof memoryconsumptiorandtotal numberof triangles,
it is muchlesseffective at producinghigh quality triangulationsrom the point of view of angles
thatarecloseto zeroor closeto 1. Thus,we have developedanenhancedersionof Greedy-Cuts
(asfirst reportedin the conferenceversionof this paper[28]) that addressethe main weakness
of our earlieradvancingfront technique- triangle quality. The potentialfor low triangle quality
is an intrinsic shortcomingof advancingfront methodsthat do not permit backtrackingin their
decisions.The novel featureof our new algorithmis thatwe maintaintwo “fronts”, arealfront,
anda virtual “back” front, andthe tentatve triangulationof the region in between.By allowing
edgecollapsesandflips in theregion betweerthefronts,we areableto obtainmuchhigherquality

triangulationswhile preservinghe low-memoryfeatureof the advancing-frontmethod.

2 Background and Related Work

A terrain is thegraphof afunctionof two variables. Thefunctiongivesthe elevationof eachpoint
in thedomain.Terrainmodelsarewidely usedn visualizationandcomputeigraphicsapplications,
suchasflight simulators financialvisualizationtools, stratejic military analyzersgeographidan-
formationsystemsandvideogamesThus,it is of theutmostimportancethatprimitive operations
canbeperformedn real-time.Severalfactorsmay affect the efficiengy of algorithmsthatoperate
onterrain;the mostimportantareprobablythe sizeof theinput andits underlyingdatastructure.
The most commonsourceof digital terrain elevation datais the DEM (Digital Elevation
Model)), suppliedby the U.S. GeologicalSurwey. A DEM is basicallya two-dimensionafloat-
ing point heightarray It cancontainan extremelyhigh level of redundang, which, in turn, can
forbid real-timeapplicationdrom usingit. Severalalternatve datastructureshave beenproposed,
including contourlines, quad-treesand TINs (Triangular Irregular Network$. TINs standout as
beingoneof themostcornvenientto usefor renderingandothergeometriananipulatioroperations.

A TIN is a setof contiguousnon-overlappingtriangleswhoseverticesare placedadaptvely over
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theDEM domain[8]. Theautomatiogeneratiorof TIN modelsfrom DEM modelsis animportant
areaof researchandis the maintopic of this article. Severalfactorsareimportantin judgingthe

quality of the TIN representationf agivenDEM (list partially adaptedrom [23, 24)):

Numericalaccumacy— measureésmaximum,mean,or standardieviation error;

Visual accuracy— usuallyassesselly inspectionandby numberof “slivery” triangles;

Sizeof themodel- measuredsthe numberof outputtriangles;

Algorithm compleity — measuredn termsof thetime to generatehe TIN andthe memory

requirement.

Fowler andLittle [8] haveintroducedoneof thefirst (andstill very popular)methoddo address
the problemof automaticgeneratiorof TINs directly from DEMs. Their methodis very simple.
First, they classifythe pointsby automaticallychoosingsome“important” featuresof theterrain,
suchasridgesandpeaks.They describethis phaseof the algorithmasconstructinghe “structural
fidelity” of themodel;i.e.,the TIN representatioshouldhave the samegeographicafeaturesas
the DEM. Then,they incrementallycomputeatriangulationof the points;in their casethey chose
to usethe Delaunaytriangulation. At eachstep,a new point is addedto the triangulationuntil
no pointsarefartherfrom the original surfacethana certainpredefinedhreshold. This phaseis
designedo presere the “statisticalfidelity” (i.e,to makeit fit the specifiederrorbound).

Franklin [9] hasproposeda similar approachbackin 1973. It appearghat his methodhad
no notion of structuralfidelity, andhe did not usethe Delaunaytriangulationasthe basisfor his
method(althoughhe doesusea local edge-svappingheuristicin orderto preferquality triangu-
lations). A new versionof his codeis publicly available,andwe usedit for comparisorwith our
method.A detaileddescriptionof his algorithmandcodeis givenin Section5. Recently substan-
tial researcthasbeenconductedn creatinghierarchicalktructureon top of TINs [7, 25], andon
techniqueso improvethequality of TIN meshe$26]. Scarlatosdissertatiorf23] is agoodsuney
of terrainmodelingandrepresentationA very recentapproacho building hierarchicaimodelsof
terrainsis givenby de Berg andDobrindt[6], who applya hierarchicarefinemenof theDelaunay

triangulationto representerrain TINs at mary levelsof detail. Seealso[17, 18] for anapproach



calledthe“drop heuristic”andits comparisorwith othermethods.Commonto all theseprevious
methodss the necessityto have a completestartingtriangulationthatis eitherrefinedby adding
new points,or decimated27] by removing redundanpoints. Theseapproachesequirethatthe
algorithmmaintainin memorya completetriangulationrepresentatioof theinput, extendedwith
variouspiecesof global information (e.g.,mostdeviant point per triangle). The needfor global
informationimpactsthe runningtime andmemoryrequirement®f thesealgorithms.

Ourwork is basedon anentirely differentapproacHor the triangulationandsimplificationof
thedata.lt is basedn anideain the methoddevelopedby Mitchell andSuri[21], wherea greedy
setcover approachhasbeendevelopedfor approximatingcorvex surfaces,andusedrecentlyby
Varshng [32] in heuristicsfor simplifying CAD models. We canconsiderthe input DEM to be
aninstanceof a TIN with very high resolution.In particulay eachpixel of the DEM corresponds
to four elevation datapoints,andwe considertheseto definetwo adjacentrianglesof a surface.
(A squarepixel canbetriangulatedn oneof two ways. We triangulateall pixelsuniformly, with
diagonalsat 45-degrees.)Our goalis to simplify this input TIN surfaceto createa new TIN that
hasfar fewer triangles,but is still within a specifiederrorboundof the original surface. Froman
algorithmicpointof view, terrainsimplificationis hard(NP-hard)4, 5], but somepolynomial-time
algorithmsareknown for computinga nearly-optimakl(i.e., nearlyminimum-facet)approximating
surface guaranteetb bewithin afactorO(logn) of optimal(se€{1, 3,19,21]), or within aconstant
factorof optimal,if thesurfaceis corvex (see[2]). Unfortunatelythe polynomial-timeboundsfor
thesetheoreticallygoodapproachess ratherhigh (at leastcubic). In contrast,from the practical
point of view, mostof the previous computergraphicsandgeographyesearchn theareais based
onheuristicdor generatindriangulationghat“fit” theoriginal data,but have noguaranteesither
in termsof the closenes$o optimalor in termsof theworst-caseunningtime.

