
Visibility, problems, techniques and
applications

Course Notes for SIGGRAPH 2000
New Orleans, Louisiana

July 2000

Organizer:

Daniel Cohen-Or Tel-Aviv University

Speakers:

Yiorgos Chrysanthou UCL University of London
George Drettakis iMAGIS-GRAVIR/IMAG
Cláudio T. Silva AT&T Labs-Research

1

Abstract

Visibility determination, the process of deciding what surfaces can be seen
from a certain point, is one of the fundamental problems in computer graphics.
Its importance has long been recognized, and in network-based graphics, virtual
environments, shadow determination, global illumination, culling, and interactive
walkthroughs, it has become a critical issue. This course reviews fundamental is-
sues, current problems, and unresolved solutions, and presents an in-depth study of
the visibility algorithms developed in recent years. Its goal is to provide students
and graphics professionals (such as game developers) with effective techniques for
visibility culling.

Schedule

1:30 – 1:50 Introduction to visibility Cohen-Or
1:50 – 2:50 Object-space visibility Silva
2:50 – 3:30 Image-space visibility Chrysanthou
3:30 – 3:45 Break
3:45 – 4:15 From-region visibility Cohen-Or
4:15 – 4:45 The visibility complex Drettakis
4:45 – 5:00 Final questions (All speakers)

2

Speaker Biographies

Daniel Cohen-Or
Computer Science Department
School of Mathematical Sciencees
Tel-Aviv University, Ramat-Aviv 69978, Israel
E-mail: daniel@math.tau.ac.il

Daniel Cohen-Or is a senior lecturer at the Department of Computer Science since 1995. He
received a B.Sc. cum laude in both Mathematics and Computer Science (1985), an M.Sc. cum
laude in Computer Science (1986) from Ben-Gurion University, and a Ph.D. from the Department
of Computer Science (1991) at State University of New York at Stony Brook. He has been a
lecturer at the Department of Mathematics and Computer Science of Ben Gurion University in
1992-1995.
He is on the editorial advisory board of the international Computers and Graphics journal. He is
the Program Co-chair of the symposium on volume visualization to be held in the year 2000. He
is a member of the program committees of several international conferences on visualization and
computer graphics, including IEEE Visualization and Eurographics. Between 1996-8 he served as
the Chairman of the Central Israel SIGGRAPH Chapter.
Dr. Cohen-Or has a rich record of industrial collaboration. In 1992-93 he developed a real-time
flythrough with Tiltan Ltd. and IBM Israel for the Israeli Air Force. During 1994-95 he worked
on the development of a new parallel architecture at Terra Ltd. In 1996-1997 he has been working
with MedSim Ltd. on the development of an ultrasound simulator. His research interests are in
Computer Graphics, and include rendering techniques, client/server 3D graphics applications,
real-time walkthroughs and flythroughs, volume graphics, architectures and algorithms for
voxel-based graphics.

Yiorgos Chrysanthou
Department of Computer Science
UCL University of London
Gower Street, London WC1E 6BT, UK
E-mail: Y.Chrysanthou@cs.ucl.ac.uk

Yiorgos Chrysanthou is a lecturer in the Computer Science Department of University College
London, UK. He received his BSc in Computer Science and Statistics (1990, 1st Class Honours)
and his PhD in Computer Graphics (1996) from Queen Mary and Westfield College. During the
period of 1996-98 he worked for as a research fellow on the COVEN (Collaborative Virtual
ENvironments) ACTS project. His research interests include real-time rendering, virtual reality
and computational geometry.

3

Cláudio T. Silva
AT&T Labs-Research
Shannon Laboratory
180 Park Avenue – room D265
Florham Park, NJ 07932-0971
E-mail: csilva@research.att.com

Cláudio Silva is a Senior Member of Technical Staff in the Information Visualization Research
Department at AT&T Research. Before joining AT&T, Cl´audio was a Research Staff Member at
IBM T. J. Watson Research Center, where he worked on geometry compression, 3D scanning,
visibility culling and polyhedral cell sorting for volume rendering. Claudio got his PhD in
computer science at the State University of New York at Stony Brook in 1996. While a student,
and later as an NSF post-doc, he worked at Sandia National Labs, where he developed large-scale
scientific visualization algorithms and tools for handling massive datasets. His research interests
include graphics, visualization, applied computational geometry, and high-performance
computing.

George Drettakis
iMAGIS-GRAVIR/IMAG
Inria Rhones-Alpes
ZIRST - 655 avenue de l’Europe
F-38330 Montbonnot Saint-Martin, France
E-mail: George.Drettakis@imag.fr

George received his Ptychion (B.Sc. equivalent) in 1988 from the Dept. of Computer Science in
Crete, Greece. As an undergrad he worked at the ICS/FORTH on European Community research
programs. Then completed Masters (in 1990) and Ph.D. (Jan 1994) at the Dept. of C.S. at the
University of Toronto, Canada, under the supervision of Eugene Fiume . Dr. Drettakis also
worked as a summer intern in 1990 at the Advanced Technology Group at Apple Computer in
Cupertino Ca. in the US. Hi M.Sc. and Ph.D. were in Computer Graphics, and he worked in the
Dynamic Graphics Project in Toronto.
He was an ERCIM postdoctoral fellow in ’94-’95. The first part of his ERCIM postdoc (Jan.
94-Nov. 94) was at iMAGIS in Grenoble, France. The second part was in Barcelona, Spain at the
UPC/LiSi graphics group (Dec. 94 to Mar. 24 1995). The last part of his ERCIM tour of Europe
at VMSD-GMD in Germany (Mar. 24- Jul. 24 1995). He is now a member of the permanent
researcher staff at iMAGIS- INRIA in Grenoble.

4

Contents

Introduction to visibility Cohen-Or

“A Survey of Visibility for Walkthrough Applications”, D. Cohen-Or,
Y. Chrysanthou, and C. Silva, manuscript, 2000.

Object-space visibility Silva

“The Prioritized-Layered Projection Algorithm for Visible Set Estimation”,
J. Klosowski and C. Silva, Submitted for publication, 2000.

“Efficient Conservative Visibility Culling Using The Prioritized-Layered Projection Algorithm”,
J. Klosowski and C. Silva, Submitted for publication, 2000.

Image-space visibility Chrysanthou

“Virtual occluders: An efficient intermediate pvs representation”, V. Koltun, Y. Chrysanthou, and
D. Cohen-Or, Submitted for publication, 2000.

The visibility complex Drettakis

“A Multidisciplinary Survey of Visibility”, F. Durand, manuscript,2000.

5

9LVLELOLW\�3UREOHPV�IRU�
:DONWKURXJK�$SSOLFDWLRQV

'DQLHO�&RKHQ�2U

&RPSXWHU�6FLHQFH�'HSDUWPHQW

7HO�$YLY�8QLYHUVLW\

KWWS���ZZZ�PDWK�WDX�DF�LO�aGDQLHO�

9LVLELOLW\�3UREOHPV�IRU�:DONWKURXJK�
$SSOLFDWLRQV

'DQLHO�&RKHQ�2U��7HO�$YLY�8QLYHUVLW\

<LRUJRV�&KU\VDQWKRX��8QLYHUVLW\�&ROOHJH�RI�/RQGRQ

&ODXGLR�6LOYD��$7	7�/DEV�UHVHDUFK

HRUJH�'UHWWDNLV��L0$,6��,15,$�LQ�*UHQREOH

9LUWXDO�5HDOLW\�$SSOLFDWLRQV
� 7KH�XVHU�´ZDONVµ�LQWHUDFWLYHO\�LQ�D�YLUWXDO�
SRO\JRQDO�HQYLURQPHQW�
([DPSOHV��PRGHO�RI�D�FLW\��PXVHXP��PDOO��
DUFKLWHFWXUDO�GHVLJQ

7KH�JRDO��WR�UHQGHU�DQ�XSGDWHG�
LPDJH�IRU�HDFK�YLHZ�SRLQW�DQG�IRU�
HDFK�YLHZ�GLUHFWLRQ�LQ�LQWHUDFWLYH�
IUDPH�UDWH

7KH�0RGHO
�&RPSRVHG�RI��'�
JHRPHWULF�REMHFWV���
/RWV�RI�VLPSOH�SDUWV

� /DUJH�DQG�FRPSOH[���
KXQGUHGV�WKRXVDQGV�
RU�HYHQ�PLOOLRQV�RI�
SRO\JRQV

7KH�9LVLELOLW\�3UREOHP

�6HOHFWLQJ�WKH��H[DFW"��
VHW�RI�SRO\JRQV�IURP�WKH�
PRGHO�ZKLFK�DUH�YLVLEOH�
IURP�D�JLYHQ�YLHZSRLQW

7KH�9LVLELOLW\�3UREOHP�LV�LPSRUWDQW

� $YHUDJH�QXPEHU�RI�
SRO\JRQV��YLVLEOH�IURP�D�
YLHZSRLQW��LV�PXFK�V�P�D�O�O�H�U�
WKDQ�WKH�PRGHO�VL]H

,QGRRU�VFHQH

�

2LO�WDQNHU�VKLS

&RS\LQJ�0DFKLQH

7KH�9LVLELOLW\�3UREOHP�
LV�QRW�HDV\���

$�VPDOO�FKDQJH�RI�
WKH�YLHZSRLQW�PLJKW�
FDXVHV�ODUJH�
FKDQJHV�LQ�WKH����
YLVLELOLW\

7KH�9LVLELOLW\�3UREOHP�
LV�QRW�HDV\���

�$�VPDOO�FKDQJH�RI�WKH�YLHZSRLQW�PLJKW
FDXVHV�ODUJH�FKDQJHV�LQ�WKH�YLVLELOLW\

��

��

&ORVH�GHWDLOV)DU�GHWDLOV

&XOOLQJ

�$�SULPLWLYH�FDQ�EH�FXOOHG�E\�

9LHZ�
)UXVWXP�
&XOOLQJ

2FFOXVLRQ�
&XOOLQJ

%DFN�)DFH�
&XOOLQJ

$YRLG�SURFHVVLQJ�SRO\JRQV�ZKLFK�
FRQWULEXWH�QRWKLQJ�WR�WKH�
UHQGHUHG�LPDJH�

9LHZ�)UXVWXP�&XOOLQJ

5HPRYH�
SULPLWLYHV�
HQWLUHO\�
RXWVLGH�WKH�
ILHOG�RI�YLHZ�

0RGLI\�UHPDLQLQJ�
SULPLWLYHV�VR�DV�WR�
SDVV�WKURXJK�RQO\�
WKH�SRUWLRQ�LQVLGH�
YLHZ�IUXVWXP

3DVV�WKURXJK�
VFHQH��
SULPLWLYHV�
HQWLUHO\�
LQVLGH�
IUXVWXP

%DFNIDFH�&XOOLQJ

1

1

1

!���

!���

����

FXOO�DZD\�SRO\JRQV�
ZKRVH�IURQW�VLGHV�IDFH�
DZD\�IURP�WKH�YLHZHU

��

2FFOXVLRQ�&XOOLQJ
� &XOO�WKH�SRO\JRQV�RFFOXGHG�
E\�RWKHU�REMHFWV�LQ�WKH�
VFHQH

� 9HU\�HIIHFWLYH�LQ�GHQVHO\�
RFFOXGHG�VFHQHV

*OREDO��LQYROYHV�
LQWHUUHODWLRQ�EHWZHHQ�WKH�
SRO\JRQV

9LVLELOLW\�&XOOLQJ

9LHZ�IUXVWXP�FXOOLQJ

%DFN�IDFH�FXOOLQJ

2FFOXVLRQ�FXOOLQJ

9LHZ
)UXVWXP

+LGGHQ�6XUIDFH�5HPRYDO
3RO\JRQV�RYHUODS��VR�VRPHKRZ��ZH�PXVW
GHWHUPLQH�ZKLFK�SRUWLRQ�RI�HDFK
SRO\JRQ�WR�GUDZ��LV�YLVLEOH�WR�WKH�H\H�

2XWSXW�
VHQVLWLYH�
DOJRULWKPV

([DFW�9LVLELOLW\

$SSUR[LPDWH�9LVLELOLW\

,QFOXGHV�DOO�WKH�SRO\JRQV�ZKLFK�DUH�DW�
OHDVW�SDUWLDOO\�YLVLEOH�DQG�RQO\�WKHVH�
SRO\JRQV�

,QFOXGHV�PRVW�RI�WKH�YLVLEOH�SRO\JRQV�SOXV�
PD\EH�VRPH�KLGGHQ�RQHV�

0D\�FODVVLI\�LQYLVLEOH�REMHFW�DV�YLVLEOH�
EXW�PD\�QHYHU�FODVVLI\�YLVLEOH�REMHFW�DV�
LQYLVLEOH

&RQVHUYDWLYH�9LVLELOLW\
,QFOXGHV�DW�OHDVW�DOO�WKH�YLVLEOH�REMHFWV
SOXV�PD\EH�VRPH�DGGLWLRQDO�LQYLVLEOH�
REMHFWV

��

)URP�WKLV�SRLQW�RQO\�WKH�UHG�REMHFWV�DUH�
YLVLEOH

3RLQW�9LVLELOLW\

��

)URP�WKLV�FHOO�WKH�UHG�REMHFWV�DUH�YLVLEOH�
DV�ZHOO�DV�RUDQJH�RQHV

&HOO�9LVLELOLW\
&RPSXWH�WKH�VHW�RI�DOO�
SRO\JRQV�YLVLEOH�IURP�
HYHU\�SRVVLEOH�
YLHZSRLQW�IURP�D�UHJLRQ�
�YLHZ�FHOO�

��

7KH�$VSHFW�*UDSK

,VRPRUSKLF�JUDSKV

7KH�$VSHFW�*UDSK
� ,6*�±�,PDJH�6WUXFWXUH�JUDSK
7KH�SODQQHU�JUDSK��GHILQHG�E\�WKH�RXWOLQHV�
RI�DQ�LPDJH��FUHDWHG�E\�SURMHFWLRQ�RI�D�
SRO\KHGUDO�REMHFW��LQ�D�FHUWDLQ�YLHZ�GLUHFWLRQ

7KH�$VSHFW�*UDSK��&RQW��
�$VSHFW
7ZR�GLIIHUHQW�YLHZ�GLUHFWLRQV�RI�DQ�REMHFW�
KDYH�WKH�VDPH�DVSHFW�LII�WKH�FRUUHVSRQGLQJ�
,PDJH�6WUXFWXUH�JUDSKV�DUH�LVRPRUSKLF��

7KH�$VSHFW�*UDSK��&RQW��
�963�±�9LVLELOLW\�6SDFH�3DUWLWLRQ

� 3DUWLWLRQLQJ�WKH�YLHZVSDFH�LQWR�PD[LPDO�FRQQHFWHG�
UHJLRQV�LQ�ZKLFK�WKH�YLHZSRLQWV�KDYH�WKH�VDPH�YLHZ�
RU�DVSHFW

�9LVXDO�(YHQW
$�ERXQGDU\�RI�D�963�UHJLRQ�FDOOHG�D�9(�IRU�LW�PDUNV�D�
FKDQJH�LQ�YLVLELOLW\

7KH�$VSHFW�*UDSK��&RQW��
�$VSHFW�*UDSK
�$�YHUWH[�IRU�HDFK�UHJLRQ�RI�WKH�963�
�$Q�HGJH�FRQQHFWLQJ�DGMDFHQW�UHJLRQV

5HJLRQV�RI�WKH�963�DUH�QRW�PD[LPDO�EXW�PD[LPDO�FRQQHFWHG�UHJLRQV�

$VSHFW�JUDSK��&RQW��

��SRO\JRQV������DVSHFW�UHJLRQV

$VSHFW�JUDSK��&RQW��

��SRO\JRQV���´PDQ\µ�DVSHFW�UHJLRQV�

'LIIHUHQW�DVSHFW�UHJLRQV�FDQ�KDYH�
HTXDO�VHWV�RI�YLVLEOH�SRO\JRQV

6XSSRUWLQJ�	�6HSDUDWLQJ�3ODQHV

�

�

�

�

�
6XSSRUWLQJ

6HSDUDWLQJ

6XSSRUWLQJ

6HSDUDWLQJ

$

7�LV�QRW�RFFOXGHG�LQ�UHJLRQ��
7�LV�SDUWLDOO\�RFFOXGHG�LQ�UHJLRQ��
7�LV�FRPSOHWHO\�RFFOXGHG�LQ�UHJLRQ��

$���RFFOXGHU
7���RFFOXGHH

7

9LVLELOLW\�IURP�WKH�OLJKW�VRXUFH

7KH�$UW�*DOOHU\�3UREOHP

6HH��IWS���IWS�PDWK�WDX�DF�LO�SXE�aGDQLHO�SJ���SGI

&ODVVLILFDWLRQ�RI�YLVLELOLW\�
DOJRULWKPV

�([DFW�YV��$SSUR[LPDWHG
�&RQVHUYDWLYH�YV��([DFW�
�3UHFRPSXWHG�YV��2QOLQH
�3RLQW�YV��5HJLRQ
�,PDJH�VSDFH�YV��2EMHFW�VSDFH
�6RIWZDUH�YV��+DUGZDUH
�'\QDPLF�YV��6WDWLF�VFHQHV

9LVLELOLW\�LV�LPSRUWDQW�DQG�
LQWHUHVWLQJ

�2QO\�D�VPDOO�IUDFWLRQ�RI�WKH�VFHQH�
LV�YLVLEOH�IURP�D�JLYHQ�SRLQW�
�
�6PDOO�FKDQJHV�LQ�WKH�YLHZ�SRLQW�FDQ�
FDXVH�ODUJH�FKDQJHV�LQ�WKH�YLVLELOLW\�

�

)URP�UHJLRQ�
9LVLELOLW\

'DQLHO�&RKHQ�2U

7HO�$YLY�8QLYHUVLW\)URP�WKLV�SRLQW�RQO\�WKH�UHG�REMHFWV�
DUH�YLVLEOH

3RLQW�9LVLELOLW\

)URP�WKLV�FHOO�WKH�UHG�REMHFWV�DUH�
YLVLEOH�DV�ZHOO�DV�RUDQJH�RQHV

&HOO�9LVLELOLW\
&RPSXWH�WKH�VHW�RI�DOO�
SRO\JRQV�YLVLEOH�
IURP�HYHU\�SRVVLEOH�
YLHZSRLQW�IURP�D�
UHJLRQ��YLHZ�FHOO�

:HE�EDVHG�V\VWHP

:HE�EDVHG�FOLHQW�VHUYHU�
V\VWHP

$�KXJH��'�VFHQH

$�ZDONWKURXJK�IUDPH

YLHZFHOO

/DWHQF\��
/DWHQF\��
/DWHQF\�

�

YLHZFHOO

,V�WKH�JUHHQ�
EXLOGLQJ�YLVLEOH�
IURP�VRPH�SRLQW�
LQ�WKH�YLHZFHOO"

YLHZFHOO

6DPSOLQJ"

6WURQJ�2FFOXVLRQ�WHVW,V�LW�QRZ�VWURQJO\�RFFOXGHG"

:HDNO\�2FFOXGHG

396���SRWHQWLDOO\�
YLVLELOLW\�VHW

/DUJHU�FHOO���QR�VWURQJ�
RFFOXGHUV

�

7KH�8PEUD�RI�D�6LQJOH�
2FFOXGHU,QGLYLGXDO�

XPEUD�DUH�QRW�
HIIHFWLYH���

$JJUHJDWH�
8PEUD

9LUWXDO�2FFOXGHUV

7KH�LQGLYLGXDO�
XPEUDH��ZLWK�
UHVSHFW�WR�WKH�\HOORZ�
YLHZFHOO��RI�REMHFW�
����DQG���GRHV�QRW�
LQWHUVHFW��+RZ�WR�
DJJUHJDWH�WKHLU�
RFFOXVLRQ�LQWR�WKH�
ODUJH�XPEUD��LQ�OLJKW�
EOXH�

�

�

�

9LVLELOLW\�6WUHDPLQJ

%XLOGLQJ�9LUWXDO�2FFOXGHUV

&RPSXWLQJ�WKH�SRWHQWLDO�YLVLELOLW\�VHW

5HQGHULQJ�WKH�SRWHQWLDO�YLVLELOLW\�VHW

6HUYHU

&OLHQW

6WUHDP
&HOO�VL]H����[���

&HOO�VL]H����[���

&HOO�VL]H����[���

&HOO�VL]H����[���

&RVW�HIIHFWLYH�DQDO\VLV�
RI�WKH�YLHZ�FHOO�VL]H

A Survey of Visibility for Walkthrough Applications

Daniel Cohen-Or�

Tel Aviv University
Yiorgos Chrysanthou†

University College London
Cláudio T. Silva‡

AT&T Labs-Research

Abstract

The last few years have witnessed tremendous growth in the
complexity of computer graphics models as well as network-
based computing. Although significant progress has been
accomplished for handling large datasets on single graphics
workstations, solutions for network-based graphics and virtual
environments are woefully inadequate. The situation is set to
worsen in the future, with graphical models becoming increas-
ingly complex. One of the most effective ways of managing
the complexity of virtual environments is through the applica-
tion of smart visibility methods.

Visibility determination, the process of deciding what sur-
faces can be seen from a certain point, is one of the fundamen-
tal problems in computer graphics. It is required not only for
the correct display of images but also for such diverse appli-
cations as shadow determination, global illumination, culling
and interactive walkthrough.

The importance of visibility has long been recognized, and
much research has been conducted in this area in the last three
decades. The proliferation of solutions, however, has made
it difficult for the non-expert to deal with effectively. Mean-
while, in network-based graphics and virtual environments,
visibility has become a critical issue, presenting new problems
that need to be addressed.

In this survey we review the fundamental issues in visibil-
ity and conduct an in-depth study of the algorithms developed
in recent years. We will also identify existing problems and
discuss various unresolved issues.

1 Introduction

The termvisibility is very broad and has many meanings and
applications in various fields of computer science. Here, we
focus on visibility algorithms in support of virtual reality ap-
plications. For a more general survey see [15] (included in the
course CD-ROM). For those interested in the computational
geometry literature, see [13, 12, 14]. Zhang’s PhD thesis [49]
contains a short survey of computer graphics visibility work.
Moller and Haines [34, Chapter 7] covers several aspects of
visibility-culling.

We are primarily dealing with algorithms related to walk-
through applications where we assume that the scene consists
of a very large number of primitives. Moreover, we can as-
sume that models keep getting larger and more complex and
that the user appetite will never be satisfied by the computa-
tional power available. For very complex models we can usu-
ally do better with a smart rendering algorithm than with faster
machines.

�daniel@math.tau.ac.il
†Y.Chrysanthou@cs.ucl.ac.uk
‡csilva@research.att.com

One of the most interesting visibility problems in this con-
text can be stated as the problem of selecting the set of poly-
gons from the model that are visible from a given viewpoint.
More formally (after [13]), let the scene,S , be composed of
modeling primitives (e.g., triangles)S = fP0;P1; . . . , Png,
and a viewing frustum defining an eye position, a view di-
rection, and a field of view. The visibility problem encom-
passes finding the fragments within the scene which are visi-
ble, that is, connected to the eyepoint by a line segment that
meets the closure of no other primitive. One of the obstacles
to solve the visibility problem is its complexity. For a scene
with n = O(jS j) primitives, the complexity of the set of visi-
ble fragments might be as high asO(n2) (i.e., quadratic in the
number of primitives in the input).

What makes visibility an interesting problem is that for
large scenes, the number of visible fragments is usually much
smaller than the total size of the input. For example, in a typi-
cal urban scenes, one can see only a very small portion of the
entire city, regardless of one’s location. Such scenes are said
to bedensely occluded, in the sense that from any given view-
point only a small fraction of the scene is visible [8]. Other
examples include indoor scenes, where the walls of a room
occlude most of the scene, and in fact, from any viewpoint in-
side the room, one may only see the details of that room or
those visible through theportals (Fig. 1). A different exam-
ple is a copying machine (shown in Fig. 2) where from the
outside one can see only its external parts. Although this is
intuitive, this information is not available as part of the model
representation, and only a non-trivial algorithm can determine
it automatically. Note that one of its doors might be open.

Visibility is not an easy problem, since a small change of the
viewpoint might cause large changes in the visibility. It means
that solving the problem at one point does not help much in
solving it in a nearby point. An example of this can be seen in
Fig. 3. Theaspect graph(described in Sec. 3) and thevisibility
complex(described in [15]) will shine light into the complex
characteristics of visibility.

The rest of this paper is as follows. We first give a brief
description of some 3D graphics hardware features which are
important for visibility culling (Sec. 2). Then, we present a
taxonomy of visibility culling algorithms in Sec. 4. This intro-
ductory part is then followed by more detailed description and
analysis of recent visibility-culling algorithms.

2 3D Graphics Hardware

In this section, we briefly review some features of modern 3D
graphics hardware which are helpful for visibility calculations.

We do not cover the important topic of efficient use of spe-
cific graphics hardware, in particular the optimization of a par-
ticular application to an specific hardware. A good place to
start is the text by Moller and Haines [34]. The interested
reader should also consult the OpenGL tutorials given every

(a) (b)

Figure 1: With indoor scenes often only a very small part of the geometry is visible from any given viewpoint. Courtesy of Craig
Gotsman, Technion.

(a)
(b)

Figure 2: A copying machine; only a fraction of the geometry is visible from the outside. Courtesy of Craig Gotsman, Technion.

(a) (b)

Figure 3: A small change in the viewing position can cause large changes in the visibility.

year at Siggraph.
Hardware features for specific visibility calculations are

usually bare-bones, because of the need of the graphics hard-
ware to be streamlined, and very simple. Most often, by care-
ful analysis of the hardware, it is possible to combine a soft-
ware solution which exploits the basic hardware functionality,
but at the same time improves it considerably.

2.1 Graphics Pipeline

The graphics pipeline is the term used for the path a particular
primitive takes in the graphics hardware from the time the user
defines it in 3D to the time it actually contributes to the color
of a particular pixel on the screen. At a very high level, given
a primitive, it must undergo several simple tasks before it is
drawn on the screen.

Often, such as in the OpenGL graphics pipeline, a triangle
primitive is first transformed from its local coordinate frame
(in “object-space”) to a world coordinate frame; then it is
transformed again to a normalized coordinate frame, where
it is “clipped” to fit the view volume. At this point, a division
by “w” is performed, to obtain non-homogeneous normalized
coordinates, which are then normalized again to be in “screen-
space”. At this point, depending on a set of user-defined state
flags, the hardware can “reject” the primitive based on the di-
rection of its normal, this is called “back-face” culling, and it
is a very primitive form of visibility culling.

Once a primitive has passed all these phases, the
“rasterization-phase” can start. It is here that the colors of each
pixel are computed. The hardware will incrementally fill sev-
eral buffers in order to compute the image. The actual image
we see on the screen is essentially the “color buffer”. Other
buffers include the “stencil buffer” and the “z-buffer”. (There
are other buffers, such as the accumulation buffer, etc., but we
do not use them anywhere in the rest of this paper.)

In OpenGL, updates to the different buffers can be
toggled by a set of function calls,e.g. glEn-
able(GL DEPTHTEST) . One view of the OpenGL buffers
are as simple processors with little memory (just a few bits
each), and a very limited instruction set.

2.2 Stencil Buffer

The stencil buffer is composed of a small set of bits (usually
8 bits) which can be used to control which areas of the other
buffers,e.g. color buffer, are currently active for drawing. A
common use of the stencil buffer is to draw a piece of static
geometry once (the cockpit of an airplane), and then mask the
area so that no changes can be made to those pixels anymore.

But the stencil buffer is actually much more flexible, since
it is possible to change the value of pixels on the stencil buffer
depending on the outcome of the test that is performed. For
instance, a very useful computation that uses the stencil buffer
is to compute the “depth-complexity” of a scene. For this, one
can simply program the stencil buffer as follows:

glStencilFunc(GL_ALWAYS, ˜0, ˜0);
glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

Which essentially means the stencil buffer will get incre-
mented every time a pixel projects on top of it. Fig. 4 shows
a visual representation of this. The stencil buffer is useful in
several types of visibility computations, such as real-time CSG
calculations [19], occluder calculations [15], etc.

2.3 Z-Buffer

The z-buffer is similar to the stencil buffer, but it serves a more
intuitive purpose. Basically, the z-buffer saves at each pixel its
“depth”. The idea is that if a new primitive would be obscured
by a previously drawn primitive, the z-buffer can be used to
reject the update. The z-buffer consists of a number of bits per
pixel, usually 24 bits in several current architectures.

The z-buffer provides a brute-force approach to the prob-
lem of computing the visible surfaces. Just render each primi-
tive, and the z-buffer will take care of not drawing in the color
buffer those that are not visible. The z-buffer provides a great
functionality, since it is able to solve the visibility problem (up
to screen-space resolution) of a set of primitives in the time it
would take to scan-convert them all.

As a visibility algorithm, the z-buffer has a few drawbacks.
One of them is the fact that each pixel in the z-buffer is touched
as many times as the its depth complexity (which can be com-
puted with the stencil buffer), although one simply needs the
top surface of each pixels. Because of this potentially exces-
sive overdrawing a lot of computation and memory bandwidth
is wasted. Visibility pre-filtering technique, such as back-face
culling can be used to help improve the speed of rendering
with a z-buffer.

2.4 HP Occlusion-Culling Extension

There have been several proposals for improving on the z-
buffer, such as the hierarchical z-buffer [21], and related tech-
niques. A simple, yet effective hardware technique for improv-
ing the performance of the visibility computations with a z-
buffer has been proposed by HP [39]. The idea is to add a feed-
back loop in the hardware which is able to check if changes
would have been made to the z-buffer when scan-converting a
given primitive.

One possible use of this hardware feature is to avoid ren-
dering a very complex set model by first checking if it is
potentially visible. In general this can be done with the HP
occlusion-culling extension by checking whether an envelop-
ing primitive (usually the bounding box of the object, but in
general it might be more efficient to use an enclosing k-dop
[27]) is visible, and only rendering the actual object in case
the simpler enclosing object is actually visible.

An interesting feature of this hardware-acceleration tech-
nique is that the fastest the z-buffer converges to the visible
polygons, the faster the rendering overall. It is possible to ac-
tually slow down rendering (since testing actually has a non-
trivial cost) if primitives are rendered in some bad ordering
(e.g., from back to front in visibility terms). Thus, it seem that
techniques which are able to find potentially visible polygons,
and draw them first would make the best use of this hardware
feature. Currently, this is supported in HP’s fx graphics accel-
erator series.

3 The aspect graph

The aspect graph is an important theoretical concept that ev-
eryone dealing with visibility must consider. Let’s look at the
two isomorphic graphs in Fig. 5. They are a projection of a 3D
object, however, we treat them as 2D entities. First, lets define
theImage Structure graph(ISG) as the planner graph, defined
by the outlines of an image, created by projection of a poly-
hedral object, in a certain view direction. Then two different

(a) (b)

Figure 4: Depth complexity of the scene as rendered by (a) view-frustum culling, (b) a conservative occlusion culling technique.
The depth complexity ranges from light green (low) to bright red (high). If the occlusion-culling algorithm were “exact”, (b) would
be completely green.

view directions of an object have the sameaspectif and only if
their corresponding ISG are isomorphic (see Fig. 6). Now we
can partition the viewspace into maximal connected regions
in which the viewpoints have the same view or aspect. This
partition is the VSP - the visibility space partition, where the
boundary of a VSP region is called avisual eventfor it marks
a change in visibility.

Figure 5: Two different view directions of an object have the
sameaspectif and only if the corresponding Image Structure
graphs are isomorphic.

The term aspect graph refers to the graph created by as-
signing a vertex for each region of the VSP, where the edges
connects adjacent regions. It is important to note that regions
of the VSP are not maximal but maximal connected regions.

Figure 6: 2 polygons - 12 aspect regions.

Figure 7: 3 polygons - “many” aspect regions.

Figure 7 shows a visibility space partition in 2D, which is
created just by three segments (the 2D counterparts of poly-
gons. One can observe that the number of aspect regions is
already large. For a typical number of segments (say tens of
thousands) the number of regions exponentially increases. In
terms of space and time it turns the aspect graph impractical.

Figure 8: Different aspect regions can have equal sets of visi-
ble polygons.

However, as can be seen in Figure 8 different aspect regions
can have equal sets of visible polygons. This means that there
are many less different regions of different visibility sets than
different aspects.

Looking again at the aspect partition of two segments (Fig-
ure 9) we can treat one as an occluder and one as the occludee
then we define their endpoint connecting lines as thesupport-
ing linesand theseparating lines. This lines partition the space

into three regions (i) the region from which no portion of the
occludee is visible, (ii) the region from which only a portion
of the occludee is visible and (iii) the region from which the
occluder does not occlude any part of the occludee (see [10]).

A T

1

2

2

1

3

Supporting

Sepataring

Separating

Supporting

T - occludee
A - occluder

T is not occluded from region 1
T is partially occluded from region 2
T is fully occluded from region 3

Figure 9: Supporting and separating planes.

4 A Taxonomy of Visibility Culling Al-
gorithms

Visibility algorithms have recently regained attention in com-
puter graphics as a tool to handle large and complex scenes,
which consist of millions of polygons. In the early 1970s
hidden surface removal (HSR) algorithms were developed to
solve the fundamental problem of determining the visible por-
tions of the polygons in the image. In light of the Z-buffer be-
ing widely available, and exact visibility computations being
potentially too costly, one idea is to use the Z-buffer as filter,
and design algorithms that lower the amount of overdraw by
computing an approximation of thevisible set. In more precise
terms, define the visible setV � S to be the set of modeling
primitives which contribute to at least one pixel of the screen.

In computer graphics, visibility-culling research mainly fo-
cussed on algorithms for computing (hopefully tight) esti-
mations ofV , then using the Z-buffer to obtain correct im-
ages. The simplest example of visibility-culling algorithms
are backface and view-frustum culling [17]. Backface-culling
algorithms avoid rendering geometry that face away from the
viewer; while viewing-frustum culling algorithms avoid ren-
dering geometry that is outside of the viewing frustum. Even
though both of these techniques are very effective at culling
geometry, more complex techniques can lead to substantial
improvements in rendering time. Occlusion culling is the term
used for visibility techniques which avoid rendering primitives
which are occluded by some other part of the scene. This tech-
nique is global and thus far more complex than local visibil-
ity techniques. The kinds of visibility culling can be seen in
Fig. 10.

It is important to note the differences between occlusion
culling and HSR. HSR algorithms determined which portions
of the scenes needs to drawn on the screen. These algorithms
eventually remove the occluded parts, but in doing so, they are
much expensive, since they usually have to touch all the prim-
itives inS (and actually have a running time that is superlinear
in the size ofS). Occlusion-culling techniques are supposed
to beoutput sensitive, that is, their running time should be pro-
portional to the size ofV , which for most complex scenes is a
small subset.

Let’s define the following notation for a scene consisting of
polygons:

� The exact visibility set, V , is the set of all polygons

View-frustum culling

Frustum

visible

Back-Face Culling

Occlusion Culling

View

Figure 10: Three types of visibility culling techniques: (i)
view frustum culling, (ii)back-face culling and (iii) occlusion
culling.

which are at least partially visible, and only these poly-
gons.

� The approximate visibility set, A, is a set that includes
most of the visible polygons plus maybe some hidden
ones.

� Theconservative visibility set, C , is the set that includes
at least all the visible objects plus maybe some additional
invisible objects. It may classify invisible object as visi-
ble but may never classify visible object as invisible.

4.1 Conservative Visibility

A very important concept is the idea ofconservative visibil-
ity. The idea is to design efficient output-sensitive algorithms
for computingC , then use a standard HSR as a back-end for
computing the correct image.

These methods yield a potential visibility set (PVS) which
includes all the visible polygons, plus a small number of oc-
cluded polygons. Then the HSR processes the (hopefully
small) excess of polygons included in the PVS. Conservative
occlusion culling techniques have the potential to be signifi-
cantly more efficient than the HSR algorithms. Conservative
culling algorithms can also be integrated into the HSR algo-
rithm, aiming towards an output sensitive algorithm [21].

To reduce the computational cost, the conservative occlu-
sion culling algorithms usually use a hierarchical data struc-
ture where the scene is traversed top-down and tested for oc-
clusion against a small number of selected occluders [11, 25].
In these algorithms the selection of the candidate occluders is
done before the online visibility calculations. The efficiency of
these methods is directly dependent on the number of occlud-
ers and their effectiveness. Since the occlusion is tested from
a point, these algorithms are applied in each frame during the
interactive walkthrough.

4.2 A Taxonomy

In order to roughly classify the different visibility-culling al-
gorithms, we will employ a loosely defined taxonomy:

� Conservative vs. Approximated.

Few visibility-culling algorithms attempt to find the ex-
act visible set, since they are mostly used as a front-end
for another hidden-surface removal algorithm, most of-
ten the Z-buffer. Most techniques described in this pa-
per are conservative, that is, they over estimate the vis-
ible set. Only a few approximate the visible set, but

are not guaranteed to find all the visible triangles, e.g.,
PLP [29, 28] (there is also a conservative version of PLP
which is described in [30]). Others attempt to be conser-
vative, but might actually miss small visible primitives,
such as HOM [50, 49], and also the OpenGL assisted
occlusion culling of Bartz et al. [4, 3].

� Precomputed vs. Online.

Most techniques need some form of preprocessing, but
what we mean by “precomputed” are the algorithms that
actually store visibility computations as part of their pre-
processing.

Almost all of the From-region algorithms should be clas-
sified as “precomputed”. A notable exception is [31].

In general, the other algorithms described do their visi-
bility computation “online”, although a large amount of
preprocessing might have been performed before. For
instance, HOM [50, 49], DDO [5], Hudson et al. [26],
Coorg and Teller [11], perform some form of occluder
selection which might take a considerable amount of
time (on the order of hours of preprocessing), but in gen-
eral have to save very little information to be used during
rendering.

� Point vs. Region.

The major difference here is whether the particular al-
gorithm perform computations that depend on the exact
location of the viewpoint, or performs bulk computations
which can be reused anywhere in a region of space.

Obviously, From-region algorithms perform their visibil-
ity computations on a region of space, that is, while the
viewer is inside that region, these algorithms tend to ren-
der the same geometry.

Most other algorithms attempt to perform visible-set
computations that depend on the exact location of the
viewpoint.

� Image space vs. Object space.

Almost all of the algorithms create some form of hierar-
chical data structure. We classify algorithms as operat-
ing in “image space” versus “object space” depending on
where the actual visibility determination is performed.

For instance, HOM [50, 49] and HZB [21, 22] perform
the actual occlusion determination in image space (e.g.,
in HOM, the occlusion maps are compared against a
2D image projection and not the 3D original represen-
tation.). Other techniques that explore image-space are
DDO [5] (which also explores a form of object-space
occlusion-culling by performing a view-dependent oc-
cluder generation) and [4, 3].

Most other techniques work primarily in object-space.

� Software vs. Hardware.

Several of the techniques described can take further (be-
sides the z-buffer) advantage of hardware assistance ei-
ther for its precomputation or during the actual render-
ing.

For instance, the From-region technique of Durand et al
[15] makes non-trivial use of the stencil buffer; HOM
[50, 49] uses the texture hardware to generate mipmaps;

[4, 3] uses the OpenGL selection mode; and Meissner et
al [33] uses the HP occlution-culling test.

The HP occlution-culling test [39] is not actually an al-
gorithm by itself, but a building block for further algo-
rithms. It is also exploited in [30].

� Dynamic vs. Static scenes.

A few of the algorithms in the literature are able to han-
dle dynamic scenes, such as [43] and HOM [50].

One of the main difficulties is handling changes to ob-
ject hierarchies that most visibility algorithms use. The
more preprocessing used, the harder it is to extend the
algorithm to handle dynamic scenes.

� Individual vs. Fused occluders.

Given three primitives, A, B, and C, it might happen that
neither A or B occlude C by itself, but together they do
occlude C. Some occlusion-culling algorithms are able
to performoccluder-fusion, while others are only able to
exploit single primitive occlusion.

4.3 Related Problems

There are many other interesting visibility problems, for in-
stance:

– Shadow algorithms.The parts that are not visible from
the light source are in the shadow. So occlusion culling
and shadow algorithms have a lot in common and by
many aspects they are conceptually similar. However,
shadow algorithms are usually solved in an exact way
and the principle of conservative visibility cannot be ap-
plied.

– The Art Gallery Problem. One classic visibility prob-
lem is of posing grades in a gallery so that this set of
grads is minimal and covers all he walls of the gallery.
Where cover might have different meaning. In 2D this
is an NP-hard problem and very little is know in 3D. In
[16] some research in this problem has been made and a
practical algorithm for posing cameras automatically is
proposed.

