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Summary. Unstructured grids are extensively used in modern computational solvers and,
thus, play an important role in scientific visualization. They come in many different types.
One of the most general types are non-convex meshes, which may contain voids and cavities.
The lack of convexity presents a problem for several algorithms, often causing performance
issues.

One way around the complexity of non-convex methods is to convert them into convex
ones for visualization purposes. This idea was originally proposed by Peter Williams in his
seminal paper on visibility ordering. He proposed to fill the volume between the convex hull
of the original mesh, and its boundary with “imaginary” cells. In his paper, he sketches two
algorithms for potentially performing this operation, but stops short of implementing them.

This paper discusses the convexification problem and surveys the relevant literature. We
hope it is useful for researchers interested in the visualization of unstructured grids.

1 Introduction

The most common input data type in Volume Visualization is aregular (Cartesian)
grid of voxels. Given a general scalar field in<3, one can use a regular grid of voxels
to represent the field by regularly sampling the function at grid points(λi, λj, λk),
for integersi, j, k, and some scale factorλ ∈ <, thereby creating a regular grid of
voxels. However, a serious drawback of this approach arises when the scalar field
is disparate, having nonuniform resolution with some large regions of space having
very little field variation, and other very small regions of space having very high
field variation. In such cases, which often arise in computational fluid dynamics and
partial differential equation solvers, the use of a regular grid is infeasible since the
voxel size must be small enough to model the smallest “features” in the field. Instead,
irregular grids (or meshes), having cells that are not necessarily uniform cubes, have
been proposed as an effective means of representing disparate field data.

Irregular-grid data comes in several different formats [37]. One very common
format has beencurvilinear grids, which arestructuredgrids in computational space
that have been “warped” in physical space, while preserving the same topological
structure (connectivity) of a regular grid. However, with the introduction of new
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methods for generating higher quality adaptive meshes, it is becoming increasingly
common to consider more generalunstructured(non-curvilinear) irregular grids, in
which there is no implicit connectivity information. Furthermore, in some applica-
tionsdisconnectedgrids arise.

Preliminaries

We begin with some basic definitions. Apolyhedronis a closed subset of<3 whose
boundary consists of a finite collection of convex polygons (2-faces, or facets) whose
union is a connected 2-manifold. Theedges(1-faces) andvertices(0-faces) of a poly-
hedron are simply the edges and vertices of the polygonal facets. A bounded convex
polyhedron is called apolytope. A polytope having exactly four vertices (and four
triangular facets) is called asimplex(tetrahedron). A finite setS of polyhedra forms
a mesh(or anunstructured grid) if the intersection of any two polyhedra fromS is
either empty, a single common vertex, a single common edge, or a single common
facet of the two polyhedra; such a setS is said to form acell complex. The polyhedra
of a mesh are referred to as thecells (or 3-faces). We say that cellC is adjacentto
cell C ′ if C andC ′ share a common facet. The adjacency relation is a binary relation
on elements ofS that defines anadjacency graph.

A facet that is incident on only one cell is called aboundary facet. A boundary
cell is any cell having a boundary facet. The union of all boundary facets is the
boundaryof the mesh. If the boundary of a meshS is also the boundary of the
convex hull ofS, thenS is called aconvexmesh; otherwise, it is called anon-convex
mesh. If the cells are all simplicies, then we say that the mesh issimplicial.

The input to our problem will be a given meshS. We letc denote the number of
connected components ofS. If c = 1, the mesh isconnected; otherwise, the mesh is
disconnected. We letn denote the total number of edges of all polyhedral cells in the
mesh. Then, there areO(n) vertices, edges, facets, and cells.

We use a coordinate system in which the viewing direction is in the−z direction,
and the image plane is the(x, y) plane. We letρu denote the ray from the viewpoint
v through the pointu.