The principle thatdrivesour method(andis relatedto thatof [3, 21, 32)) is the samegreedy
principle thatis usedto computeminimum-Ilink pathsin simple polygons. This problemis well
studiedin computationalgeometry[14, 20, 30] and can be usedto find an optimal piecavise-
linear approximationto a function of a singlevariable(see[11]). Our problemis of onehigher
dimension. We usea greedy-faceaipproachselectinglarge triangles(bites) by which to extend
anapproximatingsurface,basedn their feasibility (i.e., they mustlie within ane-fatteningof the

original surface)and on their size (e.g.,areaof projectionin the x-y plane). The useof greedy
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algorithmsis known to give provably goodapproximatiorresultsin mary combinatoriabptimiza-

tion problems;for example,the setcover problemis approximatedvithin alog factorof optimal

by anaturalgreedyalgorithm,andthis factleads[21] to aprovably goodapproximatioralgorithm

for the corvex caseof our problem. We have not yet beenableto prove that our algorithm has
a guaranteecffectivenesswith respecto optimal, but we are hopefulthatinterestingproperties
canbe proved aboutits performance Currently our codeonly handlesnputsin the form of ele-

vationarraysbut in principle,thereis no reasorwhy it cannotbe extendedo arbitrarypolyhedral
terrains,or, for thatmatter polyhedralsurfacesin general.Extensiongo higherdimensionsalso
seempossible thatis, for simplifying piecavise-linearfunctionsof threevariablesdefinedover

tetrahedralizationsf 3-space.

Insteadof a top-davn approachthat startswith a feasibleDelaunaytriangulationandtriesto
generatdiner andfiner Delaunaytriangulationsby addingpointsto the already-createttiangula-
tions, our algorithmworks bottom-up.At eachstep,a greedycutis takenfrom anuntriangulated
polygon. The greedycutsareanattemptto samplethe dataat the lowestpossibleresolution thus

minimizing the numberof trianglesin the output.

3 The Greedy-Cuts Triangulation Algorithm

This sectiondescribeshe basicGreedy-Cutslgorithmin somedetail; seealso[29]. Theproblem

definitionis asfollows:

Givenaninputarray H, of heightsH(x,y), 0 < x < mand0 <y < n, whosedatapointsare
sampledrom aregulargrid onarectangleR, andsomee > 0 specifyinganerrortoleranceFind a
triangulatedsurface(TIN) thatrepresentaterrainon R, suchthatthe TIN hasa smallnumberof
triangles(T;), andeachdatapoint given by the arrayH (x,y) lies within vertical distancee of the

TIN.

The algorithm maintainsa list of untriangulatedsimple polygons 2, which representghe
portionof R overwhich no triangulatedsurfacehasyet beenconstructedAt eachstep,our goalis
to selecta maximumareatriangle T within oneof the polygonsP € P, suchthat (1) the vertices

vi = (X1,Y1), V2 = (X2,¥2), andvz = (X3,y3) of T aregrid points(points(x,y) for which we have



the altitude H(x,y)); (2) at leasttwo of theseverticesare verticesof P (i.e., T sharesat least
oneedgewith P); and(3) the triangle T correspondso a triangle T’ in space(with coordinates
(X1,Y1,H(X1,¥1))s (X2,¥2,H(X2,¥2)), (X3,Y3,H(X3,¥3))) suchthatT’ is “feasible” with respecto &

(seebelow for a precisedefinition). Becausenput datais sampledusinga regular grid, the area
of T is a good estimationof its combinatorialcoverage(how mary datapointsit covers). The

idealversionof our algorithmsearchesll candidatdrianglesT andpicksthe bestat eachstage.
However, for the sale of efficiency, theimplementedrersionof our algorithmdoesnot searchall

possibletrianglesT; instead we do anapproximatelimited) searcHor thebestT, basednthree
basicoperationswhich will bedescribedelaw.

SinceeachpolygonP € P correspondso anindependensubproblemwe canwork on each
separately (Thereis no particularorderingin how we storethe polygonsP € P.) Thus,at each
stepof the algorithm, a bite (triangle) T is taken out of the polygonP at the headof the list P,
until P is reducedo asinglefeasibletriangle,or it is dividedinto two new simplepolygons,each
of whichis insertednto thelist. Thefinal resultof our algorithmis thelist of all triangles(bites),
T. Thereis no needto storein memorythelist 7 of trianglesasit is generatedEachtrianglecan
be written out directly to afile. No triangleconnectvity informationis savedat this point (in our
basicalgorithm;the multi-front enhancememill includealimited amountof connectvity). Each
polygonP € P is saved asa simplelist of vertices,in counterclockwiseorder Thus,only very
smallandsimpledatastructuresarerequired.

We definepreciselywhatwe meanby atriangle(in spaceeing“feasible” for inputterrainH,
with respecto agivene. As alreadymentionedye canconsidetheinputDEM H to beaninstance
of aTIN (apolyhedralsurface,S), eventhoughno triangulationis explicitly given. Specifically
to fix thatone of the mary triangulationswe considerto be the input surface,we considerpoint
(x,y,H(x,y)) to have six neighborspamely thosedatapointscorrespondingo (x4 1,y+ 1) (the
standardour grid neighborsiandthediagonalpoints(x+ 1,y+ 1) and(x— 1,y — 1).

We saythatatriangleT’ (in space)atisfiesveakfeasibilitywith respecto ¢ if, for every grid
point (x,y) thatlies within the projectionT of T’ ontothe (x,y)-plane, T’ intersectghe vertical
segmentjoining (x,y,H(x,y) —€) and(x,y,H(x,y) +¢€). In otherwords, T’ fits thefunctionatthe
relevantinternalgrid points.Notethatif T’ hasavery “skinny” or “small” projection(e.g.,sothat

T containsno grid pointsatall), thenit will certainlysatisfyweakfeasibility.
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We saythattriangle T’ (in space)satisfiesstrong feasibility with respecto € if T’ lies com-
pletelyabove the surfaceS—¢ andcompletelybelow the surfaceS™, whereS—¢ (resp.,S™) is the
polyhedralsurface(TIN) obtainedby shifting S downwards(resp.,upwards)by €. Note that if
T’ satisfiesstrongfeasibility, thenit certainlysatisfiesveakfeasibility (but the corverseis clearly
false). The notion of strongfeasibility appliesdirectly to approximatingarbitrary input terrains
(e.g.,givenby aTIN ratherthana DEM).