– Radiosity solutions. This is a much harder problem to
compute accurately. In Radiosity, energy needs to be
transfered from each surface to every othervisible sur-
face in the environment. This requires a from-region
visibility determination to be applied at each surface or
patch. Exact solutions are not practical and techniques
such as clustering [42, 41] and hierarchical transfers [23]
are often employed.

5 Object-Space Culling Algorithms

Work on object-space occlusion culling dates back at least to
the work of Teller and S`equin [44] and Airey et al. [1] on in-
door visibility. The work of Teller and S`equin is mostly based
on 2D, since it resolves around computing potentially visible
sets for cells in an architectural environment. Their algorithm
first subdivides space into cells using a 2D BSP tree. Then
use the connectivity between the cells, and compute whether
straight lines could hit a set of “portals” (mostly doors) in the

Figure 11: Results from [44] showing the potentially visible
set from a given cell. Courtesy of Seth Teller, UC, Berkeley.

Figure 12: Figures highlights the visibility properties ex-
ploited by the algorithm of Coorg and Teller [10, 11]. While
an observer is between the two supporting planes to the left
of A, it is never possible to see B. Courtesy of Satyan Coorg,
MIT.

model. They elegantly modeled the stabbing problem as a lin-
ear programming problem, and save in each cell the collection
of potentially visible cells. Fig. 11 shows one of the results
presented in their paper. Another technique that exploits cells
and portals in models is described in [32].

5.1 Coorg and Teller [10, 11]

Coorg and Teller have proposed two object-space techniques
for occlusion culling [10, 11]. The second one is most suitable
for use in the presence of large occluders in the scene. Their al-
gorithm explores the visibility relationships between two con-
vex objects as in Fig. 12. In a nutshell, while an observer is
between the two supporting planes to the left of A, it is never
possible to see B. Coorg and Teller technique uses simple con-
cepts such as this to develop a technique based on tracking
visibility events among objects as the user moves, and the re-
lationships among objects change. The algorithm proposed in
[10] is conservative, and it explores temporal coherency as it
tracks the visibility events.

In [10], they give sufficiency conditions for computing the
visibility of two objects (that is, whether one occludes the
other) based on tracking relationships among the silhouette
edges (see E on Fig. 13), supporting and separating planes
of the different objects. They build an algorithm which in-
crementally tracks changes in those relationships. There, they
also show how to use object hierarchies (based on octrees) to

(a) (b)

Figure 13: The algorithm of Coorg and Teller [10] tracks vis-
ibility changes between two convex objects A and B by keep-
ing track of the relationship between supporting and separating
planes and the silhouette vertices and edges of the respective
objects. Courtesy of Satyan Coorg, MIT.

handle the potential quadratic complexity computational blow
out. One drawback of this technique (as pointed out by the au-
thors in their subsequent work [11]) is exactly the fact that it
needs to reconstruct the visibility information for a continuous
sequence of viewpoints.

In [11], the authors propose a more efficient algorithm. (It
is still based on the visibility relationship shown in Fig. 12.)
Instead of keeping a large number of continuous visibility
events, in [11], the authors dynamically choose a set of oc-
cluders, which will be used to determine which portions of the
rest of the scene cannot be seen. The scene is inserted into
an object hierarchy, and the occluders are used to determine
which portions of the hierarchy can be pruned, and not ren-
dered.

In this paper, the authors develop several useful building
blocks for implementing this idea, including a simple scheme
to determine when the actions of multiple occluders can be
added together (see Fig. 14); and a fast technique for deter-
mining supporting and separating planes. Most importantly,
they propose a simple metric for identifying the dynamic oc-
cluders which is based on approximating the solid angle the
object subtends:

�A(~N �~V)

jj~Djj
2

where A is the area of the occluder,~N the normal,~V the
viewing direction, and~D the vector from the viewpoint to the
center of the occluder.

5.2 Hudson et al. [26]

The work described in [26] is in several ways similar to the
work of Coorg and Teller [11]. Their scheme also works by
dynamically choosing a set of occluders, then using those oc-
cluders as the basis for culling the rest of the scheme. The
differences between the two works lie primarily in details. In
[26], the authors proposes extra criteria for choosing the oc-
cluders. Instead of simply using the solid angle approxima-
tion, they also propose to take into account depth complexity
and coherence of the occluders. They use a spatial partition of
the scene throughout their algorithm. For each cell, occluders

(a) (b)

Figure 14: Figure illustrates that the algorithm described in
[11] can perform occlusion fusion if the occluders combine
to be a larger “convex” occluder. Courtesy of Satyan Coorg,
MIT.

that will be used anytime the viewpoint is inside that cell are
identified, and stored for later use.

The actual occlusion primitive is also different. For each
occluder, the authors build a shadow frustum using the view-
point as the apex and passing through the occluder silhouette.
Any cell that is inside this “pyramid” is considered occluded.
By doing this for several occluders, a large portion of the scene
can be discarded. They use interference detection techniques
for speeding up the tests.

5.3 BSP tree culling

The method described in [26] can be improved using BSP
trees. Bittner et al. [6] combined the shadow frusta of the
occluders into anocclusion tree. This was done in a way very
similar to the SVBSP tree of Chin and Feiner [7]. The tree
starts from a singlelit (visible) leaf and each occluder is in-
serted in turn into it. If the occluder reaches alit leaf then it
augments the tree with its shadow frustum, if it reaches ashad-
owed(non-visible) leaf then it is just ignored since it means it
already lies in an occluded region. Once the tree is built the
scene hierarchy can be compared against it. The cube rep-
resenting the top of the scene hierarchy is inserted into the
tree. If it is found to be fully visible or fully occluded then
we stop and act appropriately, otherwise its children are com-
pared with the occlusion tree recursively. This method has the
benefit over [26] that instead of comparing the scene against
each of theN shadow frusta, it is compared against one tree of
depth (potentially) O(N).

The above technique is conservative, an alternativeexact
method was proposed much earlier by Naylor [36]. That in-
volved a merging of the occlusion tree with the BSP tree rep-
resenting the scene geometry. Although a much more elegant
solution, it requires carefully engineered algorithms for build-
ing a good scene BSP tree and for the tree merging.

5.4 Prioritized-Layer Projection [29, 28]

Prioritized-Layered Projection(PLP) is a technique for fast
rendering of high depth complexity scenes. It works byesti-
matingthe visible polygons of a scene from a given viewpoint
incrementally, one primitive at a time. By itself, PLP is not a
conservative technique, instead PLP is suitable for the compu-
tation of partially correct images for use as part of time-critical
rendering systems. From a very high level, PLP amounts to a
modification of a simple view-frustum culling algorithm, how-

ever, it requires the computation of a special occupancy-based
tessellation, and the assignment to each cell of the tessellation
a solidity value, which is used to compute a special ordering
on how primitives get projected.

The guts of the PLP algorithm consists of a space-traversal
algorithm, which prioritizes the projection of the geometric
primitives in such a way as to avoid (actually delay) project-
ing cells that have a small likelihood of being visible. Instead
of explicitly overestimating the algorithm works on a budget.
At each frame, the user can provide a maximum number of
primitives to be rendered, a polygon budget, and the algorithm
will deliver what it considers to be the set of primitives which
maximizes the image quality (using a solidity-based metric).

PLP is composed of two parts:

Preprocessing. First, PLP tessellates the space that con-
tains the original input geometry with convex cells. During
this one-time preprocessing, a collection of cells is generated
in such a way as to roughly keep an uniform density of primi-
tives per cell. The sampling leads to large cells in unpopulated
areas, and small cells in areas that contain a lot of geometry.
Using the number of modeling primitives assigned to a given
cell (e.g., tetrahedron), asolidity valueρ is defined. The ac-
cumulated solidity value used throughout the priority-driven
traversal algorithm can be larger than one. The traversal algo-
rithm prioritizes cells based on their solidity value.

Preprocessing is fairly inexpensive, and can be done on
large datasets (about one million triangles) in a couple of min-
utes.

Rendering Loop. The rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the seed
cell, which in general contains the eye position, it keeps carv-
ing cells out of the tessellation. The basic idea of the algo-
rithm is to carve the tessellation alonglayers of polygons. We
define the layering numberζ 2ℵ of a modeling primitiveP in
the following intuitive way. If we order each modeling prim-
itive along each pixel by their positive (assume, without loss
of generality, thatP is in the view frustum) distance to the eye
point, we defineζ(P) to be the smallest rank ofP over all of
the pixels to which it contributes. Clearly,ζ(P) = 1, if, and
only if, P is visible. Finding the rank 1 primitives is equiva-
lent to solving the visibility problem. Instead of solving this
hard problem, the PLP algorithm uses simple heuristics. The
traversal algorithmattemptsto project the modeling primitives
by layers, that is, all primitives of rank 1, then 2 and so on. We
do this by always projecting the cell in the frontF (we call
the front, the collection of cells that are immediate candidates
for projection) which is least likely to be occluded according
to their solidity values. Initially, the front is empty, and as
cells are inserted, we estimate its accumulated solidity value
to reflect its position during the traversal. Every time a cell
in the front is projected, all of the geometry assigned to it is
rendered.

PLP is very effective is finding the visible polygons. For
more details about PLP, including detailed results, see [29, 28],
included in these course notes.

6 Image-Space Occlusion Culling

As the name suggests image-space algorithms perform the
culling in the viewing coordinates. The key feature in these
algorithms is that during rendering of the scene the image gets

(a) (b)

Figure 15: The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering of geometry along layers of
occlusion. Cells that have been projected by the PLP algorithm are highlighted in red wireframe and their associated geometry is
rendered, while cells that have not been projected are shown in green. Notice that the cells occluded by the desk are outlined in
green, indicating that they have not been projected.

(a) (b)

Figure 16: The input geometry is a model of an office. (a) Snapshot of the PLP algorithm hightlights the spatial tessellation used.
The cells which have not been projected in the spatial tessellation are highlighted in green. (b) This figure illustrates the accuracy
of PLP. Shown in red are the pixels which PLP misses. In white, we show the pixels PLP renders correctly.

filled up and subsequent objects can be quickly culled away
by the already filled parts of the images. Since they operate
on a discrete array of finite resolution they also tend to be sim-
pler to implement and more robust than the object-space ones,
which tend to have numerical precision problems.

Testing each individual polygon against the image is too
slow, so almost all of the algorithms that we will describe here
use conservative tests. They place a hierarchy on the scene,
with usually the lowest level being the bounding boxes of in-
dividual objects, and they perform the occlusion test on that hi-
erarchy. Approximate solutions can also be produce by some
of the image-space algorithms by classifying as occluded ge-
ometry which is visible through an insignificant pixel count.
This invariably results in an increase in running speed.

When the scenes are composed of many small primitives
without well defined large occluders then performing the
culling in image space becomes more attractive. The pro-
jections of many small and individually insignificant occlud-
ers can be accumulated on the image using standard graphics
rasterizing hardware, to cover a significant part of the image
which can then be used for culling.Another advantage of these
methods is that the occluders do not have to be polyhedral, any
object that can be rasterised can be used.

An early occlusion method was introduced by Naylor al-
ready in 1992 [36]. His method uses occlusion culling on BSP
trees. His method can be thought of as somewhere between
image and object precision, since although he used a 2D BSP
tree in image-space for culling the 3D scene, this was done
using object precision operations rather than image-precision.

6.1 Hierarchical Z-Buffer [21, 22]

The Hierarchical Z-Buffer (HZB) [21, 22] is an extension of
the popular HSR method, the Z-buffer. In this method, oc-
clusion is determined by testing against theZ-pyramid. The
Z-pyramid is a layered-buffer with different resolution at each
level. At the finest level it is just the contents of the Z-buffer,
each coarser level is created by halving the resolution in each
dimension and each element holding the farthest z-value in the
corresponding 2x2 window of the finer below. This is done all
the way to the top, where it is just one value corresponding
to the furthest z-value in the buffer. During scan-conversion
of the primitives, if the contents of the Z-buffer change then
the new Z-values are propagated up the pyramid to the coarser
levels.

In [21] the scene is arranged into an octree which is tra-
versed front-to-back and each node is tested for occlusion. If
at any point a node is found to be occluded then it is skipped,
otherwise any primitives associated with it are rendered and
the Z-pyramid is updated. To determine whether a node is
visible, each of its faces are tested against the Z-pyramid in
a hierarchical way. Starting from the coarsest level, the near-
est Z value of the face is compared against the value at the
Z-pyramid. If the face is found to be further away then it is oc-
cluded otherwise it recursively descends down to finer levels
until its visibility can be determined.

To allow for real-time performance a modification to the
hardware Z-buffer was suggested that would allow for much
of the culling processing to be done in hardware. In the ab-
sence of the custom hardware the process can be somewhat
accelerated, through the use of temporal coherence, by render-
ing first the geometry that was visible from the previous frame
and building the Z-pyramid from their Z-buffer.

6.2 Hierarchical Occlusion Map [50, 49]

This method is similar in principle to the HZB, however, it
was designed to work with current graphics hardware and also
supports approximate visibility culling - objects that are visi-
ble through only a few pixels can be culled using an opacity
threshold. The occlusion is arranged hierarchically in a struc-
ture called theHierarchical Occlusion Map(HOM) and the
bounding volume hierarchy of the scene is tested against it.
However, unlike the HZB, the HOM stores only opacity in-
formation while the distance of the occluders (Z-values) are
stored separately. The algorithm then needs to test objects for
overlap with occluded regions of the HOM and for depth in-
dependently.

At preprocessing a database of potential occluders is assem-
bled. Then at run-time, for each frame the algorithm performs
two steps: construction of the HOM and occlusion culling of
the scene geometry using the HOM.

To build the HOM, a set of occluders is selected from the
occluder database and rendered into the frame-buffer. At this
point only occupancy information is required therefore textur-
ing, lighting and Z-buffering are all turned off. The occluders
are rendered as pure white on a black background. The result
is read from the buffer and it forms the highest resolution in
the occlusion map hierarchy. The coarser levels are created
by averaging squares of 2x2 pixels to form a map which has
half the resolution on each dimension. Texturing hardware can
provide some speed up for the averaging is the size of the map
is large enough to warrant the set-up cost of the hardware. As
we go to coarser levels the pixels are not just black or white
(occluded or visible) anymore but they can be shades of grey.
The intensity of a pixel at such a level shows the opacity of the
corresponding region.

Figure 17: A hierarchy of occlusion maps created by recur-
sively averaging blocks of pixels. Courtesy of Hansong Zhang,
UNC.

An object is tested for occlusion, by first projecting its
bounding box onto the screen and finding the level in the hi-
erarchy where the pixels have approximately the same size as
the extend of the projected box. If the box overlaps pixels of
the HOM which are not opaque then it means that the box can-
not be culled. If the pixels are opaque (or have opacity above
the specified threshold when approximate visibility is enabled)
then the object projects on a region of the image that is cov-
ered. In this case a depth test is needed to determine whether
the object is behind the occluders.

In the paper [49] a number of methods are proposed for
testing the depth of the objects against that of the occluders.
The simplest test makes use of a plane placed behind all the
occluders, any object that passes the opacity test is compared
against this. Although this is fast and simple it can be over-

conservative. An alternative is thedepth estimation buffer
where the screen space is partitioned into a set of regions and
a separate plane is used for each region of the partition.

6.3 Directional Discretized Occluders [5]

The Directional Discretized Occluders (DDOs) approach is
similar to the HZB and HOM methods in that it also uses both
object- and image-space hierarchies. In their preprocessing
stage, Bernardini, et al [5] approximate the input model with
an octree and compute simple, view-dependent polygonal oc-
cluders to replace the complex input geometry in subsequent
visibility queries. Each face of every cell of the octree is re-
garded as a potential occluder and the solid angles spanning
each of the two halfspaces on the two sides of the face are
partitioned into regions. For each region, they compute and
store a flag that records whether that face is a valid occluder
for any viewpoint contained in that region. Each square, axis-
aligned face is a view-dependent polygonal occluder that can
be used in place of the original geometry in subsequent visi-
bility queries.

The rendering algorithm visits the octree in a top-down,
front-to-back order. Valid occluders found during the traversal
are projected and added to a two-dimensional data structure,
such as a quadtree. Each octree node is first tested against
the current collection of projected occluders: if the node is
not visible, traversal of its subtree stops. Otherwise, recursion
continues and if a visible leaf node is reached, its geometry is
rendered.

The DDO preprocessing stage is not inexpensive, and may
take on the order of hours for models containing hundreds of
thousands of polygons. However, the method does have sev-
eral advantages if one can tolerate the cost of the preprocessing
step. The computed occluders are all axis-aligned squares, a
fact that can be exploited to design efficient data structures for
visibility queries. The memory overhead of the DDOs is only
six bitmasks per octree node. The DDO approach also benefits
from occluder fusionand does not require any special or ad-
vanced graphics hardware. The DDO approach could be used
within the framework of other visibility culling methods as
well. Culling methods which need to pre-select large occlud-
ers,e.g. Coorg and Teller [11], or which pre-render occluders
to compute occlusion maps,e.g.Zhang,et. al [50], could ben-
efit from the DDO preprocessing step to reduce the overhead
of visibility tests.

Figure 18 is a two-dimensional illustration of the DDO ap-
proach. The grid is a discretization of the space surrounding
the scene; it represents our octree nodes. The input geome-
try, A andB, is shown using dashed lines. For the purpose of
occlusion culling, the geometryA can be replaced by a sim-
pler object, shown using thick solid lines, which is a subset
of the grid edges,i.e. the octree faces. The two figures show
the same scene from different viewpoints and view directions.
Note that the subset of grid edges that can act as occluders (in
place of geometryA) changes as the viewpoint changes.

6.4 OpenGL Assisted Occlusion Culling [4, 3]

Bartz et al. describe in [4, 3] a different way for image-space
culling. The scene is arranged in a hierarchical representa-
tion and tested against the occluded part of the image, which
resembles the HZB and the HOM. However, in contrast to
these methods, there is no hierarchical representation of the
occlusion, rather OpenGL calls are used to query the hardware

B
AA

B

Figure 18: Illustration of the DDO approach. The input geom-
etry,A andB, is drawn as dashed lines. The valid occluders for
the two viewpoints are shown as thick solid lines. Courtesy of
James Klosowski, IBM.

for visibility information. Both view-frustum and occlusion
culling are done in that way.

For view-frustum culling theOpenGL selection modeis
used. The selection mode can track a certain region of the
screen and identify whether a given object is rendered onto it.
By setting the tracked region to be the entire screen and render-
ing hierarchically the bounding volumes of the objects, it can
quickly be decided on which intersect the view volume. Of
course the rendering of the bounding volumes here is purely
for selecting the objects and does not contribute to the frame-
buffer.

To test for occlusion a separate buffer, thevirtual occlusion
buffer, is associated with the frame-buffer to detect possible
contribution of any object to the frame-buffer. This was imple-
mented with a stencil buffer. The bounding boxes of the scene
are hierarchically send down the graphics pipeline. As they are
rasterised the corresponding pixels are set in the virtual occlu-
sion buffer whenever the z-buffer test succeeds. The frame-
buffer and the z-buffer remain unaltered through this process.

The virtual occlusion buffer is then read and any bound-
ing box that has a footprint in it is considered to be (at-least
partially) visible and the primitives within it can be rendered.
The operation of reading the virtual occlusion buffer can be
very expensive so it was proposed to sample it by reading only
spans from it. The sampling inevitably makes the algorithm a
non-conservative test.

As in the methods above, approximate culling can be imple-
mented if we allow boxes that have a small footprint in the oc-
clusion buffer to be considered non-visible. The performance
of the algorithm depends on the hardware being used. In low-
to mid-range graphics workstations where part of the render-
ing process is in software, the reduction in rendered objects
can provide significant speed-ups. On high-end machines the
set-up for reading the buffer becomes a more significant por-
tion of the overall time, reducing the usefulness of the method.

6.5 Hardware Assisted Occlusion Culling [39,
33]

In the graphics hardware section we mentioned the HP
occlusion-culling test, a hardware feature available on HP ma-
chines which make it possible to determine the visibility of ob-
jects as compared to the current values in the z-buffer. Here,
we further discuss its properties, and explain a simple and ef-
fective occlusion-culling algorithm based on it.

The actual hardware feature as implemented on the HP fx
series graphics accelerators is explained in [39] and [40]. One
way to use the hardware is to query whether the bounding box
of an object is visible. This can be done as follows:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

Clearly, if the bounding box of an object is not visible, the
object itself, which potentially could contain a large amount of
geometry, must not be visible.

This hardware feature is implemented in several of HP’s
graphics accelerators, for instance, the HP fx6 graphics accel-
erator. Severson [40] estimates that performing an occlusion-
query with a bounding box of an object on the fx6 is equivalent
to rendering about 190 25-pixel triangles. This indicates that a
naive approach where objects are constantly checked for being
occluded might actually hurt performance, and not achieve the
full potential of the graphics board. In fact, it is possible to
slow down the fx6 considerably if one is unlucky enough to
project the polygons in a back to front order (because none of
the primitives would be occluded).

Meissner et al. [33] propose an effective occlusion culling
technique using this hardware test. In a preprocessing step,
a hierarchical data structure is built which contains the input
geometry. (In their paper, they propose several different data
structures, and study their relative performance.) Their algo-
rithm is as follows:

(1) Traverse the hierarchical data structure to find the leaves
which are inside the view frustum;

(2) Sort the leaf cells by the distance between the viewpoint
and their centroids;

(3) For each sorted cell, render the geometry contained in
the cell,only if the cell boundary is visible.

6.6 Discussion

There are several other algorithms which are targeted at partic-
ular types of scenes. For example the occluder shadows pro-
posed by Wonka and Schmalstieg [47] are specifically target-
ing urban environments. Hong et al [24] use an image-based
portal technique (similar in some respects to the cells- and-
portals work of Luebke and Georges [32]) to be able to fly
through a virtual human colon in real-time. The colon is parti-
tioned into cells at pre-processing and these are used to accel-
erate the occlusion with the help of a Z-buffer at run-time.

One drawback of the techniques described in this section
is that they rely on being able to read information out of the
graphics hardware. Unfortunately, on most current architec-
tures, using any sort of feedback from the graphics hardware
is quite slow and places a limit on the achievable frame rate
of such techniques. As Bartz et al [3] shows, these methods
are usually only effective only when the scene complexity is
above a large threshold.

There are actually other shortcomings of these techniques.
One of the main problems is the need for pre-selection of
occluders. Some techniques, such as HOM, need to create
different versions of the actual objects (through some sort of
“occlusion-preserving” simplification algorithm) to be able to
generate the occlusion-maps. Another interesting issue is how
to deal with dynamic scenes. The more preprocessing that is
used, the more expensive it is to deal with dynamic environ-
ments.

7 From-region visibility

In a typical visibility culling algorithm the occlusion is tested
from a point [11, 25]. Thus, these algorithms are applied
in each frame during the interactive walkthrough. A more
promising strategy is to find the PVS from a region or view-
cell, rather than from a point. The computation cost of the PVS
from a viewcell would then be amortized over all the frames
generated from the given viewcell.

Effective methods have been developed for indoor scenes
[45, 18], but for general arbitrary scenes, the computation of
the visibility set from a region is more involved than from a
point. Sampling the visibility from a number of view points
within the region [20] yields an approximated PVS, which
may then cause unacceptable flickering artifacts during the
walkthrough. Conservative methods were introduced in [8, 37]
which are based on the occlusion of individual large convex
objects.

In these methods a given object or collection of objects is
culled away if and only if they are fully occluded by a single
convex occluder. It was shown that a convex occluder is effec-
tive only if it is larger than the viewcell [35]. However, this
condition is rarely met in real applications. For example the
objects in Fig. 19 are smaller than the viewcell, and their um-
bra (with respect to the viewcell) are rather small. Their union
does not occlude a significant portion of the scene (see in (a)),
while their aggregate umbra is large (see in (b)).

Recently, new techniques were developed in which the visi-
bility culling from a region is based on the combined occlusion
of a collection of objects (occluder fusion). The collection or
cluster of objects that contributes to the aggregate occlusion
has to be neither connected nor convex. The effective from-
region culling of these techniques is significantly larger than
previous from-region visibility methods. In the following four
techniques are described followed by a discussion.

7.1 Conservative Volumetric Visibility with
Occluder Fusion [38]

This paper introduces a new conservative technique for the
computation of viewcell visibility. The method operates on a
discrete representation of space and uses the opaque interior of
objects as occluders. This choice of occluders facilitates their
extension into adjacent opaque regions of space, in essence
maximizing their size and impact.

umbra
individual

(a)

umbra
aggregate

occluder
virtual

(b)

Figure 19: The union of the umbrae of the individual objects is insignificant, while their aggregate umbra is large and can be
represented by a single virtual occluder.

The method efficiently detects and represents the regions
of space hidden by occluders and is the first one to use the
property that occluders can also be extended into empty space
provided this space itself is occluded from viewcell. This is
proved to be effective for computing the occlusion by a set of
occluders, effectively realizing occluder fusion.

Initially, the boundary of objects is rasterized into the dis-
cretization of space and the interior of these boundaries is
filled with opaque voxels. For each viewcell, the occlusion de-
tection algorithm iterates over these opaque voxels and groups
them with adjacent opaque voxels into effective blockers. Sub-
sequently, a shaft is constructed around the viewcell and the
blocker to delimit the region of space hidden by the blocker.
This classification of regions of space into visible and hidden
is noted in the spatial data structure. As regions of space have
already been found to be hidden from the viewcell, extension
of blockers into neighboring voxels can also proceed into these
hidden regions realizing occluder fusion with all the occluders,
which caused this region to be hidden.

As an optimization, opaque voxels are used in the order
from large to small and from front to back. Occluded opaque
voxels are not considered further as blockers.

In order to recover the visibility status of objects in the orig-
inal scene description, the space they occupy is looked up in
the spatial data structure and, if all the voxels intersected by
the object are classified as hidden, the object is guaranteed to
be hidden as well.

The authors present specialized versions for the cases of 2D
and 2 1/2D visibility and motivate the ease of extension to 3D:
Because only two convex objects are considered in the visibil-
ity classification at a time (the viewcell and the occluder), the
usual difficulties of extending visibility algorithms from 2D to
3D caused by triple-edge events are avoided. Example appli-
cations described in the paper include visibility preprocessing
for real-time walkthroughs and the reduction of the number of
shadow rays required by a ray-tracer (see [38] for details).

7.2 Conservative Visibility Preprocessing us-
ing Extended Projections [15]

The paper [15] presents an extension of point-based image-
space methods such as the Hierarchical Occlusion Maps [50]
or the Hierarchical Z-buffer [21] to volumetric visibility from
a view-cell, in the context of preprocessing PVS computation.
Occluders and occludees are projected onto a plane, and an oc-
cludee is declared hidden if its projection is completely cov-
ered by the cumulative projection of occluders (and if it lies
behind). The projection is however more involved in the case
of volumetric visibility: to ensure conservativeness, the Ex-
tended Projection of an occluder underestimates its projection
from any point in the view-cell, while the Extended Projection
of an occludee is an overestimation (see Fig. 21(a)). A discrete
(but conservative) pixel-based representation of extended pro-
jections is used, called Extended Depth Map. Extended pro-
jections of multiple occluders aggregate, allowing occluder-
fusion, that is the cumulative occlusion caused by multiple oc-
cluders. For convex view-cells, the extended projection of a
convex occluder is the intersection of its projections from the
vertices of the cell. This can be computed efficiently using the
graphics hardware (stencil buffer) and a conservative rasteriza-
tion. Concave occluders intersecting the projection plane are
sliced (see [15] for details).

A single set of six projection planes can be used, as demon-
strated by an example involving a city database. The position
of the projection plane is however crucial for the effectiveness
of Extended Projections. This is why a reprojection operator
was developed for hard-to-treat cases. It permits to project a
group of occluders onto one plane where they aggregate, and
then re-project this aggregated representation onto a new pro-
jection plane (see Fig. 21(b)). This re-projection is used to
define an occlusion-sweep where the scene is swept by paral-
lel planes leaving the cell. The cumulative occlusion obtained
on the current plane is reprojected onto the next plane as well
as new occluders. This permits the handling of very hard cases

1

3

2

Figure 20: The individual umbrae (with respect to the yellow viewcell) of objects 1, 2 and 3 do not intersect, but yet their occlusion
can be aggregated into a larger umbra.)

such as the occlusion caused by leaves in a forest.

7.3 Virtual Occluders [31]

The paper [31] introduces the notion of virtual occluders.
Given a scene and a viewcell, a virtual occluder is a view-
dependent (simple) convex object, which is guaranteed to be
fully occluded from any given point within the viewcell and
which serves as an effective occluder from the given viewcell.
Virtual occluders compactly represent the aggregate occlusion
for a given cell. The introduction of such view-dependent vir-
tual occluders enables applying an effective region-to-region
or cell-to-cell culling technique and efficiently computing a
potential visibility set (PVS) from a region/cell. The paper
presents an object-space technique that synthesizes such vir-
tual occluders by aggregating the visibility of a set of individ-
ual occluders. It is shown that only a small set of virtual oc-
cluders is required to compute the PVS efficiently on-the-fly
during the real-time walkthrough.

In the preprocessing stage several objects are identified as
seed objects. For each seed object, a cluster of nearby objects
is constructed in such a way that a single virtual occluder faith-
fully represents the occlusion of this cluster of objects. At first,
the cluster is defined to include only the seed object. Then it-
eratively, at each step, more objects, which satisfy a geometric
criterion, are added to the cluster of occluders. Thus augment-
ing the aggregate umbra of the cluster. The virtual occluder
is placed just behind the farthest object in the cluster, and is
the completely contained in the aggregate umbra of the cluster
(see Figs. 19 and 22).

One virtual occluder is stored at each step of the iteration.
As a result, at the end of the process there is a large and highly
redundant group of virtual occluders. This group can be well
represented by a small subset of the most effective virtual oc-
cluders.

In the real-time rendering stage, the PVS of a viewcell is
computed just before the walkthrough enters the viewcell. It
is done by hierarchically testing the scene-graph nodes against

the virtual occluders. Since only a very small number of them
are used, this test is extremely fast.

The 3D problem is solved by a 2.5D implementation, which
proves to be effective for most typical scenes, such as urban
and architectural walkthroughs. The 2.5D implementation per-
forms a series of slices in the height dimension, and uses the
2D algorithm to construct 2D virtual occluders in each slice.
These occluders are then extended to 3D by giving them the
height of their respective slices.

7.4 Occluder Fusion for Urban Walkthroughs
[48]

This paper presents an approach based on the observation that
it is possible to compute a conservative approximation of the
umbra for a viewcell from a set of discrete point samples
placed on the view cell’s boundary. A necessary, though not
sufficient condition that an object is occluded is that it is com-
pletely contained in the intersection of all sample points’ um-
brae. Obviously, this condition is not sufficient as there may
be viewing positions between the sample points where the con-
sidered object is visible.

However, shrinking an occluder byε provides a smaller um-
bra with a unique property: An object classified as occluded by
the shrunk occluder will remain occluded with respect to the
original larger occluder when moving the viewpoint no more
thanε from its original position.

Consequently, a point sample used together with a shrunk
occluder is a conservative approximation for a small view cell
with radiusε centered at the sample point. If the original view
cell is covered with sample points so that every point on the
boundary is contained in anε -neighborhood of at least one
sample point, then an object lying in the intersection of the um-
brae from all sample points is occluded for the original view
cell.

Using this idea, multiple occluders can be considered si-
multaneously. If the object is occluded by the joint umbra of
the shrunk occluders for every sample point of the view cell,

cell

projectionplane 2

projectionplane 1

equivalent
occludergroup 1

group 2

reprojection

cone

(a)

cell

occluder

projectionplane

occludee

extended
projection
of the
occluder

extended
projection
of the
occludee

V

(b)

Figure 21: (a) Principle of Extended Projections. The Extended Projection of the occluder is the intersection of its projections from
all the points in the viewing cell, while the Extended Projection of the occludee is the union of its projections. (b) If plane 2 is used
for projection, the occlusion of group 1 is not taken into account. The shadow cone of the cube shows that its Extended Projection
would be void, since it vanishes in front of the plane. The same constraint applies for group 2 and plane 1. We thus project group 1
onto plane 1, then re-project this aggregate projection onto plane 2. Courtesy of Fredo Durand, MIT.

1

3

2

4

S

(a)

1

3

2

4

S

(b)

3

2

4

1

S

(c)

1

3

2

4

S

(d)

Figure 22: Growing the virtual occluders by intersecting objects with the active separating and supporting lines.

Figure 23: Sampling of the occlusion from five sampling
points. Courtesy of Peter Wonka, Vienna University of Tech-
nology.

it is occluded for the whole view cell. In that way, occluder
fusion for an arbitrary number of occluders is implicitly per-
formed (see Figure 23 and Figure 24).

7.5 Discussion

When visibility from region is concerned, occlusion caused by
individual occluders in a general setting is insignificant. Thus,
it is essential to take advantage of aggregate occlusion caused
by groups of nearby objects. The above four papers address
the problem of occlusion aggregation also referred to as oc-
cluder fusion.

All the four techniques are conservative, they aggregate oc-
clusion in most cases, but not in all possible cases. In some of
the techniques, the criterion to fuse two occluders or to aggre-
gate their occlusions is based on the intersection of two um-
brae. However, in [31, 48], a more elaborate criterion is used,
which permits to aggregate occlusions also in cases where the
umbrae are not necessarily intersected. These cases are illus-
trated in Figure 20.

To cope with the complexity of the visibility in 3D scenes,
all the techniques use some discretizations:

The first method discretizes the space into voxels, and op-
erates only on voxels. This leads to underestimate occlusion
when the umbra of occluders is relatively small and partially
overlaps some large voxels, but does not completely contain
any. The advantage of this approach is its generality: it can be
applied to any representation of 3D scenes, and not necessarily
polygonal.

The second method discretizes the space in two ways. First,
it projects all objects onto a discrete set of projection planes,
and second, the representation of objects in those planes is dis-
crete as well. Moreover, 3D projections are replaced by two
2D projections (see Figure 5), to avoid performing analytical
operations on objects in 3D space. The advantage of this al-
gorithm is that, since most operations are performed in image-
space, they can possibly be hardware-assisted to shorten the

preprocessing time.
The third method is an object-space analytical one in the

2D case. It treats the 3D cases as a 2.5D scene and solves it
by a series of 2D cases by discretizing the height dimension.
It is shown that on practice the visibility of 2.5D entities well
approximate the visibility of the original 3D models.

The forth method samples the visibility from a viewcell
from a discrete number of sample points. Although it un-
derestimates occlusion, it is also a conservative method. This
may be insignificant in case of close and large occluders, but
in cases, where the occlusion is created by a large number of
small occluders, the approximation might be too crude.

7.6 Approximate from-region visibility

In [2] a scheme to combine approximate occlusion culling with
levels-of-detail (LOD) techniques is presented. The idea is to
identify partially occluded objects in addition to the fully oc-
cluded ones. The assumption is that partially occluded objects
take less space on the screen, and therefore can be rendered us-
ing a lower LOD. The authors use the term Hardly-Visible Set
(HVS) to describe a set consisting of both fully and partially
visible objects.

A set of occluders is selected and simplified to a collec-
tion of partially overlapping boxes. Occlusion culling is per-
formed from the viewcell using these boxes as occluders to
find the ”fully-visible” part of the HVS. Occlusion culling
is performed considering only occlusion by individual boxes
[8, 37]. There is no occlusion fusion, but a single box may
represent several connected occluder objects.

To compute partially visible objects, all the occluders
(boxes) are enlarged by a certain small degree, and occlusion
culling is performed again using these magnified occluders.
The objects that are occluded by the enlarged occluders and
not by the original ones are considered to be partially occluded
from the viewcell, and are thus candidates to be rendered at a
lower LOD.

Several parts of the HVS are computed by enlarging the
occluders several times, each time by a different degree. Thus,
classifying objects with a different degree of visibility. During
the real-time rendering, the LOD is selected with respect to
degree of visibility of the objects.

It should be noted that this basic assumption of the degree
of visibility is solely a heuristic, since an object partially oc-
cluded from a region does not mean it is partially occluded
from any point within the region. It could be fully visible at
one point and partially visible or occluded in another.

In [20] another approximate from-region visibility tech-
nique is proposed. Casting rays from a five-dimensional space
samples the visibility. The paper discusses how to minimize
the number of rays cast to achieve a reliable estimate of the
visibility from a region.

7.7 The PVS storage space problem

Precomputing the PVS from a region requires solving a promi-
nent space problem. The scene is partitioned into viewcells
and for each cell a PVS is precomputed and stored readily for
the online rendering stage. Since the number of viewcells is
inherently large, the total size of all the visibility sets is much
larger than the original size of the scene. Except few excep-
tions this problem did not receive enough attention yet. Van
de Panne and Stewart [46] presented a technique to compress
precomputed visibility sets by clustering objects and viewcells

Figure 24: The fused umbra from the five points (in the figure
above) is the intersection of the individual umbrae. It is larger
than the union of umbrae of the original viewcell. Courtesy of
Peter Wonka.

of similar behavior. Gotsman et al [20] presented a hierarchi-
cal scheme to encode the visibility efficiently. Cohen-Or et
al.[9, 8] deal with the transmission of the visibility sets from
server to the client and [8, 35] discuss the selection of the best
viewcell size in terms of the size of the PVS.

A completely different approach was taken by Koltun et al.
[31]. The PVS of each viewcell does not need to be stored
explicitly. An intermediate representation that requires much
less storage space than the PVS is created and used to generate
the PVS on-the-fly during rendering.

8 Conclusion

In this paper, we have surveyed most of the visibility literature
available in the context of walkthrough applications. We see
that a considerable amount of knowledge has been assembled
in the last decade, in particular the number of papers in the
area has increased substantially in the last couple of years. It
is hard to say exactly where the field is going, but there are
some interesting trends and open problems.

It seems further research is necessary into techniques which
lower the amount of preprocessing required. Also, memory is
a big issue for large scenes, especially in the context of From-
region techniques.

It is expected that more hardware features which can be
used to improve visibility computations will be available. At
this time, one of the major impediments is the fact that reading
back information from the graphics boards is very slow. It is
expected that this will get much faster, enabling improvements
in hardware-based visibility culling algorithms.

The efficient handling of dynamic scenes is an open area of
research at this point.

Acknowledgements

We would like to thank all the authors who have helped us with
material from their work. In particular, Fredo Durand, Vladi
Koltun, James Klosowski, Gernot Schaufler, Peter Wonka, for
helping us with text and figures from their papers.

References

[1] John M. Airey, John H. Rohlf, and Frederick P. Brooks,
Jr. Towards image realism with interactive update rates
in complex virtual building environments.Computer
Graphics (1990 Symposium on Interactive 3D Graph-
ics), 24(2):41–50, March 1990.

[2] Carlos Andujar, Carlos Saona-Vazquez, Isable Navazo,
and Pere Brunet. Integrating occlusion culling and levels
of details through hardly-visible sets.Computer Graph-
ics Forum, 19(3), 2000. (to appear)

[3] Dirk Bartz, Michael Meissner, and Tobias Huettner.
Opengl-assisted occlusion culling for large polygonal
models.Computer & Graphics, 23(5):667–679, 1999.

[4] Dirk Bartz, Michael Meissner, and Tobias Huettner.
Extending graphics hardware for occlusion queries in
opengl. InProc. Workshop on Graphics Hardware ’98,
pages 97–104, 1998.

[5] F. Bernardini, J. T. Klosowski, and J. El-Sana. Di-
rectional discretized occluders for accelerated occlusion
culling. Computer Graphics Forum, 19(3), 2000. (to ap-
pear)

[6] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibil-
ity culling with occlusion trees. InProceedings of Com-
puter Graphics International ’98, pages 207–219, June
1998.

[7] N. Chin and S. Feiner. Near real-time shadow generation
using BSP trees. SIGGRAPH ’89, 23(3):99–106, 1989.

[8] Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal
Zadicario. Conservative visibility and strong occlusion
for viewspace partitioning of densely occluded scenes.
Computer Graphics Forum, 17(3):243–254, 1998.

[9] Daniel Cohen-Or and Eyal Zadicario. Visibility stream-
ing for network-based walkthroughs.Graphics Interface
’98, pages 1–7, June 1998.

[10] Satyan Coorg and Seth Teller. Temporally coherent con-
servative visibility. InProc. 12th Annu. ACM Sympos.
Comput. Geom., pages 78–87, 1996.

[11] Satyan Coorg and Seth Teller. Real-time occlusion
culling for models with large occluders.1997 Sympo-
sium on Interactive 3D Graphics, pages 83–90, April
1997.

[12] Mark de Berg, Marc van Kreveld, Mark Overmars, and
Otfried Schwarzkopf.Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, Berlin, 1997.