We say that cellsC andC ′ are immediate neighborswith respect to viewpoint
v if there exists a rayρ from v that intersectsC andC ′, and no other cellC ′′ ∈ S
has a nonempty intersectionC ′′ ∩ ρ that appears in between the segmentsC ∩ ρ
andC ′ ∩ ρ alongρ. Note that ifC andC ′ are adjacent, then they are necessarily
immediate neighbors with respect to very viewpointv not in the plane of the shared
facet. Further, in a convex mesh, theonlypairs of cells that are immediate neighbors
are those that are adjacent.

A visibility ordering(ordepth ordering), <v, of a meshS from a given viewpoint,
v ∈ <3 is a total (linear) order onS such that if cellC ∈ S visually obstructs cell
C ′ ∈ S, partially or completely, thenC ′ precedesC in the ordering:C ′ <v C. A
visibility ordering is a linear extension of the binarybehindrelation, “<”, in which
cell C is behindcell C ′ (written C < C ′) if and only if C andC ′ are immediate
neighbors andC ′ at least partially obstructsC; i.e., if and only if there exists a
ray ρ from the viewpointv such thatρ ∩ C 6= ∅, ρ ∩ C ′ 6= ∅, ρ ∩ C ′ appears in
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betweenv andρ ∩ C alongρ, and no other cellC ′′ intersectsρ at a point between
ρ∩C andρ∩C ′. A visibility ordering can be obtained in linear time (by topological
sorting) from the behind relation,(S, <), provided that the directed graph on the set
of nodesS defined by(S, <) is acyclic. If the behind relation induces a directed
cycle, then no visibility ordering exists. Certain types of meshes, (e.g., Delaunay
triangulations [16]) are known to have a visibility ordering from any viewpoint,i.e.,
they do not have cycles, and thus can be calledacyclic meshes.

Spatial Decompositions

There is a rich literature in the computational geometry community on spatial decom-
positions. See Nielson, Hagen and Müller [25] for an overview of their importance
in the context of visualization applications.

Spatial decomposition is an essential tool in finite element analysis and geometric
modeling. Applications require high-quality mesh generation, in which the goal is to
triangulate domains with elements that are “nice” in some well-defined sense (e.g.,
triangulations having no large angle [3]). See the recent surveys of Bern and Epp-
stein [4], Bern and Plassmann [5], and Bern [2], and the book of Edelsbrunner [16],
for a comprehensive overview of the literature.

A problem extensively studied in the early years of computational geometry was
the polygon triangulation problem, in which the goal was to decompose a sim-
ple polygon, or a polygon with holes, into triangles. A milestone result in two-
dimensional triangulations was the discovery by Chazelle [6] of a linear-time algo-
rithm for triangulating a simple polygon. Optimization problems related to decom-
positions of polygons into convex pieces have been studied in many variations; see
Chazelle and Dobkin [7] and the survey of Keil [21].

In three or more dimensions, decomposition of polyhedral domains into “trian-
gles” (tetrahedra) is substantially more complex. Ruppert and Seidel [27] have shown
that it is NP-complete to decide if a (non-convex) polyhedron can be tetrahedralized
without the addition of Steiner points. Chazelle and Palios [10] show that a (non-
convex) polyhedron havingn vertices andr reflex edges can always be triangulated
(with the addition of Steiner points) in timeO(nr+r2 log r) usingO(n+r2) tetrahe-
dra (which is worst-case optimal, since some polyhedra requireΩ(n+r2) tetrahedra
in any triangulation).

A regular triangulationin dimensiond is the vertical projection of the “lower”
side of a convex polytope in one higher dimension. The most widely studied regular
triangulation is the Delaunay triangulation of a point set, which is the projection
of the downward-facing facets of the convex hull of the lifted images of the input
points onto the paraboloid in one higher dimension. An alternative characterization
of a Delaunay triangulation is that the (hyper)sphere determined by the vertices of
each triangle (simplex) of a Delaunay triangulation is “site-free,” not containing input
points in its interior. See Edelsbrunner [15], as well as the book of Okabe, Boots, and
Sugihara [26] and the recent survey articles of Fortune [17]

Chazelle et al. [8] have examined how selectively adding points to an input set
in three dimensions results in the worst-case size of the Delaunay triangulation be-
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ing provably subquadratic in the input size, even though the worst-case size of a
Delaunay triangulation ofn points in space isΘ(n2).