In orderto testweakfeasibility of T/, we only have to examinethe elevationsat grid points
internalto the projectedtriangle T. Suchinternalgrid pointsareidentifiedusinga standardscan
cornversionof T. In Figurel, we indicatethesegrid pointswith smallsquares Strongfeasibility,
however, requiresthat we also checkthe altitudescorrespondingo thosepoints (indicatedwith

circlesin Figurel) thatlie attheintersection®f anedgeof T with agrid edge.
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B Weak-feasibility

Figurel: Weakandstrongfeasibility.

The algorithmworks by performingthreebasicoperationspneat a time: earcutting, greedy
biting, andedgesplitting. Eachoperations appliedto a currentactive polygon. The next sections

describesachof theseoperationsn moredetail.



Ear Cutting

This operationtraversesa polygonP € P looking for possible“ears” to cut. An ear of a simple
polygonP is atrianglecontainedwithin P thatsharedwo of its edgeswith P. We simply traverse
theboundaryof the polygon,“cutting off” any earwhichwe discoverthatcorrespondso afeasible
triangle(i.e., onethatmeetsthefeasibility criterionfor €). Givenavertex vi, we checkif theedge
(vi—1,Vi+1) is aninternaldiagonalto the polygon,thatis, it is to the inside of the polygonandit

doesnot intersectary otheredge.SeeFigure 3. This operationcaneasilybe donein lineartime
by a simpletraversalof the boundaryof P. Using a dynamictriangulationof P, and performing
“ray shootingqueries”,onecanactuallycheckin time O(logk) if (vi_1,Vi+1) is anearof asimple
k-gon [12], but the simplelineartime methodis likely to be more practical(sincek is typically

small) andis whatwe currentlyhave implemented.(A potentiallyfasterimplementatiomrmay be
basedntheuseof simplehashingschemesasis donein theearclipping-basedriangulationcode
of Held [16].)

Figure2: lllustration of earcutting: (vi—1,Vi+1) is a valid diagonal,so the earwith tip v; canbe

clipped.

Eachcut we performlowersthe compleity (numberof edges)f polygonP by one,thereby
taking the algorithmcloserto completion. Ear cutting is essentiafor the algorithmto terminate.
In generaljt will bethefinal stepin any run of the algorithm. Also, it hasa tendeng to replace
obtuseangleswith acuteones,which eventually leadsto larger edges(hencetriangles)in the
triangulation. Ear cutting is the mechanisnthe algorithmusesto adaptitself to lower sampling

rates(largertriangles).

10



Ear cutting fails whenno morefeasibleearsexist. This tendsto happenwhenthe size of the
edgesf P aretoo “large”, andthe earscover “too much” areain the polygon. In this case there
mustbesomeway to make edges'smaller” whichleadsto highersamplingrates.In orderto adapt
to morecomplicatederrainswe introducetwo additionalbasicoperationsgreedybiting andedge

splitting.

Greedy Biting

In thisbasicoperationwe find apointv insidethepolygonP andanedge,(vi, vi+1) of P, suchthat
(vi,v,vi+1) formsatriangle, T, inside P that meetsthe feasibility criterion. We accomplishtwo
thingswith this operation:(1) subdviding anedgeof P in two (replacing(vi, vi+1) with (v;,v) and
(v,vi+1)), therebyachieving a higher“samplingrate”; and,(2) taking a bite out of the polygonP,
thusprogressindurtherin “eatingaway” all of P. Theactualoperationis a bit morecomplicated,
asit needsto handlechoicesof v that may be a vertex of P andleadto P being split into two
disjoint new simplepolygons.

Thegreedybiting operationworksasfollows:

¢ Bite. ForthepolygonP, for eachedge(Vvi,Vvi+1) searchor apointv € P suchthat (v, V, Vi11)
correspondgo a feasibletriangle. For efficiengy, our currently implementedalgorithm
searchedor sucha point v amonga selectsetof candidatesasfollows. We searchgrid
pointsthatareapproximatelyalongaline thatis perpendiculato (vi, vi+1) atthemidpointof
(vi,Vi+1), usingabinary searchstartingat a point whosedistancerom (v;, vi+1) is roughly
IVivit+1|, then halving the distanceat eachstepuntil a point is found (or we fail). See

Figure3.

e Split If the“Bite” stepsucceed finding a pointv for which (vi,v,vi11) corresponds$o a
feasibletriangle,wewill potentiallysplit polygonP. Wesearctor theclosesedge(vj, vj+1)
tov. If thetriangle(vj, v, vj;1) alsocorresponds afeasibletriangle, we subdvide (split) the
polygonP into two simplepolygons outputtingbothtriangles((vi, v, vi+1) and(vj,V, Vj+1));

otherwisewe simply output(v;, Vv, vi+1) without splitting P.
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Figure3: Illustrationof greedybiting: Thesearclor avalid biteteststhepointsdenotedy hollow
squaresintil the pointv is found, resultingin triangle(vi, v, vi11). Sincethenearbyedge(vj, vj11)
definesafeasibletrianglewith v, we alsooutputthetriangle(vj, v, vj;+1) andsplit P into two simple

polygons.

Edge Splitting

It may happenthat both ear clipping and greedybiting fail to find a feasibletriangle. In this
case,our algorithmattemptsto split someedgeof the polygonP. Checkingeachedgeof P in
successionstartingwith the longest,we look for anedgeto split (roughly)in half (or possiblyin
smallerpieces,if splitting in half fails). Whenwe split edge(vi,Vvi+1) ata (grid) pointv, we are
actually creatinga skinry (feasible)triangle, (vi,V,Vvi+1). Sincethetrianglescreatedn this way
aresmallor “slivery”, we prefernot to performthis operationvery often. Indeed,in practicethis

phaseof thealgorithmis seldomlyneeded.