[13] D. P. Dobkin and S. Teller. Computer graphics. In Ja-
cob E. Goodman and Joseph O’Rourke, editors,Hand-
book of Discrete and Computational Geometry, chap-
ter 42, pages 779–796. CRC Press LLC, Boca Raton, FL,
1997.

[14] S. E. Dorward. A survey of object-space hidden surface
removal. Internat. J. Comput. Geom. Appl., 4:325–362,
1994.

[15] Frédo Durand, George Drettakis, Jo¨elle Thollot, and
Claude Puech. Conservative visibility preprocessing us-
ing extended projections.SIGGRAPH 2000, 2000. (to
appear)

[16] S. Fleishman, D. Cohen-Or, and D. Lischinski. Auto-
matic camera placement for image-based modeling. In
Proceedings of Pacific Graphics 99, pages 12–20, Octo-
ber 1999.

[17] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes.Computer Graphics, Principles
and Practice, Second Edition. Addison-Wesley, Read-
ing, Massachusetts, 1990.

[18] T.A. Funkhouser. Database management for interactive
display of large architectural models.Graphics Inter-
face, pages 1–8, May 1996.

[19] Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs.
Fast constructive-solid geometry display in the Pixel-
Powers graphics system. InSIGGRAPH ’86, volume 20,
pages 107–116, August 1986.

[20] Craig Gotsman, Oded Sudarsky, and Jeffry Fayman.
Optimized occlusion culling. Computer & Graphics,
23(5):645–654, 1999.

[21] Ned Greene and M. Kass. Hierarchical Z-buffer visibil-
ity. In Computer Graphics Proceedings, Annual Confer-
ence Series, 1993, pages 231–240, 1993.

[22] Ned Greene and Michael Kass. Error-bounded an-
tialiased rendering of complex environments. InSIG-
GRAPH ’94, pages 59–66, July 1994.

[23] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hi-
erarchical radiosity algorithm. InSIGGRAPH ’91, pages
197–206, July 1991.

[24] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk
Bartz, and Taosong He. Virtual voyage: Interactive nav-
igation in the human colon. InSIGGRAPH ’97, pages
27–34, August 1997.

[25] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow
frusta. In Proceedings of the 13th International An-
nual Symposium on Computational Geometry (SCG-97),
pages 1–10, New York, June 1997.

[26] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow
frustra. In Proc. 13th Annu. ACM Sympos. Comput.
Geom., pages 1–10, 1997.

[27] James T. Klosowski, Martin Held, Joseph S. B. Mitchell,
Henry Sowizral, and Karel Zikan. Efficient colli-
sion detection using bounding volume hierarchies of k-
dops.IEEE Transactions on Visualization and Computer
Graphics, 4(1):21–36, January-March 1998.

[28] J. T.Klosowski and C. T. Silva. The Prioritized-Layered
Projection Algorithm for Visible Set Estimation. submit-
ted for publication, 2000.

[29] J. T. Klosowski and C. T. Silva. Rendering on a bud-
get: A framework for time-critical rendering. InIEEE
Visualization ’99, pages 115–122, October 1999.

[30] J. T. Klosowski and C. T. Silva. Efficient Conservative
Visibility Culling Using The Prioritized-Layered Projec-
tion Algorithm. submitted for publication, 2000.

[31] Vladlen Koltun, Yiorgos Chrysanthou, and Daniel
Cohen-Or. Virtual occluders: An efficient intermediate
pvs representation. Insubmitted for publication, 2000.

[32] David Luebke and Chris Georges. Portals and mir-
rors: Simple, fast evaluation of potentially visible sets.
In 1995 Symposium on Interactive 3D Graphics, pages
105–106, April 1995.

[33] M. Meissner, D. Bartz, T. Huttner, G. Muller, and
J. Einighammer. Generation of subdivision hierarchies
for efficient occlusion culling of large polygonal models.
Computer & Graphics. (to appear)

[34] Tomas Moeller and Eric Haines.Real-Time Rendering.
A.K. Peters Ltd., 1999.

[35] Boaz Nadler, Gadi Fibich, Shuly Lev-Yehudi, and Daniel
Cohen-Or. A qualitative and quantitative visibility anal-
ysis in urban scenes.Computer & Graphics, 23(5):655–
666, 1999.

[36] Bruce F. Naylor. Partitioning tree image representation
and generation from 3D geometric models. InProceed-
ings of Graphics Interface ’92, pages 201–212, 1992.

[37] Carlos Saona-Vazquez, Isabel Navazo, and Pere Brunet.
The visibility octree: A data structure for 3d navigation.
Computer & Graphics, 23(5):635–644, 1999.

[38] Gernot Schaufler, Xavier Decoret, Julie Dorsey, and
Francois Sillion. Conservative volumetric visibility with
occluder fusion. InSIGGRAPH 2000, 2000. (to appear)

[39] N. Scott, D. Olsen, and E. Gannet. An overview of the
visualize fx graphics accelerator hardware.The Hewlett-
Packard Journal, May:28–34, 1998.

[40] K. Severson. VISUALIZE Workstation Graphics for
Windows NT. HP product literature.

[41] François Sillion and George Drettakis. Feature-based
control of visibility error: A multi-resolution clustering
algorithm for global illumination. InSIGGRAPH ’95,
pages 145–152, August 1995.

[42] Brian Smits, James Arvo, and Donald Greenberg. A
clustering algorithm for radiosity in complex environ-
ments. InSIGGRAPH ’94, pages 435–442. July 1994.

[43] Oded Sudarsky and Craig Gotsman. Dynamic Scene
Occlusion Culling. IEEE Transactions on Visualization
and Computer Graphics, pages 13–29, January - March
1999.

[44] Seth Teller and Carlo S´equin. Constructing easily invert-
ible bézier surfaces that parameterize general quadrics.
SMA ’91: Proceedings of the First Symposium on
Solid Modeling Foundations and CAD/CAM Applica-
tions, pages 303–316, June 1991.

[45] Seth J. Teller and Carlo H. Sequin. Visibility prepro-
cessing for interactive walkthroughs. InSIGGRAPH ’91,
pages 61–69, July 1991.

[46] Michiel van de Panne and James Stewart. Efficient com-
pression techniques for precomputed visibility. InPro-
ceedings of Eurographics Workshop on Rendering ’99,
1999.

[47] Peter Wonka and Dieter Schmalstieg. Occluder shad-
ows for fast wakthroughs of urban environments. In
Computer Graphics Forum, volume 18, pages C51–C60,
1999.

[48] Peter Wonka, Michael Wimmer, and Dieter Schmal-
stieg. Visibility preprocessing with occluder fusion for
urban walkthroughs. Technical Report TR-186-2-00-06,
Institute of Computer Graphics, Vienna University of
Technology, Karlsplatz 13/186, A-1040 Vienna, Austria,
March 2000.

[49] Hansong Zhang.Effective Occlusion Culling for the In-
teractive Display of Arbitrary Models. Ph.D. thesis, De-
partment of Computer Science, UNC-Chapel Hill, 1998.

[50] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and
Kenneth E. Hoff III. Visibility culling using hierarchi-
cal occlusion maps. InSIGGRAPH ’97, pages 77–88,
August 1997.

1

Object-Space Visibility Culling

Claudio T. Silva

Information Visualization Research Department
AT&T Shannon Laboratory

csilva@research.att.com

Some slides as well as material for slides have been provided by

Satyan Coorg (MIT/IBM), Sigal Dahan and Dudu Sayag (Tel-Aviv)

Visibility Determination

Given a collection of triangles:

Find the visible fragments:

Problem:
N triangles might generate O(N^2) fragments

2

Z-buffer Algorithm

By discretizing the domain, Z-buffer has essentially
linear in the number of primitives

High-Depth Complexity Scenes

For models with a large number of layers, the Z-buffer can
be inefficient, since not all primitives need to be touched

3

Approximate Visibility Determination

Develop algorithms that are output sensitive, that is, if out of
the N triangles, only K of them are visible, the algorithm
has complexity that depends more closely on K

Drop the exact visibility requirement, and instead attempt to
develop algorithms that estimate the triangles which have
visible fragments

In this talk, we will speak about algorithms that
overestimate the visible fragments, the so called
conservative visibility algorithms

Talk Summary

• Cells and portals
– Teller and Sequin, Siggraph 91

– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97

– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

4

Talk Summary

• Cells and portals
– Teller and Sequin, Siggraph 91

– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97

– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

The Cells-and-Portals Approach

(1) Decompose space into convex cells

(2) For each cell, identify its boundary edges into
two sets: opaque or portal

(3) Precompute visibility among cells

(4) During viewing (eg, walkthrough phase), use
the precomputed potentially visible polygon set
(PVS) of each cell to speed-up rendering

5

Space Subdivision

Input Scene:

Convex subdivision:

Generated by computing a k-d tree of the input faces

Determining Adjacent Information

6

Computing the PVS of a cell

S•R ≥ 0, ∀ L ∈ L
S•R ≤ 0, ∀ R ∈ RLinear programming problem:

Find_Visible_Cells(cell C, portal sequence P, visible cell set V)
V=V ∪ C
for each neighbor N of C

for each portal p connecting C and N
orient p from C to N
P’ = P concatenate p
if Stabbing_Line(P’) exists then

Find_Visible_Cells (N, P’, V)

Eye-to-Cell Visibility

The eye-to-cell visibility of any observer is
a subset of the cell-to-cell visibility for the cell
containing the observer

7

Results

Results

8

Luebke and Georges, I3D 95

Instead of pre-processing
all the PVS calculation,
it is possible to use
image-space portals to
make the computation
easier

Can be used in a dynamic
setting

Talk Summary

• Cells and portals
– Teller and Sequin, Siggraph 91

– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97

– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

9

When does A occludes B ?

Idea: Track Visibility Changes

Possible because visibility changes
little from frame to frame

10

Events to care about...

Coorg and Teller, SoCG 96

(1) use a sphere

To reduce the number of events to
be tracked:

(2) and a hierarchy of objects

11

Hierarchical Tests

2

Hierarchical Tests

2

12

Hierarchical Tests

2

Coorg and Teller, I3D 97

Ignored

IgnoredA

B

T

Added the capability to
join the effect of connected
occluders, that is, a form
of occluder fusion

13

Occluder Fusion

Fast Tangent Plane Computation

Because this computation is fast,
it is no longer necessary to keep
fine-grain visibility events

14

Use Temporal Coherence to Cache
Relevant Events

Detail Occluders

15

Metric for Comparing Occluder Quality

Occluder quality: (-A (N * V)) / ||D||2

A : the occluder’s area
N : normal
V : viewing direction
D : the distance between the viewpoint and the occluder
center
Large polygon have large area-angle.

9

$

1

'
2

Results

16

Results
The percentage of polygons draw

The culling and drawing times (in milliseconds)

6FHQH

6RGD

&LW\

�������

�������

3RO\JRQV)UXVWXP 2FFOXVLRQ

���� ���

���� ���

6FHQH

6RGD

&LW\

)UXVWXP 2FFOXVLRQ

�� ��

��� ��

6RGD

&LW\

&XOO'UDZ 7RWDO7RWDO 'UDZ&XOO

���

���

��

��

��

��

��

��

��

��

��

���

���

���

��

��

��

��

���

��

(ODQ � ZRUNVWDWLRQ WLPHV

2Q\[� ZRUNVWDWLRQ WLPHV

Hudson et al, SoCG 97

C
B

AViewpoint

Occluder

17

Occluder Quality

• Solid Angle (similar to Coorg and Teller)

• Depth Complexity

Talk Summary

• Cells and portals
– Teller and Sequin, Siggraph 91

– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97

– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

18

Aggressive Occlusion Culling

• In many complex scenes, only a small fraction
of polygons contribute to the final image. Often
only 1-2%

• Aggressive algorithm which attempts to render
as few polygons as possible while rendering a
large fraction of the visible ones

• Quality vs. Speed

How to Combine Occluders ?

Occluders

Occludee

A

B

C

19

Prioritized-Layered Projection

view direction

Layers of
Geometry

Prioritized-Layered Projection

view direction

Layers of
Geometry

20

Prioritized-Layered Projection

view direction

Layers of
Geometry

Prioritized-Layered Projection

view direction

Layers of
Geometry

21

Prioritized-Layered Projection

view direction

Layers of
Geometry

PLP Overview

• Occupancy-based spatial tessellation

• Prioritized cell traversal algorithm

22

Spatial Tessellation Algorithm
• Insert original vertices into octree
• Use centers of leaf nodes as sample points
• Build Delaunay Triang. (with qhull) using sample

points
• Insert geometry into mesh cells

Priorit y-Based Traversal Algorithm

while (PQ is not empty)
project cell with minimum
opacity;

if (budget reached) stop;
for each adjacent cell c

if (c not projected)
update opacity value o;
enqueue c;

view direction

A

B

C

23

AOC 2D Prototype

AOC 2D Prototype

24

AOC 2D Prototype

AOC 2D Prototype

DEMO!

25

AOC 3D Prototype

PLP Highlights

• Rendering within a budget (I.e., time-critical)

• Low-complexity preprocessing

• No pre-selection of occluders

• Object-space occluder fusion

• Simple to implement

Main idea: add weights to visibility-order arcs

26

5 Car/Body -- Accuracy

City Model -- Accuracy

27

City Model -- Efficiency

Some Quantitative Results

• With 1% budget PLP finds over 50% of visible
set on average

• For the 500K-triangle city model, it takes 2
minutes of preprocessing.
For this model, a 5% budget, PLP finds about
80% of the visible set.
At most 4% of the pixels in a given image are
wrong!

28

Get related papers at:

http://www.research.att.com/~csilva

The Prioritized-Layered Projection Algorithm for

Visible Set Estimation

James T. Klosowski� Cláudio T. Silva†

March 15th, 2000

Abstract

Prioritized-Layered Projection (PLP) is a technique for fast rendering of high depth com-

plexity scenes. It works by estimating the visible polygons of a scene from a given viewpoint

incrementally, one primitive at a time. It is not a conservative technique, instead PLP is suit-

able for the computation of partially correct images for use as part of time-critical rendering

systems. From a very high level, PLP amounts to a modification of a simple view-frustum

culling algorithm, however, it requires the computation of a special occupancy-based tessel-

lation, and the assignment to each cell of the tessellation a solidity value, which is used to

compute a special ordering on how primitives get projected.

In this paper, we detail the PLP algorithm, its main components and implementation. We

also provide experimental evidence of its performance, including results on two types of spatial

tessellation (using octree- and Delaunay-based tessellations), and several datasets. We also

discuss several extensions of our technique.

1 Introduction

Recent advances in graphics hardware have not been able to keep up with the increase in scene

complexity. In order to support a new set of demanding applications, a multitude of rendering
�IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598; jklosow@us.ibm.com.
†AT&T Labs-Research, 180 Park Ave., PO Box 971, Florham Park, NJ 07932; csilva@research.att.com.

1

algorithms have been developed to both augment and optimize the use of the hardware. An effec-

tive way to speed up rendering is to avoid rendering geometry that cannot be seen from the given

viewpoint, such as geometry that is outside the view frustum, faces away from the viewer, or is

obscured by geometry closer to the viewer. Quite possibly, the hardest part of the visibility-culling

problem is to avoid rendering geometry that can not be seen due to its being obscured by closer

geometry. In this paper, we propose a new algorithm for solving the visibility culling problem.

Our technique is an effective way to cull geometry with a very simple and general algorithm.

Our technique optimizes for rendering by estimating the visible set for a given frame, and only

rendering those polygons. It is based on computing on demand a priority order for the polygons that

maximizes the likelihood of projecting visible polygons before occluded ones for any given scene.

It does so in two steps: (1) as a preprocessing step, it computes an occupancy-based tessellation

of space, which tends to have smaller spatial cells where there are more geometric primitives, e.g.,

polygons; (2) in real-time, rendering is performed by traversing the cells in an order determined by

their intrinsic solidity (likelihood of being occluded) and some other view-dependent information.

As cells are projected, their geometry is scheduled for rendering (see Fig. 1). Actual rendering is

constrained by a user-defined budget, e.g. time or number of triangles.

Some highlights of our technique:

– Budget-based rendering. Our algorithm generates a projection ordering for the geometric

primitives that mimics a depth-layered projection ordering, where primitives directly visible

from the viewpoint are projected earlier in the rendering process. The ordering and rendering

algorithms strictly adhere to a user-defined budget, making the PLP approach time-critical.

– Low-complexity preprocessing. Our algorithm requires inexpensive preprocessing, that

basically amounts to computing an Octree and a Delaunay triangulation on a subset of the

vertices of the original geometry.

– No need to choose occluders beforehand. Contrary to other techniques, we do not require

that occluders be found before geometry is rendered.

– Object-space occluder fusion. All of the occluders are found automatically during a space

2

(a) (b)

Figure 1: The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering

of geometry along layers of occlusion. Cells that have been projected by the PLP algorithm are

highlighted in red wireframe and their associated geometry is rendered, while cells that have not

been projected are shown in green. Notice that the cells occluded by the desk are outlined in green,

indicating that they have not been projected.

traversal that is part of the normal rendering loop without resorting to image-space represen-

tation.

– Simple and fast to implement. Our technique amounts to a small modification of a well-

known rendering loop used in volume rendering of unstructured grids. It only requires neg-

ligible overhead on top of view-frustum culling techniques.

Our paper is organized as follows. In Section 2, we give some preliminary definitions, and

briefly discuss relevant related work. In Section 3, we propose our novel visibility-culling algo-

rithm. In Section 4, we give some details on our prototype implementation. In Section 5, we

provide experimental evidence of the effectiveness of our algorithm. In Section 6, we describe a

few extensions and other avenues for future work. In Section 7, we conclude the paper with some

final remarks.

3

2 Preliminaries and Related Work

The visibility problem is defined in [9] as follows. Let the scene, S , be composed of modeling

primitives (e.g., triangles or spheres) S = fP0;P1; . . . , Png, and a viewing frustum defining an

eye position, a view direction, and a field of view. The visibility problem encompasses finding

the points or fragments within the scene that are visible, that is, connected to the eye point by a

line segment that meets the closure of no other primitive. For a scene with n = O(jS j) primitives,

the complexity of the set of visible fragments might be as high as O(n2
), but by exploiting the

discrete nature of the screen, the Z-buffer algorithm [2] solves the visibility problem in time O(n),

since it only touches each primitive once. The Z-buffer algorithm solves the visibility problem by

keeping a depth value for each pixel, and only updating the pixels when geometry closer to the eye

point is rendered. In the case of high depth-complexity scenes, the Z-buffer might overdraw each

pixel a considerable number of times. Despite this potential inefficiency, the Z-buffer is a popular

algorithm, widely implemented in hardware.

In light of the Z-buffer being widely available, and exact visibility computations being po-

tentially too costly, one idea is to use the Z-buffer as filter, and design algorithms that lower the

amount of overdraw by computing an approximation of the visible set. In more precise terms,

define the visible set V � S to be the set of modeling primitives which contribute to at least one

pixel of the screen.

In computer graphics, visibility-culling research mainly focussed on algorithms for computing

conservative (hopefully tight) estimations of V , then using the Z-buffer to obtain correct images.

The simplest example of visibility-culling algorithms are backface and view-frustum culling [11].

Backface-culling algorithms avoid rendering geometry that face away from the viewer, while

viewing-frustum culling algorithms avoid rendering geometry that is outside of the viewing frus-

tum. Even though both of these techniques are very effective at culling geometry, more complex

techniques can lead to substantial improvements in rendering time. These techniques for tighter

estimation of V do not come easily. In fact, most techniques proposed are quite involved and in-

genious, and usually require the computation of complex object hierarchies in both 3- and 2-space.

Here again the discrete nature of the screen, and screen-space coverage tests, play a central

role in literally all occlusion-culling algorithms, since it paves the way for the use of screen occu-

4

pancy to cull 3D geometry that projects into already occupied areas. In general, algorithms exploit

this fact by (1) projecting Pi in front-to-back order, and (2) keeping screen coverage information.

Several efficiency issues are important for occlusion-culling algorithms:

(a) They must operate under great time and space constraints, since large amounts of geometry

must be rendered in fractions of a second for real-time display.

(b) It is imperative that primitives that will not be rendered be discarded as early as possible, and

(hopefully) not be touched at all. Global operations, such as computing a full front-to-back

ordering of Pi, should be avoided.

(c) The more geometry that gets projected, the less likely the Z-buffer gets changed. In order to

effectively use this fact, it must be possible to merge the effect of multiple occluders. That

is, it must be possible to account for the case that neither P0 nor P1 obscures P2 by itself, but

together they do cover P2. Algorithms that do not exploit occluder-fusion are likely to rely

on the presence of large occluders in the scene.

A great amount of work has been done in visibility culling in both computer graphics and

computational geometry. For those interested in the computational geometry literature, see [8, 9,

10]. For a survey of computer graphics work, see [28].

We very briefly survey some of the recent work more directly related to our technique. Hierar-

chical occlusion maps [29] solve the visibility problem by using two hierarchies, an object-space

bounding volume hierarchy and another hierarchy of image-space occlusion maps. For each frame,

objects from a pre-computed database are chosen to be occluders and used to cull geometry that

cannot be seen. A closely related technique is the hierarchical Z-buffer [13].

A simple and effective hardware technique for improving the performance of the visibility

computations with a Z-buffer has been proposed in [23]. The idea is to add a feedback loop in

the hardware which is able to check if changes would have been made to the Z-buffer when scan-

converting a given primitive.� This hardware makes it possible to check if a complex model is

visible by first querying whether an enveloping primitive (often the bounding box of the object,
�In OpenGL the technique is implemented by adding a proprietary extension that can be enabled when queries are

being performed.

5

but in general one can use any enclosing object, e.g. k-dop [16]), is visible, and only rendering the

complex object if the enclosing object is actually visible. Using this hardware, simple hierarchical

techniques can be used to optimize rendering (see [17]). In [1], another extension of graphics

hardware for occlusion-culling queries is proposed.

It is also possible to perform object-space visibility culling. One such technique, described in

[26], divides space into cells, which are then preprocessed for potential visibility. This technique

works particularly well for architectural models. Additional object-space techniques are described

in [6, 7]. These techniques mostly exploit the presence of large occluders, and keep track of spatial

extents over time. In [4], a technique that precomputes visibility in densely occluded scenes is

proposed. They show it is possible to achieve very high-occlusion rates in dense environments by

pre-computing simple ray-shooting checks.

In [12], a constant-frame rendering system is described. This work uses the visibility-culling

from [26]. It is related to our approach in the sense that it also uses a (polygon) budget for limiting

the overall rendering time. Other notable references include [3], for its level-of-detail management

ideas, and [21], where a scalable rendering architecture is proposed.

3 The PLP Algorithm

In this paper we propose the Prioritized-Layered Projection algorithm, a simple and effective tech-

nique for optimizing the rendering of geometric primitives. The guts of our algorithm consists of

a space-traversal algorithm, which prioritizes the projection of the geometric primitives in such

a way as to avoid (actually delay) projecting cells that have a small likelihood of being visible.

Instead of conservatively overestimating V , our algorithm works on a budget. At each frame, the

user can provide a maximum number of primitives to be rendered, i.e., a polygon budget, and our

algorithm, in its single-pass traversal over the data, will deliver what it considers to be the set of

primitives which maximizes the image quality, using a solidity-based metric.

Our projection strategy is completely object-space based, and resembles† cell-projection algo-
†Our cell-projection algorithm is different than the ones used in volume rendering in the following ways: (1) in

volume rendering cells are usually projected in back-to-front order, while in our case, we project cells in roughly

front-to-back order; (2) more importantly, we do not keep a strict depth-ordering of the cells during projection. This

6

rithms used in volume rendering unstructured grids.

In a nutshell, our algorithm is composed of two parts:

Preprocessing. Here, we tessellate the space that contains the original input geometry with con-

vex cells in the way specified in Section 3.1. During this one-time preprocessing, a collection of

cells is generated in such a way as to roughly keep a uniform density of primitives per cell. Our

sampling leads to large cells in unpopulated areas, and small cell in areas that contain a lot of

geometry.

In another similarity to volume rendering, using the number of modeling primitives assigned

to a given cell (e.g., tetrahedron) we define its solidity value ρ, which is similar to the opacity used

in volume rendering. In fact, we use a different name to avoid confusion since the accumulated

solidity value used throughout our priority-driven traversal algorithm can be larger than one. Our

traversal algorithm prioritizes cells based on their solidity value.

Generating such a space tessellation is not a very expensive step, e.g. taking only a minute

or two minutes for a scene composed of one million triangles, and for several large datasets can

even be performed as part of the data input process. Of course, for truly large datasets, we highly

recommend generating this view-independent data structure beforehand, and saving it with the

original data.

Rendering Loop. Our rendering algorithm traverses the cells in roughly front-to-back order.

Starting from the seed cell, which in general contains the eye position, it keeps carving cells out of

the tessellation. The basic idea of our algorithm is to carve the tessellation along layers of polygons.

We define the layering number ζ 2 ℵ of a modeling primitive P in the following intuitive way. If

we order each modeling primitive along each pixel by their positive‡ distance to the eye point, we

define ζ(P) to be the smallest rank of P over all of the pixels to which it contributes. Clearly,

ζ(P) = 1, if, and only if, P is visible.

Finding the rank 1 primitives is equivalent to solving the visibility problem. Instead of solving

this hard problem, the PLP algorithm uses simple heuristics. Our traversal algorithm attempts to

would be too restrictive, and expensive, for our purposes.
‡Without loss of generality, assume P is in the view frustum.

7

(a) (b)

Figure 2: The input geometry is a model of an office. Snapshots of the PLP algorithm highlight

the spatial tessellations that are used. The cells which have not been projected in the Delaunay

triangulation (a) and the octree (b) are highlighted in blue and green, respectively. At this point in

the algorithm, the geometry associated with the projected cells has been rendered.

project the modeling primitives by layers, that is, all primitives of rank 1, then 2 and so on. We do

this by always projecting the cell in the front F (we call the front, the collection of cells that are

immediate candidates for projection) which is least likely to be occluded according to its solidity

values. Initially, the front is empty, and as cells are inserted, we estimate its accumulated solidity

value to reflect its position during the traversal. (Cell solidity is defined below in Section 3.2).

Every time a cell in the front is projected, all of the geometry assigned to it is rendered. In Fig. 2,

we see a snapshot of our algorithm for each of the spatial tessellations that we have implemented.

The cells which have not been projected in the Delaunay triangulation (a) and the octree (b) are

highlighted in blue and green, respectively.

There are several types of budgeting that can be applied to our technique, for example, a

triangle-count budget can be used to make it time-critical. For a given budget of k modeling

primitives, let Tk be the set of primitives our traversal algorithm projects. This set, together with S ,

the set of all primitives, and V , the set of visible primitives, can be used to define several statistics

that measure the overall effectiveness of our technique. One relevant statistic is the visible cover-

8

(a) (b) (c)

Figure 3: Occupancy-based spatial tessellation algorithm. The input geometry, a car with an engine

composed of over 160K triangles, is shown in (a). Using the vertices of the input geometry, we

build an error-bounded octree, shown in (b). The centers of the leaf-nodes of the octree, shown in

yellow in (c), are used as the vertices of our Delaunay triangulation.

age ratio for a budget of k primitives, εk. This is the number of primitives in the visible set that we

actually render, that is, εk =
jV\Tkj

jV j
. If εk < 1, we missed rendering some visible primitives.

PLP does not attempt to compute the visible set exactly. Instead, it combines a budget with

its solidity-based polygon ordering. For a polygon budget of k, the best case scenario would be to

have εk = 1. Of course, this would mean that PLP finds all of the visible polygons.

In addition to the visible coverage ratio εk, another important statistic is the number of incorrect

pixels in the image produced by the PLP technique. This provides a measure as to how closely the

PLP image represents the exact image produced by rendering all of the primitives.

3.1 Occupancy-Based Spatial Tessellations

The underlying data structure used in our technique is a decomposition of the 3-space covered by

the scene into disjoint cells. The characteristics we required in our spatial decomposition were:

(a) Simple traversal characteristics - must be easy and computationally inexpensive to walk

from cell to cell.

9

(b) Good projection properties - depth-orderable from any viewpoint (with efficient, hopefully

linear-time projection algorithms available); easy to estimate screen-space coverage.

(c) Efficient space filler - given an arbitrary set of geometry, it should be possible to sample the

geometry adaptively, that is, with large cells in sparse areas, and smaller cells in dense areas.

(d) Easy to build and efficient to store.

It is possible to use any of a number of different spatial data structures, such as kd-trees, octrees,

or Delaunay triangulations. The particular use of one kind of spatial tessellation may be related to

the specific dataset characteristics, although our experiments have shown that the technique works

with at least two types of tessellations (octrees and Delaunay triangulations).

Overall it seems that using low-stabbing triangulations, such as those used by Held et al. [14]

(see also Mitchell et al. [18, 19] for theoretical properties of such triangulations), which are also

depth-sortable (see [27, 25, 5]) are a good choice for occupancy-based tessellations. The main

reason for this is that given any path in space, these triangulations tend to minimize the traversal

cost allowing PLP to efficiently find the visible surfaces.

In order to actually compute a spatial decomposition M which adaptively samples the scene,

we use a very simple procedure, explained in Section 4. After M is built, we use a naive assignment

of the primitives in S to M , by basically scan-converting the geometry into the mesh. Each cell ci 2

M , has a list of the primitives from S assigned to it. Each of these primitives is either completely

contained in ci, or it intersects one of its boundary faces. We use jcij, the number of primitives in

cell ci, in the algorithm that determines the solidity values of ci’s neighboring cells. In a final pass

over the data during preprocessing, we compute the maximum number of primitives in any cell,

ρmax = maxi2[1:::jM j] jcij, to be used later as a scaling factor.

3.2 Priority-Based Traversal Algorithm

Cell-projection algorithms [27, 25, 5] are implemented using queues or stacks, depending on the

type of traversal (e.g., depth-first versus breadth-first), and use some form of restrictive dependency

among cells to ensure properties of the order of projection (e.g., strict back-to-front).

10

Unfortunately such limited and strict projection strategies do not seem general enough to cap-

ture the notion of polygon layering, which we are using for visibility culling. In order for this

to be feasible, we must be able to selectively stop (or at least delay) cell-projection around some

areas, while continuing in others. In effect, we would like to project cells from M using a layering

defined by the primitives in S . The intuitive notion we are trying to capture is as follows: if a cell

ci has been projected, and jcij = ρmax, then the cells behind should wait until (at least) a corre-

sponding layer of polygons in all other cells have been projected. Furthermore, in order to avoid

any expensive image-based tests, we would prefer to achieve such a goal using only object-space

tests.

In order to achieve this goal of capturing global solidity, we extend the cell-projection frame-

work by replacing the fixed insertion/deletion strategy queue, with a metric-based queue (i.e., a

priority queue), so that we can control how elements get pushed and popped based on a metric we

can define. We call this priority queue, F , the front. The complete traversal algorithm is shown

in Fig. 4. In order to completely describe it, we need to provide details on solidity metrics and its

update strategies.

Solidity. The notion of a cell’s solidity is at the heart of our rendering algorithm shown in Fig. 4.

At any given moment, cells are removed from the front (i.e., priority queue F) in solidity order,

that is, the cells with the smallest solidity are projected before the ones with larger solidity. The

solidity of a cell B used in the rendering algorithm is not an intrinsic property of the cell by itself.

Instead we use a set of conditions to roughly estimate the visibility likelihood of the cell, and make

sure that cells more likely to be visible get projected before cells that are less likely to be visible.

The notion of solidity is related to how difficult it is for the viewer to see a particular cell. The

actual solidity value of a cell B is defined in terms of the solidity of the cells that intersect the

closure of a segment from the cell B to the eye point. The heuristic we have chosen to define the

solidity value of our cells is shown in Fig. 5.

We use several parameters in computing the solidity value.

– The normalized number of primitives inside cell A, the neighboring cell (of cell B) that was

just projected. This number, which is necessarily between 0 and 1, is jAj
ρmax

. The rationale is

that the more primitives cell A contains, the more likely it is to obscure the cells behind it.

11

Algorithm RenderingLoop()

1. while (empty(F) != true)

2. c = min(F)

3. project(c)

4. if ((reached budget() == true)

5. break;

6. for each n; n = cell adjacent to(c)

7. if ((projected(n) == true)

8. continue;

9. ρ = update solidity(n, c)

10. enqueue(n, ρ)

Figure 4: Skeleton of the RenderingLoop algorithm. Function min(F) returns the minimum ele-

ment in the priority queue F . Function project(c) renders all the elements assigned to cell c; it

also counts the number of primitives actually rendered. Function reached budget() returns true if

the we have already rendered k primitives. Function cell adjacent to(c) lists the cells adjacent to c.

Function projected(n) returns true if cell n has already been projected. Function update solidity(n,

c) computes the updated solidity of cell n, based on the fact that c is one of its neighbors, and has

just been projected. Function enqueue(n, ρ) places n in the queue with a solidity ρ. If n was already

in the queue, this function will first remove it and re-insert it with the updated solidity value. See

text for more details on update solidity().

12

float function update solidity(B, A)

/* refer to Fig. 6 */

1. ρB = jAj
ρmax

+ (~v � ~nB) * ρA

2. if ((star shaped(~v, B) == false)

3. ρB = apply penalty factor(ρB)

4. return ρB

Figure 5: Function update solidity(). This function works as if transferring accumulated solidity

from cell A into cell B. ρB is the solidity value to be computed for cell B. jAj is the number of

primitives in cell A. ρmax is the maximum number of primitives in any cell. ~nB is the normal of the

face shared by cells A and B. ρA is the accumulated solidity value for cell A. The maximum transfer

happens if the new cell is well-aligned with the view direction ~v, and in star-shaped position. If

this is not the case, penalties will be incurred to the transfer.

– Its position with respect to the viewpoint. We transfer a cell’s solidity to a neighboring cell

based on how orthogonal the face that is shared between cells is to the view direction~v (see

Fig. 6).

We also give preference to neighboring cells that are star-shaped [8] with respect to the view-

point and the shared face. That is, we attempt to force the cells in the front to have their interior,

e.g. their center point, visible from the viewpoint along a ray that passes through the face shared

by the two cells. The reason for this is to avoid projecting cells (with low solidity values) that are

occluded by cells in the front (with high solidity values) which have not been projected yet. This is

likely to happen as the front expands away from an area in the scene where two densely occupied

regions are nearby; we refer to such an area as a bottleneck. Examples of such areas can easily be

seen in Fig. 7, which highlights our 2D prototype implementation. Actually, forcing the front to be

star-shaped at every step of the way is too limiting a rule. This would basically produce a visibility

ordering for the cells (such as the one computed in [25, 5]). Instead, we simply penalize the cells

in the front that do not maintain this star-shaped quality.

13

~v

~nC

~nB

B

A

C

Figure 6: Solidity Transfer. After projecting cell A, the traversal algorithm will add cells B and

C to the front. Based upon the current viewing direction ~v, cell B will accumulate more solidity

from A than will cell C, however, C will likely incur the non-star-shaped penalty. ~nB and ~nC are the

(respective) normals of the faces shared by the cell A’s neighboring cells. Refer to Fig. 5 for the

transfer calculation.

4 Implementation Details

We have implemented a system to experiment with the ideas presented in this paper. The code is

written in C++, with a mixture of Tcl/Tk and OpenGL for visualization. In order to access OpenGL

functionality in a Tcl/Tk application, we use Togl [20]. In all, we have about to 10,000 lines of

code. The code is very portable, and the exact same source code compiles and runs under IBM

AIX, SGI IRIX, Linux, and Microsoft Windows NT. See Fig. 8 for a screen shot of our graphical

user interface.

One of the reasons for the large amount of code actually comes from our flexible benchmark-

ing capabilities. Among other functionality, our system is able to record and replay scene paths;

automatically compute several different statistics about each frame as they are rendered (e.g., num-

ber of visible triangles, incorrect pixels); compute PLP traversals step by step, and “freeze” in the

middle of a traversal to allow for the study of the traversal properties from different viewpoints.

Here is a brief discussion of some of the important aspects of our implementation:

Rendering Data Structures. At this time, the main rendering primitive in our system is the

triangle. In general, we accept and use “triangle soups” as our input. For each triangle, we save

14

(a) (b)

(c) (d)

Figure 7: Priority-based traversal algorithm. In (a), the first cell, shown in green, gets projected.

The algorithm continues to project cells based upon the solidity values. Note that the traversal,

in going from (b) to (c), has delayed projecting those cells with a higher solidity value (i.e. those

cells less likely to be visible) in the lower-left region of the view frustum. In (d), as the traversal

continues, a higher priority is given to cells likely to have visible geometry, instead of projecting the

ones inside of high-depth complexity regions. Note that the star-shaped criterion was not included

in our 2D implementation.

15

Figure 8: Snapshot of our Tcl/Tk graphical user interface.

pointers to its vertices (which include color information), and a few flags, one of which is used to

mark whether it has been rendered in the current traversal. At this point, we do not make any use of

the fact that triangles are part of larger objects. Triangles are assigned to cells, and their rendering

are triggered by the actual rendering of a cell. Although triangles can (in general) be assigned to

more than one cell, they will only be rendered once per frame. A cell might get partially rendered,

in case the triangle budget is reached while attempting to render that particular cell.

Traversal Data Structures and Rendering Loop. During rendering, cells need to be kept in

a priority queue. In our current implementation, we use an STL set to actually implement this

data structure. We use an object-oriented design, which makes it easy for the traversal rendering

code to support different underlying spatial tessellations. For instance, at this time, we support

both octree and Delaunay-based tessellations. Since we are using C++, it is quite simple to do

this. The following methods need to be supported by any cell data structure (this list only include

methods needed for the rendering traversal; other methods are needed for initialization and triangle

assignment, and also for benchmarking):

– calculateInitialSolidityValues(intρmax) – uses the techniques presented in

Section 3.2 for computing the initial solidity.

16

– getSolidity(), setSolidity(), getOriginalSolidity() – uses the tech-

niques presented in Section 3.2 for updating the solidity values during traversal. Solidity

updates need to be adjusted for different kinds of spatial tessellations.

We use these functions to define a comparator class (less< >) that can be used by the STL

set to sort the different cells. Each cell also has an internal time stamp, which is used to

guarantee a first-in first-out behavior when there are ties with respect to the solidity values.

– findCell(float vp[3]) – Find the cell that contains the viewpoint, or returns that the

viewpoint is outside the convex hull of the tessellation. (In order to jump start the traversal

algorithm when the viewpoint is outside the tessellation, we use the cell that is closest to the

viewpoint.)

– getGeometry VEC() – returns a reference to the list of primitives inside this cell.

– getNeighbors VEC() – returns a reference to the list of neighbors of this cell. (We also

save the direction which identifies the face the two cells share. This is used to perform the

solidity update on the neighboring cells.)

Although simple and general, STL can add considerable overhead to an implementation. In

our case, the number of cells in the front has been kept relatively small, and we have not noticed

substantial slowdown due to STL.

The rendering loop is basically a straightforward translation of the code in Fig. 4 into C++.

Triangles are rendered very naively, one by one. We mark triangles as they are rendered, in order

to avoid overdrawing triangles that get mapped to multiple cells. We also perform simple backface

culling as well as view-frustum culling. We take no advantage of triangle-strips, vertex arrays, or

other sophisticated OpenGL features.

Space Tessellation Code. This is quite possibly the most complicated part of our implementa-

tion, and it consists of two parts, one for each of the two spatial tessellations we support. There is

a certain amount of shared code, since it is always necessary to first compute an adaptive sampling

from the scene, for which we use a simple octree.

17

In more detail, in order to compute a spatial decomposition M , which adaptively samples the

scene S , we use a very simple procedure that in effect just samples S with points, then (optionally)

constructs M as the Delaunay triangulation of the sample points, and finally assigns individual

primitives in S to M . Fig. 3 shows our overall triangulation algorithm. Instead of accurately

sampling the actual primitives (Fig. 3a), such as is done in [15], we simply construct an octree

using only the original vertices (Fig. 3b); we limit the size of the octree leaves, which gives us a

bound on the maximum complexity of our mesh§. Note that at this point, we do not have a space

partitioning where we can run PLP, instead the octree provides a hierarchical representation of

space (i.e., the nodes of the octree overlap and are nested).

Once the octree has been computed with the vertex samples, we can generate two different

types of subdivisions:

– Delaunay triangulation – We can use the (randomly perturbed) center of the octree leaves

as the vertices of our Delaunay triangulation (Fig. 3c).

For this, we used qhull, software written at the Geometry Center, University of Minnesota.

Our highly constrained input is bound to have several degeneracies as all the points come

from nodes of an octree, therefore we randomly perturbed these points and qhull had no

problems handling them.

After M is built, we use a naive assignment of the primitives in S to M , by basically scan-

converting the geometry into the mesh. Each cell ci 2 M , has a list of the primitives from S

assigned to it. Each of these primitives is either completely contained in ci, or it intersects

one of its boundary faces.