The meshes we study here are decompositions of polyhedral domains and piece-
wise-linear complexes, in which the decomposition is required to respect the facets
of the input. A constrained Delaunay triangulationis a variation of a Delau-
nay triangulation that is constrained to respect the input shape, while being, in
some sense, “as Delaunay as possible.” Such decompositions have desirable prop-
erties, favoring more regular tetrahedra over “skinny” tetrahedra. This makes them
particularly appealing for interpolation, visualization, and finite element methods.
Two-dimensional constrained Delaunay triangulations have been studied by, e.g.,
Chew [11], De Floriani and Puppo [14], and Seidel [29]. More recently, three-
dimensional constrained Delaunay triangulations have been studied for their use in
mesh generation; see the surveys mentioned above ( [2,4,5,16]), as well as Weather-
ill and Hassan [39]. Shewchuk [30–34] has developed efficient methods for three-
dimensional constrained Delaunay triangulations, including, most recently [34],
provable techniques of inserting constraints and performing “flips” (local modifi-
cations to the mesh) to construct constrained Delaunay and regular triangulations
incrementally.

Exploiting Mesh Properties

Meshes that conform to properties such as “convexity” and “acyclicity” are quite spe-
cial, since they simplify the algorithms that work with them. Here are three instances
of visualization algorithms that exploit different properties of meshes:

• A classic technique for hardware-based rendering of unstructured meshes cou-
ples the Shirley-Tuchman technique for rendering a single tetrahedron [35] with
Williams’ MPVO cell-sorting algorithm [41]. For the case of acyclic convex
meshes, this is a powerful combination that leads to a linear-time algorithm that is
provably correct,i.e., one is guaranteed to get the right picture.4 When the mesh is
not convex or contains cycles, MPVO requires modifications that complicate the
algorithm and its implementation and lead to slower rendering times [13,22,36].

• A recent hardware-based ray casting technique for unstructured grids has been
proposed by Weiler et al [40]. This is essentially a hardware-based implementa-
tion of the algorithm of Garrity [19]. Strictly speaking, this technique only works
for convex meshes. Due to the constraints of the hardware, instead of modify-
ing the rendering algorithm, the authors employ a process of “convexification”,
originally proposed by Williams [41], to handle general cells.

• The complexities of the simplification of unstructured grids has led some re-
searchers to employ a convexification approach. As shown in Kraus and Ertl [23],
this greatly simplifies the simplification algorithm, since it becomes much sim-
pler to handle the simplification of the boundary of the mesh. Otherwise, expen-

4The rendering technique of Shirley and Tuchman [35] requires certain modifications as
proposed in Stein et al [38].
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sive global operations are necessary to guarantee that the simplified mesh does
not suffer from self intersections.

The “convexification” concept as proposed by Williams [41] is the process of
turning a non-convex mesh into a convex one. The basic idea is that this process can
be performed by adding a set of non-overlapping cells that fill up any holes or non-
convex regions up to the bounding box of the original mesh. Also, Williams proposes
that all the additional cells be marked “imaginary”. This is exactly the concept that
is used in the works of Weiler et al [40] and Kraus and Ertl [23]. In [23, 40], the
non-convex meshes weremanuallymodified to be convex by the careful addition of
cells. This approach is not scalable to larger and more complex data.

In this paper, we discuss the general problem of convexification. We start by re-
viewing Williams’ work, and discuss a number of issues. Then, we talk about two
techniques for achieving convexification: techniques based on constrained and con-
forming Delaunay tetrahedralization, and techniques based on the use of a binary
space partition (BSP). Finally, we conclude the paper with some observations and
open questions. One of the goals of this paper is to help researchers be able to choose
among tools and options for convexification solutions.

2 Williams’ Convexification Framework

In his seminal paper [41] on techniques for computing visibility orderings for
meshes, Williams discusses the problem of handling non-convex meshes (Section
9). (Also related is Section 8, which contains a discussion of cycles and the use of
Delaunay triangulations.) After explaining some challenges of using his visibility
sorting algorithm on non-convex meshes, Williams says:

“Therefore, an important area of research is to find ways to convert non-
convex meshes into convex meshes, so that the regular MPVO algorithm
can be used.”