I nitialization

Eachphaseof our algorithmworksto triangulatethe interior of a simplepolygonP, with feasible
triangles. In orderto generatehe first suchpolygon,boundingthe whole domainR, we apply a
one-dimensionalersionof ouralgorithmin eachof thefour crosssectiongdefinedby thevertical
planesx = 0,m, y = 0, n) that correspondo the boundaryof theregion R. The algorithmcanbe
consideredo bea simplified versionof the standardnin-link pathmethodof Suri[30], appliedto
thediscretedatapointsbetweerthe offset curvesobtainedby shifting the terrainsurfaceup/davn

by €. SeeFigure4.
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Figure4: Thevertical solid lines denotethe heightsat points along one boundarysegmentof
R. Thedashedpolygonalchainsshowthe resultof shifting the data pointsup/down,creatingan
envelopeof e-feasiblecurves.Thesolidline is calculatedby thesimplegreedymethodat eadh step
linking to thedatapointthat extendsheapproximationasfar aspossiblewhile stayingwithin the

dashecervelope

Main Algorithm

The algorithmsimply appliesthe above threeoperationspneat a time, giving priority (in order)
to earcutting, greedybiting, andthenedgesplitting. A completedescriptionof our algorithmis
outlinedasfollows:

GreedyCutsAlgorithm

(O) Initialize P to be a list of one element— the single polygon obtainedby the initialization

procedureabove.
(1) While 2 is notempty do

(a) LetPe P.
(b) If Pisasinglefeasibletriangle,outputthistriangle,andremove P from P.
(c) Else,while Pis notfully triangulated,

(i) Performearcuttingon P, until nofeasibleearsexist.

(if) Performgreedybiting onP. If thisresultsn agreedybite thatsplitsP, thenremove
P from P, addthetwo new polygonsto P, andgoto (1). Otherwisejf atleastone

greedybite is found (for someedgeof P), goto (1) (without splitting P).
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(iii) Performanedgesplit for P.

Terrain Sampling

Oneof themostinterestingpropertiesof our algorithmis theway it sampleghe datasetlt gener
ateslargetrianglesin placesof relatively little changeandsmalltrianglesin areasof moreradical
change.lt is interestingto try to analyzehow this happensandhereis wherewe canseethenice
couplingof propertiesbetweenthe earcutting phaseandthe others. If the terrainis largely uni-
form, earcutting generallyleadsto longerandlongeredgesof P, until we encounteia region of
high compleity, at which point edgesaresubdvidedby greedybiting or edgesplitting (a method
of increasingthe samplingresolution). Oncewe triangulatethe high compleity region, earcut-
ting againmakesthe edgesonthe boundarylargerandlarger, i.e., makingthetriangleslarger Our
algorithmthereforehasa naturalmechanisnfor attemptingto minimize the numberof triangles
required.(Of course aswe have alreadysaid,our algorithmis not guaranteedo find a true min-
imum (an NP-hardproblem).) The strategyy of where/wherto apply eachof our threeoperations
affectswhich regions get sampledat higherresolutions. Thus, we continueto experimentwith

furthervariantsof our searchstratey in hopesof obtainingbetterandsmallertriangulations.

Maintaining Structural Fidelity

A primaryobjectivein ary algorithmthatsimplifies(compressegjatais to maintainasmuchof the
importantstructureof theinputaspossible Ouralgorithmgeneratea TIN thatis closeto theinput
DEM, accordingo thegiventolerancee. However, beyondtheconstrainbf beinge-close,onemay
wishto placefurtherrestrictionsonthestructuralfidelity; for example,onemaywishto presere a
selectedsetof point featuresor of edgefeaturesyequiringthatthe surfaceapproximationnclude
thesepointsandsegmentsin the outputTIN. In top-dovn algorithms,suchrequirementsanbe
incorporatedusing constraints;for example,line sgmentscan be presered using constrained
Delaunaytriangulation(e.g.,[6]). In our bottom-upalgorithm,we canincorporatesuchconstraints
directly, at low cost, within the testfor triangle feasibility: A triangle T’ is not feasibleif its
projection, T, containsa point featureon its interior or boundary exceptat a vertex, or intersects

anedgefeature exceptif theedges anedgeof T. Further ouralgorithmcanmaintainthestructure
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of anedgeor aridge,atalower resolution(within, say €) thanthefull resolution by executingthe

(lower dimensionaljnitialization stepin a verticalwall (plane)througheachconstraintedge.

Termination

It is importantto considemwhetheror not our algorithmever terminates Couldit ever get“stuck”
andfail to generateary furthertriangles,eventhoughthelist of untriangulatedegions, P, is not
empty? The answeris “no” for the caseof the weakfeasibility condition,assuminghat greedy
biting is doneby searchingover all possiblebites. As a proof, considera polygonP € P. If P has
no grid points,thenary earof P is feasible. (Any simple polygonwith at least4 verticeshasat
leasttwo ears by the“Two EarsTheorem[22].) If P hasgrid pointsin its interior, thentheremust
exist atriangulationof thesepointswithin P (sinceary polygonaldomaincanbetriangulated)All
trianglesin this triangulationmustobey weakfeasibility. In particular theremustexist a triangle
T thatsharesat leastoneof its edgeswith P. Suchatriangleis eithera (feasible)earof P (found
in earcutting) or a potentialbite (foundin greedybiting, assuminghatwe do a full search).This
provestermination.

In the strongfeasibility case,however we get a different situation. Becauseof the discrete
natureof the allowed output(i.e., trianglesmustuseoriginal datapoints, sincewe do not allow
Steinerpoints), and the continuousnatureof the strongfeasibility condition (which joins data
pointsto form apolyhedralsurfaceconstraint)thereare(rare)instancesn whichthealgorithm,as
implemented¢angetstuckwhenusingstrongfeasibility. In responséo this, we haveimplemented
asimplefeaturethatwill guarante¢erminationin all caseslf thealgorithmcannotfind afeasible
triangle,thenit relaxesthe feasibility conditionin earcutting, andfinds, instead,an earthat has
the smallestdeviation from the original DEM. (This samefeatureallows usto limit our searchin

greedybiting andstill guarantegerminationin the weakfeasibility case.)

Complexity

We first remarkthatour algorithmusesverylittle internalmemory Otherthantheinputdataarray
we keeptrackonly of thelist P of polygons.eachof whichis (typically) very small. Trianglesthat

we generatalo not needto be stored but canbewritten out directly to disk. In contrastmethods
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thatrely on triangulationrefinemenimustmaintainsomesortof topologicaldatastructurefor the
full setof triangles.Typically, onewould expectthatif the outputsize (numberof triangles)is k,
thenthe boundaryof the polygons® atary giveninstantwill have roughlysizev/k.

It is difficult to prove aboundontheexpecteduntime of thealgorithm.Clearly, theworst-case
runningtime is polynomialin theinputsize,sinceeachprimitive testor computatiorcaneasilybe
performedusuallyin worst-casdineartime (linear, generallyin thesizeof P € ). However, our
experimentalevidencesuggestshatthe algorithmrunsin time roughlylinearin theinputsize.