Each tetrahedron is represented by pointers to its vertices. Adjacency information is also

required, as are a few flags for rendering purposes.

– Octree – Since we have already built an octree, it is obvious that we can use the same octree

to compute a subdivision of space for PLP. Conceptually, this is quite simple, since the leaves
§(1) The resolution of the octree we use is very modest. By default, once an octree node has a side shorter than 5%

of the length of the bounding box of S , it is considered a leaf node. This has shown to be quite satisfactory for all the

experiments we have performed thus far. (2) Even though primitives might be assigned to multiple cells of M (we use

pointers to the actual primitives), the memory overhead has been negligible. See Section 5.1.

18

A

I

J

Figure 9: Finding neighbors within the octree.

of the octree are guaranteed to form a subdivision of space. All that is really needed is to

compute neighborhood information in the octree, for instance, looking at Fig. 9, we need to

find that node A is a “face” neighbor of node I and J, and vice-versa.

Samet [22] describes several techniques for neighbor finding. The basic idea in finding the

“face” neighbor of a node is to ascend the octree until the nearest common ancestor is found,

and to descend the octree in search of the neighbor node. In descending the octree, one needs

to reflect the path taken while going up (for details, see Table 3.11 in [22]).

One shortcoming with the technique as described in [22] is that it is only possible to find a

neighbor at the same level or above (that is, it is possible to find that A is the “right” neighbor

of I, but it is not possible to go the other way). A simple fix is to traverse the tree from the

bottom to the top, and allow the deeper nodes (e.g., I) to complete the neighborhood lists of

nodes up in the tree (e.g., A).

Regardless of the technique used for subdivision, for the solidity calculations, we use jcij,

the number of primitives in cell ci, in the algorithm that determines the solidity values of ci’s

neighboring cells. In a final pass over the data during preprocessing, we compute the maximum

number of primitives in any cell, ρmax = maxi2[1:::jM j] jcij, to be used later as a scaling factor.

Computing the Exact Visible Set. A number of benchmarking features are currently included

in our implementation. One of the most useful is the computation of the actual exact visible

set. We estimate V by using the well-know item buffer technique. In a nutshell, we color all

the triangles with different colors, render them, and read the frame buffer back, recording which

19

triangles contributed to the image rendered. After rendering, all the rank-1 triangles have their

colors imprinted into the frame buffer.

Centroid-Ordered Rendering. In order to have a basis for comparison, we implemented a sim-

ple ordering scheme based on sorting the polygons with respect to their centroid, and rendering

them in that order up to the specified budget. Our implementation of this feature tends to be slow

for large datasets, as it needs to sort all of the triangles in S at each frame.

5 Experimental Results

We performed a series of experiments in order to determine the effectiveness of PLP’s visibility

estimation. Our experiments typically consist of recording a flight path consisting of several frames

for a given dataset, then playing back the path while varying the rendering algorithm used. We

have four different strategies for rendering: (1) rendering every triangle in the scene at each frame,

(2) centroid-based budgeting, (3) PLP with octree-based tessellation, and (4) PLP with Delaunay

triangulation. During path playback, we also change the parameters when appropriate (e.g., varying

the polygon budget for PLP). Our primary benchmark machine is an IBM RS/6000 595 with a

GXT800 graphics adapter. In all our experiments, rendering was performed using OpenGL with

Z-buffer and lighting calculations turned on. In addition, all three algorithms perform view-frustum

and backface culling to avoid rendering those triangles that clearly will not contribute to the final

image. Thus, any benefits provided by PLP will be on top of the benefits provided by traditional

culling techniques.

We report experimental results on three datasets:

Room 306 of the Berkeley SODA Hall (ROOM) This model has approximately 45K triangles

(see Figs. 13 and 14), and consists of a number of chairs in what appears to be a reasonably

large seminar room. This is a difficult model to perform visibility culling on, since the

number of visible triangles along a path varies quite a bit with respect to the total size of the

dataset, in fact, in the path we use, this number ranged from 1% to 20% of the total number

of triangles.

20

City Model (CITY) The city model is composed of over 500K triangles (Fig. 10c). Each house

has furniture inside, and while the number of triangles is large, the actual number of visible

triangles per frame is quite small.

5 Car Body/Engine Model (5CBEM) This model has over 810K triangles (Fig. 11c). It is

composed of five copies of an automobile body and engine.

5.1 Preprocessing

Preprocessing involves computing an octree of the model, then (optionally) computing a Delaunay

triangulation of points defined by the octree (which is performed by calling qhull), and finally

assigning the model geometric primitives to the spatial tessellation generated by qhull.

For the CITY model, preprocessing took 70 seconds, and generated 25K tetrahedra. Represent-

ing each tetrahedron requires less than 100 bytes (assuming the cost of representing the vertices

is amortized among several tetrahedra), leading to a memory overhead for the spatial tessellation

on the order of 2.5MB. Another source of overhead comes from the fact that some triangles might

be multiply assigned to tetrahedra. The average number of times a triangle is referenced is 1.80,

costing 3.6 MB of memory (used for triangle pointers). The total memory overhead (on top of

the original triangle lists) is 6.1 MB, while storing all the triangles alone (the minimal amount of

memory necessary to render them) already costs 50 MB. So, PLP costs an extra 12% in memory

overhead.

For the 5CBEM model, preprocessing took 135 seconds (also including the qhull time),

and generated 60K tetrahedra. The average number of tetrahedra that points to a triangle is 2.13,

costing 14.7 MB of memory. The total memory overhead is 20 MB, and storing the triangles takes

approximately 82 MB. So, PLP costs an extra 24% in memory overhead.

Since PLP’s preprocessing only takes a few minutes, the preprocessing is performed online,

when the user requests a given dataset. We also support offline preprocessing, by simply writing

the spatial tessellation and the triangle assignment to a file.

21

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

N
um

be
r

of
 V

is
ib

le
 T

ri
an

gl
es

 R
en

de
re

d

Frame Number

1%
2%
5%

10%
Exact

Centroids 10%

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

T
im

e
(s

ec
on

ds
)

Frame Number

1%
2%
5%

10%
Exact

(b)

(c) (d)

Figure 10: CITY results. (a) The top curve, labelled Exact, is the number of visible triangles for

each given frame. The next four curves are the number of the visible triangles PLP finds with a

given budget. From top to bottom, budgets of 10%, 5%, 2%, and 1% are reported. The bottom

curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering

times in seconds for each curve shown in (a), with the exception of the centroid sorting algorithm,

which required 4-5 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10%

PLP visible set.

22

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 V

is
ib

le
 T

ri
an

gl
es

 R
en

de
re

d

Frame Number

1%
2%
5%

10%
Exact

Centroids 10%

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

ec
on

ds
)

Frame Number

1%
2%
5%

10%
Exact

(b)

(c) (d)

Figure 11: 5CBEM results. (a) The top curve, labelled Exact, is the number of visible triangles

for each given frame. The next four curves are the number of the visible triangles PLP finds with

a given budget. From top to bottom, budgets of 10%, 5%, 2%, and 1% are reported. The bottom

curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering

times in seconds for each curve shown in (a), with the exception of the centroid sorting algorithm,

which required 6-7 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10%

PLP visible set.

23

5.2 Rendering

We performed several rendering experiments. During these experiments, the flight path used for

the 5CBEM is composed of 200 frames. The flight path for the CITY has 160 frames. The flight

path for the ROOM has 235 frames. For each frame of the flight path, we computed the following

statistics:

(1) the exact number of visible triangles in the frame, estimated using the item-buffer technique.

(2) the number of visible triangles PLP was able to find for a given triangle budget. We varied

the budget as follows: 1%, 2%, 5% and 10% of the number of triangles in the dataset.

(3) the number of visible triangles the centroid-based budgeting was able to find under a 10%

budget.

(4) the number of wrong pixels generated by PLP.

(5) time (all times are reported in seconds) to render the whole scene.

(6) time PLP took to render a given frame.

(7) time the centroid-based budgeting took to render a given frame.

Several of the results (in particular, (1), (2), (3), (5), and (6)) are shown in Table 1, and Figs. 10,

11, which show PLP’s overall performance, and how it compares to the centroid-sorting based ap-

proach. The centroid rendering time (7) is mostly frame-independent, since the time is dominated

by the sorting, which takes 6–7 seconds for the 5CBEM model, and 4–5 seconds for the CITY

model. We collected the number of wrong pixels (4) on a frame-by-frame basis. We report worst-

case numbers. For the CITY model, PLP gets as many as 4% of the pixels wrong; for the 5CBEM

model, this number goes up, and PLP misses as many as 12% of the pixels, in any given frame.

The other figures focus on highlighting specific features of our technique, and compare the

octree and Delaunay-based tessellations.

24

(a) Visible triangles. (b) Incorrect pixels.

(c) Rendering speed.

Figure 12: This figure illustrates the quantitative differences among the different rendering tech-

niques for each frame of the CITY path. In each plot, we report results for with each rendering

technique (centroid, octree-based PLP, and Delaunay-based PLP respectively). In (a), we show

the percentage of the visible polygons that each technique was able to find. In (b), we show the

number of incorrect pixels in the images computed with each technique.

Speed and accuracy comparisons on the CITY model. Fig. 12c shows the rendering times of

the different algorithms, and compares them with the rendering of the entire model geometry. For

a budget of 10%, the Delaunay triangulation was over two times faster, while the octree approach,

was about four times faster. We have not included the timings for the centroid-sorting method,

25

as our implementation was straight-forward and naively sorted all of the triangles for each of the

frames. Fig. 12a highlights the effectiveness of our various methods, for a budget of 10% of the

total number of triangles, showing the number of visible triangles that were found. The magenta

curve shows the exact number of visible triangles for each frame of this path. In comparison,

the Delaunay triangulation was very successful, finding an average of over 90% of the visible

triangles. The octree was not as good in this case, and averaged only 64%. However, this was

still considerably better than the centroid-sorting approach which averaged only 30%. Fig. 12b

highlights the effectiveness of the PLP approaches. In the worst case, the Delaunay triangulation

version produced an image with 4% of the pixels incorrect, with respect to the actual image. The

octree version of PLP was a little less effective, generating images with at most 9% of the pixels

incorrect. However, in comparison with the centroid-sorting method, which rendered images with

between 7% - 40% of the pixels incorrect, PLP has done very well.

Visual and quantitative quality on the ROOM model. Figs. 13 and 14 show one of the view-

points for the path in the Seminar Room dataset. Most of the geometry is made up of the large

number of chairs, with relatively few triangles being contributed by the walls and floor. From a

viewpoint on the outside of this room, the walls would be very good occluders and would help

make visibility culling much easier. However, once the viewpoint is in the interior sections of this

room, all of these occluders are invalidated (except with respect to geometry outside of the room),

and the problem becomes much more complicated. For a budget of 10% of the triangles, we pro-

vide figures to illustrate the effectiveness of our PLP approaches, as well as the centroid-sorting

algorithm. Fig. 13 shows the images rendered by the centroid method, the octree method, and the

Delaunay triangulation method, respectively. The image produced by the octree in this case is the

best overall, while the centroid-sorting image clearly demonstrates the drawback of using such an

approach. To better illustrate where the algorithms are failing, Fig. 14 shows exactly the pixels

which were drawn correctly, in white, and those drawn incorrectly, in red. Further quantitative

information can be seen in Fig. 15. In fact, it is quite interesting that in terms of the overall number

of visible primitives, the centroid technique actually does quite well. On the other hand, it keeps

rendering a large number of incorrect pixels.

26

(a) Visible – Centroid. (b) Visible – Octree-based PLP.

(c) Visible – Delaunay-based PLP.

Figure 13: This figure illustrates the qualitative differences among the different rendering tech-

niques on each frame of the ROOM path. The three images show the actual rendered picture

achieved with each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP re-

spectively).

Summary of Results. PLP seems to do quite a good job at finding visible triangles. In fact,

looking at Figs. 10a, and 11a, we see a remarkable resemblance between the shape of the curve

plotting the exact visible set, and PLP’s estimations. In fact, as the budget increases, the PLP

curves seem to smoothly converge to the exact visible set curve. It is important to see that this

27

(a) Missed – Centroid. (b) Missed – Octree-based PLP.

(c) Missed – Delaunay-based PLP.

Figure 14: This figure illustrates the qualitative differences among the different rendering tech-

niques on a single frame of the ROOM. The three images show the missed polygons rendered in

red, to highlight which portion of the image a given technique was wrong.

is not a random phenomena. Notice how the centroid-based budgeting curve does not resemble

the visible set curves. Clearly, there seems to be some relation between our heuristic visibility

measure (captured by the solidity-based traversal), and actual visibility, which can not be captured

by a technique that relies on distance alone.

Still, we would like PLP to do a better job at approximating the visible set. For this, it is

28

(a) Visible triangles.

(b) Incorrect pixels.

Figure 15: This figure illustrates the quantitative differences among the different rendering tech-

niques on a single frame of the ROOM. In each plot, we report results for with each rendering

technique (centroid, octree-based PLP, and Delaunay-based PLP respectively). In (a), we show

the percentage of the visible polygons that each technique was able to find. In (b), we show the

number of incorrect pixels in the images computed with each technique.

interesting to see where it fails. In Figs 10d and 11d, we have 10%-budget images. Notice how

PLP loses triangles in the back of the cars, (in Fig. 11d) since it estimates them to be occluded.

29

Dataset/Budget 1% 2% 5 % 10%

City Model 51% 66% 80% 90%

5 Car Body/Engine Model 44% 55% 67% 76%

Table 1: Visible Coverage Ratio. The table summarizes εk for several budgets on two large models.

The city model has 500K polygons, and the five car body/engine model has 810K polygons. For a

budget of 1%, PLP is able to find over 40% of the visible polygons in either model.

With respect to speed, PLP has very low overhead. For 5CBEM, at 1% we can render useful

images at over 10 times the rate of the completely correct image, and for CITY, at 5% we can get

80% of the visible set, and still have four times faster rendering times.

Overall our experiments have shown that: (1) PLP can be applied to large data, without requir-

ing large amounts of preprocessing; (2) PLP is able to find a large amount of visible geometry with

a very low budget; (3) PLP is useful in practice, making it easier to inspect large objects, and in

culling geometry that cannot be seen.

6 Algorithm Extensions and Future Work

In this section, we mention some of the possible extensions of this work:

(1) Occlusion-culling techniques which rely on being able to use the z-buffer values to cull

geometry, e.g. HOM [29], HP’s occlusion-culling hardware [23], can potentially be sped up

considerably with PLP.

Take for instance the HP fx6 graphics accelerator. Severson [24] estimates that performing

an occlusion-query with a bounding box of an object on the fx6 is equivalent to rendering

about 190 25-pixel triangles. This indicates that a naive approach where objects are con-

stantly checked for being occluded might actually hurt performance, and not achieve the full

potential of the graphics board. In fact, it is possible to slow down the fx6 considerably if

one is unlucky enough to project the polygons in a back to front order (because none of the

primitives would be occluded).

30

Since PLP is able to determine a large number of the visible polygons at low cost in terms of

projected triangles (e.g., PLP can find over 40% of the visible polygons while only project-

ing 1% of the original geometry). An obvious approach would be to use PLP’s traversal for

rendering a first “chunk” of geometry, then use the hardware to cull away unprojected ge-

ometry. Assuming PLP does its job, the z-buffer should be relatively complete, and a much

larger percentage of the tests should lead to culling.

A similar argument is valid for using PLP with HOM [29]. In this case, PLP can be used to

replace the occluder selection piece of the algorithm, which is time consuming, and involves

a non-trivial “occlusion preserving simplification” procedure.

(2) Another potential use of the PLP technique is in level-of-detail (LOD) selection. The PLP

traversal algorithm can estimate the proportion of a model that is currently visible, which

would allow us to couple visibility with the LOD selection process, as opposed to relying

only on screen-space coverage tests.

(3) Related to (1) and (2), it would be interesting to explore techniques which automatically can

adjust the PLP budget to the optimum amount to increase the quality of the images, and at

the same time decrease the rendering cost. Possibly, ideas from [12] could be adapted to our

framework.

Besides the extensions cited above, we would like to better understand the relation of the solid-

ity measure to the actual set of rendered polygons. Changing our solidity value computation could

possibly lead to even better performance. For example, accounting for front facing triangles in a

given cell by considering their normals with respect to the view direction. The same is true for

the mesh generation. Another class of open problems are related to further extensions in the front-

update strategies. At this time, a single cell is placed in the front, after which the PLP traversal

generates an ordering for all cells. We cut this tree by using a budget. It would be interesting to

exploit the use of multiple initial seeds. Clearly, the best initial guess of what’s visible, the easier

it is to continue projecting visible polygons.

31

7 Conclusions

In this paper, we proposed the Prioritized-Layered Projection algorithm. PLP renders geometry by

carving out space along layers, while keeping track of the solidity of these layers as it goes along.

PLP is very simple, requiring only a suitable tessellation of space where solidity can be computed

(and is meaningful). The PLP rendering loop is a priority-based extension of the traversal used in

depth-ordering cell projection algorithms developed originally for volume rendering.

As shown in this paper, PLP can be used with many different spatial tessellations, for example,

octrees or Delaunay triangulations. In our experiments, we have found that the octree method is

typically faster than the Delaunay method due to its simple structure. However, it does not appear

to perform as well as the Delaunay triangulation in terms of capturing our notion of polygon

layering.

We use PLP as our primary visibility-culling algorithm. Two things are most important to us.

First, there is no offline preprocessing involved, that is, no need to simplify objects, pre-generate

occluders, and so on. Second, its flexibility to adapt to multiple machines with varying rendering

capabilities. In essence, in our application we were mostly interested in obtaining good image

accuracy across a large number of machines with minimal time and space overheads. For several

datasets, we can use PLP to render only 5% of a scene, and still be able to visualize over 80% of the

visible polygons. If this is not accurate enough, it is simple to adjust the budget for the desirable

accuracy. A nice feature of PLP is that the visible set is stable, that is, the algorithm does not have

major popping artifacts as it estimates the visible set from nearby viewpoints.

Acknowledgements

We would like to thank Dirk Bartz and Michael Meissner for the city model. Bengt-Olaf Schnei-

der for suggesting adding star-shape constraints to the front. Fausto Bernadini, Paul Borrel, João

Comba, William Horn, and Gabriel Taubin for suggestions and help throughout the project. We

thank Craig Wittenbrink for help with the occlusion-culling capabilities of the HP fx series accel-

erators. The Geometry Center of the University of Minnesota for qhull and geomview. The

University of California, Berkeley for the SODA Hall model used in some of our experiments.

32

References

[1] Dirk Bartz, Michael Messner, and Tobias Huettner. Extending graphics hardware for occlu-

sion queries in opengl. In Proc. Workshop on Graphics Hardware ’98, pages 97–104, 1998.

[2] Edwin E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD

thesis, Dept. of CS, U. of Utah, December 1974.

[3] J. H. Clark. Hierarchical geometric models for visible surface algorithms. Communications

of the ACM, 19(10):547–554, October 1976.

[4] Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. Conservative visibility and

strong occlusion for viewspace partitioning of densely occluded scenes. Computer Graphics

Forum, 17(3):243–253, 1998.

[5] João Comba, James T. Klosowski, Nelson Max, Joseph S. B. Mitchell, Cláudio T. Silva, and

Peter L. Williams. Fast polyhedral cell sorting for interactive rendering of unstructured grids.

Computer Graphics Forum, 18(3):369–376, September 1999. ISSN 1067-7055.

[6] S. Coorg and S. Teller. Real-time occlusion culling for models with large occluders. In Proc.

1997 Sympos. Interactive 3D Graphics, 1997.

[7] Satyan Coorg and Seth Teller. Temporally coherent conservative visibility. In Proc. 12th

Annu. ACM Sympos. Comput. Geom., pages 78–87, 1996.

[8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[9] D. P. Dobkin and S. Teller. Computer graphics. In Jacob E. Goodman and Joseph O’Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 42, pages 779–796.

CRC Press LLC, Boca Raton, FL, 1997.

[10] S. E. Dorward. A survey of object-space hidden surface removal. Internat. J. Comput. Geom.

Appl., 4:325–362, 1994.

33

[11] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graph-

ics, Principles and Practice, Second Edition. Addison-Wesley, Reading, Massachusetts,

1990.

[12] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for interactive

frame rates during visualization of complex virtual environments. In James T. Kajiya, edi-

tor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 247–254, August

1993.

[13] Ned Greene and M. Kass. Hierarchical Z-buffer visibility. In Computer Graphics Proceed-

ings, Annual Conference Series, 1993, pages 231–240, 1993.

[14] Martin Held, James T. Klosowski, and Joseph S. B. Mitchell. Evaluation of collision detection

methods for virtual reality fly-throughs. In Proc. 7th Canad. Conf. Comput. Geom., pages

205–210, 1995.

[15] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical collision detec-

tion. ACM Transactions on Graphics, 15(3):179–210, July 1996. ISSN 0730-0301.

[16] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, and Karel Zikan.

Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Transactions

on Visualization and Computer Graphics, 4(1):21–36, January-March 1998. ISSN 1077-

2626.

[17] M. Meissner, D. Bartz, T. Huttner, G. Muller, and J. Einighammer. Generation of subdivision

hierarchies for efficient occlusion culling of large polygonal models. Computer & Graphics,

To appear.

[18] Joseph S. B. Mitchell, D. M. Mount, and Subhash Suri. Query-sensitive ray shooting. In

Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 359–368, 1994.

[19] Joseph S. B. Mitchell, D. M. Mount, and Subhash Suri. Query-sensitive ray shooting. Inter-

nat. J. Comput. Geom. Appl., 7(4):317–347, August 1997.

[20] B. Paul and B. Bederson. Togl - a Tk OpenGL widget. http://Togl.sourceforge.net, 1999.

34

[21] John Rohlf and James Helman. IRIS performer: A high performance multiprocessing toolkit

for real–Time 3D graphics. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94

(Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual Conference

Series, pages 381–395. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[22] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley, Reading, Mas-

sachusetts, 1990.

[23] N. Scott, D. Olsen, and E. Gannet. An overview of the visualize fx graphics accelerator

hardware. The Hewlett-Packard Journal, May:28–34, 1998.

[24] K. Severson. VISUALIZE Workstation Graphics for Windows NT. HP product literature.

[25] Cláudio T. Silva, Joseph S.B. Mitchell, and Peter Williams. An interactive time visibility

ordering algorithm for polyhedral cell complexes. In Proc. ACM/IEEE Volume Visualization

Symposium ’98, pages 87–94, November 1998.

[26] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs.

In Thomas W. Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), vol-

ume 25, pages 61–69, July 1991.

[27] Peter L. Williams. Visibility ordering meshes polyhedra. ACM Transactions on Graphics,

11(2), 1992.

[28] Hansong Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary Models.

PhD thesis, Department of Computer Science, University of North Carolina, Chappel Hill.,

1998.

[29] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III. Visibility

culling using hierarchical occlusion maps. In Turner Whitted, editor, SIGGRAPH 97 Con-

ference Proceedings, Annual Conference Series, pages 77–88. ACM SIGGRAPH, Addison

Wesley, August 1997. ISBN 0-89791-896-7.

35

Efficient Conservative Visibility Culling Using The
Prioritized-Layered Projection Algorithm

James T. Klosowski� Cláudio T. Silva†

IBM AT&T

Abstract

We propose a novel conservative visibility culling technique.
Our technique builds on the recently developed Prioritized-
Layered Projection (PLP) algorithm for time-critical render-
ing of high-depth complexity scenes. PLP is not a conserva-
tive technique, instead it computes partially correct images by
rendering only a subset of the primitives in any given frame
that PLP determines to be “potentially visible.” Our new algo-
rithm builds on PLP, and provides an efficient way to find the
remaining visible primitives.

From a very high level, PLP amounts to a modification of
a simple view-frustum culling algorithm, and it works by pro-
jecting cells, one by one, in an order that tends to prioritize
the projection of visible geometry. At any point in time, PLP
maintains a “front” which determines the cells that will be pro-
jected next. It is by scheduling the projection of cells as they
are inserted in the front that PLP is able to perform effective
visibility estimation. A sufficient condition for conservative
visibility is that the cells in the front are no longer visible. It is
this exact condition that we explore in our new algorithm.

In this paper, we show how to efficiently implement our
new algorithm using the HP occlusion-culling test. In doing
so, we improve on the performance of this hardware capabil-
ity. We also use a new implementation of PLP, which uses an
octree spatial tessellation (instead of the Delaunay triangula-
tion used in the original PLP). A nice feature of the new im-
plementation is that it avoids the costly Delaunay triangulation
phase, and leads to faster rendering. It also makes it easier to
implement traditional view-frustum culling and an alternative
occlusion-culling algorithm based on the HP occlusion-culling
test. We discuss the tradeoffs of using the different techniques,
and also propose extensions on how to implement conserva-
tive PLP on graphics hardware that does not support the HP
occlusion-culling extension.

1 Introduction

In this paper, we describe a novel conservative occlusion-
culling algorithm. Our new algorithm builds on our
Prioritized-Layered Projection (PLP) algorithm [6].
Prioritized-Layered Projection is a technique for fast
rendering of high depth complexity scenes. It works by
estimating the visible polygons of a scene from a given
viewpoint incrementally, one primitive at a time. It is not
a conservative technique, instead PLP is suitable for the

�IBM T. J. Watson Research Center, PO Box 704, Yorktown
Heights, NY 10598; jklosow@us.ibm.com.

†AT&T Labs-Research, 180 Park Ave., PO Box 971, Florham
Park, NJ 07932; csilva@research.att.com.

(a) (b)

(c) (d)

Figure 1: This set of pictures shows several images computed
from the same viewpoint. (a) Image computed by PLP with
a few missing triangles. (b) Correct image showing all the
visible triangles rendered with cPLP. (c) Image showing the
missed visible triangles. Most of them are partially occluded,
leading to PLP only generating a few wrong pixels. (d) Shows
the projected cells in red, and the unprojected cells in green.

computation of partially correct images for use as part of
time-critical rendering systems. From a very high level, PLP
amounts to a modification of a simple view-frustum culling
algorithm, however, it requires the computation of a special
occupancy-based tessellation, and the assignment to each cell
of the tessellation a solidity value, which is used to compute a
special ordering on how primitives get projected.

Essentially, our new algorithm works by “filling-up the
holes” where PLP made the mistake of not rendering the com-
plete set of visible geometry. In Fig. 1, we show a few images
that highlight the issues involved. Fig. 1(a) shows the frame as
rendered by PLP. In Fig. 1(b) we show what would be the cor-
rect picture, where all the visible primitives are present. A few
pieces of geometry were missed by PLP for the given budget,
we render them in Fig. 1(c). The number of wrong pixels is

actually much lower, since several of these primitives barely
contribute to the image. In our new algorithm, we propose a
way to find them. There are several reasons why this can be
performed efficiently:

(a) PLP finds a large portion of the visibility set, which
tends to minimize the amount of “patching work” that
is needed to find the remaining visible polygons;

(b) It is relatively simple and inexpensive to identify the ar-
eas of the screen that PLP missed the visible primitives.
Essentially, this amount to finding the cells in the cur-
rent front which are still visible. In fact, more is true: if
there are no remaining visible cells in the front, PLP is
guaranteed to have projected all the visible primitives.

(c) Finally, the patching work can focus on the remaining
visible cells, and cells which can be reached from a visi-
ble cell through a visible path. (See Fig. 1(d).)

The ideas in this paper developed out of our work in try-
ing to exploit HP’s hardware-based occlusion-culling test [10].
We started with a naive solution, which only exploited condi-
tion (a) above. That is, we essentially used HP’s occlusion-
culling capabilities in a standard front-to-back traversal of all
the leaf cells in an octree which were in the view frustum (this
algorithm is developed in Meissner et al. [8]). Later in the
paper, we discuss in more detail why this should be (and is)
the case, but essentially the more the z-buffer is complete with
the visible primitives, the more leaf cells will be flagged as
not visible. As we discovered conditions (b) and (c), we also
noticed that the techniques we are actually exploiting in PLP
are not closely coupled with the HP occlusion-culling test, and
in fact, can be implemented by using other hardware features,
such as a stencil buffer. In any case, the HP occlusion test is
still the simplest, and quite possibly one of the most efficient
ways to exploit these properties of PLP.

The structure of our paper is as follows. In Section 2, we
give a brief overview of related work. Then in Section 3 after
a brief overview of PLP and some aspects of its implementa-
tion, we detail our new algorithm, and its relation to (a)–(c)
explained above. In Sections 4 and 5, we describe our im-
plementation of the front-to-back occlusion-culling technique
using the HP occlusion-culling test (which we call “the HP al-
gorithm” – although the first reference of it that we are aware
of is given in Meissner et al. [8]), several aspects of PLP, and
its current implementation as well as its performance. We also
provide results comparing the speed achieved by comparing
our new conservative technique with PLP and the HP algo-
rithm. We end the paper with some final remarks and areas for
future work.

2 Related Work

Most visibility-culling research is focussed mainly on algo-
rithms for computing conservative estimations of the visible
primitives, that is, algorithms that render a superset of the vis-
ible primitives.

The simplest example of visibility-culling algorithms are
backface and view-frustum culling [3]. Backface-culling al-
gorithms avoid rendering geometry that face away from the
viewer, while viewing-frustum culling algorithms avoid ren-
dering geometry that is outside of the viewing frustum. Even
though both of these techniques are very effective at culling

geometry, more complex techniques can lead to substantial im-
provements in rendering time. IRIS Performer [9] has support
for both of these culling techniques.

There are many types of visibility culling algorithms, in
fact, too many for us to completely review here. We point
the interested reader to the recent survey by Cohen et al. [2].
We briefly survey a few techniques more closely related to our
work.

The Hierarchical Occlusion Maps [13] solve the visibility
problem by using two hierarchies, an object-space bounding
volume hierarchy and another hierarchy of image-space oc-
clusion maps. For each frame, objects from a pre-computed
database are chosen to be occluders and used to cull geometry
that cannot be seen. A closely related technique is the hierar-
chical Z-buffer [4].

A simple and effective hardware technique for improving
the performance of the visibility computations with a Z-buffer
has been proposed in [10]. The idea is to add a feedback loop
in the hardware which is able to check if changes would have
been made to the Z-buffer when scan-converting a given prim-
itive.� This hardware makes it possible to check if a complex
model is visible by first querying whether an enveloping prim-
itive (often the bounding box of the object, but in general one
can use any enclosing object,e.g. k-dop [5]), is visible, and
only rendering the complex object if the enclosing object is
actually visible.

By using this hardware feature, and a front-to-back projec-
tion scheme, it is possible to implement a simple occlusion-
culling scheme. Meissner et al. [8] exploit this idea, and in
fact show that by using different hierarchical techniques it is
possible to optimize the culling.

Bartz et al. [1] propose another extension of graphics hard-
ware for occlusion-culling queries.

The technique by Luebke and Georges [7] describe a
screen-based technique for exploiting “visibility portals”, that
is, regions between cells which can potentially limit visibility
from one region of space to another. Their technique can be
seen as a dynamic way to compute similar information to the
one in [12].

3 The Conservative PLP Algorithm

Before we can go into our new conservative PLP (cPLP) algo-
rithm, it helps to understand the original algorithm (for more
details, see Klosowski and Silva [6]).

3.1 Overview of PLP

Prioritized-Layered Projection (PLP) is a technique for fast
rendering of high depth complexity scenes. It works byes-
timating the visible polygons of a scene from a given view-
point incrementally, one primitive at a time. The guts of the
PLP algorithm consists of a space-traversal algorithm, which
prioritizes the projection of the geometric primitives in such
a way as to avoid (actually delay) projecting cells that have a
small likelihood of being visible. Instead of explicitly overes-
timating the set of visible primitives, the algorithm works on a
budget. At each frame, the user can provide a maximum num-
ber of primitives to be rendered,i.e., a polygon budget, and the

�In OpenGL the technique is implemented by adding a proprietary
extension that can be enabled when queries are being performed.

Figure 2: This figure illustrates the pixels PLP finds and misses
for one frame of a flight sequence inside a seminar room of
the Berkeley SODA Hall model. The image shows the missed
polygons rendered in red. In white, we show the visible poly-
gons PLP finds.

algorithm will deliver what it considers to be the set of prim-
itives which maximizes the image quality (using a solidity-
based metric).

PLP is composed of two parts:

� Preprocessing. PLP tessellates the space that contains
the original input geometry with convex cells. During
this one-time preprocessing, a collection of cells is gen-
erated in such a way as to roughly keep a uniform density
of primitives per cell. The sampling leads to large cells
in unpopulated areas, and small cells in areas that contain
a lot of geometry. Using the number of modeling primi-
tives assigned to a given cell (e.g., tetrahedron), asolidity
valueρ is defined. The accumulated solidity value used
throughout the priority-driven traversal algorithm can be
larger than one. The traversal algorithm prioritizes cells
based on their solidity value. Preprocessing is fairly in-
expensive, and can be done on large datasets (about one
million triangles) in a couple of minutes.

� Rendering Loop. The rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the
seed cell, which in general contains the eye position, it
keeps carving cells out of the tessellation. The basic idea
of the algorithm is to carve the tessellation alonglayers
of polygons. We define the layering numberζ 2 ℵ of a
modeling primitiveP in the following intuitive way. If
we order each modeling primitive along each pixel by
their positive (assume, without loss of generality, thatP
is in the view frustum) distance to the eye point, we de-
fineζ(P) to be the smallest rank ofP over all of the pix-
els to which it contributes. Clearly,ζ(P)= 1, if, and only
if, P is visible. Finding the rank 1 primitives is equiva-
lent to solving the visibility problem. Instead of solving
this hard problem, the PLP algorithm uses simple heuris-
tics. The traversal algorithmattemptsto project the mod-
eling primitives by layers, that is, all primitives of rank 1,
then 2 and so on. We do this by always projecting the cell

Figure 3: This figure shows the number of incorrect pixels in
each frame of a flight sequence inside a seminar room of the
Berkeley SODA Hall model. Three curves are shown. The
blue curve shows the percentage of incorrect pixels found by
rendering the first 10% of the triangles inside the view frus-
tum along a front-to-back order. The other two curves show
two different implementations of PLP. The green one which
uses a Delaunay triangulation (this is the original technique
as reported in [6]). The red one uses an alternative technique
which avoids the extra Delaunay triangulation step, and uses
a modified octree-based spatial tessellation. In this paper, we
use the octree-based PLP. In both curves, a budget of 10% for
PLP was used.

in the frontF (we call the front, the collection of cells
that are immediate candidates for projection) which is
least likely to be occluded according to its solidity value.
Initially, the front is empty, and as cells are inserted, we
estimate its accumulated solidity value to reflect its posi-
tion during the traversal. Every time a cell in the front is
projected, all of the geometry assigned to it is rendered.

3.2 cPLP Components

As we mentioned in the introduction, there are primarily three
components of PLP that make cPLP possible. Next, we go
through each one of them in turn.

PLP’s accuracy in finding visible triangles, and miss-
ing few pixels. PLP is very effective at finding the visible
polygons [6]. Fig. 2 shows one of the viewpoints for a path
through an example dataset. This model has approximately
45K triangles and consists of a number of chairs in what ap-
pears to be a reasonably large seminar room. This is a difficult
model to perform visibility culling on, since the number of
visible triangles along a path varies quite a bit with respect to
the total size of the dataset, in fact, in the path we use, this
number ranged from 1% to 20% of the total number of trian-
gles. Most of the geometry is made up of the large number of
chairs, with relatively few triangles being contributed by the
walls and floor. From a viewpoint on the outside of this room,
the walls would be very good occluders and would help make
visibility culling much easier. However, once the viewpoint
is in the interior sections of this room, all of these occluders
are invalidated (except with respect to geometry outside of the
room), and the problem becomes much more complicated.

Figure 4: The front has been highlighted in green. By deter-
mining where the front is still visible, it is possible to localize
further work by our rendering algorithm.

As we can see in Fig. 3, PLP generates very few incorrect
pixels. This feature alone can be used to potentially speed up
occlusion-culling techniques which rely on being able to use
the z-buffer values to cull geometry,e.g. HOM [13], HP’s
occlusion-culling hardware [10].

Finding the areas of the screen where PLP missed
the visible primitives. As PLP projects cells, and renders
the geometry inside these cells, it keeps the front in a priority
queue, that is, the collection of cells that are immediate can-
didates for projection. Clearly, as the primitives in the scene
are rendered, parts of the front get obscured by the rendered
geometry. In Fig. 4, we show this exact effect. If no “green”
(the color that we used for the front) was present, the image
would be complete.

In general, the image will be completed, and rendering can
be stopped after all the cells in the front are “behind” the ren-
dered primitives. It is not trivial to actually determine that the
front cells are no longer visible. There are a few ways to de-
termine this, possibly one of the most efficient would use the
OpenGL stencil buffer. Another method, and the one that we
currently use, is to use the HP occlusion-culling test. Note that
these are expensive tests, since we need to check all the cells
in the front for visibility.

Finding the remaining visible cells. The final piece
that we need to build cPLP is how to complete the render-
ing once we know what parts of the front are still visible. For
this, it is easier to first consider the obscured part of the cur-
rent front. Basically, we can think of this obscured front as a
single occluder, which has a few holes (corresponding to the
green patches in Fig. 4). Thinking analogous to the work of
Luebke and Georges [7], the holes are “portals”. At each one
of these portals, we should only be able to see anything that is
in a limited view-frustum. An equivalent formulation is to in-
crementally determine what cells belong to these smaller view
frustums by essentially making sure they can be seen by using
the HP occlusion-culling test. This is somewhat more expen-
sive than it needs to be, but is the easiest way to implement the

Eye

Front

Visible

Visible

Occluded

Figure 5: This figure highlights the technique used in finding
the remaining visible cells in cPLP. The remaining visible cells
are found by limiting the algorithm to work in the remaining
visible regions.

idea. See Fig. 5.

3.3 cPLP and Its Implementation

Building cPLP out of the ideas from the previous section is
straightforward. Especially if we assume a version of PLP,
and a machine that implements the HP occlusion-culling test.

The cPLP algorithm is as follows:

(1) Run the original PLP algorithm for the given budget.

(2) Given the current front, separate the occluded cells from
the ones that are still visible. Since we only need the vis-
ible ones, we can simply delete the occluded cells from
the front. After this point until the image is completed,
only visible cells will be permitted in the front.

(3) Run a “modified” PLP, which before each cell is inserted
in the front test, whether it is visible. Occluded cells will
not be inserted into the front.

The image will be finished when the front is empty.

Note that in step (3), we are essentially limiting the areas
where PLP continues to work to the limited view frustums we
discussed in the previous section.

As far as the implementation of cPLP is concerted, there
are two main steps, which are similar but are different in gran-
ularity. In step (2), we need to determine among all the cells
in the front which ones are still visible. By using the stencil
buffer, an item buffer technique can be used to implement this
feature. In step (3), it is necessary to limit the cells that PLP
further considers to the limited view frustums that emanate
from the visible cells that were found in step (2).

As we mentioned before, a very simple and elegant way to
implement all these things is to simply use the HP occlusion-
culling test, first to delete the occluded cells from the front in
step (2), then to limit the insertion of cells into the front to only
visible cells. This solution makes the code clean, and avoids
many of the complications related to keeping multiple view
frustums, etc.

4 The HP algorithm

In Section 2 we mentioned the HP occlusion-culling test, a
hardware feature available on HP machines which make it
possible to determine the visibility of objects as compared to
the current values in the z-buffer. Here, we further discuss
its properties, and explain a simple and effective occlusion-
culling algorithm based on it.

The actual hardware feature as implemented on the HP fx
series graphics accelerators is explained in [10] and [11]. One
way to use the hardware is to query whether the bounding box
of an object is visible. This can be done as follows:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

Clearly, if the bounding box of an object is not visible, the
object itself, which potentially could contain a large amount of
geometry, must not be visible.

This hardware feature is implemented in several of HP’s
graphics accelerators, for instance, the HP fx6 graphics accel-
erator. Severson [11] estimates that performing an occlusion-
query with a bounding box of an object on the fx6 is equivalent
to rendering about 190 25-pixel triangles. This indicates that a
naive approach where objects are constantly checked for being
occluded might actually hurt performance, and not achieve the
full potential of the graphics board. In fact, it is possible to
slow down the fx6 considerably if one is unlucky enough to
project the polygons in a back to front order (because none of
the primitives would be occluded).

Meissner et al. [8] propose an effective occlusion culling
technique using this hardware test. In a preprocessing step,
a hierarchical data structure is built which contains the input
geometry. (In their paper, they propose several different data
structures, and study their relative performance.) Their algo-
rithm is as follows:

(1) Traverse the hierarchical data structure to find the leaves
which are inside the view frustum;

(2) Sort the leaf cells by the distance between the viewpoint
and their centroids;

(3) For each sorted cell, render the geometry contained in
the cell,only if the cell boundary is visible.