Williams proposes two solution approaches to the problem; each relies on “treat-
ing the voids and cavities as ‘imaginary’ cells in the mesh.” Basically, he proposes
that such non-convex regions could be eithertriangulated or decomposedinto con-
vex pieces, and their parts marked as imaginary cells for the purpose of rendering.
Implementing this “simple idea” is actually not easy. In fact, after discussing this
general approach, Williams talks about some of the challenges, and finishes the sec-
tion with the following remark:

“The implementation of the preprocessing methods, described in this sec-
tion, for converting a non-convex mesh into a convex mesh could take a very
significant amount of time; they are by no means trivial. The implementa-
tion of a 3D conformed Delaunay triangulation is still a research question at
this time.”
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In fact, Williams does not provide an implementation of any of the two proposed
convexification algorithms. Instead, he developed a variant of MPVO that works on
non-convex meshes at the expense of not being guaranteed to generate correct visi-
bility orders.

The first convexification technique that Williams proposes is based on triangu-
lating the data using a conforming Delaunay triangulation. The idea here is to keep
adding more points to the dataset until the original triangulation becomes a Delaunay
triangulation. This is discussed in more details in the next section.

The second technique Williams sketches is based on the idea of applying a de-
composition algorithm to each of the non-convex polyhedra that constitute the set
CH(S) \ S, which is the set difference between the convex hull of the mesh and
the mesh itself. In general,CH(S) \ S is a union of highly non-convex polyhedra
of complex topology. Each connected component ofCH(S) \ S is a non-convex
polyhedron that can be decomposed into convex polyhedra (e.g., tetrahedra) using,
for example, the algorithm of Chazelle and Palios [10], which adds certain new ver-
tices (Steiner points), whose number depends on the number of “reflex” edges of the
polyhedron. In general, non-convex polyhedra require the addition of Steiner points
in order to decompose them; in fact, it is NP-complete to decide if a polyhedron can
be tetrahedralized without the addition of Steiner points [27].

2.1 Issues

Achieving Peter Williams’s vision of a simple convexification algorithm is much
harder than it appears at first. The problem is peculiar since we start with an exist-
ing 3D mesh (likely to be a tetrahedralization) that contains not only vertices, edges,
and triangles, but also volumetric cells, which need to be respected. Furthermore,
the mesh is not guaranteed to respect global geometric criteria (e.g., of being Delau-
nay). Most techniques need to modify the original mesh in some way. The goal is to
“disturb” it as little as possible, preserving most of its original properties.

In particular, several issues need to be considered:
Preserving acyclicity.Even if the original mesh has no cycles, the convexification
process can potentially cause the resulting convex mesh to contain cycles. Certain
techniques, such as constructing a conforming Delaunay tetrahedralization, are guar-
anteed to generate a cycle-free mesh. Ideally, the convexification procedure will not
create new cycles in the mesh.
Output size.For the convexification technique to be useful the number of cells added
by the algorithm needs to be kept as small as possible. Ideally, there is a provable
bound on the number of cells as well as experimental evidence that for typical input
meshes, the size of the output mesh is not much larger than the input mesh (i.e., the
set of additional cells is small).
Computational and memory complexity.Other important factors are the process-
ing time and the amount of memory used in the algorithm. In order to be practical on
the meshes that arise in computational experiments (having on the order of several
thousand to a few million cells), convexification algorithms must run in near-linear
time, in practice.
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Boundary and interior preservation. Ideally, the convexification procedure adds
cells only “outside” of the original mesh. Furthermore, the newly created cells should
exactly match the original boundary of the mesh. In general, this is not feasible with-
out subdividing or modifying the original cells in some way (e.g., to break cycles,
or to add extra geometry in order to respect the Delaunay empty-circumsphere con-
dition). Some techniques will only need to modify the cells that are at or near the
original boundary while others might need to perform more global modifications
that go all the way “inside” the original mesh. One needs to be careful when making
such modifications because of issues related to interpolating the original data values
in the mesh. Otherwise, the visualization algorithm may generate incorrect pictures
leading to wrong comprehension.
Robustness and degeneracy handling.It is very important for the convexification
algorithms to handle real data. Large scientific datasets often use floating-point pre-
cision for specifying vertices, and are likely to have a number of degeneracies. For
instance, these datasets are likely to have many vertices (sample points) that are
coplanar, or that lie on a common cylinder or sphere, etc., since the underlying phys-
ical model may have such features.