The outputcompleity for our algorithmis againhardto estimatefrom a theoreticalpoint of
view. The problemwe are trying to solve approximatelyis known to be NP-hard,in general.
Thus, the bestwe canhopefor is thatwe may be ableto prove a worst-caséboundon the ratio
of our outputsize (humberof triangles)to the numberof trianglesin an optimal TIN. Thereis
goodtheoreticalbasis(e.g.,from greedysetcover heuristics)to suggesthatour algorithm(or a
closevariantthereof)will neverproducemorethanasmall(e.g.,logarithmic)factormoretriangles
thanis possiblefor agivene. Proving suchafactremainsanopen(theoretical)problem.Perhaps
thebestindicationwe have of the effectivenessf the algorithmis the experimentaldatawe have,
whichsuggestshatouralgorithmis obtainingsubstantiallyfewer (roughly20-30percent)riangles

thanthe competingalgorithm,for the sameerrortolerancee.

4 The Multi-Front Greedy-Cuts Triangulation

Themainshortcomingof the basicGreedy-Cutdriangulationalgorithmdescribedn the previous
sectionis thatit is not possibleto backtrackat all duringthe generatiorof triangles:Eachtriangle
thatis generateds committed,with no possibilityto modify it later. This canleadto poortriangle
quality, particularlyin the caseof “bottlenecks) asillustratedin Figure5. Thebottleneckproblem
happensvhenone portion of the boundaryinterfereswith the progressof the triangulationnear
anotherportion of the boundary The bottleneckproblemmay be causedoy two portionsof the
front comingclose,while having substantiallydifferentsamplingrates(resolutions)- onesideis a
polygonalcurve having verticesplacedmuchmorecloselyalongthe curve thanthoseon the other
side. Then,it is difficult to completethe triangulationwithout doing mary splitsor creatingvery

skinny triangles. The bottleneckproblemcanalsoariseif the samplingratesarecomparableput
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(@) (b)

Figure5: lllustration of the bottleneckproblem. (a) The “C” part of the boundaryof the front,
interfereswith the“A” partasit attemptgo grow. Insteadof thetriangulationbeingableto close
neatlywith few trianglesbeinggeneratedthe curve “A” will approachH'C”, by closerandcloser
curves, suchas“B”, generatinga large numberof small and badly shapedriangles. This can
happeneven if the terrainis perfectlyflat in the neighborhoodf the subcures. (b) Snapshot

(perspectie projection)of a partialtriangulationdepictingthe bottleneckproblemin practice.

the portionsof thefront have gottenso closetogetherin forming the bottleneckthatno earcutsor
high-qualitybitesarepossible.

In fact, any adwancingfront techniquemay suffer from the bottleneckproblem,andrelated
issues sincedecisionsthat are madeearly in the triangulationprocessmay force the algorithm
into a difficult situationto resole later. Incrementalrefinementand decimationmethodsavoid
this issueby being “global” algorithmsthat are allowed to make changesanywherewithin the
triangulation.

Our new techniquels basedon a hybrid approachwhich attemptsto exploit the adwvantages
of boththe (local) advancing-frontapproactandthe (global) refinement/decimatiomethods We
accomplishthis by providing a simpleandefficient partial backtrackingmechanisnfor Greedy-

Cuts, which allows the quality of the triangulationto be improved asthe algorithm progresses,
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giving a meansof keepinga good triangulationthroughoutthe execution. In orderto keepthe
memorycompleity low, we allow for only a limited amountof backtracking.In particular we
considertheterrainto be partitionedinto threetypesof regions: regionswith afinal triangulation,
regionswith a tentativetriangulation,andthe yet-to-betriangulatedregions. The region with a
tentatve triangulationis kept“small,” including only thosetrianglesthat are adjacento vertices
on the (true) front. The boundariesbetweenthe threetypesof regions are determinedby two
“fronts” — theusualfront (whichwe will simply call thefront), delineatingthe boundarybetween
the triangulatedregion andthe yet-to-betriangulatedregion, and a secondfront (which we will

call the bad front), delineatingthe boundarybetweenthe tentate triangulationand the final

triangulation. The tentatve triangulationlies in the region betweenthe front andthe backfront;

we canthink of the backfront as“lagging behind”the front, in the expansionof the region that
we triangulate Sincethetentatve triangulationthatwe maintainis very small (proportionalto the
compleity of thefront), we areableto presere thelow memoryoverheadf theadvancing-front

technique.

Data Structures. Insteadof explicitly keepingthetwo frontsandthetentatve triangulationwe
only keepa list of associatederticesandtriangles.The Triangle  andPoint datastructures

are(roughly)asfollows:

typedef struct  point {

Point2 position;
int refCount;
int nTriangle;

Triangle  *triList;
} Point;

typedef struct triangle {
struct  point  *p[3];
int refCount;

} Triangle;

The verticesare instantiatedonly during greedybites (which now include the edgesplit op-

eration). Whena triangle is created,it is not immediatelywritten to the output; initially, it is
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consideredo be tentatve (we saythatit is active), andit is flushedto the outputonly whenall
of its correspondingerticesno longerbelongto the outerfront. Eachtriangle hasa pointerto
eachof its correspondingertices,andalsoanindependenteferencecount(refCount ). Also,
eachvertex haspointersto eachtrianglein its “use set” (alsoknown asthe “star” of the vertex),
triList . Whena vertex is “output” in the earcutting phase(seebelaw), eachof the triangles
in its usesetis “dereferencedTits refCount is decrementethy one);similarly, whenatriangle
is dereferencedeachof its verticesis dereferencedby decrementinghTriangle ). Whenthe
referencecount(refCount ) of atrianglehits zero,its storagecanbe safelyreclaimedandit can
be written to a file. Sincea vertex canbe on morethanone connecteccomponenbf the front,
a secondreferencecount (refCount ) is usedto keeptrack of the numberof active boundary

componentgontainingthevertex. A vertex is writtento theoutputwhenits refCount  hits zero.

Triangle Quality. In generatingour triangles,insteadof simply usinga greedyselection,asin
the previous section,we now enforcea quality criterion basedon Gueziecs notion of “compact-

ness”’[13]. Givenatrianglewith edgelengthslo, 1,12, thecompactnesmeasure is givenby
. 4/3A
1312 +12

whereA is the (positive) areaof the triangle. Notethat0 < g < 1, andasg getscloserto 1, the

(1)

triangle getscloserto an equilateraltriangle. Basically whengeneratingnew triangles,we give
preferenceo earcutsandgreedybitesthat resultin a triangle whosecompactnesss closeto 1

(within auserspecifiedtolerance).

