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Abstract

In thispaperwedescribea simpleandefficientraycast-
ing enginethat is suitablefor the rapid exploration of ir-
regular grids composedof tetrahedra cells, or other cel-
l complexeswhere cellshavebeenbrokenup into faces.In
our method,in a preprocessingphase, all thecellsare bro-
keninto their correspondingfaces.Visibility determination
is performedafter all thefaceshavebeentransformedinto
screenspace;herewecomputefor eachpixelanorderedlist
of the stabbingboundaryfaces.Thefinal phaseis the ac-
tual raycasting, which is performedindependentlyfor each
pixel,andis basicallya walk in thecell complex insideeach
componentof thestabbingordered list. For color calcula-
tions,a simpleanalytical lighting modelis appliedto each
intersectionof ray and cell. Our algorithm is simple, and
our implementationfastandrobust.

1 Intr oduction

Direct volumerenderingmethodsareusedto visualize
scalarandvectorfieldsby modelingthevolumeas“cloud-
like” cellscomposedof semi-transparentmaterialthatemit-
s its own light, partially transmitslight from other cells,
and absorbssomeincoming light [16, 8, 7]. By varying
thelighting model,onecanalsovisualizeisosurfacesusing
directvolumerenderingmethods.

In the visualization of datasetscoming from compu-
tational fluid dynamicsand partial differential equation
solvers, a specialand hard-to-rendertype of grid arises,

the so called irregular grid (or mesh). Thesegrids do not
necessarilyhave uniform cubes,and they have beenpro-
posedasaneffective meansof representingdisparatefield
data. Irregulargrid datacomesin severaldifferentformat-
s [12, 14]. One very commonformat hasbeencurvilin-
eargrids, whicharestructuredgridsin computationalspace
that have been“warped”in physicalspace,while preserv-
ing the sametopologicalstructure(connectivity) of a reg-
ular grid. However, with the introductionof new methods
for generatinghigherquality adaptive meshes,it is becom-
ing increasinglycommonto considermoregeneralunstruc-
tured (non-curvilinear)irregulargrids, in which thereis no
implicit connectivity information.Furthermore,in someap-
plicationsdisconnectedgridsarise.

Renderingof irregulargridshasbeenidentifiedasane-
speciallyimportantresearchareain visualization[3]. The
basicproblemconsistsof evaluatinga volumerenderinge-
quation[7] for eachpixel of the imagescreen.To do this,
it is necessaryto have, for eachline of sight (ray) through
animagepixel, thesortedorderof thecellsof themesha-
longtheray. Thisinformationis usedto evaluatetheoverall
integral in therenderingequation.

Several workshave alreadypresentedefficient methods
to renderirregulargrids(e.g., [11, 14, 18, 6, 15, 5, 10]). In
thispaper, wedescribein detailasimple,yetpowerful, and
robustray casterfor generalirregulargrids. Our codeuses
ideasfrom previous techniques(in particular[1, 13]), and
theendproductof ourwork is aminimalsetof C++classes
thatrun on mostoperatingsystemsandcanbeusedto ren-
dergeneralirregulargrids.Wedescribein detailouroverall
design,the datastructures,commonrobustnessproblem-



s (and solutions),and the performance,both in rendering
timeandmemoryconsumptionof ourcode.

Our main goal in this work wasto develop a simpleto
implement,yet fastandrobustrenderingalgorithm.Speed,
softwareportability, andcodingsimplicity weregiven the
priority over memoryefficiency. In a nutshell,we wanted
to develop a pieceof codethat could be easily integrated
into currentsoftwarepackagesasto bring a state-of-the-art
scientificvisualizationtechniquecloserto thecomputation-
al scientist.

2 RenderingAlgorithm

Here,we describeour techniqueasit appliesto tetrahe-
dralgrids.Theextensionto othercell-typesis fairly simple.
The basicidea is very simple,andsimilar to the work of
[17, 2, 4]. Insteadof renderingcells,we rendertheir faces
(or triangulationof their faces,in the caseof generalcel-
l data). We useray castingfor our rendering. The actu-
al depth-sortingis basedon the implicit orderingprovided
by the connectivity informationin the cells (similar to the
methodproposedin [1]).

2.1 View-IndependentPreprocessing

Our methodneedsminorpreprocessing,whichbasically
performsa connectivity reconstructionfrom thesourceda-
ta. The input datasetis a collectionof shared-vertex cells.
As theinput datasetis readandparsed,all pointsandtetra-
hedraarereadin andfor eachinput tetrahedronall four of
its trianglesareenumerated.It is importantto avoid dupli-
catetriangles,which representconnectivity betweencells.