3 Delaunay-Based Techniques

Delaunay triangulations and Delaunay tetrahedralizations (DT) are very well known
and studied geometric entities (see, e.g., [16, Chapter 5]). A basic property that char-
acterizes this geometric structure is the fact that a tetrahedron belongs to the DT of
a point set if the circumsphere passing through the four vertices is empty, meaning
no other point lies inside the circumsphere. Under some non-degeneracy conditions
(no 5 points co-spherical), this property completely characterizes DTs and the DT is
unique.

Part of the appeal of Delaunay tetrahedralizations (see Figure 1(b)) is the relative
ease of computing the tetrahedralizations. As a well-studied structure, often used
in mesh generation, standard codes are readily available that compute the DT. The
practical need of forcing certain faces to be part of the tetrahedralizations led to the
development of two main approaches:conformingDelaunay tetrahedralizations and
constrainedDelaunay tetrahedralizations. Here, we only give a high-level discussion
on the intuition behind these ideas; for details see, e.g., [32].

Given a set of faces{fi} (Figure 1(a)) that need to be included in a DT, the
idea behindconformingDelaunay tetrahedralizations (Figure 1(c)) is to add points
to the original input set in order that the DT of the new point set (consisting of the
original pointsplusthe newly added points) is such that each facefi can be expressed
as the union of a collection of faces of the DT. The newly added points are often
called Steinerpoints. A challenge in computing a conforming DT is minimizing
the number of Steiner points and avoiding the generation of very small tetrahedra.
While techniques for computing the traditional DT of point sites are well known,
and reliable code exists, conforming DT algorithms are still in active development
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(a) Input geometry (b) DT

(c) Conforming DT (d) Constrained DT

Fig. 1. Different triangulation techniques. (a) The input geometry; (b) the Delaunay trian-
gulation; (c) a conforming Delaunay triangulation with input geometry marked in red – note
how the input faces have been broken into multiple pieces; and, (d) the constrained Delaunay
triangulation. Images after Shewchuk [31].

[12,24]. The particular technique for adding Steiner points affects the termination of
the algorithm, and also the number and quality of the added geometry.

For convexification purposes, the conforming DT seems to be a good solution
upon first examination, and was one of the original techniques Williams proposed
for the problem. One of the main benefits is that since a conforming DT is actually
a DT of a larger point set, it must be acyclic. On closer inspection, we can see that
conforming DTs have a number of potential weaknesses. First, if the original mesh
was not a DT, we may need to completely re-triangulate it. This means that internal
structures of the mesh, which may have been carefully designed by the modeler, are
potentially lost. In addition, the available experimental evidence [12] suggests that a
considerable number of Steiner points may be necessary. Part of the problem is that
when a facefi is pierced by the DT, adding alocal point p to resolve this issue can
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potentially result in modifications to the mesh deep within the triangulation, not just
in the neighborhood of the pointp. Another potential issue with using a conforming
DT is the lack of available robust codes for the computation. This is an issue that we
expect soon to be resolved, with advances under way in the computational geometry
community.