5 Experimental Results

We performed a series of experiments comparing cPLP and
the HP algorithm. As a basis of comparison, we also report
results for view-frustum culling. The model for which we re-
port results is shown in Fig. 6(a). It consists of three copies of
the third floor of the Berkeley SODA Hall, placed end to end.
Doing this helps us to understand the way the different tech-
niques operate in a high-depth complexity environment. This
whole model has about 1.5 million triangles, where each room
has different pieces of furniture. We generate a 500-frame
path that travels left starting from the top right of Fig. 6(a).

In Fig. 6(b)–(e) we show a few representative frames of the
path. The number of visible polygons in each frame varies
from room to room, especially as we approach the walls.

There are only two parameters that we can adjust in the ex-
periments. One parameter changes the resolution of the octree
used to generate the spatial tessellation used for bucketing the
geometry into octree cells. This tessellation is used in all three
algorithms (PLP, HP, and view-frustum culling). The param-
eter that we can set is the maximum number of vertices that
can be in one octree leaf cell. Obviously, the larger this num-
ber, the larger the leaf cells will be, and the smaller the octree
will be. The other parameter is the PLP budget used in cPLP.
Table 1 and Fig. 8 summarize our experiments.

Fig. 8 has the time each of the 500 frames took to com-
pute with the following algorithms: non-conservative PLP
with a 10K triangle budget (PLP), conservative PLP with 10K,
25K and 50K budgets (cPLP 10K, cPLP 20K, cPLP 50K), the
HP algorithm (HP), and view-frustum culling (VF). Fig. 8(a)
shows the results for a spatial tessellation where the maximum
number of vertices in one leaf of the octree is 1,000 vertices,
Fig. 8(b) for a maximum of 5,000 vertices, and finally Fig. 8(c)
uses a maximum of 10,000 vertices per leaf. There is a lot
of information that can be obtained from these plots. For in-
stance, it is easy to see which frames correspond to the final
frame before going through a wall in the model.

Overall, we see that cPLP is considerably faster than HP
and VF for all the budgets and spatial tessellations used. In
fact, the average frame rate that cPLP achieved in all exper-
iments was higher than 10Hz, which is over 10 times faster
than VF. Comparisons with HP get a bit more interesting since
the performance of HP seems highly depended on the resolu-
tion of the spatial tessellation. For the 1K octree, HP was very
slow, in fact, it was slower than VF. The reason for this is that
HP needs to perform a large number of visibility tests, where
each of them might cost close to 200 triangles per test. This
way, HP is in fact doing more work than VF. For the 5K and
10K octree, HP is faster, still it is considerably slower than
cPLP.

Table 1 shows the average number of triangles rendered per
frame for each technique. It is interesting to see that HP does
a good job in determining a tight set of triangles to render,
beating cPLP in all cases. One reason for this is that cPLP
starts by rendering its budget, then completing the picture as
needed, while HP works hard to determine the visible cells
right from the beginning. On the flip side, HP is actually much
slower, because it needs to perform a much larger number of
visibility tests as can be seen in the third column of the table.

One interesting statistic is that the average number of visi-
bility tests increases for cPLP as the budget increases. That is,
for the 10K, 25K, 50K budgets, we do (for 1K octree vertices)
124, 155, and 195 HP visibility tests. Initially, we thought this
was surprising since by using PLP to search longer we would
find more of the visible geometry and then fewer visibility tests
would be needed. However, this happens because in step (2)
of the cPLP algorithm we need to check each cell in the front
for visibility before we go into part (3). The more cells in the
front, the more we need to check, but they are more likely to
be occluded. It is easy to see that in fact the cells get less likely
to be visible, since the actual number of visible cells does go
down as the budget for cPLP increases. One of the reasons
that HP needs to do a very large number of visibility tests is
in fact, because it can not identify anything as a “virtual oc-
cluder”, which is in essence what cPLP does in step (2).

We would like to point out that the reason the VF culling

average number of rendered triangles increases as the maxi-
mum octree vertex count increases is the fact that fewer of the
larger leaf nodes will be culled.

Fig. 7 has a pseudo color rendering of the depth complex-
ity of the triangles rendered by (a) view-frustum culling, (b)
HP culling, and (c) cPLP. In this figure, the depth complexity
ranges from low, indicated by light green areas, to high, indi-
cated by bright red areas. Note that the depth complexity of
the triangles rendered by HP and cPLP is considerably lower
than the one present in the actual scene, as rendered by the
view-frustum culling algorithm.

6 Final Remarks and Future Work

In this paper we presented a novel conservative visibility al-
gorithm based on our previous (non-conservative) PLP algo-
rithm. Our new algorithm exploits a particular feature of the
PLP “front” to create virtual occluders, and use these to narrow
the amount of geometry it needs to consider for further visibil-
ity computations. We showed how to implement our new tech-
nique efficiently using the HP occlusion-culling test. Also, we
compared our new technique with a pure HP-based occlusion-
culling algorithm, and determine that our solution is superior
in several respects. First of all, our technique is independent on
the underlying spatial tessellation used, whereas the HP tech-
nique is highly dependent. Second, the number of visibility
tests cPLP needs to perform is over one order of magnitude
lower than HP. This leads to substantial performance advan-
tages, and our technique is able to maintain a higher frame
rate in all cases.

We also report on possible avenues for further work. Given
the high-price of the HP test, in step (2) of cPLP, it might be
possible to find a faster approach, such as the item buffer tech-
nique we briefly mentioned. Although this is most probably
not a preferred solution for implementing low granularity visi-
bility tests, it might lead to a substantial improvement. At this
point, cPLP does a single pass of generating virtual occluders,
and from that point on, it keeps testing every cell that can be
reached from the cells in the current front whenever it is vis-
ible. Depending on the cost of the visibility tests, it might be
better to change this, and instead relax this condition, chang-
ing it to multiple passes.

Finally, here are a few properties of cPLP:

� Conservative visibility. As opposed to PLP, it does find
all the visible triangles.

� Low-complexity preprocessing and also memory effi-
cient. There is no need to compute or save information
such as view-dependent occluders or potentially visible
set. After building the octree, everything is performed by
the algorithm in real-time.

� Object-space occluder fusion.

� Works well on triangle soup. cPLP does not make use
of any knowledge of the underlying geometry. It can be
used off-the-shelf on any data.

Acknowledgements

We thank Craig Wittenbrink for help with the occlusion-
culling capabilities of the HP fx series accelerators. Craig pro-
vided us with much needed material, including documentation

and a sample implementation that showed us how to use the
HP occlusion test.

Many thanks to Prof. Carlo S´equin and his students at the
University of California, Berkeley for the SODA Hall model
used in our experiments.

References

[1] Dirk Bartz, Michael Messner, and Tobias Huettner.
Extending graphics hardware for occlusion queries in
opengl. InProc. Workshop on Graphics Hardware ’98,
pages 97–104, 1998.

[2] D. Cohen, Y. Chrysanthou, and C. Silva. Visibility Prob-
lems for Walkthrough Applications. SIGGRAPH 2000
Course Notes.

[3] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes.Computer Graphics, Principles
and Practice, Second Edition. Addison-Wesley, Read-
ing, Massachusetts, 1990.

[4] Ned Greene and M. Kass. Hierarchical Z-buffer visibil-
ity. In SIGGRAPH ’93, pages 231–240, 1993.

[5] James T. Klosowski, Martin Held, Joseph S. B. Mitchell,
Henry Sowizral, and Karel Zikan. Efficient colli-
sion detection using bounding volume hierarchies of k-
dops.IEEE Transactions on Visualization and Computer
Graphics, 4(1):21–36, January-March 1998.

[6] James T. Klosowski and Cl´audio T. Silva. Rendering on
a budget: A framework for time-critical rendering.IEEE
Visualization ’99, pages 115–122, 1999.

[7] David Luebke and Chris Georges. Portals and mirrors:
Simple, fast evaluation of potentially visible sets. In Pat
Hanrahan and Jim Winget, editors,1995 Symposium on
Interactive 3D Graphics, pages 105–106, 1995.

[8] M. Meissner, D. Bartz, T. Huttner, G. Muller, and
J. Einighammer. Generation of subdivision hierarchies
for efficient occlusion culling of large polygonal models.
Computer & Graphics, To appear.

[9] John Rohlf and James Helman. IRIS performer: A high
performance multiprocessing toolkit for real–Time 3D
graphics. InSIGGRAPH ’94, pages 381–395. 1994.

[10] N. Scott, D. Olsen, and E. Gannet. An overview of the
visualize fx graphics accelerator hardware.The Hewlett-
Packard Journal, May:28–34, 1998.

[11] K. Severson. VISUALIZE Workstation Graphics for
Windows NT. HP product literature.

[12] Seth J. Teller and Carlo H. S´equin. Visibility prepro-
cessing for interactive walkthroughs. InSIGGRAPH ’91,
pages 61–69, 1991.

[13] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and
Kenneth E. Hoff III. Visibility culling using hierarchical
occlusion maps. InSIGGRAPH ’97, pages 77–88, 1997.

(a)

(b) (c) (d) (e)

Figure 6: (a) A top view of our dataset. (b)–(e) Sample views of the flight path.

(a) (b) (c)

Figure 7: Depth complexity of the scene as rendered by (a) view-frustum culling, (b) HP, and (c) cPLP. The depth complexity
ranges from light green (low) to bright red (high).

1000 Vertices Maximum in Octree Leaf Cells
Method Avg Tri Rendered Avg Vis Tests Avg Vis Cells
cPLP 10K 14,318 124 28
cPLP 25K 27,108 155 17
cPLP 50K 51,038 195 10
HP 10,428 5,824 55
VF 784,311

5000 Vertices Maximum in Octree Leaf Cells
Method Avg Tri Rendered Avg Vis Tests Avg Vis Cells
cPLP 10K 21,855 50 15
cPLP 25K 31,391 52 10
cPLP 50K 52,542 65 5
HP 17,839 1,093 19
VF 812,331

10000 Vertices Maximum in Octree Leaf Cells
Method Avg Tri Rendered Avg Vis Tests Avg Vis Cells
cPLP 10K 25,515 28 9
cPLP 25K 31,690 28 5
cPLP 50K 53,782 35 3
HP 25,560 493 13
VF 833,984

Table 1: Tables showing the average number of triangles rendered, the average number of visibility tests performed, and the average
number of visible cells for each technique. Each table correspond to a different octree resolution.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

T
im

es
 (

se
co

nd
s)

Frame Number

PLP
cPLP 10K
cPLP 25K
cPLP 50K

HP
VF

(a) 1K Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

T
im

es
 (

se
co

nd
s)

Frame Number

PLP
cPLP 10K
cPLP 25K
cPLP 50K

HP
VF

(b) 5K Vertices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

T
im

es
 (

se
co

nd
s)

Frame Number

PLP
cPLP 10K
cPLP 25K
cPLP 50K

HP
VF

(c) 10K Vertices

Figure 8: The plots report the rendering time of each one of 500 frames for view-frustum culling (VF), conservative PLP (cPLP), the
HP occlusion-culling algorithm (HP), and the original PLP algorithm (PLP). Each plot correspond to a different octree resolution.

,PDJH 6SD,PDJH 6SDFFH 2FFOH 2FFOXXVLRQVLRQ
&XOOLQJ&XOOLQJ

Yiorgos Chrysanthou

Department of Computer Science

University College London

SIGGRAPH 2000, New Orleans 2

2XWOLQH

❚ ,QWURGXFWLRQ

❚ +LHUDUFKLFDO =�%XIIHU

❚ +LHUDUFKLFDO 2FFOXVLRQ 0DSV

❚ +3 KDUGZDUH LPSOHPHQWDWLRQ

❚ &RQFOXVLRQ

SIGGRAPH 2000, New Orleans 3

,QWURGXFWLRQ

❚ 2FFOXGHUV DUH UHQGHUHG LQWR WKH LPDJH

❚)LOOHG SDUW RI WKH LPDJH UHSUHVHQWV WKH

RFFOXVLRQ

❚ 7KH VFHQH LV XVXDOO\ FRPSDUHG

KLHUDUFKLFDO IRU YLVLELOLW\ GHWHUPLQDWLRQ

❚ 7KH GHWHUPLQDWLRQ LV SHUIRUPHG LQ

GLVFUHHW VSDFH

SIGGRAPH 2000, New Orleans 4

+LHUDUFKLFDO =�%XIIHU �+=%�
�1HG *UHHQH� 0LFKDHO .DVV�

❚ $Q H[WHQVLRQ RI WKH =�EXIIHU 96'

DOJRULWKP

❚ 6FHQH LV DUUDQJHG LQWR DQ RFWUHH

❚ =�S\UDPLG LV FRQVWUXFWHG IURP FRQWHQWV RI

WKH =�%XIIHU

❚ 2FWUHH LV FRPSDUHG DJDLQVW =�S\UDPLG

❚ 3UHYLRXVO\ YLVLEOH RFFOXGHUV FDQ EH XVHG

IRU =�S\UDPLG

SIGGRAPH 2000, New Orleans 5

+=%� 7KH 2FWUHH

❚ ,I WKH FXEH UHSUHVHQWLQJ D QRGH LV QRW

YLVLEOH WKHQ QRWKLQJ LQ LW LV HLWKHU

❚ 6FDQ�FRQYHUW WKH IDFHV RI DQ RFWUHH FXEH�

LI HDFK YLVLWHG SL[HO LV KLGGHQ WKHQ WKH

RFWUHH LV RFFOXGHG

❚ 2FWUHH FDQ EH WUDYHUVHG WRS�WR�ERWWRP

DQG IURQW�WR�EDFN

SIGGRAPH 2000, New Orleans 6

+=%� 7KH =�3\UDPLG

❚ 8VHG IRU UHGXFLQJ WKH FRVW RI FXEH

YLVLELOLW\

❚ &RQWHQWV RI WKH =�EXIIHU LV WKH ILQHVW OHYHO

LQ WKH S\UDPLG

❚ &RDUVHU OHYHOV DUH FUHDWHG E\ JURXSLQJ

WRJHWKHU IRXU QHLJKERXULQJ SL[HOV DQG

NHHSLQJ WKH ODUJHVW]�YDOXH

❚ &RDUVHVW OHYHO LV MXVW RQH YDOXH

FRUUHVSRQGLQJ WR PD[]

SIGGRAPH 2000, New Orleans 7

+=%� 0DLQWDLQLQJ WKH =�

3\UDPLG

❚ (YHU\ WLPH DQ REMHFW LV UHQGHUHG FDXVLQJ

D FKDQJH LQ WKH =�EXIIHU� WKLV FKDQJH LV

SURSDJDWHG WKURXJK WKH S\UDPLG

SIGGRAPH 2000, New Orleans 8

+=%� 8VLQJ WKH =�3\UDPLG

❚ 7R GHWHUPLQH ZKHWKHU D SRO\JRQ LV

RFFOXGHG�

❙ ILQG WKH ILQHVW�OHYHO RI WKH S\UDPLG ZKRVH SL[HO

FRYHUV WKH LPDJH�VSDFH ER[RI WKH SRO\JRQ

❙ FRPSDUH WKHLU]�YDOXHV

❘ LI SRO\JRQ] ! S\UDPLG] WKHQ VWRS ! RFFOXGHG

❘ HOVH GHVFHQW GRZQ WKH]�S\UDPLG DQG UHSHDW

SIGGRAPH 2000, New Orleans 9

+=%� GLVFXVVLRQ

❚ ,W SURYLGHV JUHDW DFFHOHUDWLRQ

❚ *HWWLQJ WKH QHFHVVDU\ LQIRUPDWLRQ IURP

WKH =�EXIIHU LV FRVWO\ DQG WKXV GRHV QRW

UXQ UHDO�WLPH

❚ $ KDUGZDUH PRGLILFDWLRQ ZDV SURSRVHG IRU

PDNLQJ LW UHDO�WLPH

SIGGRAPH 2000, New Orleans 10

+LHUDUFKLFDO 2FFOXVLRQ

0DSV ��+DQVRQJ =KDQJ HW�DO��

❙ 2YHUYLHZ

❙ 5HSUHVHQWLQJ FXPXODWLYH SURMHFWLRQ
❘ 2YHUODS WHVWV

❙ 5HSUHVHQWLQJ GHSWK
❘ 'HSWK WHVWV

❙ 2FFOXGHU 6HOHFWLRQ

SIGGRAPH 2000, New Orleans 11

+20� $OJRULWKP 2XWOLQH

❚ 6HOHFW RFFOXGHUV XQWLO WKH VHW LV ODUJH
HQRXJK

❚ 8SGDWH �EXLOG� RFFOXVLRQ UHSUHVHQWDWLRQ

❚ 2FFOXVLRQ FXOOLQJ 	 ILQDO UHQGHULQJ

SIGGRAPH 2000, New Orleans 12

+20� 0DLQ IHDWXUHV

❚ *HQHUDOLW\
❘ 2FFOXGHUV RI DQ\ W\SH �DQ\WKLQJ WKDW FDQ EH
UHQGHUHG�� QR UHVWULFWLRQV RQ FDPHUD SRVLWLRQ

❚ ,QWHUDFWLYLW\
❘ '\QDPLF VFHQHV� XQUHVWULFWHG REMHFW PRYHPHQW

❚ 6LJQLILFDQW FXOOLQJ
❘)XVLRQ RI XQUHODWHG RFFOXGHUV

❚ $SSUR[LPDWH FXOOLQJ
❘ 7KH GHJUHH RI DSSUR[LPDWLRQ FDQ EH FKDQJHG E\

YDU\LQJ DQ DSSURSULDWH SDUDPHWHU

SIGGRAPH 2000, New Orleans 13

+20� 2FFOXVLRQ 0DS

3\UDPLG

❚ $QDO\]LQJ FXPXODWLYH SURMHFWLRQ

❘ $ KLHUDUFK\ RI RFFOXVLRQ PDSV �+20�

❘ 0DGH E\ UHFXUVLYH DYHUDJLQJ �ORZ�SDVV ILOWHULQJ�

❘ 5HFRUG DYHUDJH RSDFLWLHV IRU EORFNV RI SL[HOV

❘ 5HSUHVHQW RFFOXVLRQ DW PXOWLSOH UHVROXWLRQV

❘ &RQVWUXFWLRQ DFFHOHUDWHG E\ KDUGZDUH � ELOLQHDU

LQWHUSRODWLRQ RU WH[WXUH PDSV � PLSPDSV

SIGGRAPH 2000, New Orleans 14

+20� 2FFOXVLRQ 0DS

3\UDPLG

64 x 64 32 x 32 16 x 16

SIGGRAPH 2000, New Orleans 15

+20� 2FFOXVLRQ 0DS

3\UDPLG

❚ $QDO\]LQJ FXPXODWLYH SURMHFWLRQ

❘ $ KLHUDUFK\ RI RFFOXVLRQ PDSV �+20�

❘ 0DGH E\ UHFXUVLYH DYHUDJLQJ �ORZ�SDVV ILOWHULQJ�

❘ 5HFRUG DYHUDJH RSDFLWLHV IRU EORFNV RI SL[HOV

❘ 5HSUHVHQW RFFOXVLRQ DW PXOWLSOH UHVROXWLRQV

❘ &RQVWUXFWLRQ DFFHOHUDWHG E\ KDUGZDUH � ELOLQHDU

LQWHUSRODWLRQ RU WH[WXUH PDSV � PLSPDSV

SIGGRAPH 2000, New Orleans 16

+20� 2FFOXVLRQ 0DS

3\UDPLG

SIGGRAPH 2000, New Orleans 17

+20� 2YHUODS 7HVWV

❙ 3UREOHP� LV WKH SURMHFWLRQ RI WHVWHG REMHFW

LQVLGH WKH FXPXODWLYH SURMHFWLRQ RI WKH

RFFOXGHUV"

❙ &XPXODWLYH SURMHFWLRQ RI RFFOXGHUV� WKH

S\UDPLG

❙ 3URMHFWLRQ RI WKH WHVWHG REMHFW

❘ &RQVHUYDWLYH RYHUHVWLPDWLRQ

� %RXQGLQJ ER[HV �%%�

� %RXQGLQJ UHFWDQJOHV �%5� RI %%¶V

SIGGRAPH 2000, New Orleans 18

+20� 2YHUODS 7HVWV

❚ 7KH EDVLF DOJRULWKP
Given: HOM pyramid; the object to be tested
• Compute BR and the initial level in the pyramid
• for each pixel touched by the BR

if pixel is fully opaque
continue

else
if level = 0

return FALSE
else

descend...

SIGGRAPH 2000, New Orleans 19

+20� 2YHUODS 7HVWV

❚ +LJK�OHYHO RSDFLW\ HYDOXDWLRQ

❙ (DUO\ WHUPLQDWLRQ

❘ &RQVHUYDWLYH UHMHFWLRQ

❘ $JJUHVVLYH DSSUR[LPDWH FXOOLQJ

❘ 3UHGLFWLYH UHMHFWLRQ

SIGGRAPH 2000, New Orleans 20

+20� $JJUHVVLYH

$SSUR[LPDWH &XOOLQJ

❚ ,JQRULQJ EDUHO\�YLVLEOH REMHFWV

❙ 6PDOO KROHV LQ RU DPRQJ REMHFWV

❙ 7R LJQRUH WKH VPDOO KROHV

❘ /3) VXSSUHVVHV QRLVH ² KROHV ³GLVVROYH´

❘ 7KUHVKROGLQJ� UHJDUG ³YHU\ KLJK´ RSDFLW\ DV

IXOO\ RSDTXH

❙ 7KH RSDFLW\ WKUHVKROG� WKH RSDFLW\ DERYH

ZKLFK D SL[HO LV FRQVLGHUHG WR EH IXOO\

RSDTXH

SIGGRAPH 2000, New Orleans 21

+20� $JJUHVVLYH

$SSUR[LPDWH FXOOLQJ

0 1 2 3 4

SIGGRAPH 2000, New Orleans 22

+20� 5HVROYLQJ 'HSWK

❚ 'HSWK UHSUHVHQWDWLRQV

❙ 'HILQH D ERXQGDU\ EH\RQG ZKLFK«

❙ &RQVHUYDWLYH HVWLPDWLRQ

❘ $ VLQJOH SODQH

❘ 'HSWK HVWLPDWLRQ EXIIHU

❙ 1R�EDFNJURXQG]�EXIIHU

SIGGRAPH 2000, New Orleans 23

The point with
nearest depth

Occluders

Viewing
direction

This object
passes the
depth test

The plane

A

Image
plane

+20� $ VLQJOH SODQH

❚ « DW WKH IDUWKHVW YHUWH[RI WKH RFFOXGHUV

SIGGRAPH 2000, New Orleans 24

+20� 'HSWK (VWLPDWLRQ

%XIIHU

❙ 8QLIRUP VXEGLYLVLRQ RI WKH VFUHHQ

❙ $ SODQH IRU HDFK SDUWLWLRQ

❙ 'HILQHV WKH IDU ERXQGDU\

❙ 8SGDWHV �L�H� FRPSXWLQJ GHSWK

UHSUHVHQWDWLRQ�

❘ 2FFOXGHU ERXQGLQJ UHFWDQJOH DW IDUWKHVW GHSWK

❙ 'HSWK WHVWV

❘ 2FFXGHH ERXQGLQJ UHFWDQJOH DW QHDUHVW GHSWK

SIGGRAPH 2000, New Orleans 25

+20� 'HSWK (VWLPDWLRQ

%XIIHU

Bounding
rectangle at
nearest depth

D. E. B.

Occluders

A

Viewing
direction

Transformed view-frustum

Bounding rectangle
at farthest depth

B

Image
plane

SIGGRAPH 2000, New Orleans 26

+20� 'HSWK (VWLPDWLRQ

%XIIHU

❚ 7UDGH�RII

❙ $GYDQWDJHV

❘ 5HPRYHV QHHG IRU VWULFW GHSWK VRUWLQJ

❘ 6SHHG

❘ 3RUWDELOLW\

❙ 'LVDGYDQWDJHV

❘ &RQVHUYDWLYH IDU ERXQGDU\

❘ 5HTXLUHV JRRG ERXQGLQJ YROXPHV

SIGGRAPH 2000, New Orleans 27

+20� 1R�%DFNJURXQG =�

%XIIHU

❙ 7KH]�EXIIHU IURP RFFOXGHU UHQGHULQJ���

❘ LV E\ LWVHOI DQ IXOO RFFOXVLRQ UHSUHVHQWDWLRQ

❘ KDV WR EH PRGLILHG WR VXSSRUW RXU GHSWK WHVWV

❙ ³5HPRYLQJ´ EDFNJURXQG GHSWK YDOXHV

❘ 5HSODFH WKHP WKH ³IRUHJURXQG´ GHSWK YDOXHV

❙ &DSWXUHV WKH QHDU ERXQGDU\

SIGGRAPH 2000, New Orleans 28

+20� 1R�%DFNJURXQG =�

%XIIHU

D. E. B
Occluders

N. B. Z
AViewing

direction

Transformed view-frustum

Objects passing
the depth tests

Image
plane

SIGGRAPH 2000, New Orleans 29

+20� 1R�%DFNJURXQG =�

%XIIHU

❚ 7UDGH�RII

❙ $GYDQWDJHV

❘ &DSWXUHV WKH QHDU ERXQGDU\

❘ /HVV VHQVLWLYH WR ERXQGLQJ ER[HV

❘ /HVV VHQVLWLYH WR UHGXQGDQW�IDU� RFFOXGHUV

❙ 'LVDGYDQWDJHV

❘ $VVXPHV TXLFNO\ DFFHVVLEOH]�EXIIHU

❘ 5HVROXWLRQ VDPH DV RFFOXVLRQ PDSV

SIGGRAPH 2000, New Orleans 30

+20� 2FFOXGHU VHOHFWLRQ

❚ 2FFOXGHU GDWD�EDVH �� VHOHFWLRQ FULWHULRQV

❙ 6L]H

❙ 5HGXQGDQF\

❙ 5HQGHULQJ &RPSOH[LW\

❙ 6L]H RI ERXQGLQJ ER[HV �ZKHQ GHSWK�

HVWLPDWLRQ EXIIHU LV XVHG�

SIGGRAPH 2000, New Orleans 31

+20� 2FFOXGHU VHOHFWLRQ

❚ $W UXQ WLPH

❙ 'LVWDQFH�EDVHG VHOHFWLRQ ZLWK D SRO\JRQ

EXGJHW

❙ 2EMHFWV LQVLGH WKH YLHZ YROXPH

❙ 2EMHFWV FORVHU WKHQ RFFOXGHUV PD\ EHFRPH

RFFOXGHUV

SIGGRAPH 2000, New Orleans 32

+3 +DUGZDUH LPSOHPHQWDWLRQ

❚ %HIRUH UHQGHULQJ DQ REMHFW� VFDQ�FRQYHUW

LWV ERXQGLQJ ER[

❚ 6SHFLDO SXUSRVH KDUGZDUH DUH XVHG WR

GHWHUPLQH LI DQ\ RI WKH FRYHUHG SL[HOV

SDVVHG WKH]�WHVW

❚ ,I QRW WKH REMHFW LV RFFOXGHG

SIGGRAPH 2000, New Orleans 33

&RQFOXVLRQ

❚ $OO RI WKHVH PHWKRGV PDNH XVH RI

GLVFUHWLVDWLRQ DQG JUDSKLFV KDUGZDUH IRU

IDVW FXOOLQJ

❚ 2QH GUDZEDFN LV WKDW RIWHQ DFFHVVLQJ WKH

LQIRUPDWLRQ IURP WKH KDUGZDUH FDUULHV DQ

RYHUKHDG

SIGGRAPH 2000, New Orleans 34

$FNQRZOOHGJHPHQWV

❚ ,¶G OLNH WR WKDQN +DQVRQJ =KDQJ SURYLGLQJ

VRPH VOLGHV ZKLFK ZHUH XVHG IRU SDUW RI

WKLV SUHVHQWDWLRQ

�

<LRUJRV�&KU\VDQWKRX

8QLYHUVLW\�&ROOHJH�/RQGRQ

6,**5$3+�������1HZ�2UOHDQV �

� 9LVLELOLW\�RUGHULQJ

� %63�WUHHV�DV�D�KLHUDUFK\�RI�YROXPHV

� +LHUDUFKLFDO�YLVLELOLW\�FXOOLQJ�

� 7UHH�PHUJLQJ

� 9LVLELOLW\�FXOOLQJ�XVLQJ�PHUJLQJ

� &RQFOXVLRQ

�

6,**5$3+�������1HZ�2UOHDQV �

� *LYHQ�D�VHW�RI�SRO\JRQV�6�DQG�D�YLHZSRLQW�YS��ILQG�
DQ�RUGHULQJ�RQ�6�VW�IRU�DQ\���SRO\JRQV�LQWHUVHFWHG�
E\�D�UD\�WKURXJK�YS�3L�KDV�KLJKHU�SULRULW\�WKDQ�3M

3L

3M

6,**5$3+�������1HZ�2UOHDQV �

� $�SRO\JRQ�REMHFW�RQ�WKH�VDPH�VLGH�DV�WKH�
YLHZSRLQW�KDV�KLJKHU�SULRULW\�WKDQ�RQH�RQ�WKH�
RSSRVLWH�VLWH

+� +�

�

6,**5$3+�������1HZ�2UOHDQV �

� ,I�ZH�KDYH�PRUH�WKDQ�RQH�REMHFW�RQ�RQH�VLGH�WKHQ�
UHSHDW�WKH�VDPH�UHDVRQLQJ�DQG�DGG�PRUH�
SDUWLWLRQLQJ�SODQHV�EHWZHHQ�WKHVH�REMHFWV

+� +�

+� +�

6,**5$3+�������1HZ�2UOHDQV �

�)XFKV��.HGHP�DQG�1D\ORU�C���

� 0RUH�JHQHUDO��FDQ�GHDO�ZLWK�LQVHSDUDEOH�
REMHFWV

� $XWRPDWLF��XVHV�DV�SDUWLWLRQV�SODQHV�GHILQHG�
E\�WKH�VFHQH�SRO\JRQV

� 0HWKRG�KDV�WZR�VWHSV�
± EXLOGLQJ�RI�WKH�WUHH�LQGHSHQGHQWO\�RI�YLHZSRLQW

± WUDYHUVLQJ�WKH�WUHH�IURP�D�JLYHQ�YLHZSRLQW�WR�
JHW�YLVLELOLW\�RUGHULQJ

�

6,**5$3+�������1HZ�2UOHDQV �

�5HFXUVLYH�

$�VHW�RI�SRO\JRQV

^����������������`

7KH�WUHH

6,**5$3+�������1HZ�2UOHDQV �

�5HFXUVLYH�

6HOHFW�RQH�SRO\JRQ�DQG�SDUWLWLRQ�WKH�VSDFH�DQG�WKH�SRO\JRQV

�

6,**5$3+�������1HZ�2UOHDQV �

�5HFXUVLYH�

5HFXUVLYHO\�SDUWLWLRQ�HDFK�VXE�WUHH�XQWLO�DOO�SRO\JRQV�DUH�XVHG�XS

6,**5$3+�������1HZ�2UOHDQV ��

�,QFUHPHQWDO�

� 7KH�WUHH�FDQ�DOVR�EH�EXLOW�LQFUHPHQWDOO\�
± VWDUW�ZLWK�D�VHW�RI�SRO\JRQV�DQG�DQ�HPSW\�WUHH

± LQVHUW�WKH�SRO\JRQV�LQWR�WKH�WUHH�RQH�DW�D�WLPH

± LQVHUWLRQ�RI�D�SRO\JRQ�LV�GRQH�E\�FRPSDULQJ��LW�
DJDLQVW�WKH�SODQH�DW�HDFK�QRGH�DQG�SURSDJDWLQJ�
LW�WR�WKH�ULJKW�VLGH��VSOLWWLQJ�LI�QHFHVVDU\

± ZKHQ�WKH�SRO\JRQ�UHDFKHV�DQ�HPSW\�FHOO��PDNH�
D�QRGH�ZLWK�LWV�VXSSRUWLQJ�SODQH

�

6,**5$3+�������1HZ�2UOHDQV ��

YRLG�WUDYHUVHBEWI�7UHH�W��3RLQW�YS�
^

LI��W� �18//��UHWXUQ��
HQGLI

LI��YS�LQ�IURQW�RI�SODQH�DW�URRW�RI�W��
�WUDYHUVHBEWI�W�!EDFN��YS��
�GUDZ�SRO\JRQV�RQ�QRGH�RI�W�
�WUDYHUVHBEWI��W�!IURQW��YS��

HOVH
�WUDYHUVHBEWI�W�!IURQW��YS��
�GUDZ�SRO\JRQV�RQ�QRGH�RI�W�
�WUDYHUVHBEWI�W�!EDFN��YS��

HQGLI
`

6,**5$3+�������1HZ�2UOHDQV ��

� (DFK�QRGH�FRUUHVSRQGV�WR�D�UHJLRQ�RI�VSDFH
± WKH�URRW�LV�WKH�ZKROH�RI�5Q

± WKH�OHDYHV�DUH�KRPRJHQHRXV�UHJLRQV

�

6,**5$3+�������1HZ�2UOHDQV ��

6,**5$3+�������1HZ�2UOHDQV ��

9LHZ
SRLQW

2�

2�

2�

�

6,**5$3+�������1HZ�2UOHDQV ��

9LHZ
SRLQW

2�

2�

2�

7UHH
�

�

2�

,1

RXW

RXW

RXW

�

�

6,**5$3+�������1HZ�2UOHDQV ��

9LHZ
SRLQW

2�

2�

2�

7UHH
�

�

2�

,1

RXW

RXW
�

�

2�

,1

RXW

RXW

RXW

�

�
�

�

�

6,**5$3+�������1HZ�2UOHDQV ��

9LHZ
SRLQW

2�

2�

2�

7UHH
�

�

2�

,1
RXW

�

�

2�

,1

RXW

RXW

RXW

�

�
�

�

�

�

2�

,1

RXW

RXW

RXW

2�

6,**5$3+�������1HZ�2UOHDQV ��

� ([WHQGHG�+XGVRQ�PHWKRG
± LQVWHDG�RI�FRQVWUXFWLQJ�D�VKDGRZ�YROXPH�IRU�
HDFK�RFFOXGHU��FRQVWUXFW�DQ�RFFOXVLRQ�%63�WUHH�
DQG�FRPSDUH�WKH�REMHFWV�DJDLQVW�WKH�DJJUHJDWH�
RFFOXVLRQ�

± ,I�ZH�KDYH�1�RFFOXGHUV�WKHQ�ZH�QHHG�2��ORJ1��
FRPSDULVRQV�IRU�HDFK�REMHFW

��

6,**5$3+�������1HZ�2UOHDQV ��

�

�

9LHZ
SRLQW

2�

2�

2�

7UHH
�

�

2�

,1
RXW

�

�

2�

,1

RXW

RXW

RXW

�

�
�

�

�

�

2�

,1

RXW

RXW

RXW7�

7�

6,**5$3+�������1HZ�2UOHDQV ��

%LWWQHU����

� 6FHQH�LV�UHSUHVHQWHG�E\�D�N�G�WUHH

�)RU�D�JLYHQ�YLHZSRLQW�
± VHOHFW�D�VHW�RI�SRWHQWLDO�RFFOXGHUV

± EXLOG�DQ�RFFOXVLRQ�WUHH�IURP�WKHVH�RFFOXGHUV

± KLHUDUFKLFDOO\�FRPSDUH�WKH�N�G�QRGHV�DJDLQVW�
WKH�RFFOXVLRQ�WUHH

��

6,**5$3+�������1HZ�2UOHDQV ��

� 9LHZSRLQW�WR�UHJLRQ�
YLVLELOLW\
± YLVLEOH

± LQYLVLEOH

± SDUWLDOO\�YLVLEOH

� 5HILQHPHQW�RI�SDUWLDOO\�YLVLEOH�UHJLRQV

9,6,%/(

&8//('

,19,6,%/(
3$57,$//<

9,6,%/(

6,**5$3+�������1HZ�2UOHDQV ��

� *LYHQ�WZR�REMHFWV��RU�FROOHFWLRQV�RI�REMHFWV��
UHSUHVHQWHG�DV�%63�WUHHV��WUHH�PHUJLQJ�FDQ�
EH�XVHG�WR�VROYH�D�QXPEHU�RI�JHRPHWULF�
SUREOHPV��IRU�H[DPSOH�
± VHW�RSHUDWLRQV�OLNH�XQLRQ�RU�LQWHUVHFWLRQ��HJ�IRU�
&6*�

± FROOLVLRQ�GHWHFWLRQ

± YLHZ�YROXPH�DQG�YLVLELOLW\�FXOOLQJ�

��

6,**5$3+�������1HZ�2UOHDQV ��

� 0HUJLQJ�7��DQG�7��FDQ�EH�VHHQ�DV�LQVHUWLQJ�
7��LQWR�7��
± VWDUWLQJ�DW�URRW�RI�7���SDUWLWLRQ�7��XVLQJ�WKH�
SODQH�RI�7���LQWR�7���DQG�7���DQG�LQVHUW�WKH�WZR�
SLHFHV�UHFXUVLYHO\�LQWR�WKH�IURQW�DQG�EDFN�VXE�
WUHH�RI�7�

± ZKHQ�D�IUDJPHQW�RI�7��UHDFKHV�D�FHOO�WKHQ�DQ�
H[WHUQDO�URXWLQH�LV�FDOOHG�GHSHQGLQJ�RQ�WKH�
DSSOLFDWLRQ

6,**5$3+�������1HZ�2UOHDQV ��

7UHH�PHUJHBEVSWV�7UHH�W���7UHH�W��
^

LI��OHDI�W���RU�OHDI�W���
UHWXUQ�PHUJHBWUHHBFHOO�W���W���

HOVH
^W����W��`� �SDUWLWLRQBWUHH�W���VKS�W����
W��!IURQW� �PHUJHBEVSWV�W��!IURQW��W����
W��!EDFN� �PHUJHBEVSWV�W��!EDFN��W����
UHWXUQ�W��

HQGLI
`
�

��

6,**5$3+�������1HZ�2UOHDQV ��

� 3DUWLWLRQLQJ�7��ZLWK�D�SODQH�RI�7���+7���LV�D�
UHFXUVLYH�SURFHGXUH�WKDW�LQYROYHV�LQVHUWLQJ�WKH�
SODQH�RI�7��LQWR�7�

± LI��7��LV�D�VLQJOH�FHOO�WKHQ�7���DQG�7���DUH�FRSLHV�RI�
7�

± HOVH�ILQG�7���DQG�7���ZLWK�WKH�IROORZLQJ���VWHSV��

� ILQG�UHODWLRQ�RI��SODQH�+7��DQG�SODQH�DW�URRW�RI�7���+7��
� SDUWLWLRQ�WKH�VXE�WUHH�V��RI�7��LQ�ZKLFK�+7��OLHV

� FRPELQH�UHVXOWLQJ�VXE�WUHHV�DERYH�WR�IRUP�7�
��DQG�7�

�

6,**5$3+�������1HZ�2UOHDQV ��

7� 7�

� 1RWH�WKDW�ZH�DUH�LQWHUHVWHG�RQO\�LQ�WKH�UHODWLRQ�RI�
WKH�WZR�SODQHV�ZLWKLQ�WKH�VSDFH�WKDW�7��LV�GHILQHG�
�ZH�VKRXOG�EH�WDONLQJ�RI�VXE�K\SHUSODQHV�

� 7KHUH�DUH�VHYHQ�SRVVLEOH�FODVVLILFDWLRQV�ZKLFK�FDQ�
EH�JURXSHG�LQWR���VHWV��LQ�RQH�VXE�WUHH��LQ�ERWK��
FRSODQDU

�)RU�HDFK�FODVVLILFDWLRQ�ZH�GR�WZR�FRPSDULVRQV

��

6,**5$3+�������1HZ�2UOHDQV ��

6,**5$3+�������1HZ�2UOHDQV ��

7���!IURQW� ��7��!IURQW��

7���!URRW�� �7��!URRW
7���!EDFN� �7��!EDFN

7��� ��7��!IURQW��

��

6,**5$3+�������1HZ�2UOHDQV ��

3DUWLWLRQ�7��!IURQW

3DUWLWLRQ�7��!EDFN

6,**5$3+�������1HZ�2UOHDQV ��

7���!IURQW� ��7��!IURQW��

7���!URRW�� �7��!URRW
7���!EDFN� ��7��!EDFN��

7���!IURQW� ��7��!IURQW��

7���!URRW�� �7��!URRW
7���!EDFN� ��7��!EDFN��

��

6,**5$3+�������1HZ�2UOHDQV ��

� &RQVWUXFWLYH�6ROLG�*HRPHWU\��&6*��>1D\ORU�
����6,**5$3+@

� &ROOLVLRQ�GHWHFWLRQ�>1D\ORU�����*UDSKLFV�
,QWHUIDFH@

� 6KDGRZV�IURP�DUHD�OLJKW�VRXUFHV�>&DPSEHOO�
����75�8QLY�RI�7H[DV��$XVWLQ@

� 'LVFRQWLQXLW\�PHVKLQJ�>&KU\VDQWKRX�����3KG�
7KHVLV@

6,**5$3+�������1HZ�2UOHDQV ��

� 9LHZ�YROXPH�FXOOLQJ
± �YLHZ�YROXPH�DV�D�%63�WUHH�DQG�PHUJH�ZLWK�
VFHQH�%63�WUHH��1D\ORU����

� 9LVLELOLW\�FXOOLQJ
± %HDP�WUDFLQJ��1D\ORU����

� 7KH�WZR�DERYH�FDQ�EH�GRQH�LQ�RQH�JR

��

6,**5$3+�������1HZ�2UOHDQV ��

�&KU\VDQWKRX����

� %XLOG�VFHQH�N�G�WUHH�

� VHW�WKH�PHUJHBFHOOBWUHH���WR�UHQGHU�WKH�VXE�
WUHH�LI�WKH�FHOO�LV�YLVLEOH

� DW�HDFK�IUDPH�GR
± EXLOG�RFFOXVLRQ�YLHZ�YROXPH�EVS�WUHH

± PHUJH�WUHHV�E\�LQVHUWLQJ�RFFOXVLRQ�WUHH�LQWR�
VFHQH�N�G�WUHH�

6,**5$3+�������1HZ�2UOHDQV ��

� 5HVXOWV�LQ�D�YHU\�HIILFLHQW�RFFOXVLRQ�YLHZ�
YROXPH�FRPSDULVRQ�RI�WKH�VFHQH�

� 7KH�WUDYHUVDO�LV�GRQH�LQ�RUGHU��WKLV�FDQ�EH�
XVHG�WR�KHOS�ZLWK�WKH�/2'�VHOHFWLRQ�RU�
LPDJH�EDVHG�UHQGHULQJ�

� 7KH�RFFOXGHUV�DUH�VHOHFWHG�LQ�WKH�VDPH�
WUDYHUVDO�

��

6,**5$3+�������1HZ�2UOHDQV ��

� :KDW�ZDV�FRYHUHG�WRGD\
± YLVLELOLW\�RUGHULQJ�

± WUHH�PHUJLQJ

± YLHZ�YROXPH�DQG�RFFOXVLRQ�FXOOLQJ

� 2WKHU�HVVHQWLDOV
± EXLOGLQJ�JRRG�WUHHV

± G\QDPLF�FKDQJHV

Virtual Occluders: An Efficient Intermediate
PVS Representation

Vladlen Koltun Yiorgos Chrysanthou Daniel Cohen-Or
Tel Aviv University University College London Tel Aviv University

Fig. 1. A virtual occluder (the red and white rectangle) represents aggregate occlusion from a
region.