This can be performedefficiently by keeping a re-
ferredBy list of trianglesin eachvertex, which basically
lists all trianglesthat usethat vertex. As eachtriangle is
read,weupdatethereferredBy list of its vertices.In or-
derto avoid triangleduplication,wesimply searchthere-
ferredBy list of its vertices.Whensearchingfor a given
triangle, it is only necessaryto make pointercomparisons
amongits vertices.In our implementation,we usea simple
linear searchin the referredBy list, which is quite fast
in practice,sincethedegreeof eachvertex is usuallylow.

2.2 World-to-ScreenTransformation

Our renderingalgorithmsperformsall its calculationsin
screenspace. For eachframe, we rotatethe whole scene
(transformall pointsin thesceneby therotationmatrix) to
make the � and � axesin world coordinatesystemparallel
to the � and � axesin screencoordinatesystemwith � axis
pointing away from the viewpoint. This greatlysimplifies
thetransformationsbetweenscreenandworld coordinates,

andreducesthe problemof determiningif a 3D ray inter-
sectsa 3D triangleto theproblemif a given � ��� ��� point is
within a planartriangleon the � � plane. It is muchmore
time efficient to rotateall pointsat onceat this stepthanto
performthesamecoordinaterotationwithin themainloop,
severaltimesfor eachpoint.

After the rotation is performed,we calculateplaneand
interpolationcoefficients for eachtriangle and storethem
within the triangle’s structure.Here,we sacrificememory,
but it greatlyimprovestheoverall speedduringrendering.

2.3 Visibility Determination

With the scenein screen-space,it is time to determine
which triangles belong to the visible side of the scene
boundary. Thesenecessarilyform a supersetof the trian-
gles first hit by rays. It is simple to find thesetriangles,
since,in general,a trianglebelongsto theboundaryif it has
only onetetrahedronin its referredBy list. Also, for a
givenboundarytriangleto bevisible the fourth point of it-
s basetetrahedronshouldlay on the othersideof triangle
planefurtheralongthe � axis.

In order to determineall ray-triangleintersections,for
all visibleboundarytriangleswe loopoverall pixelswithin
this triangle’s boundingbox in � � planeanddetermineif a
givenpixel layswithin the triangleboundary. In this case,
thegiventriangleis addedto thepixel’slist of intersections.
Thistechniqueletsusefficientlyenumeratewhichboundary
trianglesintersecta givenray, andin whatorder. We store
a list of theseintersectionwith eachpixel on theviewplane.
A similar techniqueis proposedby [2], andthiscanbeseen
asageneralizationof thez-buffer approachof [13].

2.4 Pixel-by-Pixel Ray Casting

Actual ray-castingis straightforward(andsimilar to the
oneoriginally proposedin [1]). For eachray we take a tri-
angle�
	 with minimal � coordinatefrom thecorresponding
list of intersections,throughwhich theray entersthescene
volume. The correspondingtetrahedron� is fetchedfrom
the �
	 ’s referredBy list. Since �
	 is a boundarytrian-
gle, thereis only onesuchtetrahedron,on next iterations
we have a choiceof two tetrahedraandwe choosetheone
whichis differentfrom thecurrentone.Whenwehaveonly
onetetrahedronin thecurrenttriangle’s referredBy list,
thismeansthattheray is leaving aconnectedcomponentof
the volume,but it may re-enterit later. In our technique,
this is easilycatchedby fetchingthenext trianglealongthe
ray from the intersectionslist. Oncewe determine� , we
choosewhich of its threeother trianglesis the next one.
This is doneby performingintersectioncalculations,find-
ing the � coordinatesof intersectionpoints,andchoosing



theonewhich givestheminimal � still larger thanthecur-
rent � coordinatealongtheray.

Opacityandcolor integrationis determinedfrom thein-
tersectionpoint of the currentray with � 	 , andthe triangle
thatfollows,let usassume�� . Wekeepupdating� 	 , and �� ,
until theray leavesthevolume,andstopafterall boundary
triangleshavebeenused.

2.5 Lighting Model

A simplelighting modelis used:integrationof linearly-
interpolatedcolor andopacityvaluesalongtheray. Scalar
valuesin the input datasetareshiftedandscaledto fit the� � ��������� range. A user-specifiedpiecewise-lineartransfer
function is readfrom a file, it specifiesthe mappingfrom
this rangeto thesetof opacityandRGBvalues.During ray
casting,we calculatethe � andinterpolatedscalarfield val-
uesof the ray intersectionpointswith � 	 and �� (usingthe
coefficientsstoredon the third stepof preprocessing)and
passthesevaluesto the transferfunction calculationmod-
ulewhichupdatestheRGBvaluesof thecurrentpixel.