Ear Cutting. Theearcuttingprocedurehastwo new features:

(1) We computethecompactnesmeasuren eachcandidatesartriangle.

(2) Beforeperformingan earcut, we first attemptto advancethe front by an edge collapseop-
erationon an edgeof thefront, in which onefront vertex is moved on top of anotherfront
vertex, andtheincidentedgesareadjustedaccordingly This edgecollapseis consideredo

befeasibleonly if theresultingnew trianglesalsomeetthe quality standard.

In Figure6a,weillustratea standaraarcut, whichgeneratesriangle(p, g, r), while causingvertex

g to beremovedfrom the active list. Figure6b illustratestheresultof performinginsteadanedge
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collapseon (q,r). This edgecollapseis possibleusingour datastructuresbecauseve have not
discardedary trianglesthat containa vertex that still belongsto the active front boundary Note
thatthe edgecollapseoperationsavesthe creationof a new triangle. We will alsoseelater that

this new local edgecollapseoperationduringanearcut worksnicely in concertwith thenew edge

S

=
—_

(a) (b)

N
AN

I/
A

vy

Figure6: (a). A standarcearcut resultsin the additionof the edge(p,r) andthe creationof the

new triangle(p,q,r). (b). An edgecollapseof edge(q,r), resultsin thetriangulationshavn.

Greedy Biting and Edge Splitting. As with earcutting, our new greedybiting procedurehas

somenew features:
(1) We computethecompactnesmeasuren eachcandidatdriangle.

(2) We integratenow the edgesplitting processnto the greedybiting, asfollows: If thereis not
a “good” bite (accordingto the quality measurefrom a baseedgee thatis on the front,
thenwe automaticallyperformanedgesplit on e. (Therationaleis thatif e is unsuitablefor
biting now, thenit is “too long,;’ in a sensesinceit will remainunsuitableasthe algorithm
progressesye mayaswell dothesplit now.) An edgesplitinvolvescreatinganew vertex m

nearthemiddleof theedgee= (p,r); however, now thatwe have availableto usthetriangles
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(a) (b)

Figure7: Edgesplitting: If nofeasiblebite is possiblefrom thebaseedgee= (p,r), theneis split
atanearbypoint m. The prior Greedy-Cutsnethodcreatesa very skinry triangle (p, m,r), asin
(a), sincetherewasnot an optionto changethe existing triangle (p, g,r). Now, we allow anedge

swapto take place,removing (p,r), andadding(g, m) insteadasin (b).

thatareincidenton the front, we areableto performan edg swapin conjunctionwith the
edgesplit, allowing usto avoid creatingvery skinrny trianglesin the process.SeeFigure?.

Notethatthe split only happensf triangles(p,q,m) and(g, m,r) arefeasible.

(3) Thepolygonsplittingthattakesplacein theprevioussectionwhenabite resultsin anew vertex

closeto anexisting (opposite)front edgeis now replacedoy anedgecollapseoperation.

Whengeneratinga new triangle by greedybiting, our algorithmattemptsto avoid creatinga
triangle (evena nicely shapedriangle)thatleavesbehindsmall anglesin the front, asthesewill
end up forcing small angleslater in the triangulationprocesye.g., by way of an earcut). For
example,in Figure8, we may avoid usingvertex a to createa trianglewith baseqr, eventhough
thetriangle (g, a,r) is almostequilateral becausehe angle(p,q,a) might be too small; we may

prefercreatingtriangle(q, b, r) in this situation.

Initial Boundary Smoothing. Duringtheinitialization phaseof the basicGreedy-Cutswe per

form a curve fitting for the boundaryof the terrain,finding a minimume-link approximatiorof the

21



Figure8: Angle considerationgn selectinga new triangle. A quality measures usedin orderto

biasthe algorithmin favor of nicely shapedrianglesduringtriangulation.

boundarysubjectto the errortolerancee. (RecallFigure4.) Theresultingapproximateooundary
senesasaninitial front, which is thenadwancedinwards. Unfortunately this level of greediness
hasthe undesirableeffect of potentially oversimplifying the boundary makingit difficult later
to utilize high-qualitytrianglesto triangulatebetweenthe boundaryand somenearbyportion of
higherterraincompleity. Thus,in our new algorithmwe performa“smoothing”operationonthe
simplified boundary Specifically we split edgesasneededn orderto have a boundon theratio
of thelengthof any oneboundaryedgeandthe lengthof its predecessoor successoedgealong
the boundary(i.e., sothatl;/li;1 < Aandli;1/li <A, wherel; is thelengthof theith edgein the
approximatingchain,andA is a parametercontrolling the degreeof smoothing). This procedure

ensures logarithmicscaleonthe sizeof theedges.

5 Experimental Results

Our Greedy-Cutanethodsare relatively simple to implement. Our C implementatiorhasonly
about4,000lines of code. The codeusesseveral computationalgeometryprimitives, mary of
which comefrom O’Rourke [22], including segmentintersectiontesting,diagonalclassification,
pointclassificatior(pointlocationwith respecto asimplepolygon). With theseprimitivesin hand,

androutinesto handlesimple polygonoperationge.g.,splitting an edgeof a polygon, inserting

22



a vertex.), it is fairly easyto implementthe algorithmsdescribedhere. As with all geometric
algorithms carehasto betakenwith special(degeneratefaseghatarisefrom collinearities.

In orderto studyits performancewe have conductedtestsof our algorithm and compared
it with Franklin’s algorithm, which is a top-dovn approach. We comparedthe speed,average
errorbound(over all thetriangles),andthe compleity of the output(measuredn the numberof
triangles).We ranbothalgorithmson thefollowing typesof input: realterraindatasetsartificially
generatederrainsarisingfrom performingcutsto generatéaults,andartificially generatederrains

arisingfrom lifting triangulations.

Franklin’sAlgorithm. Franklin'salgorithm[9] is anincrementatefinementethod with addi-
tional diagonalswappingheuristicancludedin orderto generatdopefullygoodquality triangles.
Initially, the algorithmapproximategshe DEM by 2 triangles. Then, a generalstepof the algo-
rithm involvesfinding the mostdeviant point within eachcurrenttriangle andinsertingthis new
point into the triangulation,splitting one triangle into three. Eachtime a point is inserted,the
algorithmcheckseachquadrilaterathatis formedby a pair of adjacentriangles,at leastone of
which is a new triangle (one of the threeincidenton the new point). A local conditionon the
guadrilaterabdeterminesvhetheror not to performa diagonalswap to improve the quality of the
triangles. The original codeworks by performinga predeterminecumberof splits. We have
modifiedslightly the codeto make asmary splitsasnecessariyn orderto meeta prespecifiearror
bounde. Franklin’simplementations donecarefully with emphasi®n efficiengy. For the sale of

speedijt usesnternalmemoryasmuchaspossible.