Abstract. In this paper we introduce the notion of virtual occluders. Given a
scene and a viewcell, a virtual occluder is a view-dependent (simple) convex ob-
ject, which is guaranteed to be fully occluded from any given point within the
viewcell and which serves as an effective occluder from the given viewcell. Vir-
tual occluders are a compact intermediate representation of the aggregate occlu-
sion for a given cell. The introduction of such view-dependent virtual occlud-
ers enables applying an effective region-to-region or cell-to-cell culling technique
and efficiently computing a potential visibility set (PVS) from a region/cell. We
present a technique that synthesizes such virtual occluders by aggregating the vis-
ibility of a set of individual occluders and we show the technique’s effectiveness.

1 Introduction

Visibility algorithms have recently regained attention in computer graphics as a tool to
handle large and complex scenes, which consist of millions of polygons. Twenty years
ago hidden surface removal (HSR) algorithms were developed to solve the fundamental
problem of determining the visible portions of the polygons in the image. Today, since
the z-buffer hardware is the de-facto standard HSR technique, the focus is on visibility
culling algorithms that quickly reject those parts of the scene which do not contribute to
the final image.

Conventional graphics pipelines include two simple visibility culling techniques:
view-frustum culling and backface culling. These visibility techniques are local in the
sense that they are applied to each polygon independently of the other polygons in the
scene. Occlusion culling is another visibility technique in which a polygon is culled if it

is fully occluded by some other part of the scene. This technique is global and thus far
more complex than the above local techniques.

Apparently, occlusion culling techniques and hidden surface removal techniques are
conceptually alike and have a similar asymptotic complexity. However, to apply an oc-
clusion culling technique as a quick rejection process, it must be significantly more ef-
ficient than the hidden surface removal process. The answer is the use of conservative
methods in which for a given scene and view point the conservative occlusion culling
algorithm determines a superset of the visible set of polygons [3, 14, 8]. These meth-
ods yield a potential visibility set (PVS) which includes all the visible polygons, plus a
small number of occluded polygons. Then the HSR processes the (hopefully small) ex-
cess of polygons included in the PVS. Conservative occlusion culling techniques have
the potential to be significantly more efficient than the HSR algorithms. It should be
emphasized that the conservative culling algorithm can also be integrated into the HSR
algorithm, aiming towards an output sensitive algorithm [13]. A good overview of most
recent culling techniques can be found in [16].

To reduce the computational cost, the conservative occlusion culling algorithms usu-
ally use a hierarchical data structure where the scene is traversed top-down and tested for
occlusion against a small number of selected occluders [8, 14]. In these algorithms the
selection of the candidate occluders is done before the online visibilitycalculations. The
efficiency of these methods is directly dependent on the number of occluders and their
effectiveness. Since the occlusion is tested from a point, these algorithms are applied in
each frame during the interactive walkthrough.

A more promising strategy is to find the PVS from a region or viewcell, rather than
from a point. The computation cost of the PVS from a viewcell would then be amortized
over all the frames generated from the given viewcell. Effective methods have been de-
veloped for indoor scenes [2, 19, 11, 1], but for general arbitrary scenes, the computa-
tion of the visibility set from a region is more involved than from a point. Sampling the
visibility from a number of view points within the region [12] yields an approximated
PVS, which may then cause unacceptable flickering temporal artifacts during the walk-
through. Conservative methods were introduced in [6, 17] which are based on the occlu-
sion of individual large convex objects. In these methods a given object or collection of
objects is culled away if and only if they are fully occluded by a single convex occluder.
It was shown that a convex occluder is effective only if it is larger than the viewcell [6].
However, this condition is rarely met in real applications. For example the objects in
Figure 2 are smaller than the viewcell, and their umbra (with respect to the viewcell) are
rather small. Their union does not occlude a significant portion of the scene (see in (a)),
while their aggregate umbra is large (see in (b)). Recently, new conservative methods
are emerging [18, 10, 20] which apply occlusion fusion based on the intersection of the
umbrae of individual occluders.

In this paper we present a novel way of representing and computing the visibility
from a viewcell. For that purpose, we introduce the notion of virtual occluders. Given
a scene and a viewcell, a virtual occluder is a view-dependent (simple) convex object,
which is guaranteed to be fully occluded from any given point within the viewcell and
which serves as an effective occluder from that viewcell. Virtual occluders compactly
represent the occlusion information for a given cell. Each virtual occluder represents the
aggregate occlusion of a cluster of occluders. The introduction of such view-dependent
virtual occluders enables one to apply an effective region-to-region or cell-to-cell culling
technique and to efficiently compute the PVS from a region or a cell. Figure 1 depicts
a virtual occluder that aggregates occlusion of four columns in the Freedman Museum
model. On the right, the scene is shown from above. The virtual occluder is the vertical

rectangle placed behind the furthest column. On the left, a view is shown from inside the
region for which this virtual occluder was computed. The virtual occluder is completely
occluded behind the columns (which are rendered transparent, for the sake of demonstra-
tion). We present a technique that synthesizes such virtual occluders by aggregating the
occlusion of a set of individual occluders and show its effectiveness.

The rest of the paper is organized as follows: We give an overview of the method in
Section 2, as well as summarizing its main contributions. In Section 3 we describe the
algorithm for constructing the set of virtual occluders. The results and their analysis are
presented in Section 4, and we conclude in Section 5.

2 Overview

The virtual occluders are constructed in preprocessing. For simplicity in the discussion
we assume regular partitioning of the scene into axis-aligned box-shaped cells. How-
ever, this is not inherent to our algorithm, which may handle any partitioning of the scene
into cells of arbitrary non-convex shape. This algorithm is applied to a given viewcell
and constructs a set of virtual occluders that effectively represents the occlusion from
this cell. It yields a large, dense set of potential virtual occluders. From this set, an ef-
fective small sorted subset is selected and stored for the on-line stage. Since the virtual
occluders are large, convex and few, the PVS of the associated viewcell can be quickly
constructed by applying a simple and effective culling mechanism similar to [6, 17].

The PVS of a viewcell is constructed only once before the walkthrough enters the
cell, by culling the scene against the virtual occluders. The frame-rate of the walkthrough
is not significantly interrupted by the visibility determination, since the cost of construct-
ing the viewcell’s PVS is amortized over the large number of frames during the walk
through the cell. Note that one of the advantages of our method is that it generates large
effective occluders and thus enables the use of a larger viewcell, which further reduces
the relative cost of computing the PVS.

The main advantages of the presented method can be summarized as follows:
Aggregate occlusion. Each virtual occluder encapsulates the combined contribution

of a cluster of occluders. This results in the ability of culling larger portions of the scene-
graph using just a single virtual occluder. Moreover, a small set of virtual occluders
faithfully represents the occlusion from a viewcell.

Accuracy. The presented method for constructing virtual occluders is an object-
space continuous method. Their shape and location are not constrained by a space par-
tition of the scene (e.g., quadtree or kd-tree). The placement of the virtual occluders
adapts to the scene and not to an independent fixed subdivision. This leads to accuracy
and thus a stronger conservative visibility set.

Speed. Since the number of per-viewcell virtual occluders is small, the visibility
culling process is faster. The virtual occluders occlude more than the individual objects,
and are thus able to cull larger cells of the scene-graph. This results in a highly reduced
amount of computation at run-time for each viewcell.

Storage size. Given a viewcell and a small set of virtual occluders, the PVS can be
computed on-the-fly during the walkthrough. This avoids storing the PVS but rather a
small set of virtual occluders, which requires less space. This is vital since the potential
visibility sets of all viewcells of a complex scene tend to be too large for storage (see
Section 4).

There are various applications that can benefit from virtual occluders. All of them
exploit the fact that the cost of computing the conservative visibility set can be amortized
over several frames. Rendering the scene consists of three processes:

umbra
individual

(a)

umbra
aggregate

occluder
virtual

(b)

Fig. 2. The union of the umbrae of the individual objects is insignificant, while their aggregate
umbra is large and can be represented by a single virtual occluder.

1. computing the viewcell virtual occluders;
2. computing the viewcell PVS;
3. rendering the PVS.

The first process is computed offline, while the other two online. We can consider
a rendering system, which is conceptually partitioned into a client and a server. The
server can compute the virtual occluders in a preprocess and store them in a spatial data
structure. During the walkthrough, the client uses the virtual occluders to compute the
PVS. The PVS must be readily available for the real-time rendering of the scene. This
requires the system to precompute the PVS of nearby viewcells before the walkthrough
enters those viewcells. As mentioned in the introduction, a remote walkthrough appli-
cation necessarily requires the computation of a from-region PVS to avoid the latency
problem [7].

3 Constructing the Virtual Occluders

In this section we show how to construct a set of virtual occluders that represents the ag-
gregate occlusion from a given viewcell. The algorithm description is visualized with
a set of illustrations: Figure 2 shows the viewcell in yellow and a set of occluders. The
umbrae of the individual occluders is illustrated in 2 (a), showing that the occlusion of
the individual objects is insignificant. Nevertheless, the aggregate occlusion of these
objects is much larger, as can be seen in 2 (b). To construct virtual occluders that effec-
tively capture the aggregate occlusion we use the following algorithm: (1) select a set of
seed objects, (2) build a set of virtual occluders from a given seed and the cluster of ob-
jects around this seed and (3) decimate the initial dense set of virtual occluders to a cost
effective smaller set. The exact definitions and details as applied for a given viewcell
are elaborated below.

The set of seed objects is defined according to the solid-angle criterion [14] defined
from the viewcell center. Objects with a large solid-angle are likely to be effective oc-
cluders from the given viewcell and thus included in a cluster of occluders that builds up
larger occlusion. The seed object in Figure 3 is colored in light blue. It should be noted
that the algorithm is not sensitive to the accuracy of the definition of the set of seed ob-

jects. However, the more seeds used, the better the set of virtual occluders is in terms of
its effectiveness (less conservative).

For a given seed object we now construct an aggregate umbra starting from its own
umbra and augmenting it with the occlusion of its surrounding objects. First, the two
supporting lines that connect the viewcell and object extents build the initial umbra. An
initial virtual occluder is placed behind the object in its umbra (see Figure 3 (a)). Now,
let us first assume that during this process one of the supporting lines is defined as the
active supporting line while the other remains static (the active supporting line is drawn
in purple). If the active line intersects an object, then this object is a candidate to aug-
ment the umbra. If the candidate object intersects the umbra of the seed object, then it
augments the umbra and the active line shifts to the extent of the inserted object (see
Figure 3 (b)). By iteratively adding more and more objects the umbra extends, and gets
larger and larger. There are cases where a candidate object does not intersect the current
umbra, but can still augment it. To treat these cases we define and maintain the active
separating line(polyline) (colored in red).

Initially, the active separating line is defined between the seed object and the view-
cell (in the standard way [8]). Then objects which intersect the active separating line
redefine it to include the new objects and the separating line becomes a polyline. In Fig-
ure 3 (b) we can see that object 2, which intersects the active supporting line, but not
the active separating line, cannot contribute its occlusion to the augmented umbra be-
fore the contribution of object 3 is considered. As illustrated in Figure 3 (b), object 3
intersects the active separating line and thus redefines it to the polyline shown in Figure
3 (c). Then, object 2 intersects both active lines, augments the aggregate umbra and ex-
tends the virtual occluder further (3 (d)). Formally, let us define the evolving aggregate
umbra , the active supporting line , and the active separating polyline . Given an
object :

1. If intersects then updates , and , and a new virtual occluder is placed
behind .

2. If intersects only then is updated to include .
3. If intersects both and then updates , and , and the furthest virtual

occluder is extended to the new location of .

Once no more objects intersect the active lines, the static line on the other side is
activated, the process is repeated for the other side aiming to further augment the umbra
by adding objects from the other side of the seed object. In our implementation both
left and right separating lines are maintained active and the insertion of objects can be
on either side of the umbra. Thus, the initial active supporting and separating lines are
as shown in Figure 4. Note that in case 2 above, has to be above the opposite active
polyline. Since a virtual occluder is placed behind all the individual objects that make it
up, as it grows bigger it also grows further away from the viewcell. For this reason we
periodically ’dump’ some of the intermediate virtual occluders into the dense set.

This aggregate umbra algorithm bears some conceptual similarity to algorithms that
compute shadow volumes from an area light source [4, 5], or even to discontinuity mesh-
ing methods [9, 15]. However, here we have two important advantages. First, the aggre-
gate umbra does not necessarily have to be accurate, but conservative, and can thus be
calculated significantly faster than area shadow algorithms. The other advantage lies in
the effectiveness of the aggregation. While shadow algorithms detect additional objects
that intersect an umbra and expand it, they don’t make full use of the separating lines.
See the example in Figure 5, even if the polygons are processed in front-to-back order,
none of the shadow methods successfully merge the umbrae into one, in contrast to the

1

3

2

4

S

(a)

1

3

2

4

S

(b)

3

2

4

1

S

(c)

1

3

2

4

S

(d)

Fig. 3. Growing the virtual occluders by intersecting objects with the active separating and sup-
porting lines.

method presented here.
After a dense set of virtual occluders is computed, it is sufficient to select only a small

subset of them for the on-line stage. This saves the per-cell storage space and accelerates
the process of computing the cell visibility set. The idea is that the subset can represent
the occlusion faithfully, since there is a large amount of redundancy in the dense set. In
practice, we have found that just less than ten virtual occluders per cell are sufficient to
represent the occlusion effectively.

1

3

2

4

S

Fig. 4. The active lines are processed on both
sides simultaneously.

Fig. 5. Current shadow algorithms do not
necessarily aggregate the occlusion.

The greedy algorithm that is used to select this subset is described in Figure 6. Fig-
ure 8 shows a subset of virtual occluders selected by the algorithm. The key observation
behind this algorithm is that the addition of a virtual occluder to the subset is a tradeoff
- the additional virtual occluder improves the PVS by occluding some part of the scene,
but the down-side is that the process of computing the PVS will take longer. Therefore
the algorithm selects the most effective occluders one by one, until the addition of an-
other occluder is not cost effective since the occlusion contributed by it is not significant
enough to justify the enlargement of the subset. A beneficial consequence of this algo-
rithm is that the final subset is sorted, i.e. the most effective occluders appear first. This
will accelerate the PVS construction process. This algorithm of course is non-optimal,
but practically, there is no significant difference since conservative occlusion is not sen-
sitive to small details.

for each virtual occluder in the dense set do
initialize weight of

to the size of the area it occludes.
endfor
repeat

let be the virtual occluder with largest weight in
if contributes effectively to occlusion
then

add it to the final sorted set
remove it from
for every occluder in do

reduce the weight of by the size of the
area occluded both by and

endfor
else

output the final set, and exit
endif

endrepeat

Fig. 6. Algorithm for selecting a sorted effective subset from a dense set of virtual occluders.

3.1 Treating 3D Problems Using a 2.5D Visibility Solution

Above we have described the algorithm in 2D. It is possible to extend the algorithm to
3D by extending the supporting and separating active lines to their counterpart planes in
3D. Then objects intersecting one of the active planes update these planes similarly to
the 2D case. However, in 3D the complexity and running time of the process increases
considerably. Fortunately, in practice, full 3D visibility culling is not always necessary.
When dealing with typical (outdoor and indoor) walkthroughs, a 2.5D visibility culling
is almost as effective but much faster. Moreover, in these cases a simpler implemen-
tation of the technique significantly accelerates the process, while losing insignificant
conservativeness.

The 2.5D visibility problem is reduced to a set of 2D problems by discretizing the
scene at numerous heights, while considering the perspective adjustment from the view-
cell. For each height we run the 2D algorithm that constructs virtual occluders using only
the parts of the objects that extend from the ground up to and above the given height.
These virtual occluders extend from the ground to the associated height. This yields a
dense set of virtual occluders of different heights. The degree to which this representa-
tion is conservative, depends on the discretization resolution. This approach is conser-
vative, because in 2.5D, if a vertical object (e.g. virtual occluder) is completely occluded
by other objects at a given height, it is guaranteed to be occluded by them at all smaller
heights as well.

The discretization does not necessarily lead to a loss of precision. In practice it is
enough to construct virtual occluders at only a small number of “interesting” heights.
There is a tradeoff between the precision and the processing time. As a heuristic strat-
egy, a height-histogram of the scene is quantized and analyzed to select an appropriate
number of heights for slicing the scene. The histogram of heights is constructed by con-
sidering the perspective-adjusted heights of the scene, as seen from the cell. In practice,
five or less slices provide sufficiently good results, as shown in Section 4. In should be
emphasized that the virtual occluders are conservative by nature and the effectiveness
of the method is not sensitive to small details of the occluders.

4 Results

We have implemented the described algorithms in C-language using the OpenGL li-
braries. The tests described below were carried out on an SGI InfiniteReality, with a
196Mhz R10000 processor. We have tested the method on two highly complex scenes.
One is a model of London, accurately depicting an area of 160 sq. kilometers (some
parts are shown in Figures 8 and 10). The model was created from detailed maps and
consists of over 250K objects having more than 4M vertices. The other model is the
Freedman virtual museum, which spans an area of approximately 50,000 sq. feet, and
consists of about a thousand objects having altogether 85K vertices (see Figure 9).

London model
VO % of occ. PVS (#vertices)

1 43.73 43.73 2607241
2 72.05 28.31 1295049
3 86.93 14.88 605592
4 93.92 6.98 281713
5 95.91 1.99 189508
6 96.52 0.61 161244
7 96.77 0.25 149660
8 96.95 0.18 141320

Freedman Museum model
VO % of occ. PVS (#vertices)

1 23.41 23.41 65353
2 33.17 9.75 57025
3 41.95 8.78 49533
4 47.80 5.85 44541
5 49.75 1.94 42877
6 51.55 1.80 41341
7 53.26 1.71 39882
8 54.73 1.46 38628

Table 1. The magnitude of occlusion as a function of the number of virtual occluders saved for
real-time use. A small number of virtual occluders represent most of the occlusion.

Figure 7 shows how the aggregate umbra of the virtual occluders improves the per-
formance compared to an occlusion culling based on individual objects, for three differ-
ent cell sizes. Each line shows the percent of occlusion along a long path around the city.
We see that as the viewcells get larger the relative effectiveness of using virtual occlud-
ers increases, while the effectiveness of the individual occluders sharply decreases. We
see that for large viewcells the occlusion of individual buildings is on average less than
two percent of the scene, while virtual occluders occlude more than 85%. For smaller
cells the occlusion by virtual occluders is on average more than 98%. An example of the
effectiveness of virtual occluders can be seen in Figure 8. Note that the vast majority of
the occluded objects are culled by the eight virtual occluders, while only an insignificant
fraction of the scene can be culled by individual objects.

The London model is partitioned into 16x10 regions of one squared kilometer, and
each region is partitioned by a kd-tree into cells (typically hundreds of cells). Without

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
oc

cl
us

io
n

walking along in the city

VO-1
VO-2
VO-3
IO-1
IO-2
IO-3

Fig. 7. A comparison between the occlusion of individual occluders and virtual occluders. The
graph displays the percentage of occlusion for all viewcells along a path across the London model.
Different colors correspond to different cell sizes. Red corresponds to cells of size 160x100 me-
ters; green for 320x200 meters; blue for 640x400.

slices % of occlusion
5 97.27
4 96.91
3 96.21
2 94.52
1 72.07

Table 2. The occlusion as a function of the number of height slices.

occlusion culling the system cannot render the entire scene, but rather few regions only
(see in the attached video). The size of the PVS of a typical viewcell is only few thou-
sands of kd-tree cells or thousands of buildings. Figure 11 shows a view of London with
a virtual occluder (colored in red) with respect to a viewcell (marked in light green). The
buildings that are occluded by this virtual occluder are colored in blue.

The Museum model is an example of a sparse model, where less occlusion is present
from any given region. In our tests, we have found that no object occludes other ob-
jects in the scene single-handedly. Nevertheless, more than 50% of the scene are usu-
ally found occluded, when virtual occluders are used. In this case, the virtual occluders
faithfully represent the little occlusion present, despite the sparse nature of the scene and
the ineffectiveness of its individual objects.

Table 1 shows the effectiveness of a small set of virtual occluders in terms of their
occlusion. We can see that using just five virtual occluders already provides an effective
occlusion of 95% of the London model. The use of more than ten virtual occluders does
not contribute much to the occlusion. This means that in terms of per-viewcell storage
space the virtual occluders are by far more economical than naive storage of the viewcell
PVS list. A virtual occluder is a vertical quadrilateral, represented by opposite corners,
which can be represented by only five values (the 2D endpoints and its height). These
coordinate values can be quantized to one byte each, since the effective occlusion of the
virtual occluder is not sensitive to its fine sizes. Thus, storing ten virtual occluders per
viewcell requires just fifty bytes.

Fig. 8. A top view of central London. Virtual occluders (in red) are placed around the viewcell
(red square). The blue buildings are those occluded by the virtual occluders and the green ones are
those occluded by individual buildings. Only a small set of buildings remains potentially visible
(colored in black) after using just eight virtual occluders.

Table 2 shows how the slicing resolution affects the conservativeness of the virtual
occluders. The table shows the size of the PVS as a function of the number of slices. We
see that the size of the PVS is improved greatly by taking only two slices. Using more
than five slices does not yield a significant reduction in the size of the PVS.

For an average viewcell, it takes about a minute to produce the dense set of virtual
occluders and their decimation into an effective small set. Considering the typical size
of the viewcell in the London model, e.g., 200x200 to 600x600 meters, it may take a
user less time to cross a viewcell at walking-speed. However, once the virtual occluders
are given, the time spent on the computation of the PVS is negligible provided the scene
is traversed hierarchically in a standard top-down fashion.

5 Conclusion

We have presented the new concept of virtual occluders as a means for representing the
aggregate occlusion of groups of objects. They can have forms other than the one pre-
sented, but the idea is that they are an effective intermediate representation of the oc-
clusion from a cell. One of their important features is that they are ordered in terms of
importance. This provides an efficient culling mechanism since the visibility test of each
object is applied first with the most effective occluders. Only those few objects that are
not culled by the first most effective virtual occluders are tested against the rest of the
occluders down the ordered list.

It is important to note that in the London model the buildings are fairly simple and
consist of a relatively small number of polygons. This means that level-of-detail tech-
niques (LOD) cannot help much in rendering such a huge model. Thus, occlusion culling

is a vital tool for such walkthrough application. In other cases a scene can consist of
some very detailed geometric models. This would require incorporating dynamic LOD
techniques, image-based rendering and modeling, and other acceleration techniques to
handle rendering the potential visibility sets.

References

1. Michael Abrash. Zen of Graphics Programming. Coriolis Group Books, edition, 1996.
2. J. Airey, J. Rohlf, and F. Brooks. Towards image realism with interactive update rates in

complex virtual building environments. ACM Siggraph Special Issue on 1990 Symposium
on Interactive 3D Graphics, 24(2):41–50, 1990.

3. J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility culling with occlusion trees. In
Proceedings of Computer Graphics International ’98, pages 207–219, June 1998.

4. A. T. Campbell, III and D. S. Fussell. An analytic approach to illumination with area light
sources. Technical Report R-91-25, Dept. of Computer Sciences, Univ. of Texas at Austin,
August 1991.

5. N. Chin and S. Feiner. Fast object-precision shadow generation for area light sources using
BSP trees. In ACM Computer Graphics (Symp. on Interactive 3D Graphics), pages 21–30,
1992.

6. Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. Conservative visibility and
strong occlusion for viewspace partitionin of densely occluded scenes. Computer Graphics
Forum, 17(3):243–254, 1998. ISSN 1067-7055.

7. Daniel Cohen-Or and Eyal Zadicario. Visibility streaming for network-based walkthroughs.
Graphics Interface ’98, pages 1–7, June 1998. ISBN 0-9695338-6-1.

8. Satyan Coorg and Seth Teller. Real-time occlusion culling for models with large occluders.
1997 Symp. on Interactive 3D Graphics, pages 83–90, April 1997. ISBN 0-89791-884-3.

9. G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources using backprojec-
tion. In Andrew Glassner, editor, ACM Computer Graphics, pages 223–230, July 1994.

10. Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech. Conservative visibility
preprocessing using extended projections. To appear in the proceedings of SIGGRAPH 2000,
2000.

11. T.A. Funkhouser. Database management for interactive display of large architectural models.
Graphics Interface, pages 1–8, May 1996.

12. Craig Gotsman, Oded Sudarsky, and Jeffry Fayman. Optimized occlusion culling. Computer
& Graphics, 23(5):645–654, 1999.

13. Ned Greene and M. Kass. Hierarchical Z-buffer visibility. In Computer Graphics Proceed-
ings, Annual Conference Series, 1993, pages 231–240, 1993.

14. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated occlusion
culling using shadow frusta. In Proceedings of the 13th International Annual Symposium on
Computational Geometry (SCG-97), pages 1–10, New York, June4–6 1997. ACM Press.

15. D. Lischinski, F. Tampieri, and D. P. Greenberg. Discontinuity meshing for accurate radiosity.
IEEE Computer Graphics & Applications, 12(6):25–39, November 1992.

16. Tomas Moller and Eric Haines. Real-Time Rendering. A. K. Peters Limited, 1999.
17. Carlos Saona-Vazquez, Isabel Navazo, and Pere Brunet. The visibility octree: A data struc-

ture for 3d navigation. Computer & Graphics, 23(5):635–644, 1999.
18. Gernot Schaufler, Xavier Decoret, Julie Dorsey, and Francois Sillion. Conservative volumet-

ric visibility with occluder fusion. To appear in the proceedings of SIGGRAPH 2000, 2000.
19. Seth J. Teller and Carlo H. Sequin. Visibility preprocessing for interactive walkthroughs.

Computer Graphics (Proceedings of SIGGRAPH 91), 25(4):61–69, July 1991.
20. Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing with oc-

cluder fusion for urban walkthroughs. Technical Report TR-186-2-00-06, Institute of Com-
puter Graphics, Vienna University of Technology, Karlsplatz 13/186, A-1040 Vienna, Aus-
tria, March 2000. human contact: technical-report@cg.tuwien.ac.at.

Fig. 9. A ray-traced view over the Freedman virtual museum with the ceiling removed. The yel-
low square in the bottom is the viewcell and the red and white rectangle is one of the virtual oc-
cluders.

Fig. 10. A view over a part of the London model.

Fig. 11. A viewcell (marked in light green) and one of the corresponding virtual occluders (the
long red rectangle piercing through the buildings). The buildings that are occluded by this virtual
occluder are colored in blue.

Siggraph’2000 course notes on Visibility

A Multidisciplinary Survey of Visibility

Frédo DURAND

Extract of The PhD dissertation

3D Visibility: Analytical Study and Applications

Université Joseph Fourier, Grenoble, France
prepared at iMAGIS-GRAVIR/IMAG-INRIA,

under the supervision of Claude Puech and George Drettakis.

http://www.graphics.lcs.mit.edu/~fredo
http://www.graphics.lcs.mit.edu/~fredo/THESE
http://www-imagis.imag.fr/~Claude.Puech/puech.html
http://www-imagis.imag.fr/~George.Drettakis

2

TABLE OF CONTENTS

1 Introduction 5

2 Visibility problems 7

3 Preliminaries 23

4 The classics of hidden part removal 31

5 Object-Space 39

6 Image-Space 57

7 Viewpoint-Space 65

8 Line-Space 79

9 Advanced issues 91

10 Conclusions of the survey 97

11 Some Notions in Line Space 101

12 Online Ressources 103

Contents 105

List of Figures 109

Index 113

References 119

3

4 TABLE OF CONTENTS

CHAPTER 1

Introduction

Il déduisit que la bibliothèque est totale, et que ses
étagères consignent toutes les combinaisons possibles
des vingt et quelques symboles orthographiques (nom-
bre quoique très vaste, non infini), c’est à dire tout ce
qu’il est possible d’exprimer dans toutes les langues.

Jorge Luis BORGES, La bibliothèque de Babel

VAST AMOUNT OF WORK has been published about visibility in many different domains. In-
spiration has sometimes traveled from one community to another, but work and publications
have mainly remained restricted to their specific field. The differences of terminology and
interest together with the obvious difficulty of reading and remaining informed of the cu-
mulative literature of different fields have obstructed the transmission of knowledge between
communities. This is unfortunate because the different points of view adopted by different

domains offer a wide range of solutions to visibility problems. Though some surveys exist about certain spe-
cific aspects of visibility, no global overview has gathered and compared the answers found in those domains.
The second part of this thesis is an attempt to fill this vacuum. We hope that it will be useful to students begin-
ning work on visibility, as well as to researchers in one field who are interested in solutions offered by other
domains. We also hope that this survey will be an opportunity to consider visibility questions under a new
perspective.

1 Spirit of the survey

This survey is more a “horizontal” survey than a “vertical” survey. Our purpose is not to precisely compare the
methods developed in a very specific field; our aim is to give an overview which is as wide as possible.

We also want to avoid a catalogue of visibility methods developed in each domain: Synthesis and compar-
ison are sought. However, we believe that it is important to understand the specificities of visibility problems
as encountered in each field. This is why we begin this survey with an overview of the visibility questions as
they arise field by field. We will then present the solutions proposed, using a classification which is not based
on the field in which they have been published.

5

6 CHAPTER 1. INTRODUCTION

Our classification is only an analysis and organisation tool; as any classification, it does not offer infallible
nor strict categories. A method can gather techniques from different categories, requiring the presentation of a
single paper in several chapters. We however attempt to avoid this, but when necessary it will be indicated with
cross-references.

We have chosen to develop certain techniques with more details not to remain too abstract. A section in
general presents a paradigmatic method which illustrates a category. It is then followed by a shorter description
of related methods, focusing on their differences with the first one.

We have chosen to mix low-level visibility acceleration schemes as well as high-level methods which make
use of visibility. We have also chosen not to separate exact and approximate methods, because in many cases
approximate methods are “degraded” or simplified versions of exact algorithms.

In the footnotes, we propose some thoughts or references which are slightly beyond the scope of this survey.
They can be skipped without missing crucial information.

2 Flaws and bias

This survey is obviously far from complete. A strong bias towards computer graphics is clearly apparent, both
in the terminology and number of references.

Computational geometry is insufficiently treated. In particular, the relations between visibility queries and
range-searching would deserve a large exposition. 2D visibility graph construction is also treated very briefly.

Similarly, few complexity bounds are given in this survey. One reason is that theoretical bounds are not
always relevant to the analysis of the practical behaviour of algorithms with “typical” scenes. Practical timings
and memory storage would be an interesting information to complete theoretical bounds. This is however
tedious and involved since different machines and scenes or objects are used, making the comparison intricate,
and practical results are not always given. Nevertheless, this survey could undoubtedly be augmented with
some theoretical bounds and statistics.

Terrain (or height field) visibility is nearly absent of our overview, even though it is an important topic,
especially for Geographical Information Systems (GIS) where visibility is used for display, but also to optimize
the placement of fire towers. We refer the interested reader to the survey by de Floriani et al. [FPM98].

The work in computer vision dedicated to the acquisition or recognition of shapes from shadows is also
absent from this survey. See e.g. [Wal75, KB98].

The problem of aliasing is crucial in many computer graphics situations. It is a large subject by itself, and
would deserve an entire survey. It is however not strictly a visibility problem, but we attempt to give some
references.

Neither practical answers nor advice are directly provided. The reader who reads this survey with the
question “what should I use to solve my problem” in mind will not find a direct answer. A practical guide
to visibility calculation would unquestionably be a very valuable contribution. We nonetheless hope that the
reader will find some hints and introductions to relevant techniques.

3 Structure

This survey is organised as follows. Chapter 2 introduces the problems in which visibility computations occur,
field by field. In chapter 3 we introduce some preliminary notions which will we use to analyze and classify the
methods in the following chapters. In chapter 4 we survey the classics of hidden-part removal. The following
chapters present visibility methods according to the space in which the computations are performed: chapter
5 deals with object space, chapter 6 with image-space, chapter 7 with viewpoint-space and finally chapter 8
treats line-space methods. Chapter 9 presents advanced issues: managing precision and dealing with moving
objects. Chapter 10 concludes with a discussion..

In appendix 12 we also give a short list of resources related to visibility which are available on the web. An
index of the important terms used in this survey can be found at the end of this thesis. Finally, the references
are annotated with the pages at which they are cited.

CHAPTER 2

Visibility problems

S’il n’y a pas de solution, c’est qu’il n’y a pas de
problème

LES SHADOKS

ISIBILITY PROBLEMS arise in many different contexts in various fields. In this section we
review the situations in which visibility computations are involved. The algorithms and data-
structures which have been developed will be surveyed later to distinguish the classification
of the methods from the context in which they have been developed. We review visibility in
computer graphics, then computer vision, robotics and computational geometry. We conclude

this chapter with a summary of the visibility queries involved.

1 Computer Graphics

For a good introduction on standard computer graphics techniques, we refer the reader to the excellent book by
Foley et al. [FvDFH90] or the one by Rogers [Rog97]. More advanced topics are covered in [WW92].

1.1 Hidden surface removal

View computation has been the major focus of early computer graphics research. Visibility was a synonym for
the determination of the parts/polygons/lines of the scene visible from a viewpoint. It is beyond the scope of
this survey to review the huge number of techniques which have been developed over the years. We however
review the great classics in section 4. The interested reader will find a comprehensive introduction to most of
the algorithms in [FvDFH90, Rog97]. The classical survey by Sutherland et al. [SSS74] still provides a good
classification of the techniques of the mid seventies, a more modern version being the thesis of Grant [Gra92].
More theoretical and computational geometry methods are surveyed in [Dor94, Ber93]. Some aspects are also
covered in section 4.1. For the specific topic of real time display for flight simulators, see the overview by
Mueller [Mue95].

The interest in hidden-part removal algorithms has been renewed by the recent domain of non-photorealistic
rendering, that is the generation of images which do not attempt to mimic reality, such as cartoons, technical

7

8 CHAPTER 2. VISIBILITY PROBLEMS

illustrations or paintings [MKT+97, WS94]. Some information which are more topological are required such
as the visible silhouette of the objects or its connected visible areas.

View computation will be covered in chapter 4 and section 1.4 of chapter 5.

1.2 Shadow computation

The efficient and robust computation of shadows is still one of the challenges of computer graphics. Shadows
are essential for any realistic rendering of a 3D scene and provide important clues about the relative positions
of objects1. The drawings by da Vinci in his project of a treatise on painting or the construction by Lambert
in Freye Perspective give evidence of the old interest in shadow computation (Fig. 2.1). See also the book
by Baxandall [Bax95] which presents very interesting insights on shadows in painting, physics and computer
science.

Figure 2.1: (a) Study of shadows by Leonardo da Vinci (Manuscript Codex Urbinas). (a) Shadow construction
by Johann Heinrich Lambert (Freye Perspective).

Hard shadows are caused by point or directional light sources. They are easier to compute because a point
of the scene is either in full light or is completely hidden from the source. The computation of hard shadows
is conceptually similar to the computation of a view from the light source, followed by a reprojection. It is
however both simpler and much more involved. Simpler because a point is in shadow if it is hidden from the
source by any object of the scene, no matter which is the closest. Much more involved because if reprojection
is actually used, it is not trivial by itself, and intricate sampling or field of view problems appear.

Soft shadows are caused by line or area light sources. A point can see all, part, or nothing of such a source,
defining the regions of total lighting, penumbra and umbra. The size of the zone of penumbra varies depending
on the relative distances between the source, the blocker and the receiver (see Fig. 2.2). A single view from the
light is not sufficient for their computation, explaining its difficulty.

An extensive article exists [WPF90] which surveys all the standard shadows computation techniques up to
1990.

Shadow computations will be treated in chapter 5 (section 4.1, 4.2, 4.4 and 5), chapter 6 (section 2.1 , 6 and
7) and chapter 7 (section 2.3 and 2.4).

The inverse problem has received little attention: a user imposes a shadow location, and a light position
is deduced. It will be treated in section 5.6 of chapter 5. This problem can be thought as the dual of sensor
placement or good viewpoint computation that we will introduce in section 2.3.

1.3 Occlusion culling

The complexity of 3D scenes to display becomes larger and larger, and can not be rendered at interactive
rates, even on high-end workstations. This is particularly true for applications such as CAD/CAM where the

1 The influence of the quality of shadows on the perception of the spatial relationships is however still a controversial topic. see e.g.
[Wan92, KKMB96]

1. COMPUTER GRAPHICS 9

(a) (b)

source

blocker

receiver

Figure 2.2: (a) Example of a soft shadow. Notice that the size of the zone of penumbra depends on the mutual
distances (the penumbra is wider on the left). (b) Part of the source seen from a point in penumbra.

databases are often composed of millions of primitives, and also in driving/flight simulators, and in walk-
throughs where a users want to walk through virtual buildings or even cities.

Occlusion culling (also called visibility culling) attempts to quickly discard the hidden geometry, by com-
puting a superset of the visible geometry which will be sent to the graphics hardware. For example, in a city,
the objects behind the nearby facades can be “obviously” rejected.

An occlusion culling algorithm has to be conservative. It may declare potentially visible an object which
is in fact actually hidden, since a standard view computation method will be used to finally display the image
(typically a z-buffer [FvDFH90]).

A distinction can be made between online and offline techniques. In an online occlusion culling method,
for each frame the objects which are obviously hidden are rejected on the fly. While offline Occlusion culling
precomputations consist in subdividing the scene into cells and computing for each cell the objects which may
be visible from inside the cell. This set of visible object is often called the potentially visible sets of the cell. At
display time, only the objects in the potentially visible set of the current cell are sent to the graphics hardware 2.

The landmark paper on the subject is by Clark in 1976 [Cla76] where he introduces most of the concepts
for efficient rendering. The more recent paper by Heckbert and Garland [HG94] gives a good introduction to
the different approaches for fast rendering. Occlusion culling techniques are treated in chapter 5 (section 4.4,
6.3 and 7), chapter 6 (section 3 and 4), chapter 7 (section 4) and chapter 8 (section 1.5).