The constrained DT (Figure 1(d)) is a different way to resolve the problem of
respecting a given set of faces. While in a conforming DT we only had to make
sure that each given facefi can be represented as the union of a set of faces in the
conforming DT, for a constrained DT we insist that each facefi appears exactly
as a face in the tetrahedralization. In order to do this, we mustrelax the empty-
circumsphere criterionthat characterizes a DT; thus, a constrained DTis not (in
general) a Delaunay tetrahedralization. The definition of the constrained DT requires
a modification to the empty-circumsphere criteria in which we use the input faces
{fi} as blockers of visibility and empty-circumsphere tests are computing taking
that into account. That is, when performing the tests, we need todiscard certain
geometry when the sphere intersects one (or more) of the input faces. We refer the
reader to [32] and [16, Chapter 2] for a detailed discussion. In regions of the mesh
“away from” the input faces, a constrained DT looks very much like a standard DT.
In fact, they share many of the same properties [30].

Because we are not allowed to add Steiner points when building a constrained
DT, they have certain (theoretical) limitations. A particularly intriguing possibility
is that it may not be possible to create one because some polyhedra cannot be tetra-
hedralized without adding Steiner points. (In fact, it is NP-complete to decide if a
polyhedron can be tetrahedralized without adding Steiner points [27].) Further, con-
strained DTs suffer from some of the same issues as conforming DTs in that they
may require re-triangulation of large portions of the original mesh. While it may be
possible to maintain the Delaunay property on the “internal” portions of the mesh,
away from the boundary faces, it is unclear what effect the non-Delaunay portions
of the mesh near the boundary have on global properties, such as acyclicity, of the
mesh. At this point, some practical issues related to constrained DTs are an area of
active investigation [30,33]; to our knowledge, there is no reliable code available for
computing them.

Whether using a conforming or a constrained Delaunay tetrahedralization, the
robust computation of the structure for very large point sets is not trivial. Even the
best codes take a long time and use substantial amounts of memory. Some of the
interesting non-convex meshes we would like to handle have on the order of ten mil-
lion tetrahedra or more. In the case that the whole dataset needs to be re-triangulated,
it is unclear if these techniques would be practical.

4 Direct Convexification Approaches Using BSP-trees

The Binary Space Partitioning tree (BSP-tree) is a geometric structure that has many
interesting properties that can be explored in the convexification problem. For in-
stance, the BSP-tree induces a hierarchical partition of the underlying space into
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(a) (b)

(c) (d)

Fig. 2. Using BSP-trees to fill space. (a) The input non-convex mesh; (b) the BSP decom-
position using the boundary facets of the input mesh; (c) the corresponding BSP tree; and, (d)
the input mesh augmented with BSP cells.

convex cells that allows visibility ordering to be extracted by a priority-search driven
by the viewpoint position (in a near-to-far or far-to-near fashion) [18]. In Figure 2
we show how the BSP is used to capture the structure of the empty space.

4.1 Implicit BSP-Tree regions

The visibility-ordering produced by the BSP-tree was explored in [13] to produce
missing visibility relations in projective volume rendering. The approach relies on
using the BSP-trees to represent the empty space surrounding a non-convex mesh.
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Since the empty spaceCH(S) \ S and meshS have a common intersection at the
boundary facets of the meshS, a BSP-tree was constructed using cuts along the
supporting planes of the boundary facets. The construction algorithm starts with the
collection of boundary facets of the mesh, and uses an appropriate heuristic to choose
a cut at each step to partition the space. The partition process associates each facet
with the corresponding half-space (two half-spaces if a facet is split), storing the
geometric representations of the boundary facets along the partitioning plane at the
nodes of the BSP. The process is recursively repeated at each subtree until a stopping
criterion is satisfied.

The resulting BSP-tree partitions the space into convex cells that are either inter-
nal or external to the mesh. If a consistent orientation for the boundary facet normals
is used, these sets can be distinguished by just checking to which side a given leaf
node is with respect to its parent (see Figure 2).

In this approach no effort was made to enumerate explicitly the convex regions
corresponding to the empty space in the BSP-tree. However, their implicit represen-
tation was used to help provide the missing visibility ordering information in the
empty space surrounding the mesh.