The exact integration formulas follow. The following
variablesareused:

��	 , � � – � coordinatesof intersectionwith thecurrent
andnext triangles� � – distancebetween��	 and � �� 	 , � � – linearly-interpolatedcolorcomponentvaluein� 	 and ���� 	 , � � – linearly-interpolatedopacityin ��	 and � �� 	 , � 	 – accumulatedon thepreviousstepscolor and
opacityvalues,initially

�
� � , � � – updatedcolorandopacityvalues

Colorandopacityarelinearly interpolatedbetweentheir
valuesin � 	 and ��� :

� �����! � 	��"� �$# �%�'& � � ��� # ��	��� �
� �"�%�! � 	���� �(# ���'& � � ��� # ��	��� �

Theselinear functionsmustbe integratedfrom � 	 to ��� to
obtain �)� ,

� � , we alsoneedtheopacityvaluein all inter-
mediatepointsto useit in colorcomputation:

�*�����+ ,�-	.& /10
032 � �"�%�4��

� �����! � 	.& / 0
032 � �"�%�5�
6 # �*�����3�4��

After taking theseintegrals analytically we obtain the
following valuesfor � � and

� � :

� �  7�)	8& 6� � � 	8& � � � � �
� �  � 	 # 6� � � 	.& � � �5�9�)	 # 6�� � � #
6��: �"; � 	 � 	.& ��� � � 	<& � 	 � � &1; � � � � � � ��=

2.6 Point-Within-T riangle Algorithm

In order for all ray-castingalgorithm to work fast, an
efficient, andnumericallystable2D Point-Within-Triangle
primitive is necessary. This primitive is usedin two crit-
ical places. First, whendeterminingthe rays intersecting
boundarytriangles,andalsowhenlooking for thenext tri-
anglewithin the currenttetrahedron.Our approachto this
problemis describedhere.

Givenatriangle >@? � in � � planeanda2D point A , we
haveto determineif A layswithin >@? � . To dothiswefirst
move origin to > , introducing BCED  B? # B> , BC =  B� # B> ,BF  BA # B> .

DecomposeBF by BCGD and BC = : BF  F�D BCED & F = BC = .
Thepoint will bewithin the triangle H*I F�DKJ �

andF = J �
and F D & F =ML 6 .F D and F = aredeterminedfrom the solutionof a linear

system: N
BCED+O BF  F�D BCEDPO BCED & F = BCEDQO BC =BC = O BF  F�D BCEDPO BC = & F = BC = O BC =

This systemwassolved analytically; the solutiongives
thefollowing formulasto checkif thepoint is within trian-
gle:

4�RTS ��U  CWVD CWX= # CYV= CWXDF�D  � F�VZCWX= # F X CYV= �\[]4�R�S ��UF =  � F X CYVD # F�VZCWXD �\[]4�R�S ��U^ S�_ H*I F D J �a` F = J �a` � F D & F = � L 4�R�S ��U
Thisassumesthanthedenominator4�R�S ��U is positive; it

canalwaysbemadepositive by swappingCEDcbdC = . Since4�R�S ��U doesnot dependon thepoint A , it canbeprecom-
putedandstoredwith the triangle. We alsostorethe val-
uesof C V]e XD e = . Having thoseactualarithmeticsperformedfor
eachpoint A is five additions/subtractions,four multipli-
cationsandthreecomparisonswith no divisions. On most
modernmicroprocessor, bothmultiplications,additionsand
subtractionstake betweenoneand two clock cycles (sus-
tained),while divisionstake anywherefrom 20 to 40 clock
cycles. Thesecomputationsusedoubleprecisionto main-
tainaccuracy.



2.7 Handling Degeneracies

The Point-Within-Triangle algorithm describedabove
behaveswell from the numericalaccuracy point of view,
but whenlooking for the next trianglea raresituationcan
arisewhenwe cannot choosebetweenseveral trianglesor
cannot find theonewhich advances��� . It happensif a ray
hits a meshnode. In this case,theray-casterprogramtries
to find the next triangle from a broadersetof all facesof
all tetrahedraadjacentto thecurrentone. This helpsin the
vastmajorityof cases,in ourexperimentswith realdataset-
s not morethanaboutseven pointson a � 6 �gf1� 6 � raster
canstill have problems.We candetectthesedegeneracies,
andapplycustomsolutions.Thesimplestis to apply local
averagingof thepixel valuesin theneighborhoodof thede-
generatepixel, andsimply assignsuchaverageto the bad
pixel. A morecomplex (andexpensive)solutionis to apply
supersampling.