1.4 Global Illumination

Global illumination deals with the simulation of light based on the laws of physics, and particularly with the
interactions between objects. Light may be blocked by objects causing shadows. Mirrors reflect light along the
symmetric direction with respect to the surface normal (Fig. 2.3(a)). Light arriving at a diffuse (or lambertian)
object is reflected equally in all directions (Fig. 2.3(b)). More generally, a function called BRDF (Bidirectional
Reflection Distribution Function) models the way light arriving at a surface is reflected (Fig. 2.3(c)). Fig 2.4
illustrates some bounces of light through a scene.

Kajiya has formalised global illumination with the rendering equation [Kaj86]. Light traveling through a
point in a given direction depends on all the incident light, that is, it depends on the light coming from all the
points which are visible. Its solution thus involves massive visibility computations which can be seen as the
equivalent of computing a view from each point of the scene with respect to every other.

The interested reader will find a complete presentation in the books on the subject [CW93b, SP94, Gla95].
Global illumination method can also be applied to the simulation of sound propagation. See the book by

Kutruff [Kut91] or [Dal96, FCE+98]. See section 4.3 of chapter 5. Sound however differs from light because

2Occlusion-culling techniques are also used to decrease the amount of communication in multi-user virtual environments: messages
and updates are sent between users only if they can see each other [Fun95, Fun96a, CT97a, MGBY99]. If the scene is too big to fit in
memory, or if it is downloaded from the network, occlusion culling can be used to load into memory (or from the network) only the part of
the geometry which may be visible [Fun96c, COZ98].

10 CHAPTER 2. VISIBILITY PROBLEMS

incoming
light

incoming
lightoutgoing

light
outgoing
light

incoming
light outgoing

light

(a) (b) (c)

Figure 2.3: Light reflection for a given incidence angle. (a) Perfect mirror reflection. (b) Diffuse reflection. (c)
General bidirectional reflectance distribution function (BRDF).

Figure 2.4: Global illumination. We show some paths of light: light emanating from light sources bounces on
the surfaces of the scene (We show only one outgoing ray at each bounce, but light is generally reflected in all
direction as modeled by a BRDF).

the involved wavelength are longer. Diffraction effects have to be taken into account and binary straight-line
visibility is a too simplistic model. This topic will be covered in section 2.4 of chapter 6.

In the two sections below we introduce the global illumination methods based on ray-tracing and finite
elements.

1.5 Ray-tracing and Monte-Carlo techniques

Whitted [Whi80] has extended the ray-casting developed by Appel [App68] and introduced recursive ray-
tracing to compute the effect of reflecting and refracting objects as well as shadows. A ray is simulated from
the viewpoint to each of the pixels of the image. It is intersected with the objects of the scene to compute
the closest point. From this point, shadow rays can be sent to the sources to detect shadows, and reflecting
or refracting rays can be sent in the appropriate direction in a recursive manner (see Fig. 2.5). A complete
presentation of ray-tracing can be found on the book by Glassner [Gla89] and an electronic publication is
dedicated to the subject [Hai]. A comprehensive index of related paper has been written by Speer [Spe92a]

More complete global illumination simulations have been developed based on the Monte-Carlo integration
framework and the aforementioned rendering equation. They are based on a probabilistic sampling of the
illumination, requiring to send even more rays. At each intersection point some rays are stochastically sent to
sample the illumination, not only in the mirror and refraction directions. The process then continues recursively.
It can model any BRDF and any lighting effect, but may be noisy because of the sampling.

Those techniques are called view dependent because the computations are done for a unique viewpoint.
Veach’s thesis [Vea97] presents a very good introduction to Monte-Carlo techniques.

The atomic and most costly operation in ray-tracing and Monte-Carlo techniques consists in computing the

1. COMPUTER GRAPHICS 11

shadow
ray

primary
ray

image

viewpoint

reflection
ray

Figure 2.5: Principle of recursive ray-tracing. Primary rays are sent from the viewpoint to detect the visible
object. Shadow rays are sent to the source to detect occlusion (shadow). Reflection rays can be sent in the
mirror direction.

first object hit by a ray, or in the case of rays cast for shadows, to determine if the ray intersects an object. Many
acceleration schemes have thus been developed over the two last decades. A very good introduction to most of
these techniques has been written by Arvo and Kirk [AK89].

Ray-shooting will be treated in chapter 5 (section 1 and 4.3), chapter 6 (section 2.2), chapter 8 (section 1.4
and 3) and chapter 9 (section 2.2).

1.6 Radiosity

Radiosity methods have first been developed in the heat transfer community (see e.g. [Bre92]) and then adapted
and extended for light simulation purposes. They assume that the objects of the scene are completely diffuse
(incoming light is reflected equally in all directions of the hemisphere), which may be reasonable for archi-
tectural scene. The geometry of the scene is subdivided into patches, over which radiosity is usually assumed
constant (Fig. 2.6). The light exchanges between all pairs of patches are simulated. The form factor between
patches A and B is the proportion of light leaving A which reaches B, taking occlusions into account. The
radiosity problem then resumes to a huge system of linear equations, which can be solved iteratively. Formally,
radiosity is a finite element method. Since lighting is assumed directionally invariant, radiosity methods pro-
vide view independent solutions, and a user can interactively walk through a scene with global illumination
effects. A couple of books are dedicated to radiosity methods [SP94, CW93b, Ash94].

Figure 2.6: Radiosity methods simulate diffuse interreflexions. Note how the subdivision of the geometry is
apparent. Smoothing is usually used to alleviate most of these artifacts.

Form factor computation is the costliest part of radiosity methods, because of the intensive visibility com-
putations they require [HSD94]. An intricate formula has been derived by Schroeder and Hanrahan [SH93]

12 CHAPTER 2. VISIBILITY PROBLEMS

for the form factor between two polygons in full visibility, but no analytical solution is known for the partially
occluded case.

Form factor computation will be treated in chapter 4 (section 2.2), chapter 5 (section 6.1 and 7), in chapter
6 (section 2.3), chapter 7 (section 2.3), chapter 8 (section 2.1) and chapter 9 (section 2.1).

Radiosity needs a subdivision of the scene, which is usually grid-like: a quadtree is adaptively refined in the
regions where lighting varies, typically the limits of shadows. To obtain a better representation, discontinuity
meshing has been introduced. It tries to subdivides the geometry of the scene along the discontinuities of the
lighting function, that is, the limits of shadows.

Discontinuity meshing methods are presented in chapter 5 (section 5.3), chapter 7 (section 2.3 and 2.4),
chapter 8 (section 2.1) and chapter 9 (section 1.3, 1.5 and 2.4) 3.

1.7 Image-based modeling and rendering

3D models are hard and slow to produce, and if realism is sought the number of required primitives is so huge
that the models become very costly to render. The recent domain of image-based rendering and modeling copes
with this through the use of image complexity which replaces geometric complexity. It uses some techniques
from computer vision and computer graphics. Texture-mapping can be seen as a precursor of image-based
techniques, since it improves the appearance of 3D scenes by projecting some images on the objects.

View warping [CW93a] permits the reprojection of an image with depth values from a given viewpoint to a
new one. Each pixel of the image is reprojected using its depth and the two camera geometries as shown in Fig.
2.7. It permits re-rendering of images at a cost which is independent of the 3D scene complexity. However,
sampling questions arise, and above all, gaps appear where objects which were hidden in the original view
become visible. The use of multiple base images can help solve this problem, but imposes a decision on how
to combine the images, and especially to detect where visibility problems occur.

initial image
pixels with depth

reprojected image

new viewpoint

?

?
?
?
?

?

Figure 2.7: View warping. The pixels from the initial image are reprojected using the depth information.
However, some gaps due to indeterminate visibility may appear (represented as “?” in the reprojected image)

Image-based modeling techniques take as input a set of photographs, and allow the scene to be seen from
new viewpoints. Some authors use the photographs to help the construction of a textured 3D model [DTM96].

3Recent approaches have improved radiosity methods through the use of non constant bases and hierarchical representations, but the
cost of form factor computation and the meshing artifact remain. Some non-diffuse radiosity computations have also been proposed at a
usually very high cost. For a short discussion of the usability of radiosity, see the talk by Sillion [Sil99].

2. COMPUTER VISION 13

Other try to recover the depth or disparity using stereo vision [LF94, MB95]. Image warping then allows the
computation of images from new viewpoints. The quality of the new images depends on the relevance of the
base images. A good set of cameras should be chosen to sample the scene accurately, and especially to avoid
that some parts of the scene are not acquired because of occlusion.

Some image-based rendering methods have also been proposed to speedup rendering. They do not require
the whole 3D scene to be redrawn for each frame. Instead, the 2D images of some parts of the scene are cached
and reused for a number of frames with simple transformation (2D rotation and translation [LS97], or texture
mapping on flat [SLSD96, SS96a] or simplified [SDB97] geometry). These image-caches can be organised
as layers, and for proper occlusion and parallax effects, these layers have to be wisely organised, which has
reintroduced the problem of depth ordering.

These topics will be covered in chapter 4 (section 4.3), chapter 5 (section 4.5), chapter 6 (section 5) and
chapter 8 (section 1.5).

1.8 Good viewpoint selection

In production animation, the camera is placed by skilled artists. For others applications such as games, tele-
conference or 3D manipulation, its position is also very important to permit a good view of the scene and the
understanding of the spatial positions of the objects.

This requires the development of methods which automatically optimize the viewpoint. Visibility is one
of the criteria, but one can also devise other requirements to convey a particular ambiance [PBG92, DZ95,
HCS96].

The visual representation of a graph (graph drawing) in 3D raises similar issues, the number of visual
alignments should be minimized. See section 1.5 of chapter 7.

We will see in section 2.3 that the placement of computer vision offers similar problems. The corresponding
techniques are surveyed in chapter 5 (section 4.5 and 5.5) and chapter 7 (section 3).

2 Computer Vision

An introduction and case study of many computer vision topics can be found in the book by Faugeras [Fau93]
or the survey by Guerra [Gue98]. The classic by Ballard and Brown [BB82] is more oriented towards image
processing techniques for vision.

2.1 Model-based object recognition

The task of object recognition assumes a database of objects is known, and given an image, it reports if the
objects are present and in which position. We are interested in model-based recognition of 3D objects, where
the knowledge of the object is composed of an explicit model of its shape. It first involves low-level computer
vision techniques for the extraction of features such as edges. Then these features have to be compared with
corresponding features of the objects. The most convenient representations of the objects for this task represent
the possible views of the object (viewer centered representation) rather than its 3D shape (object-centered
representation). These views can be compared with the image more easily (2D to 2D matching as opposed to
3D to 2D matching). Fig. 2.8 illustrates a model-based recognition process.

One thus needs a data-structure which is able to efficiently represent all the possible views of an object.
Occlusion has to be taken into account, and views have to be grouped according to their similarities. A class
of similar views is usually called an aspect . A good viewer-centered representation should be able to a priori
identify all the possible different views of an object, detecting “where” the similarity between nearby views is
broken.

Psychological studies have shown evidences that the human visual system possesses such a viewer-centered
representation, since objects are more easily recognised when viewed under specific viewpoints [Ull89, EB92].

A recent survey exists [Pop94] which reviews results on all the aspects of object recognition. See also the
book by Jain and Flynn [JF93] and the survey by Crevier and Lepage [CL97]

14 CHAPTER 2. VISIBILITY PROBLEMS

viewer-centered representation

input image

extracted features

Figure 2.8: Model-based object recognition. Features are extracted from the input image and matched against
the viewer-centered representation of an L-shaped object.

Object recognition has led to the development of one of the major visibility data structures, the aspect
graph4 which will be treated in sections 1 of chapter 7 and section 1.4 and 2.4 of chapter 9.

2.2 Object reconstruction by contour intersection

Object reconstruction takes as input a set of images to compute a 3D model. We do not treat here the recon-
struction of volumetric data from slices obtained with medical equipment since it does not involve visibility.

We are interested in the reconstruction process based on contour intersection. Consider a view, from which
the contour of the object has been extracted. The object is constrained to lie inside the cone defined by the
viewpoint and this contour. If many images are considered, the cones can be intersected and a model of the
object is estimated [SLH89]. The process is illustrated in Fig. 2.9. This method is very robust and easy to
implement especially if the intersections are computed using a volumetric model by removing voxels in an
octree [Pot87].

(a) (b)

Figure 2.9: Object reconstruction by contour intersection. The contour in each view defines a general cone in
which the object is constrained. A model of the object is built using the intersection of the cones. (a) Cone
resulting from one image. (b) Intersection of cones from two images.

However, how close is this model to the actual object? Which class of objects can be reconstructed using
this technique? If an object can be reconstructed, how many views are needed? This of course depends on
self-occlusion. For example, the cavity in a bowl can never be reconstructed using this technique if the camera
is constrained outside the object. The analysis of these questions imposes involved visibility considerations, as
will be shown in section 3 of chapter 5.

4However viewer centered representation now seem superseded by the use of geometric properties which are invariant by some geo-
metric transformation (affine or perspective). These geometric invariants can be used to guide the recognition of objects [MZ92, Wei93].

2. COMPUTER VISION 15

2.3 Sensor placement for known geometry

Computer vision tasks imply the acquisition of data using any sort of sensor. The position of the sensor can
have dramatic effects on the quality and efficiency of the vision task which is then processed. Active vision
deals with the computation of efficient placement of the sensors. It is also referred to as viewpoint planning.

In some cases, the geometry of the environment is known and the sensor position(s) can be preprocessed.
It is particularly the case for robotics applications where the same task has to be performed on many avatars of
the same object for which a CAD geometrical model is known.

The sensor(s) can be mobile, for example placed on a robot arm, it is the so called “camera in hand”. One
can also want to design a fixed system which will be used to inspect a lot of similar objects.

An example of sensor planning is the monitoring of a robot task like assembly. Precise absolute positioning
is rarely possible, because registration can not always be performed, the controllers used drift over time and the
object on which the task is performed may not be accurately modeled or may be slightly misplaced [HKL98,
MI98]. Uncertainties and tolerances impose the use of sensors to monitor the robot Fig. 2.10 and 2.11 show
examples of sensor controlled task. It has to be placed such that the task to be performed is visible. This
principally requires the computation of the regions of space from which a particular region is not hidden. The
tutorial by Hutchinson et al. [HH96] gives a comprehensive introduction to the visual control of robots.

Figure 2.10: The screwdriver must be placed very precisely in front of the screw. The task is thus controlled by a camera.

Figure 2.11: The insertion of this peg into the hole has to be performed very precisely, under the control of a
sensor which has to be carefully placed.

Another example is the inspection of a manufactured part for quality verification. Measurements can for
example be performed by triangulation using multiple sensors. If the geometry of the sensors is known, the
position of a feature projecting on a point in the image from a given sensor is constrained on the line going
through the sensor center and the point in the image. With multiple images, the 3D position of the feature
is computed by intersecting the corresponding lines. Better precision is obtained for 3 views with orthogonal
directions. The sensors have to be placed such that each feature to be measured is visible in at least two images.
Visibility is a crucial criterion, but surface orientation and image resolution are also very important.

The illumination of the object can also be optimized. One can require that the part to be inspected be well
illuminated. One can maximize the contrast to make important features easily recognisable. The optimization
of viewpoint and illumination together of course leads to the best results but has a higher complexity.

16 CHAPTER 2. VISIBILITY PROBLEMS

See the survey by Roberts and Marshall [RM97] and by Tarabanis et al. [TAT95]. Section 5.5 of chapter 5
and section 3 of chapter 7 deal with the computation of good viewpoints for known environment.

2.4 Good viewpoints for object exploration

Computer vision methods have been developed to acquire a 3D model of an unknown object. The choice of
the sequence of sensing operations greatly affects the quality of the results, and active vision techniques are
required.

We have already reviewed the contour intersection method. We have evoked only the theoretical limits of
the method, but an infinite number of views can not be used! The choice of the views to be used thus has to be
carefully performed as function of the already acquired data.

Another model acquisition technique uses a laser plane and a camera. The laser illuminates the object along
a plane (the laser beam is quickly rotated over time to generate a plane). A camera placed at a certain distance
of the laser records the image of the object, where the illumination by the laser is visible as a slice (see Fig.
2.12). If the geometry of the plane and camera is known, triangulation can be used to infer the coordinates of
the illuminated slice of the object. Translating the laser plane permits the acquisition of the whole model. The
data acquired with such a system are called range images, that is, an image from the camera location which
provides the depth of the points.

Two kinds of occlusion occur with these system: some part of an illuminated slice may not be visible to the
camera, and some part of the object can be hidden to the laser, as shown in Fig. 2.12.

shadow of
the camera

laser
camera

laser plane

shadow
of the laser illuminated

slice

Figure 2.12: Object acquisition using a laser plane. The laser emits a plane, and the intersection between this
plane and the object is acquired by a camera. The geometry of the slice can then be easily deduced. The laser
and camera translate to acquire the whole object. Occlusion with respect to the laser plane (in black) and to the
camera (in grey) have to be taken into account.

These problems are referred to as best-next-view or purposive viewpoint adjustment. The next viewpoint has
to be computed and optimized using the data already acquired. Previously occluded parts have to be explored.

The general problems of active vision are discussed in the report written after the 1991 Active Vision Work-
shop [AAA+92]. An overview of the corresponding visibility techniques is given in [RM97, TAT95] and they
will be discussed in section 4.5 of chapter 5.

3 Robotics

A comprehensive overview of the problems and specificities of robotics research can be found in [HKL98]. A
more geometrical point of view is exposed in [HKL97]. The book by Latombe [Lat91] gives a complete and
comprehensive presentation of motion planning techniques.

3. ROBOTICS 17

A lot of the robotics techniques that we will discuss treat only 2D scenes. This restriction is quite under-
standable because a lot of mobile robots are only allowed to move on a 2D floorplan.

As we have seen, robotics and computer vision share a lot of topics and our classification to one or the other
specialty is sometimes arbitrary.

3.1 Motion planning

A robot has a certain number of degrees of freedom. A variable can be assigned to each degree of freedom,
defining a (usually multidimensional) configuration space. For example a two joint robot has 4 degrees of
freedom, 2 for each joint orientation. A circular robot allowed to move on a plane has two degrees of freedom
if its orientation does not have to be taken into account. Motion planning [Lat91] consists in finding a path
from a start position of the robot to a goal position, while avoiding collision with obstacles and respecting
some optional additional constraints. The optimality of this path can also be required.

The case of articulated robots is particularly involved because they move in high dimensional configuration
spaces. We are interested here in robots allowed to translate in 2D euclidean space, for which orientation is not
considered. In this case the motion planning problem resumes to the motion planning for a point, by “growing”
the obstacles using the Minkovski sum between the robot shape and the obstacles, as illustrated in Fig. 2.13.

goal

grown
obstacle

start

2D shape
of the robot

obstacle

Figure 2.13: Motion planning on a floorplan. The obstacles are grown using the Minkovski sum with the shape
of the robot. The motion planning of the robot in the non-grown scene resumes to that of its centerpoint in the
grown scene.

The relation between euclidean motion planning and visibility comes from this simple fact: A point robot
can move in straight line only to the points of the scene which are visible from it.

We will see in Section 2 of chapter 5 that one of the first global visibility data structure, the visibility graph
was developed for motion planning purposes. 5

3.2 Visibility based pursuit-evasion

Recently motion planning has been extended to the case where a robot searches for an intruder with arbitrary
motion in a known 2D environment. A mobile robot with 360 ◦ field of view explores the scene, “cleaning”
zones. A zone is cleaned when the robot sees it and can verify that no intruder is in it. It remains clean if no
intruder can go there from an uncleaned region without being seen. If all the scene is cleaned, no intruder can
have been missed. Fig. 2.14 shows an example of a robot strategy to clean a simple 2D polygon.

If the environment contains a “column” (that is topologically a hole), it can not be cleaned by a single robot
since the intruder can always hide behind the column.

Extensions to this problem include the optimization of the path of the robot, the coordination of multiple
robots, and the treatment of sensor limitations such as limited range or field of view.

5 Assembly planning is another thematic of robotics where the ways to assemble or de-assemble an object are searched [HKL98]. The
relationship between these problems and visibility would deserve exploration, especially the relation between the possibility to translate a
part and the visibility of the hole in which it has to be placed.

18 CHAPTER 2. VISIBILITY PROBLEMS

(a) (b) (c)

(e) (f)(d)

Figure 2.14: The robot has to search for an unknown intruder. The part of the scene visible from the robot is in
dark grey, while the “cleaned” zone is in light grey. At no moment can an intruder go from the unknown region
to the cleaned region without being seen by the robot.

Pursuit evasion is somehow related to the art-gallery problem which we will present in section 4.3. A
technique to solve this pursuit-evasion problem will be treated in section 2.2 of chapter 7.

A related problem is the tracking of a mobile target while maintaining visibility. A target is moving in a
known 2D environment, and its motion can have different degrees of predictability (completely known motion,
bound on the velocity). A strategy is required for a mobile tracking robot such that visibility with the target is
never lost. A perfect strategy can not always be designed, and one can require that the probability to lose the
target be minimal. See section 3.3 of chapter 7.

3.3 Self-localisation

A mobile robot often has to be localised in its environment. The robot can therefore be equipped with sensor
to help it determine its position if the environment is known. Once data have been acquired, for example in the
form of a range image, the robot has to infer its position from the view of the environment as shown in Fig.
2.15. See the work by Drumheller [Dru87] for a classic method.

(a) (b)

Figure 2.15: 2D Robot localisation. (a) View from the robot. (b) Deduced location of the robot.

This problem is in fact very similar to the recognition problem studied in computer vision. The robot has to
“recognise” its view of the environment. We will see in section 2.1 of chapter 7 that the approaches developed

4. COMPUTATIONAL GEOMETRY 19

are very similar.

4 Computational Geometry

The book by de Berg et al. [dBvKOS97] is a very comprehensive introduction to computational geometry.
The one by O’Rourke [O’R94] is more oriented towards implementation. More advanced topics are treated in
various books on the subject [Ede87, BY98]. Computational geometry often borrows themes from robotics.

Traditional computational geometry deals with the theoretical complexity of problems. Implementation is
not necessarily sought. Indeed some of the algorithms proposed in the literature are not implementable because
they are based on too intricate data-structures. Moreover, very good theoretical complexity sometimes hides
a very high constant, which means that the algorithm is not efficient unless the size of the input is very large.
However, recent reports [Cha96, TAA+96, LM98] and the CGAL project [FGK+96] (a robust computational
geometry library) show that the community is moving towards more applied subjects and robust and efficient
implementations.

4.1 Hidden surface removal

The problem of hidden surface removal has also been widely treated in computational geometry, for the case
of object-precision methods and polygonal scenes. It has been shown that a view can have O(n 2) complexity,
where n is the number of edges (for example if the scene is composed of rectangles which project like a grid
as shown in Fig. 2.16). Optimal O(n2) algorithms have been described [McK87], and research now focuses on
output-sensitive algorithms, where the cost of the method also depends on the complexity of the view: a hidden
surface algorithms should not spend O(n2) time if one object hides all the others.

} n
2

n
2 }

Figure 2.16: Scene composed of n rectangles which exhibits a view with complexity O(n 2): the planar map
describing the view has O(n2) segments because of the O(n2) visual intersections.

The question has been studied in various context: computation of a single view, preprocessing for multiple
view computation, and update of a view along a predetermined path.

Constraints are often imposed on the entry. Many papers deal with axis aligned rectangles, terrains or
c-oriented polygons (the number of directions of the planes of the polygons is limited).

See the thesis by de Berg [Ber93] and the survey by Dorward [Dor94] for an overview. We will survey
some computational geometry hidden-part removal methods in chapter 4 (section 2.3 and 8), chapter 5 (section
1.5) and chapter 8 (section 2.2).

4.2 Ray-shooting and lines in space

The properties and algorithms related to lines in 3D space have received a lot of attention in computational
geometry.

Many algorithms have been proposed to reduced the complexity of ray-shooting (that is, the determination
of the first object hit by a ray). Ray-shooting is often an atomic query used in computational geometry for

20 CHAPTER 2. VISIBILITY PROBLEMS

hidden surface removal. Some algorithms need to compute what is the object seen behind a vertex, or behind
the visual intersection of two edges.

Work somehow related to motion planning concerns the classification of lines in space: Given a scene
composed of a set of lines, do two query lines, have the same class, i.e. can we continuously move the first
one to the other without crossing a line of the scene? This problem is related to the partition of rays or lines
according to the object they see, as will be shown in section 2.2.

Figure 2.17: Line stabbing a set of convex polygons in 3D space

Given a set of convex objects, the stabbing problems searches for a line which intersects all the objects.
Such a line is called a stabbing line or stabber or transversal (see Fig. 2.17). Stabbing is for example useful to
decide if a line of sight is possible through a sequence of doors 6.

We will not survey all the results related to lines in space; we will consider only those where the data-
structures and algorithms are of a particular interest for the comprehension of visibility problems. See chapter
8. The paper by Pellegrini [Pel97b] reviews the major results about lines in space and gives the corresponding
references.

4.3 Art galleries

In 1973, Klee raised this simple question: how many cameras are needed to guard an art gallery? Assume the
gallery is modeled by a 2D polygonal floorplan, and the camera have infinite range and 360 ◦ field of view. This
problem is known as the art gallery problem. Since then, this question has received considerable attention, and
many variants have been studied, as shown by the book by O’Rourke [O’R87] and the surveys on the domain
[She92, Urr98]. The problem has been shown to be NP-hard.

Variation on the problem include mobile guards, limited field of view, rectilinear polygons and illumination
of convex sets. The results are too numerous and most often more combinatorial than geometrical (the actual
geometry of the scene is not taken into account, only its adjacencies are) so we refer the interested reader to the
aforementioned references. We will just give a quick overview of the major results in section 3.1 of chapter 7.

The art gallery problem is related to many questions raised in vision and robotics as presented in section 2
and 3, and recently in computer graphics where the acquisition of models from photographs requires the choice
of good viewpoints as seen in section 1.7.

4.4 2D visibility graphs

Another important visibility topic in computational geometry is the computation of visibility graphs which we
will introduce in section 2. The characterisation of such graphs (given an abstract graph, is it the visibility
graph of any scene?) is also explored, but the subject is mainly combinatorial and will not be addressed in this
survey. See e.g. [Gho97, Eve90, OS97].

6Stabbing can also have an interpretation in statistics to find a linear approximation to data with imprecisions. Each data point together
with its precision interval defines a box in a multidimensional space. A stabber for these boxes is a valid linear approximation.

5. ASTRONOMY 21

5 Astronomy

5.1 Eclipses

Solar and lunar eclipse prediction can be considered as the first occlusion related techniques. However, the
main issue was focused on planet motion prediction rather than occlusion.

(a) (b)

Figure 2.18: Eclipses. (a) Lunar and Solar eclipse by Purbach. (b) Prediction of the 1715 eclipse by Halley.

Figure 2.19: 1994 solar eclipse and 1993 lunar eclipse. Photograph Copyright 1998 by Fred Espenak
(NASA/Goddard Space Flight Center).

See e.g.
http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html
http://www.bdl.fr/Eclipse99

5.2 Sundials

Sundials are another example of shadow related techniques.

see e.g.
http://www.astro.indiana.edu/personnel/rberring/sundial.html
http://www.sundials.co.uk/2sundial.htm

22 CHAPTER 2. VISIBILITY PROBLEMS

Avenue des
Champs-Elysées

Place
de la

Concorde

Rue
Royale Rue

de Rivoli

Jardin des
Tuileries

OBELISQUE N9
10

11
121314 15 16 17

equinoxe

Summer Solstice

Winter solstic
e

(a) (b)

Figure 2.20: (a) Project of a sundial on the Place de la Concorde in Paris. (b) Complete sundial with analemmas
in front of the CICG in Grenoble.

6 Summary

Following Grant [Gra92], visibility problems can be classified according to their increasing dimensionality:
The most atomic query is ray-shooting. View and hard shadow computation are two dimensional problems.
Occlusion culling with respect to a point belong to the same category which we can refer to as classical visibility
problems. Then comes what we call global visibility issues7. These include visibility with respect to extended
regions such as extended light sources or volumes, or the computation of the region of space from which a
feature is visible. The mutual visibility of objects (required for example for global illumination simulation) is
a four dimensional problem defined on the pairs of points on surfaces of the scene. Finally the enumeration
of all possible views of an object or the optimization of a viewpoint impose the treatment of two dimensional
view computation problems for all possible viewpoints.

7Some author also define occlusion by other objects as global visibility effects as opposed to backface culling and silhouette computa-
tion.

CHAPTER 3

Preliminaries

On apprend à reconnaı̂tre les forces sous-jacentes ; on
apprends la préhistoire du visible. On apprend à fouiller
les profondeurs, on apprend à mettre à nu. On apprend
à démontrer, on apprend à analyser

Paul KLEE, Théorie de l’art moderne

EFORE presenting visibility techniques, we introduce a few notions which will be useful for
the understanding and comparison of the methods we survey. We first introduce the different
spaces which are related to visibility and which induce the classification that we will use.
We then introduce the notion of visual event, which describes “where” visibility changes in
a scene and which is central to many methods. Finally we discuss some of the differences

which explain why 3D visibility is much more involved than its 2D counterpart.

1 Spaces and algorithm classification

In their early survey Sutherland, Sproull and Schumacker [SSS74] classified hidden-part removal algorithms
into object space and image-space methods. Our terminology is however slightly different from theirs, since
they designated the precision at which the computations are performed (at the resolution of the image or exact),
while we have chosen to classify the methods we survey according to the space in which the computations are
performed.

Furthermore we introduce two new spaces: the space of all viewpoints and the space of lines. We will give
a few simple examples to illustrate what we mean by all these spaces.

1.1 Image-space

In what follow, we have classified as image-space all the methods which perform their operations in 2D pro-
jection planes (or other manifolds). As opposed to Sutherland et al.’s classification [SSS74], this plane is not
restricted to the plane of the actual image. It can be an intermediate plane. Consider the example of hard
shadow computation: an intermediate image from the point light source can be computed.

23

24 CHAPTER 3. PRELIMINARIES

Of course if the scene is two dimensional, image space has only one dimension: the angle around the
viewpoint.

Image-space methods often deal with a discrete or rasterized version of this plane, sometimes with a depth
information for each point. Image-space methods will be treated in chapter 6.

1.2 Object-space

In contrast, object space is the 3 or 2 dimensional space in which the scene is defined. For example, some hard
shadow computation methods use shadow volumes [FvDFH90, WPF90]. These volumes are truncated frusta
defined by the point light source and the occluding objects. A portion of space is in shadow if it lies inside a
shadow volume. Object-space methods will be treated in chapter 5.

1.3 Viewpoint-space

We define the viewpoint space as the set of all possible viewpoints. This space depends on the projection used.
If perspective projection is used, the viewpoint space is equivalent to the object space. However, if orthographic
(also called parallel) projection is considered, then a view is defined by a direction, and the viewpoint space
is the set S 2 of directions, often called viewing sphere as illustrated in Fig. 3.1. Its projection on a cube is
sometimes used for simpler computations.

direction of
projection

(a) (b) (c)

Figure 3.1: (a) Orthographic view. (b) Corresponding point on the viewing sphere and (c) on the viewing cube.

An example of viewpoint space method would be to discretize the viewpoint space and precompute a view
for each sample viewpoint. One could then render views very quickly with a simple look-up scheme. The
viewer-centered representation which we have introduced in section 2.1 of the previous chapter is typically a
viewpoint space approach since each possible view should be represented.

Viewpoint-space can be limited. For example, the viewer can be constrained to lie at eye level, defining a
2D viewpoint space (the plane z = heye) in 3D for perspective projection. Similarly, the distance to a point can
be fixed, inducing a spherical viewpoint-space for perspective projection.

It is important to note that even if perspective projection is used, there is a strong difference between
viewpoint space methods and object-space methods. In a viewpoint space, the properties of points are defined
by their view. An orthographic viewpoint-space could be substituted in the method.

Shadow computation methods are hard to classify: the problem can be seen as the intersection of scene
objects with shadow volume, but it can also be seen as the classification of viewpoint lying on the objects
according to their view of the source. Some of our choices can be perceived arbitrary.

In 2D, viewpoint-space has 2 dimensions for perspective projection and has 1 dimension if orthographic
projection is considered.

Viewpoint space methods will be treated in chapter 7.

1.4 Line-space

Visibility can intuitively be defined in terms of lines: two point A and B are mutually visible if no object
intersects line (AB) between them. It is thus natural to describe visibility problems in line space.

1. SPACES AND ALGORITHM CLASSIFICATION 25

For example, one can precompute the list of objects which intersect each line of a discretization of line-
space to speed-up ray-casting queries.

In 2D, lines have 2 dimensions: for example its direction θ and distance to the origin ρ. In 3D however, lines
have 4 dimensions. They can for example be parameterized by their direction (θ,ϕ) and by the intersection
(u,v) on an orthogonal plane (Fig. 3.2(a)). They can also be parameterized by their intersection with two planes
(Fig. 3.2(b)). These two parameterizations have some singularities (at the pole for the first one, and for lines
parallel to the two planes in the second). Lines in 3D space can not be parameterized without a singularity. In
section 3 of chapter 8 we will study a way to cope with this, embedding lines in a 5 dimensional space.

θ
u

v
D

y

x

z

t
ϕ

(s,t) (u,v)

(a) (b)

Figure 3.2: Line parameterisation. (a) Using two angles and the intersection on an orthogonal plane. (b) Using
the intersection with two planes.

The set of lines going through a point describe the view from this point, as in the ray-tracing technique (see
Fig. 2.5). In 2D the set of lines going through a point has one dimension: for example their angle. In 3D, 2
parameters are necessary to describe a line going through a point, for example two angles.

Many visibility queries are expressed in terms of rays and not lines. The ray-shooting query computes
the first object seen from a point in a given direction. Mathematically, a ray is a half line. Ray-space has 5
dimensions (3 for the origin and two for the direction).

The mutual visibility query can be better expressed in terms of segments. A and B are mutually visible only
if segment [AB] intersects no object. Segment space has 6 dimensions: 3 for each endpoint.

The information expressed in terms of rays or segments is very redundant: many colinear rays “see” the
same object, many colinear segments are intersected by the same object. We will see that the notion of maximal
free segments handles this. Maximal free segments are segments of maximal length which do not touch the
objects of the scene in their interior. Intuitively these are segments which touch objects only at their extremities.

We have decided to group the methods which deal with these spaces in chapter 8. The interested reader will
find some important notions about line space reviewed in appendix 11.

1.5 Discussion

Some of the methods we survey do not perform all their computations in a single space. An intermediate
data-structure can be used, and then projected in the space in which the final result is required.

Even though each method is easier to describe in a given space, it can often be described in a different space.
Expressing a problem or a method in different spaces is particularly interesting because it allows different
insights and can yield alternative methods. We particularly invite the reader to transpose visibility questions to
line space or ray space. We will show throughout this survey that visibility has a very natural interpretation in
line space.

However this is not an incitation to actually perform complex calculations in 4D line space. We just suggest
a different way to understand problems and develop methods, even if calculations are eventually performed in
image or object space.

26 CHAPTER 3. PRELIMINARIES

2 Visual events, singularities

We now introduce a notion which is central to most of the algorithms, and which expresses “how” and “where”
visibility changes. We then present the mathematical framework which formalizes this notion, the theory of
singularities. The reader may be surprised by the space devoted in this survey to singularity theory compared
to its use in the literature. We however believe that singularity theory permits a better insight on visibility
problems, and allows one to generalize some results on polygonal scenes to smooth objects.

2.1 Visual events

Consider the example represented in Fig. 3.3. A polygonal scene is represented, and the views from three
eyepoints are shown on the right. As the eyepoint moves downwards, pyramid P becomes completely hidden
by polygon Q. The limit eyepoint is eyepoint 2, for which vertex V projects exactly on edge E. There is a
topological change in visibility: it is called a visual event or a visibility event.

V

E 1

2

3
P

Q

E

V

Figure 3.3: EV visual event. The views from the three eyepoints are represented on the right. As the eyepoint
moves downwards, vertex V becomes hidden. Viewpoint 2 is the limit eyepoint, it lies on a visual event.

Visual events are fundamental to understand many visibility problems and techniques. For example when
an observer moves through a scene, objects appear and disappear at such events (Fig. 3.3). If pyramid P emits
light, then eyepoint 1 is in penumbra while eyepoint 3 is in umbra: the visual event is a shadow boundary. If a
viewpoint is sought from which pyramid P is visible, then the visual event is a limit of the possible solutions.

V

E

P

Q

V

E

P

Q

(a) (b) (c)

Figure 3.4: Locus an EV visual event. (a) In object space or perspective viewpoint space it is a wedge. (b) In
orthographic viewpoint space it is an arc of a great circle. (c) In line space it is the 1D set of lines going through
V and E

Fig. 3.4 shows the locus of this visual event in the spaces we have presented in the previous section. In

2. VISUAL EVENTS, SINGULARITIES 27

object space or in perspective viewpoint space, it is the wedge defined by vertex V and edge E. We say that
V and E are the generators of the event. In orthographic viewpoint space it is an arc of a great circle of the
viewing sphere. Finally, in line-space it is the set of lines going through V and E. These critical lines have one
degree of freedom since they can be parameterized by their intercept on E, we say that it is a 1D set of lines.

The EV events generated by a vertex V are caused by the edges which are visible from V . The set of events
generated by V thus describe the view from V . Reciprocally, a line drawing of a view from an arbitrary point P
can be seen as the set of EV events which would be generated if an imaginary vertex was place at P.

R
Q

EQ

1

2

3

R
P

Q

ER

EP P

R
Q

R
Q

P

P

Figure 3.5: A EEE visual event. The views from the three eyepoints are represented on the right. As the
eyepoint moves downwards, polygon R becomes hidden by the conjunction of polygon P and Q. From the
limit viewpoint 2, the three edges have a visual intersection.

There is also a slightly more complex kind of visual event in polygonal scenes. It involves the interaction of
3 edges which project on the same point (Fig. 3.5). When the eyepoint moves downwards, polygon P becomes
hidden by the conjunction of Q and R. From the limit eyepoint 2, edges E P, EQ and ER are aligned.

R
P

Q

R
P

Q

(b)(a) (c)

Figure 3.6: Locus of a EEE visual event. (a) In object-space or perspective viewpoint space it is a ruled quadrics.
(b) In orthographic viewpoint space it is a quadric on the viewing sphere. (c) In line space it is the set of lines
stabbing the three edges.

The locus of such events in line space is the set of lines going through the three edges (we also say that
they stab the three edges) as shown on Fig. 3.6(c). In object space or perspective viewpoint space, this defines
a ruled quadric often called swath (Fig. 3.6(a)). (It is in fact doubly ruled: the three edges define one family of
lines, the stabber defining the second.) In orthographic viewpoint space it is a quadric on the viewing sphere
(see Fig. 3.6(b)).

Finally, a simpler class of visual events are caused by a viewpoint lying in the plane of faces of the scene.
The face becomes visible or hidden at such an event.

Visual events are simpler in 2D: they are simply the bitangents and inflexion pointsof the scene.
A deeper understanding of visual events and their generalisation to smooth objects requires a strong for-

malism: it is provided by the singularity theory.

28 CHAPTER 3. PRELIMINARIES

2.2 Singularity theory

The singularity theory studies the emergence of discrete structures from smooth continuous ones. The branch
we are interested in has been developed mainly by Whitney [Whi55], Thom [Tho56, Tho72] and Arnold
[Arn69]. It permits the study of sudden events (called catastrophes) in systems governed by smooth con-
tinuous laws. An introduction to singularity theory for visibility can be found in the masters thesis by PetitJean
[Pet92] and an educational comics has been written by Ian Stewart [Ste82]. See also the book by Koenderink
[Koe90] or his papers with van Doorn [Kv76, KvD82, Kø84, Koe87].

We are interested in the singularities of smooth mappings. For example a view projection is a smooth
mapping which associate each point of 3D space to a point on a projection plane. First of all, singularity theory
permits the description the structure of the visible parts of a smooth object.

cusp t-vertex

fold

(a) (b)

cusp t-vertex

fold

(c)

Figure 3.7: View of a torus. (a) Shaded view. (b) Line drawing with singularities indicated (b) Opaque and
transparent contour.

Consider the example of a smooth 3D object such as the torus represented in Fig. 3.7(a). Its projection
on a viewing plane is continuous nearly everywhere. However, some abrupt changes appear at the so called
silhouette. Consider the number of point of the surface of the object projecting on a given point on the projection
plane (counting the backfacing points). On the exterior of the silhouette no point is projected. In the interior
two points (or more) project on the same point. These two regions are separated by the silhouette of the object
at which the number of projected point changes abruptly.