Delaunay-based Triangulation and Scape. We usethe codewritten by GarlandandHeckbert
[10] which implementsan extremelyfastversionof the algorithmoriginally proposedoy Fowler
andLittle [8]. This providesuswith anothercomparisorpoint for the algorithmsproposedn this

paper

Experimental Setup. OurexperimentsvereconductednaSilicon Graphics02, equippedwith
oneR5000processoand192MB of RAM.

In Table 1, we shav the resultsof running on seven real terrain dataseteachof the four
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Terrain € Franklin GcTin MF-GcTin Scape

Buffalo 25| 2K(1.1s) | 2.2K(7.58) | 2.8K(5s),2.8K(6s) | 2K (0.2s)
Denver 25| 2.7K(2s) | 2.8K(9.6s) | 3.4K(6.8s),3K (5s) | 2.6K (0.2s)
EaglePass | 1.5| 1.5K(1s) | 1.6K(3s) | 2.1K(3.2s),1.7K(2s)| 2K (0.2s)
GrandCaryon | 15 | 2.8K(2.2s)| 3.1K(13.7s)| 3.7K(9.6s),3.3K(7s) | 2K (0.2s)

Jackson 0.5] 1.4K(1.1s)| 1.1K(1.3s) | 1K (2.5s),1.5K(1.8s)| 3.1K(0.3s)
Moab 15 | 2.6K(1.8s)| 2.4K(7.4s) | 2.5K(5s),2.6K (4.8s)| 2.5K (0.2s)
Seattle 5 | 2.7K(2.8s)| 2.7K(9.5s8) | 2.5K(4.8s),3K (5s) | 2.4K(0.25s)

Tablel: Experimentalesultsof approximationstrianglecounts,andrunningtimes: Thetriangle

countsfor the new algorithmareshowvn with strongandthenweakfeasibility.

algorithms:Franklin'salgorithm,theoriginal GcTin , ournevw MF-GcTin algorithm,andGarland
and Heckberts Scape. The table shaws the choiceof €, andthe total numberof trianglesin
the outputTIN, for eachof the seventerrains. All the input terrainswere 120-by-120elevation
arrays. SeeFigure9(a)—(d)for screenshotsof partial triangulationsof the Derver terrainduring
therunningof the new algorithm.

GcTin with weak-feasibilityresultsin a lower triangle countthan Franklin’s code,in all in-
stancesHere,we areapplyingstrong-feasibilitywith G¢cTin andbothstrongandweakfeasibility
with our new algorithm. In termsof triangle count,whenusing strongfeasibility both GcTin
and MF-GcTin are shawing a slightly highertriangle countthan Franklin’s, which essentially
usesweakfeasibility. However, notethatthe triangle countsof our new algorithm,MF-GcTin ,
underweakfeasibility aresubstantiallfowerthanthoseunderstrongfeasibility, andcomparevery
favorably to thoseof Franklin’s algorithm. Note, however, that with our new algorithm, making
directcomparisonss somavhatcomplicatedoy the additionaltrianglequality parametergbound
ong). Theresultsin Tablel arebasedn usingg = 0.5. Overall, we have beenableto improve on
boththe numberof trianglesgenerate@swell astheirnumbey with respecto theoriginal GcTin
code.

The Scape codeis by far the fastest. Often, it generategriangulationswith very similar

trianglecountsasthe otherones althoughsometimessuchasfor the Jacksorterrain,it generates
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Terrain € Franklin GcTin MF-GcTin Scape

M o M o M o M o
Buffalo 25(0.74| 0.22| 0.64| 0.29| 0.76| 0.20| 0.77| 0.17
Derver 25(0.73|/0.23| 0.64| 0.29| 0.75| 0.21| 0.77| 0.17
EaglePass 1.5(0.72| 0.22| 0.60| 0.30| 0.75| 0.21 | 0.75| 0.18
GrandCaryon | 15 | 0.71| 0.24| 0.61| 0.30| 0.77| 0.20 | 0.75| 0.18

Jackson 0.5/ 0.63| 0.27| 0.54| 0.33| 0.67| 0.28 | 0.70| 0.20
Moab 15| 0.70| 0.23| 0.59| 0.32| 0.73| 0.21| 0.74| 0.18
Seattle 5 |[0.71)0.24) 0.63| 0.30| 0.76| 0.20 | 0.75]| 0.18

Table2: Summaryof trianglequality measuresWe reportthe mediany andstandarddeviation o

for thetriangulationsshovn in Tablel.

more than 3 times as mary triangles. We believe this is dueto the Delaunayconstraintwhich
forcesthetriangulationto have strict (projected)shape Note thatfor othermeshesthe Delaunay
triangulationg/ieldsmuchfewertriangles suchasfor theGrandCaryondatasetThetriangulation

quality of the Delaunaytriangulationis quite good,andquite similarto MF-GcTin .

Memory Usage. Thememorycostof MF-GcTin is aboutthesameasGcTin , with only avery
slight increase sincewe are storing a small numberof (tentatve) triangles. By instrumenting
malloc() ,wewereableto determinethatFranklin’s codeusesbetweenl3to 17 timesasmuch
memoryasGcTin ; thus,our techniquesisean orderof magnitudedessmemorythanFranklin's
code. Scape usesquite a bit of memory; GarlandandHeckbert[10] reportthatfor generating
anapproximationwith m (output)pointsof a meshwith n (input) points,their algorithmrequires
3n+ 292m bytes. Thatis, the memorycostgreatlyincreasewith the size (andaccurag) of the
output. We shouldnotethatour algorithmsdo not have ary significantmemorycostrelatedto the
sizeof the output,thusmakingit possibleto generateaccuratdriangulationsof very largeterrains

with little memoryoverhead.
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Triangle Quality Measures. Figs.13—18show histogramsf Gueziecs quality measurdor six
(of the seven) terrains. Table2 summarizeghe results. It is clearthatthe new algorithmgives
a substantiallybetterdistribution of triangle quality that either Franklin’s algorithmor our basic
GcTin . In particular we canseethat the numberof goodtriangles(the major peak)is always
higherin the (c) column. In fact, the new algorithm gives triangle quality comparableto the
Delaunaymethod(Scape ), while using far lessmemoryand, on somedatasetge.g., Jackson
terrain),usingfewer triangles.