Central to this approach is the extraction of visibility relations between interior
regions (mesh cells) and exterior regions (the convex cells of the empty space in-
duced by the BSP-tree). The boundary facets of the meshS are the common bound-
ary between these two types of regions. The approach used in [13] explores one way
to obtain the visibility relations, using the visibility ordering produced by the BSP-
tree to drive this process. This is done by using a visibility ordering traversal in the
BSP-tree with respect to a given viewpoint (in a far-to-near fashion). When an inter-
nal node is visited we reach a boundary facet of the mesh. Only facets facing away
from the viewing direction impose visibility ordering restrictions, and, for these, two
situations can arise, as follows.

The first case happens when the facet stored at the node was not partitioned by
the BSP-tree, and therefore is entirely contained in the hyperplane (visible). Visiting
an entirely visible boundary facet allows the visibility ordering restriction imposed
by this facet into the incident mesh cell to be lifted, which may lead to the inclusion
of the cell in the visibility ordering if all restrictions to this cell were lifted.

The second case happens when the boundary facet is partially stored at the BSP
node, which indicates that is was partitioned by another cut in the BSP. In this case it
is not possible to lift the visibility ordering restriction, since other fragments were not
yet reached by the BSP traversal (and therefore not entirely visible). At the moment
that the last facet fragment is visited, a cell may be able to be included in the visibility
ordering. The solution proposed in [13] uses a counter to accumulate the number of
facet fragments created, decrementing this counter for each fragment visited, and
lifting the conditions imposed by the fragment when the counter gets to zero.

However, the partition of boundary facets by cuts in the BSP-tree has additional
side effects that need to be taken into consideration. In such cases, the BSP traversal
is not enough to produce a valid visibility ordering for mesh cells. This happens
because the BSP establishes a partial ordering between the convex cells it defines,
and a mesh cell that is partitioned by a BSP cut lies in different convex cells of the
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(a) (b)

Fig. 3. Partially projected cells. Two cells, (a), and the corresponding BSP-tree, (b). The
moment that the traversal reaches nodec, cell C1 cannot be projected, but has to wait until a
partially visited cellC2 has been projected.

BSP. In Figure 3 we have an example in which a cellC1 cannot enter the visibility
ordering because a partially visited cell has facet fragments that were not yet visited.
If the ordering to be produced is between the cellC1 and the two sub-cells ofC2,
then the BSP ordering suffices.

Cells that have partially visited facets need special treatment; the collection of
all such cells at any given time is maintained in a partially projected cells list (PPC).
It can be shown that a valid visibility ordering can be produced by the partial or-
derings provided by mesh adjacencies (<ADJ ), the ordering produced by the BSP-
tree traversal (<BSP ), and an additional intersection involving cells in the PPC list
(<PPC). The PPC test increases the complexity of the algorithm; however, it is guar-
anteed not to generate cycles.

4.2 Explicit BSP-trees regions

The implicit use of the convex regions induced by the BSP-tree in the previous ap-
proach required a BSP-traversal to drive the visibility ordering procedure. Another
approach is to compute explicitly such convex regions (filler cells) and combine them
with the mesh to form a convex mesh.

The construction of the BSP-tree uses, as before, partitioning cuts defined by the
planes through the boundary facets, except that a different heuristic is used to select
the cuts. The algorithm that computes the filler cells needs to perform the following
tasks:

• Computing the geometry of the filler cells:
Extracting convex regions associated with nodes of the BSP is straightforward; it
can be done in a top-down manner, starting at the root of the tree with a bounding
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box that is guaranteed to contain the entire model. In order to obtain the convex
regions of the left and right children, the convex region associated with the node
is partitioned by the hyperplane. The resulting two convex regions are associated
with the children nodes, and the process continues recursively. Figure 4 illustrates
this process.

Fig. 4. Geometric computation of filler cells. Illustration of the recursive procedure that
applies a partitioning operation to the cell of a node.

• Computing topological adjacencies between mesh and filler cells:
The extraction of topological information in the BSP is not as straightforward.
One difficulty that arises is the fact that a cell may be adjacent, by a single
facet, to more than one cell. (The cells do not form a cell complex.) The fact
that the BSP has arbitrary direction cuts makes the task even harder, requiring
an approach that handles numerical degeneracies. The topological adjacencies
that need to be computed include filler-to-filler adjacencies, mesh-to-filler and
filler-to-mesh adjacencies (see Figure 5).