3 PerformanceResults

The test runs were performedon an SGI Power Chal-
lengemachine,equippedwith 16 R10000195MHzproces-
sors,and 3GB of RAM. Only one of the processorswas
usedduring benchmarking.The whole programis written
in C++ asa collectionof reusableandextendableclasses.
It wascompiledwith -O3 flag using the native SGI C++
compiler in either32 or 64 bit mode. Herewe report the
executiontimeandmemoryconsumptionfor theraytracing
of several well-known datasets(seeTable1). Figures1–4
show sometypical imagesgeneratedwith ouralgorithm.

We report in Table1 run timesandthe amountof allo-
catedmemory(in MB) atdifferentresolutionsanddifferent
numberof active pixels. Total run time is furthersubdivid-
edinto first reading/preprocessingstage(Prep.I) performed
onceperdataset,secondpreprocessingstage(Prep.II) per-
formedonceperframefor severalframescorrespondingto
different view anglesand actual ray-castingstage(R.C.).
(SeeTable 2.) We also include resultsfor runs with the
32-bit version,which is morememory-effective,and64-bit
versions,which is muchfaster.

Ourrenderingtimesareveryfast,comparableto theones
reportedin [18], wherespecialhardwaresupportwasused.
Our memoryconsumptionis reasonablyhigh, in fact, we
useoveranorderof magnitudemorememoryascompared
to [11]. On theotherhand,weareabouttwiceasfastasthe
Lazy-SweepRayCastingalgorithm. It wasvery surprising
to seewecanachievea two-fold speedupby only changing
thecompilationflagsfrom -32 to -64 on the SGI compiler
(version7.1).

Dataset Points Tetrahedra Triangles
CombustionChamber 47025 215040 437888
Liquid OxygenPost 109744 513375 1040588

Blunt Fin 40960 187395 381548
DeltaWing 211680 1005675 2032084

Table 1. A list of the datasets used for test-
ing. These were conver ted into tetrahedra
from the original cur vilinear datasets provid-
ed by NASA.

4 Conclusions

We have presenteda simple (only 1700 lines of C++
code, including commentsand internal debugging code),
reusable,extendable,straightforwardandrobustimplemen-
tationof an irregulargrid ray-caster. Our algorithmmakes
no useof hierarchicaldatastructures,or othercomplicated
techniques.Despiteits simplicity, this raycastermetall our
designgoals. It achievesan impressive performancewhen
renderingirregular grid datasets.Our future plansinclude
addinga graphicaluserinterface,with supportfor progres-
siverenderingfor interactiveexploration.Anotherdirection
is parallelizingour technique,which shouldbe relatively
easyfor a sharedmemorymachinelike SGI Challengeor
multiprocessorLinux workstation.

Electronic Inf ormation

The full sourcecode of our algorithm, and a PERL
script for automatic generation of transfer functions
by histogramingis available. This, and other informa-
tion, including imagesand movies can be obtainedfrom
http://pbunyk.physics.sunysb.edu/˜ paul/-
CSE/RayTracer or by sendingmail to theauthors.
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Dataset Res. Active Bits Prep.I (sec) Prep.II (sec) R.C.(sec) Mem. (MB)
128= 5032 32 14 1 4 87.7

64 15 1 2 117.2
256= 20234 32 15 2 10 88.8

Cobution 64 16 1 6 118.6
Chaber 512= 81544 32 14 1 37 93.1

64 15 1 18 124.1
1024= 327272 32 15 1 141 110.4

64 15 2 65 146.4
128= 6254 32 36 2 5 208.3

64 36 2 3 278.1
256= 25160 32 36 3 19 209.4

Liquid 64 36 3 10 279.6
OxygenPot 512= 101034 32 37 2 72 214.1

64 38 3 35 285.7
1024= 405054 32 35 2 271 232.8

64 36 3 121 309.8
128= 4453 32 14 1 2 76.5

64 15 1 2 102.1
256= 17858 32 14 1 8 77.5

64 15 1 4 103.5
Blunt Fin 512= 71508 32 14 1 27 81.7

64 14 1 15 108.8
1024= 286781 32 14 1 104 98.3

64 15 2 56 130.2
128= 4396 32 72 4 4 406.6

64 76 5 3 542.9
256= 17684 32 74 4 13 407.6

64 78 5 9 544.2
DeltaWing 512= 71062 32 70 4 43 411.7

64 76 5 31 549.6
1024= 284889 32 71 4 157 428.3

64 76 5 100 570.9

Table 2. Vital statistics for using our rendering algorithm on a R10000 processor .



Figure 1. Blunt Fin. Figure 2. Comb ustion Chamber .

Figure 3. Delta Wing. Figure 4. Liquid Oxyg en Post.