In Figure10 we compareFranklin’s algorithmto ourson a challengingdatasetonsistingof a
cliff. Franklin’salgorithmfailsto triangulateproperly A similarexperimentona“bump”is shovn
in Figurel1l. Here,neithertechniqueperformsvery well, but bothresultsareacceptableandMF-
GcTin generates largernumberof well-shapedriangles.Finally, in Figure12, we comparethe

Denverterraintriangulatedwvith G¢Tin , andour new multi-front extension MF-GcTin .

6 Conclusionsand Future Work

We have presentech new methodto generatelriangularirregular Networks (TINS) from dense
terraingrids. Our algorithmdiffersfrom previous methodsn its useof a bottom-upapproacho

terrainsampling.lts key featurednclude:

e LowCompleity OutputTIN. Our methodgeneratesery few trianglesfor agivene. Indeed,
aprimaryobjective in usingthe greedyoptimizationstepis the minimizationof the number

of trianglesin the output.

e MemoryEfficiency It canberunon very large terrains,potentiallyeventhosewhosegrids

cannotsimultaneouslyit in memory

e Maintenanceof Structurl Fidelity. Our methodis ableto maintainwith very little addi-
tional overheadary pre-specifiedsetof featuresof the terrain, without the needfor adding

additional(Steiner)points.

e Speed Our running times are comparableto the fastestavailable methods,and we can

probablyimprove the performancelramaticallywith a carefulrefinemenof our code.
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Our experimentalresultsso far have focussedon the quality of the output TIN. The running
time cancertainlybe improvedthroughmorecarefulcoding. Also, further experimentatiorwith
the heuristics gspeciallythe greedybiting operation shouldyield evenbetterresultswith respect
to the outputsize. On the theoreticalside,we arealsoattemptingto prove worst-caséooundson
theperformancef theapproximation(e.g.,thatwe obtainanumberof trianglesthatis guaranteed
to bewithin asmallfactorof optimal).

A straightforvard modificationof our codewill permitthe algorithmto work onarbitraryTIN
terraininputs, ratherthanjust on DEM arrays. Conceptuallythereareno changesieededo the
algorithm. A somevhatlesstrivial modificationwill be to generalizethe algorithmto approxi-
matearbitrary (non-terrain)polyhedralsurfacesandto find approximationgo a minimum-facet
separatingurface(asdonein [2, 3, 21], in thecorvex case).

Another straightforvard extensionof our methodallows oneto useit to build hierarchical
representationsf terrain. For example,we cansimply startwith an extremelycrudeterrainap-
proximation(e.g.,just two triangles),andthenadjuste to be smallerand smaller makingeach
correspondingr'IN a refinementof the previous one, until we have the full resolutiongrid. An
ideal suchhierarchywould have logarithmicheight,e.g.,for intermediatel INs having sizes2, 4,
8, 16, etc.

Our methodsapply alsoto hugedatasetshat have beencut into smallerblocks. Specifically
alongthe boundaryof eachblock we performthe curve fitting for the correspondingslice” of the
terrain,andusethisto initialize thefront propagationnto eachof the (up to) two blocksthatshare
theboundary If wewantto permitedgeswapsacrosslock boundariesin thespiritof MF-GcTin
thenwe canmaintain(ata smallincreasan thetotal storagethatportion of the triangulationthat
is incidenton the pointsalongthe block boundariesandthenperformlocal operationgo improve
this portion of the triangulation, either at the beginning of the front propagation,or as a final
postprocessingtep.

Anotherextensionthatwe arepursuings to approximatdunctions(terrains)of threevariables.
Approximatingsuchfunctionsis veryimportantin scientificvisualization.Onecanapplyoursame
paradigmto this problem,biting off tetrahedrahat satisfythe e-fithesscriterion. Thetricky issue
in implementingthis algorithmis in maintainingtheregions? of untetrahedralizedlomain,since

thiswill beapolyhedralspacepossiblyof high genus.
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Preliminaryinput from our currentusershave beenvery favorableon thereleasedbasic)ver-
sion of GcTin . We plan to releasea new versionof the software, with the new MF-GcTin
algorithm,andseveralimprovementgandnew featurespasedn theircommentsWe would very
muchlik e to know moreabouthow effective GcTin canbein real GIS applications.

The web site (http://www.ams.sunysb.edu/ tsilva/gctin.tgz) containsthe currentGcTin

codeandwill be keptup to datewith futurereleases.
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(@) (b)

y

(c) (d)

Figure9: Screenshotsduring the triangulationof the Derver terrain, using the new algorithm.
Colorscorrespondo thecurrentstateof atriangle:light green(3 verticeson thefront), darkgreen
(2 verticeson the front), red (1 vertex on the front), or gray (fully committed— no vertex on the
front). (Seecolorversiononourwebsite.) (a). earlystagef thealgorithm;(b). atasplit; (c). the
triangulationarounda split; (d). anearly stageof thealgorithmwithoutquality measuregmposed

ontriangles.
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(@) (b)

Figure10: Quality comparisorusinga “Clif f” dataset(a) Franklin’s algorithm.(b) MF-GcTin .

v A

() (b)

Figurell: Quality comparisorusinga“Bump” dataset(a) Franklin’s algorithm.(b) MF-GcTin .

@) (b)

Figure12: Quality comparisorusingthe “Denver” dataset.(a) The basicGcTin algorithm. (b)

Thenewv multi-front technique MF-GcTin .
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Figure 13: Histogramof Gueziecs quality measureor Buffalo terrain. Franklin's algorithmis
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Figure 14: Histogramof Gueziecs quality measuregor Derver terrain. Franklin’s algorithmis

shovnin (a). Theoriginal GeTin in (b), andour new MF-GcTin algorithmin (c) andScape in

(d).

35



Triangle Count

Figure15: Histogramof Gueziecs quality measurdor EaglePassterrain. Franklin’s algorithmis

shovnin (a). Theoriginal GeTin in (b), andour new MF-GcTin algorithmin (c) andScape in

(d).
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Figurel6: Histogramof Gueziecs quality measurdéor GrandCaryonterrain.Franklin'salgorithm
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Figure 18: Histogramof Gueziecs quality measurdor Seattleterrain. Franklin’s algorithmis
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(d).
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