This convexification approach needs to satisfy the requirements posed before; we
briefly discuss them in the context of this approach:
Preserving acyclicity:Although the internal adjacencies of the mesh may not lead to
cycles in the visibility ordering, the addition of filler cells may lead to an augmented
model (mesh plus filler cells) that contains cycles. Since the mesh is assumed acyclic,
cycles do not involve only mesh cells, and from the visibility ordering property of
BSP-trees, cycles do not involve only filler cells. Cycles will not involve runs of
several filler to mesh cells (filler-mesh), or vice-versa (mesh-filler), since each one
of the runs is acyclic. However, cycles can happen in filler-mesh-filler or mesh-filler-
mesh cells.

It is still an open problem how to design techniques to avoid or to minimize
the appearance of cycles. (See [1, 9] for theoretical results on cutting lines to avoid
cycles.) Also, it would be interesting to establish bounds on the number of cells in a
cycle.
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(a) (b)

Fig. 5. Topological adjacencies. Filler-to-filler adjacency relations (a) and mesh-to-filler (and
vice-versa) relations (b) that need to be computed.

Output size: The number of cells generated is directly related to the size of the
BSP-tree. Although the BSP can have worst-caseΘ(n2) in <3, in practice the use of
heuristics reduces the typical size of a BSP to linear. Preliminary tests show that one
can expect an increase of 5-10% in the number of cells produced.
Computational and memory complexity:The computational cost of the algorithm
is proportional to the time required to build a BSP for the boundary faces. The ex-
traction of geometric and topological information of the BSP is proportional to the
time to perform a complete traversal of the BSP.
Boundary and interior preservation: The BSP approach naturally preserves the
boundary and interior of the mesh, since it only constructs cells that are outside
S. This requires that the mesh has the interior well defined,i.e., each connected
component of the boundary is a 2-manifold. A consistent orientation of boundary
facet normals allows an easy classification of which cells of the BSP are interior or
exterior to the mesh.
Robustness and degeneracy handling:The fundamental operations used in the
construction of BSP-trees are point-hyperplane classification and the partition of a
facet by a hyperplane. The fact that geometric computations rely on only these two
operations allows better control of issues of numerical precision and floating point
errors. Of course, unless one uses exact geometric computation [28, 42], numerical
errors are inevitable; however, several geometric and topological predicates can be
checked to verify if a given solution is numerically consistent. The literature on solid
modeling has important suggestions on how to do this [20], as in the problem of
converting CSG solids to a boundary representation. The possibility of having nearly
coplanar boundary facets needs to be treated carefully, since it may require the par-
tition of a facet by a nearly coplanar hyperplane.

The filler cells obtained after a convexification algorithm need to be added to the
non-convex mesh, with updates to the topological relationships. In particular, three
new types of topological relationships need to be added: filler to filler adjacencies,
filler to mesh adjacencies and mesh to filler adjacencies. This problem is complicated
by the fact that adjacencies do not occur at a single facet (i.e., a cell can be adjacent
to more than one cell, as the cells do not necessarily form a cell complex). Again,
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(a) (b)

(c) (d)

Fig. 6. Explicit BSP regions. Two sample meshes ((a) and (c)) and the correspond BSP-
regions that fill space ((b) and (d)).

geometric and topological predicates that guarantee the validity of topological rela-
tionships need to be enforced (e.g., if a cell ci is adjacent tocj by way of facetfm,
then there must exist a facetfn such thatcj is adjacent toci by way of facetfn).

5 Final Remarks

This work presents a brief summary of the current status of strategies to compute
a convexification of space with respect to a non-convex mesh. We present a formal
definition of the problem and summarize the requirements that one solution needs to
fulfill. We discuss two possible solutions. The first is based in Delaunay triangula-
tions; we point out some of the difficulties faced by this approach. We discuss the
use of BSP-trees as a potentially better and more practical solution to the problem.
However, many problems are still open. For example, what is a practical method for
convexification that avoids the generation of cycles in the visibility relationship?
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