This abrupt change in the smooth mapping is called a singularity or catastrophe or bifurcation. The singu-
larity corresponding to the silhouette was named fold (or also occluding contour or limb). The fold is usually
used to make a line drawing of the object as in Fig. 3.7(b). It corresponds to the set of points which are tangent
to the viewing direction1.

The fold is the only stable curve singularity for generic surfaces: if we move the viewpoint, there will
always be a similar fold.

The projection in Fig. 3.7 also exhibits two point singularities: a t-vertex and a cusp. T-vertices results from
the intersection of two folds. Fig. 3.7(c) shows that a fourth fold branch is hidden behind the surface. Cusps
represent the visual end of folds. In fact, a cusp corresponds to a point where the fold has an inflexion in 3D
space. A second tangent fold is hidden behind the surface as illustrated in Fig. 3.7(c).

These are the only three stable singularities: all other singularities disappear after a small perturbation of
the viewpoint (if the object is generic, which is not the case of polyhedral objects). These stable singularities
describe the limits of the visible parts of the object. Malik [Mal87] has established a catalogue of the features
of line drawings of curved objects.

Singularity theory also permits the description of how the line drawing changes as the viewpoint is moved.
Consider the example represented in Fig. 3.8. As the viewpoint moves downwards, the back sphere becomes
hidden by the front one. From viewpoint (b) where this visual event occurs, the folds of the two spheres are
superimposed and tangent. This unstable singularity is called a tangent crossing. It is very similar to the EV
visual event shown in Fig. 3.3. It is unstable in the sense that any small change in the viewpoint will make it
disappear. The viewpoint is not generic, it is accidental.

1What is the relationship between the view of a torus and the occurrence of a sudden catastrophe? Imagine the projection plane is the
command space of a physical system with two parameters x and y. The torus is the response surface: for a pair of parameters (x,y) the
depth z represents the state of the system. Note that for a pair of parameters, there may be many possible states, depending on the history of
the system. When the command parameters vary smoothly, the corresponding state varies smoothly on the surface of the torus. However,
when a fold is met, there is an abrupt change in the state of the system, this is a catastrophe. See e.g. [Ste82].

3. 2D VERSUS 3D VISIBILITY 29

(a) (b) (c)

Figure 3.8: Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden
by the frontmost one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are
visually tangent.

cusp

t-vertex

fold

(a) (b) (c)

Figure 3.9: Disappearance of a cusp at a swallowtail singularity at viewpoint (b). (in fact two swallowtails occur
because of the symmetry of the torus)

Another unstable singularity is shown in Fig. 3.9. As the viewpoints moves upward, the t-vertex and the
cusp disappear. In Fig. 3.9(a) the points of the plane below the cusp result from the projection of 4 points of
the torus, while in Fig. 3.9(c) all points result from the projection of 2 or 0 points. This unstable singularity is
called swallowtail.

Unstable singularities are the events at which the organisation of the view of a smooth object (or scene) is
changed. These singularities are related to the differential properties of the surface. For example swallowtails
occur only in hyperbolic regions of the surface, that is, regions where the surface is locally nor concave nor
convex.

Singularity theory originally does not consider opaqueness. Objects are assumed transparent. As we have
seen, at cusps and t-vertices, some fold branches are hidden. Moreover a singularity like a tangent crossing is
considered even if some objects lie between the two sphere causing occlusion. The visible singularity are only
a subset but all the changes observed in views of opaque objects can be described by singularity theory. Some
catalogues now exist which describe singularities of opaque objects 2. See Fig. 3.10.

The catalogue of singularities for views of smooth objects has been proposed by Kergosien [Ker81] and
Rieger [Rie87, Rie90] who has also proposed a classification for piecewise smooth objects [Rie87] 3.

3 2D versus 3D Visibility

We enumerate here some points which make that the difference between 2D and 3D visibility can not be
summarized by a simple increment of one to the dimension of the problem.

This can be more easily envisioned in line space. Recall that the atomic queries in visibility are expressed
in line-space (first point seen along a ray, are two points mutually visible?).

2Williams [WH96, Wil96] tries to fill in the gap between opaque and transparent singularities. Given the view of an object, he proposes
to deduce the invisible singularities from the visible ones. For example at a t-vertex, two folds intersect but only three branches are visible;
the fourth one which is occluded can be deduced. See Fig. 3.10.

3Those interested in the problems of robustness and degeneracies for geometric computations may also notice that a degenerate config-
uration can be seen as a singularity of the space of scenes. The exploration of the relations between singularities and degeneracies could
help formalize and systemize the treatment of the latter. See also section 2 of chapter 9.

30 CHAPTER 3. PRELIMINARIES

Figure 3.10: Opaque (bold lines) and semi-transparent (grey) singularities. After [Wil96].

First of all, the increase in dimension of line-space is two, not one (in 2D line-space is 2D, while in 3D it is
4D). This makes things much more intricate and hard to apprehend.

A line is a hyperplane in 2D, which is no more the case in 3D. Thus the separability property is lost: a 3D
line does not separate two half-space as in 2D.

A 4D parameterization of 3D lines is not possible without singularities (the one presented in Fig. 3.2(a) has
two singularities at the pole, while the one in Fig. 3.2(b) can not represent lines parallel to the two planes). See
section 3 of chapter 8 for a partial solution to this problem.

Visual events are simple in 2D: bitangent lines or tangent to inflection points. In 3D their locus are surfaces
which are rarely planar (EEE or visual events for curved objects).

All these arguments make the sentence “the generalization to 3D is straightforward” a doubtful statement
in any visibility paper.

CHAPTER 4

The classics of hidden part removal

Il convient encore de noter que c’est parce que quelque
chose des objets extérieurs pénétre en nous que nous
voyons les formes et que nous pensons

ÉPICURE, Doctrines et Maximes

E FIRST BRIEFLY review the classical algorithms to solve the hidden surface removal
problem. It is important to have these techniques in mind for a wider insight of visibility
techniques. We will however remain brief, since it is beyond the scope of this survey to
discuss all the technical details and variations of these algorithms. For a longer survey
see [SSS74, Gra92], and for a longer and more educational introduction see [FvDFH90,

Rog97].

The view computation problem is often reduced to the case where the viewpoint lies on the z axis at infinity,
and x and y are the coordinates of the image plane; y is the vertical axis of the image. This can be done using
a perspective transform matrix (see [FvDFH90, Rog97]). The objects closer to the viewpoint can thus be said
to lie “above” (because of the z axis) as well as “in front” of the others. Most of the methods treat polygonal
scenes.

Two categories of approaches have been distinguished by Sutherland et al. Image-precision algorithms
solve the problem for a discrete (rasterized) image, visibility being sampled only at pixels; while object-
precision algorithm solve the exact problem. The output of the latter category is often a visibility map, which
is the planar map describing the view. The order in which we present the methods is not chronological and has
been chosen for easier comparison.

Solutions to hidden surface removal have other applications that the strict determination of the objects
visible from the viewpoint. As evoked earlier, hard shadows can be computed using a view from a point light
source. Inversely, the amount of light arriving at a point in penumbra corresponds to the visible part of the
source from this point as shown in Fig. 2.2(b). Interest for the application of exact view computation has thus
recently been revived.

31

32 CHAPTER 4. THE CLASSICS OF HIDDEN PART REMOVAL

1 Hidden-Line Removal

The first visibility techniques have were developed for hidden line removal in the sixties. These algorithms
provide information only on the visibility of edges. Nothing is known on the interior of visible faces, preventing
shading of the objects.

1.1 Robert

Robert [Rob63] developed the first solution to the hidden line problem. He tests all the edges of the scene
polygons for occlusion. He then computes the intersection of the wedge defined by the viewpoint and the edge
and all objects in the scene using a parametric approach.

1.2 Appel

Appel [App67] has developed the notion of quantitative invisibility which is the number of objects which
occlude a given point. This is the notion which we used to present singularity theory: the number of points of
the object which project on a given point in the image. Visible points are those with 0 quantitative invisibility.
The quantitative invisibility of an edge of a view changes only when it crosses the projection of another edge
(it corresponds to a t-vertex). Appel thus computes the quantitative invisibility number of a vertex, and updates
the quantitative invisibility at each visual edge-edge intersection.

Markosian et al. [MKT+97] have used this algorithm to render the silhouette of objects in a non-photorealistic
manner. When the viewpoint is moved, they use a probabilistic approach to detect new silhouettes which could
appear because an unstable singularity is crossed.

1.3 Curved objects

Curved objects are harder to handle because their silhouette (or fold) first has to be computed (see section 2.2 of
chapter 3). Elber and Cohen [EC90] compute the silhouette using adaptive subdivision of parametric surfaces.
The surface is recursively subdivided as long as it may contain parts of the silhouette. An algorithm similar
to Appel’s method is then used. Snyder [Sny92] proposes the use of interval arithmetic for robust silhouette
computation.

2 Exact area-subdivision

2.1 Weiler-Atherton

Weiler and Atherton [WA77] developed the first object-precision method to compute a visibility map. Objects
are preferably sorted according to their depth (but cycles do not have to be handled). The frontmost polygons
are then used to clip the polygons behind them.

This method can also be very simply used for hard shadow generation, as shown by Atherton et al.
[AWG78]. A view is computed from the point light source, and the clipped polygons are added to the scene
database as lit polygon parts.

The problem with Weiler and Atherton’s method, as for most of the object-precision methods, is that it
requires robust geometric calculations. It is thus prone to numerical precision and degeneracy problems.

2.2 Application to form factors

Nishita and Nakamae [NN85] and Baum et al. [BRW89] compute an accurate form factor between a polygon
and a point (the portion of light leaving the polygon which arrives at the point) using Weiler and Atherton’s
clipping. Once the source polygon is clipped, an analytical formula can be used. Using Stoke’s theorem, the
integral over the polygon is computed by an integration over the contour of the visible part. The jacobian of
the lighting function can be computed in a similar manner [Arv94].

Vedel [Ved93] has proposed an approximation for the case of curved objects.

3. ADAPTIVE SUBDIVISION 33

2.3 Mulmuley

Mulmuley [Mul89] has proposed an improvement of exact area-subdivision methods. He inserts polygons
in a randomized order (as in quick-sort) and maintains the visibility map. Since visibility maps can have
complex boundaries (concave, with holes), he uses a trapezoidal decomposition [dBvKOS97]. Each trapezoid
corresponds to a part of one (possibly temporary) visible face.

Each trapezoid of the map maintains a list of conflict polygons, that is, polygons which have not yet been
projected and which are above the face of the trapezoid. As a face is chosen for projection, all trapezoids with
which it is in conflict are updated. If a face is below the temporary visible scene, no computation has to be
performed.

The complexity of this algorithm is very good, since the probability of a feature (vertex, part of edge) to
induce computation is inversely proportional to its quantitative invisibility (the number of objects above it). It
should be easy to implement and robust due to its randomized nature. However, no implementation has been
reported to our knowledge.

2.4 Curved objects

Krishnan and Manocha [KM94] propose an adaptation of Weiler and Atherton’s method for curved objects
modeled with NURBS surfaces. They perform their computation in the parameter space of the surface. The
silhouette corresponds to the points where the normal is orthogonal to the view-line, which defines a polynomial
system. They use an algebraic marching method to solve it. These silhouettes are approximated by piecewise-
linear curves and then projected on the parts of the surface below, which gives a partition of the surface where
the quantitative invisibility is constant.

3 Adaptive subdivision

The method developed by Warnock [War69] can be seen as an approximation of Weiler and Atherton’s exact
method, even though it was developed earlier. It recursively subdivides the image until each region (called a
window) is declared homogeneous. A window is declared homogeneous if one face completely covers it and
is in front of all other faces. Faces are classified against a window as intersecting or disjoint or surrounding
(covering). This classification is passed to the subwindows during the recursion. The recursion is also stopped
when pixel-size is reached.

The classical method considers quadtree subdivision. Variations however exist which use the vertices of
the scene to guide the subdivision and which stop the recursion when only one edge covers the window.

Marks et al. [MWCF90] presents an analysis of the cost of adaptive subdivision and proposes a heuristic to
switch between adaptive methods and brute-force z-buffer.

4 Depth order and the painter’s algorithm

The painter’s algorithm is a class of methods which consist in simply drawing the objects of the scene from
back to front. This way, visible objects overwrite the hidden ones. This is similar to a painter who first draws
a background then paints the foreground onto it. However, ordering objects according to their occlusion is not
straightforward. Cycles may appear, as illustrated in Fig. 4.1(a).

The inverse order (Front to Back) can also be used, but a flag has to be indicate whether a pixel has been
written or not. This order allows shading computations only for the visible pixels.

4.1 Newell Newell and Sancha

In the method by Newell, Newell and Sancha [NNS72] polygons are first sorted according to their minimum z
value. However this order may not be the occlusion order. A bubble sort like scheme is thus applied. Polygons
with overlapping z intervals are first compared in the image for xy overlap. If it is the case, their plane equation
is used to test which occlude which. Cycles in occlusion are tested, in which case one of the polygons is split
as shown in Fig. 4.1(b).

34 CHAPTER 4. THE CLASSICS OF HIDDEN PART REMOVAL

(a) (b)

A

B

C

A

B

C1

C2

Figure 4.1: (a) Classic example of a cycle in depth order. (b) Newell, Newell and Sancha split one of the
polygons to break the cycle.

For new theoretical results on the problem of depth order, see the thesis by de Berg [Ber93].

4.2 Priority list preprocessing

Schumacker [SBGS69] developed the concept of a priori depth order. An object is preprocessed and an order
may be found which is valid from any viewpoint (if the backfacing faces are removed). See the example of Fig.
4.2.

1

1

1

1

3

3

2
2 1

1

1

1

3

3

2
2

A

G

F
F

E

D

CB
A

G

F
F

E

D

C
B

(c)(b)(a)

Figure 4.2: A priori depth order. (a) Lower number indicate higher priorities. (b) Graph of possible occlusions
from any viewpoint. An arrow means that a face can occlude another one from a viewpoint. (c) Example of
a view. Backfacing polygons are eliminated and other faces are drawn in the a priori order (faces with higher
numbers are drawn first).

These objects are then organised in clusters which are themselves depth-ordered. This technique is funda-
mental for flight simulators where real-time display is crucial and where cluttered scenes are rare. Moreover,
antialiasing is easier with list-priority methods because the coverage of a pixel can be maintained more consis-
tently. The survey by Yan [Yan85] states that in 1985, all simulators were using depth order. It is only very
recent that z-buffer has started to be used for flight simulators (see section below).

However, few objects can be a priori ordered, and the design of a suitable database had to be performed
mainly by hand. Nevertheless, this work has led to the development of the BSP tree which we will present in
section 1.4 of chapter 5

4.3 Layer ordering for image-based rendering

Recently, the organisation of scenes into layers for image-based rendering has revived the interest in depth-
ordering à la Newell et al. Snyder and Lengyel [SL98] proposed the merging of layers which form an occlusion
cycle, while Decoret al. [DSSD99] try to group layers which cannot have occlusion relations to obtain better
parallax effects.

5. THE Z-BUFFER 35

5 The z-buffer

5.1 Z-buffer

The z-buffer was developed by Catmull [Cat74, Cat75]. It is now the most widespread view computation
method.

A depth (or z-value) is stored for each pixel of the image. As each object is scan-converted (or rasterized),
the depth of each pixel it covers in the image is computed and compared against the corresponding current
z-value. The pixel is drawn only if it is closer to the viewpoint.

Z-buffer was developed to handle curved surfaces, which are recursively subdivided until a sub-patch covers
only one pixel. See also [CLR80] for improvements.

The z-buffer is simple, general and robust. The availability of cheap and fast memory has permitted very
efficient hardware implementations at low costs, allowing today’s low-end computer to render thousands of
shaded polygons in real-time. However, due to the rasterized nature of the produced image, aliasing artifacts
occur.

5.2 A-buffer

The A-buffer (antialiased averaged area accumulation buffer) is a high quality antialiased version of the z-buffer.
A similar rasterization scheme is used. However, if a pixel is not completely covered by an object (typically
at edges) a different treatment is performed. The list of object fragments which project on these non-simple
pixels is stored instead of a color value (see Fig. 4.3). A pixel can be first classified non simple because an edge
projects on it, then simple because a closer object completely covers it. Once all objects have been projected,
sub-pixel visibility is evaluated for non-simple pixels. 4*8 subpixels are usually used. Another advantage of
the A-buffer is its treatment of transparency; Subpixel fragments can be sorted in front-to-back order for correct
transparency computations.

(e)

(b)

(a)

(c)

(d)

Figure 4.3: A buffer. (a) The objects are scan-converted. The projection of the objects is dashed and non-simple
pixels are represented in bold. (b) Close-up of a non-simple pixel with the depth sorted fragments (i.e., the
polygons clipped to the pixel boundary). (c) The pixel is subsampled. (d) The resulting color is the average of
the subsamples. (e) Resulting antialiased image.

The A-buffer can be credited to Carpenter [Car84], and Fiume et al. [FFR83]. It is a simplification of
the “ultimate” algorithm by Catmull [Cat78] which used exact sub-pixel visibility (with a Weiler-Atherton
clipping) instead of sub-sampling. A comprehensive introduction to the A-buffer and a discussion of imple-
mentation is given in the book by Watt and Watt [WW92].

36 CHAPTER 4. THE CLASSICS OF HIDDEN PART REMOVAL

The A-buffer is, with ray-tracing, the most popular high-quality rendering techniques. It is for example
implemented in the commercial products Alias Wavefront Maya and Pixar Renderman [CCC87]. Similar
techniques are apparently present in the hardware of some recent flight simulator systems [Mue95].

Most of the image space methods we present in chapter 6 are based on the z-buffer. A-buffer-like schemes
could be explored when aliasing is too undesirable.

6 Scan-line

6.1 Scan-line rendering

Scan-line approaches produce rasterized images and consider one line of the image at a time. Their memory re-
quirements are low, which explains why they have long been very popular. Wylie and his coauthors [WREE67]
proposed the first scan-line algorithms, and Bouknight [Bou70] and Watkins [Wat70] then proposed very simi-
lar methods.

The objects are sorted according to y. For each scan-line, the objects are then sorted according to x. Then
for each span (x interval on which the same objects project) the depths of the polygons are compared. See
[WC91] for a discussion of efficient implementation. Another approach is to use a z-buffer for the current
scan-line. The A-buffer [Car84] was in fact originally developed in a scan-line system.

Crocker [Cro84] has improved this method to take better advantage of coherence.
Scan-line algorithms have been extended to handle curved objects. Some methods [Cla79, LC79, LCWB80]

use a subdivision scheme similar to Catmull’s algorithm presented in the previous section while others [Bli78,
Whi78, SZ89] actually compute the intersection of the surface with the current scan-line. See also [Rog97]
page 417.

Sechrest and Greenberg [SG82] have extended the scanline method to compute object precision (exact)
views. They place scan-lines at each vertex or edge-edge intersection in the image.

Tanaka and Takahashi [TT90] have proposed an antialiased version of the scan-line method where the
image is scanned both in x and y. An adaptive scan is used in-between two y scan-lines. They have applied this
scheme to soft shadow computation [TT97] (see also section 1.4 of chapter 8).

6.2 Shadows

The first shadowing methods were incorporated in a scan-line process as suggested by Appel [App68]. For
each span (segment where the same polygon is visible) of the scan-line, its shadowing has to be computed.
The wedge defined by the span and a point light-source is intersected with the other polygons of the scene to
determine the shadowed part of the span.

In section 1.1 of chapter 6 we will see an improvement to this method. Other shadowing techniques for
scan-line rendering will be covered in section 4.1 of chapter 5.

7 Ray-casting

The computation of visible objects using ray-casting was pioneered by Appel [App68], the Mathematical Ap-
plication Group Inc. [MAG68] and Goldstein and Nagel [GN71] in the late sixties. The object visible at one
pixel is determined by casting a ray through the scene. The ray is intersected with all objects. The closest
intersection gives the visible object. Shadow rays are used to shade the objects. As for the z-buffer, Sutherland
et al. [SSS74] considered this approach brute force and thought it was not scalable. They are now the two most
popular methods.

As evoked in section 1.5 of chapter 2 Whitted [Whi80] and Kay [KG79] have extended ray-casting to
ray-tracing which treats transparency and reflection by recursively sending secondary rays from the visible
points.

Ray tracing can handle any type of geometry (as soon as an intersection can be computed). Various methods
have been developed to compute ray-surface intersections, e.g., [Kaj82, Han89].

Ray-tracing is the most versatile rendering technique since it can also render any shading effect. Antialias-
ing can be performed with subsampling: many rays are sent through a pixel (see e.g. [DW85, Mit87]).

8. SWEEP OF THE VISIBILITY MAP 37

Ray-casting and ray-tracing send rays from the eye to the scene, which is the opposite of actual physical
light propagation. However, this corresponds to the theory of scientists such as Aristote who think that “visual
rays” go from the eye to the visible objects.

As observed by Hofmann [Hof92] and illustrated in Fig. 4.4 ideas similar to ray-casting were exposed by
Dürer [Dür38] while he was presenting perspective.

Figure 4.4: Drawing by Dürer in 1538 to illustrate his setting to compute perspective. It can be thought of as
an ancestor of ray-casting. The artist’s assistant is holding a stick linked to a string fixed at an eyebolt in the
wall which represents the viewpoint. He points to part of the object. The position of the string in the frames is
marked by the artist using the intersection of two strings fixed to the frame. He then rotates the painting and
draws the point.

8 Sweep of the visibility map

Most of the algorithms developed in computational geometry to solve the hidden part removal problem are
based on a sweep of the visibility map for polygonal scenes. The idea is illustrated in Fig. 4.5. The view is
swept by a vertical (not necessarily straight) line, and computations are performed only at discrete steps often
called events. A list of active edges (those crossing the sweep line) is maintained and updated at each events.
Possible events are the appearance the vertex of a new polygon, or a t-vertex, that is, the visual intersection of
an active edge and another edge (possibly not active).

The problem then reduces to the efficient detection of these events and the maintenance of the active edges.
As evoked in the introduction this often involves some ray shooting queries (to detect which face becomes
visible at a t-vertex for example). More complex queries are required to detect some t-vertices.

The literature on this subject is vast and well surveyed in the paper by Dorward [Dor94]. See also the thesis
by de Berg [Ber93]. Other recent results on the subject include [Mul91, Pel96] (see section 1.5 of chapter 5).

38 CHAPTER 4. THE CLASSICS OF HIDDEN PART REMOVAL

Figure 4.5: Sweep of a visibility map. Active edges are in bold. Already processed events are black points,
while white points indicate the event queue.

CHAPTER 5

Object-Space

Ombres sans nombre
nombres sans ombre

à l’infini
au pas cadencé

Nombres des ombres
ombre des nombres

à l’infini
au pas commencé

Jacques PRÉVERT, Fatras

BJECT-SPACE methods exhibit the widest range of approaches. We first introduce methods
which optimize visibility computation by using a well-behaved subdivision of space. We
then present two important data-structures based on the object-space locus of visual events,
the 2D visibility graph (section 2) and visual hull (section 3). We then survey the large class
of methods which characterize visibility using pyramid-like shapes. We review methods

using beams for visibility with respect to a point in section 4. We then present the extensions of these methods
to compute limits of umbra and penumbra in section 5, while section 6 discusses methods using shafts with
respect to volumes. Finally section 7 surveys methods developed for visibility in architectural environments
where visibility information is propagated through sequences of openings.

1 Space partitioning

If all objects are convex, simple, well structured and aligned, visibility computations are much easier. This
is why some methods attempt to fit the scene into simple enclosing volumes or regular spatial-subdivisions.
Computations are simpler, occlusion cycles can no longer occur and depth ordering is easy.

39

40 CHAPTER 5. OBJECT-SPACE

1.1 Ray-tracing acceleration using a hierarchy of bounding volumes

Intersecting a ray with all objects is very costly. Whitted [Whi80] enclosed objects in bounding volumes for
which the intersection can be efficiently computed (spheres in his paper). If the ray does not intersect the
bounding volume, it cannot intersect the object.

Rubin and Whitted [RW80] then extended this idea with hierarchies of bounding volumes, enclosing bound-
ing volumes in a hierarchy of successive bounding volumes. The trade-off between how the bounding volumes
fits the object and the cost of the intersection has been studied by Weghorst et al. [WHG84] using a probabilis-
tic approach based on surface ratios (see also section 4 of chapter 8). Kay and Kajiya [KK86] built tight-fitting
bounding volumes which approximate the convex hull of the object by the intersection of parallel slabs.

The drawback of standard bounding volume methods, is that all objects intersecting the rays have to be
tested. Kay and Kajiya [KK86] thus propose an efficient method for a traversal of the hierarchy which first tests
the closest bounding volumes and terminates when an intersection is found which is closer than the remaining
bounding volumes.

Many other methods were proposed to improve bounding volume methods for ray-tracing, see e.g. [Bou85,
AK89, FvDFH90, Rog97, WW92]. See also [Smi99] for efficiency issues.

1.2 Ray-tracing acceleration using a spatial subdivision

The alternative to bounding volumes for ray-tracing is the use of a structured spatial subdivision. Objects
of the scene are classified against voxels (boxes), and shooting a ray consists in traversing the voxels of the
subdivision and performing intersections only for the objects inside the encountered voxels. An object can lie
inside many voxels, so this has to be taken into account.

The trade-off here is between the simplicity of the subdivision traversal, the size of the structure and the
number of objects per voxel.

Regular grids have been proposed by Fujimoto et al. [FTI86] and Amanatides and Woo [AW87]. The
drawback of regular grids is that regions of high object density are “sampled” at the same rate as regions with
many objects, resulting in a high cost for the latter because one voxel may contain many objects. However the
traversal of the grid is very fast, similar to the rasterization of a line on a bitmap image. To avoid the time spent
in traversing empty regions of the grid, the distance to the closest object can be stored at each voxel (see e.g.
[CS94, SK97]).

Glassner [Gla84] introduced the use of octrees which result in smaller voxels in regions of high object
density. Unfortunately the traversal of the structure becomes more costly because of the cost induced by the
hierarchy of the octree. See [ES94] for a comparison between octrees and regular grids.

Recursive grids [JW89, KS97] are similar to octrees, except that the branching factor may be higher, which
reduces the depth of the hierarchy (see Fig. 5.1(a)). The size of the voxel in a grid or sub-grid should be
proportional to the cubic root of the number of objects to obtain a uniform density.

Snyder and Bar [SB87] use tight fitting regular grids for complex tessellated objects which they insert in a
bounding box hierarchy.

Finally Cazals et al. [CDP95, CP97] propose the Hierarchy of Uniform Grids, where grids are not nested.
Objects are sorted according to their size. Objects which are close and have the same size are clustered, and a
grid is used for each cluster and inserted in a higher level grid (see Fig. 5.1(b)). An in-depth analysis of the
performance of spatial subdivision methods is presented. Recursive grids and the hierarchy of uniform grid
seem to be the best trade-off at the moment (see also [KWCH97, Woo97] for a discussion on this subject).

1.3 Volumetric visibility

The methods in the previous sections still require an intersection calculations for each object inside a voxel.
In the context of radiosity lighting simulation, Sillion [Sil95] approximates visibility inside a voxel by an
attenuation factor (transparency or transmittance) as is done for volume rendering. A multiresolution extension
was presented [SD95] and will be discussed in section 1.2 of chapter 9.

The transmittance is evaluated using the area of the objects inside a voxel. These voxels (or clusters) are
organised in a hierarchy. Choosing the level of the hierarchy used to compute the attenuation along a ray allows
a trade-off between accuracy and time. The problem of refinement criteria will be discussed in section 1.1 of
chapter 9.

1. SPACE PARTITIONING 41

(a) (b)

Figure 5.1: A 2D analogy of ray-tracing acceleration. An intersection test is performed for objects which are in
bold type. (a) Recursive grid. (b) Hierarchy of uniform grids. Note that fewer intersections are computed with
the latter because the grids fit more tightly to the geometry.

Christensen et al. [CLSS97] propose another application of volumetric visibility for radiosity.
Chamberlain et al [CDL+96] perform real-time rendering by replacing distant geometry by semi-transparent

regular voxels averaging the color and occlusion of their content. Neyret [Ney96, Ney98] presents similar ideas
to model and render complex scenes with hierarchical volumetric representations called texels.

1.4 BSP trees

We have seen in section 4.2 of chapter 4 that an a priori depth order can be found for some objects. Unfortu-
nately, this is quite rare. Fuchs and his co authors [FKN80, FAG83] have developed the BSP tree (Binary Space
Partitioning tree) to overcome this limitation.

The principle is simple: if the scene can be separated by a plane, the objects lying on the same side of the
plane as the viewer are closer than the others in a depth order. BSP trees recursively subdivide the scene along
planes, resulting in a binary tree where each node corresponds to a splitting plane. The computation of a depth
order is then a straightforward tree traversal: at each node the order in which the subtrees have to be drawn is
determined by the side of the plane of the viewer. Unfortunately, since a scene is rarely separable by a plane,
objects have to be split. Standard BSP approaches perform subdivision along the polygons of the scene. See
Fig. 5.2 for an example1.

It has been shown [PY90] that the split in BSP trees can cause the number of sub-polygons to be as high as
O(n3) for a scene composed of n entry polygons. However, the choice of the order of the polygons with which
subdivision is performed is very important. Paterson and Yao [PY90] give a method which builds a BSP tree
with size O(n2). Unfortunately, it requires O(n3) time. However these bounds do not say much on the practical
behaviour of BSPs.

See e.g. [NR95] for the treatment of curved objects.
Agarwal et al. [AGMV97, AEG98] do not perform subdivision along polygons. They build cylindrical

BSP trees, by performing the subdivision along vertical planes going through edges of the scene (in a way
similar to the method presented in the next section). They give algorithms which build a quadratic size BSP in
roughly quadratic time.

Chen and Wang [CW96] have proposed the feudal priority algorithm which limits the number of splits
compared to BSP. They first treat polygons which are back or front-facing from any other polygon, and then
chose the polygons which cause the smallest number of splits.

1 BSP trees have also been applied as a modeling representation tool and powerful Constructive Solid Geometry operations have been
adapted by Naylor et al. [NAT90].

42 CHAPTER 5. OBJECT-SPACE

A

B

D1

E

G
C

F
D2

A

BC

F G D1 E

D2
H

H

(a) (b)

Figure 5.2: 2D BSP tree. (a) The scene is recursively subdivided along the polygons. Note that polygon D has
to be split. (b) Corresponding binary tree. The traversal order for the viewpoint in (a) is depicted using arrows.
The order is thus, from back to front: FCGAD1BHED2

Naylor [Nay92] also uses a BSP tree to encode the image to perform occlusion-culling; nodes of the object-
space BSP tree projecting on a covered node of the image BSP are discarded in a manner similar to the hierar-
chical z-buffer which we will present in section 3 of the next chapter.

BSP trees are for example in the game Quake for the hidden-surface removal of the static part if the model
[Abr96] (moving objects are treated using a z-buffer).

1.5 Cylindrical decomposition

Mulmuley [Mul91] has devised an efficient preprocessing algorithm to perform object-precision view compu-
tations using a sweep of the view map as presented in section 8 of chapter 4. However this work is theoretical
and is unlikely to be implemented. He builds a cylindrical partition of 3D space which is similar to the BSPs
that Agarwall et al. [AGMV97, AEG98] have later described. Nonetheless, he does not use whole planes.
Each cell of his partition is bounded by parts of the input polygons and by vertical walls going through edges
or vertices of the scene. His paper also contains an interesting discussion of sweep algorithms.

2 Path planning using the visibility graph

2.1 Path planning

Nilsson [Nil69] developed the first path planning algorithms. Consider a 2D polygonal scene. The visibility
graph is defined as follows: The nodes are the vertices of the scene, and an arc joins two vertices A and B if
they are mutually visible, i.e. if the segment [AB] intersects no obstacle. As noted in the introduction, it is
possible to go in straight line from A to B only if B is visible from A. The start and goal points are added to the
set of initial vertices, and so are the corresponding arcs (see Fig. 5.3). Only arcs which are tangent to a pair of
polygons are necessary.

It can be easily shown that the shortest path between the start point and the goal goes through arcs of the
visibility graph. The rest of the method is thus a classical graph problem. See also [LPW79].

This method can be extended to non-polygonal scenes by considering bitangents and portions of curved
objects.

The method unfortunately does not generalize simply to 3D where the problem has been shown to be
NP-complete by Canny [Can88].

3. THE VISUAL HULL 43

goal

start obstacle

Figure 5.3: Path planning using the visibility graph.

2.2 Visibility graph construction

The 2D visibility graph has size which is between linear and quadratic in the number of polygon edges. The
construction of visibility graphs is a rich subject of research in computational geometry. Optimal O(n 2) algo-
rithms have been proposed [EG86] as well as output-sensitive approaches (their running time depends on the
size of the output, i.e. the size of the visibility graph) [OW88, GM91].

The 2D visibility complex which we will review in section 1.2 of chapter 8 is also a powerful tool to build
visibility graphs.

In 3D, the term “visibility graph” often refers to the abstract graph where each object is a node, and where
arcs join mutually visible objects. This is however not the direct equivalent of the 2D visibility graph.

2.3 Extensions to non-holonomic visibility

In this section we present some motion planning works which are hard to classify since they deal with exten-
sions of visibility to curved lines of sight. They have been developed by Vendittelli et al. [VLN96] to plan
the motion of a car-like robot. Car trajectories have a minimum radius of curvature, which constraints their
motion. They are submitted to non-holonomic constraints: the tangent of the trajectory must be colinear to
the velocity. Dubins [Dub57] and Reeds and Shepp [RS90] have shown that minimal-length trajectories of
bounded curvature are composed of arcs of circles of minimum radius and line segments.

For example if a car lies at the origin of the plane and is oriented horizontally, the shortest path to the points
of the upper quadrant are represented in Fig. 5.4(a). The rightmost paths are composed of a small arc of circle
forward followed by a line segment. To go to the points on the left, a backward circle arc is first necessary, then
a forward arc, then a line segment.

Now consider an obstacle such as the line segment represented in Fig. 5.4(a). It forbids certain paths. The
points which cannot be reached are said to be in shadow, by analogy to the case where optimal paths are simple
line segments2.

The shape of such a shadow can be much more complex than in the line-visibility case, as illustrated in Fig.
5.4(b).

This analogy between visibility and reachability is further exploited in the paper by Nissoux et al. [NSL99]
where they plan the motion of robots with arbitrary numbers of degrees of freedom.

3 The Visual Hull

The reconstruction of objects from silhouettes (see section 2.2 of chapter 2) is very popular because it is robust
and simple. Remember that only exterior silhouettes are considered, folds caused by self occlusion of the object
are not considered because they are harder to extract from images. Not all objects can be reconstructed with

2What we describe here are in fact shadows in a Riemannian geometry. Our curved lines of sight are in fact geodesics, i.e.c the shortest
path from one point to another.

44 CHAPTER 5. OBJECT-SPACE

(a) (b)

Figure 5.4: Shadow for non-holonomic path-planning (adapted from [VLN96]). (a) Simple (yet curved) shadow.
(b) Complex shadows. Some parts of the convex blocker do not lie on the shadow boundary. The small
disconnected shadow is caused by the impossibility to perform an initial backward circle arc.

this method; The cavity of a bowl can not be reconstructed because it is not present on an external silhouette.
The best reconstruction of a bowl one can expect is a “full” version of the initial object.

However the reconstructed object is not necessarily the convex hull of the object: the hole of a torus can be
reconstructed because it is present on the exterior silhouette of some images.

Laurentini [Lau94, Lau95, Lau97, Lau99] has introduced the visual hull concept to study this problem. A
point P of space is inside the visual hull of an object A, if from any viewpoint P projects inside the projection
of A. To give a line-space formulation, each line going through a point P of the visual hull intersects object A.
The visual hull is the smallest object which can be reconstructed from silhouettes. See Fig. 5.5 for an example.

E1

E2

(a) (b) (c)

E3

Figure 5.5: Visual hull (adapted from [Lau94]). (a) Initial object. A EEE event is shown. (b) Visual hull of the
object (the viewer is not allowed inside the convex hull of the object). It is delimited by polygons and a portion
of the ruled quadric of the E1E2E3 event. (c) A different object with the same visual hull. The two objects can
not be distinguished from their exterior silhouette and have the same occlusion properties.

The exact definition of the visual hull in fact depends on the viewing region authorized. The visual hull is
different if the viewer is allowed to go inside the convex hull of the object. (Half lines have to be considered
instead of lines in our line-space definition)

The visual hull is delimited by visual events. The visual hull of a polyhedron is thus not necessarily a

4. SHADOWS VOLUMES AND BEAMS 45

polyhedron, as shown in Fig. 5.5 where a EEE event is involved.
Laurentini has proposed a construction algorithms in 2D [Lau94] and for objects of revolution in 3D

[Lau99]. Petitjean [Pet98] has developed an efficient construction algorithm for 2D visual hulls using the
visibility graph.

The visual hull also represents the maximal solid with the same occlusion properties as the initial object.
This concept thus completely applies to the simplification of occluders for occlusion culling. The simplified
occluder does not need to lie inside the initial occluder, but inside its visual hull. See the work by Law and Tan
[LT99] on occluder simplification.

4 Shadows volumes and beams

In this section we present the rich category of methods which perform visibility computation using pyramids
or cones. The apex can be defined by the viewpoint or by a point light source. It can be seen as the volume
occupied by the set of rays emanating from the apex and going through a particular object. The intersection of
such a volume with the scene accounts for the occlusion effects.

4.1 Shadow volumes

Shadow volumes have been developed by Crow [Cro77] to compute hard shadows. They are pyramids defined
by a point light source and a blocker polygon. They are then used in a scan-line renderer as illustrated in Fig.
5.6.

scan-line

point light source

shadow volume

A
P

blocker

Figure 5.6: Shadow volume. As object A is scan converted on the current scan-line, the shadowing of each
pixel is computed by counting the number of back-facing and front-facing shadow volume polygons on the line
joining it to the viewpoint. For point P, there is one front-facing intersection, it is thus in shadow.

The wedges delimiting shadow volumes are in fact visual events generated by the point light source and
the edges of the blockers. In the case of a polyhedron light source, only silhouette edges (with respect to the
source) need to be considered to build the shadow volume polygons.

Bergeron [Ber86] has proposed a more general version of Crow’s shadow volumes. His method has long
been very popular for production rendering.

Shadow volumes have also been used with ray-tracing [EK89]. Brotman and Badler [BB84] have presented
a z-buffer based use of shadow volumes. They first render the scene in a z-buffer, then they build the shadow
volumes and scan convert them. Instead of displaying them, for each pixel they keep the number of frontfacing
and backfacing shadow volume polygons. This method is hybrid object-space and image space, the advantage

46 CHAPTER 5. OBJECT-SPACE

over the shadow map is that only one sampling is performed. They also sample an area light source with points
and add the contributions computed using their method to obtain soft shadow effects. An implementation
using current graphics hardware is described in [MBGN98] section 9.4.2. A hardware implementation has also
been developed on pixel-plane architecture [FGH+85], except that shadow volumes are simply described as
plane-intersections.

Shadow volumes can also be used inversely as light-volumes to simulate the scattering of light in dusty air
(e.g., [NMN87, Hai91]).

Albrecht Dürer [Dür38] describes similar constructions, as shown in Fig. 5.7

Figure 5.7: Construction of the shadow of a cube by Dürer.

4.2 Shadow volume BSP

Chin and Feiner [CF89] compute hard shadows using BSP trees. Their method can be compared to Atherton
et al.’s technique presented in section 2.1 of chapter 4 where the same algorithm is used to compute the view
and to compute the illuminated parts of the scene. Two BSP are however used: one for depth ordering, and one
called shadow BSP tree to classify the lit and unlit regions of space.

The polygons are traversed from front to back from the light source (using the first BSP) to build a shadow
BSP tree. The shadow BSP tree is split along the planes of the shadow volumes. As a polygon is considered, it
is first classified against the current shadow BSP tree (Fig. 5.8(a)). It is split into lit and unlit parts. Then the
edges of the lit part are used to generate new splitting planes for the shadow BSP tree (Fig. 5.8 (b)).

The scene augmented with shadowing information can then be rendered using the standard BSP.
Chrysanthou and Slater [CS95] propose a method which avoids the use of the scene BSP to build the shadow

BSP, resulting in fewer splits.
Campbell and Fussel [CF90] were the first to subdivide a radiosity mesh along shadow boundaries using

BSPs. A good discussion and some improvements can be found in Campbell’s thesis [Cam91].

4.3 Beam-tracing and bundles of rays

Heckbert and Hanrahan [HH84] developed beam tracing. It can be seen as a hybrid method between Weiler
and Atherton’s algorithm [WA77], Whitted’s ray-tracing [Whi80] and shadow volumes.

Beams are traced from the viewpoint into the scene. One initial beam is cast and clipped against the
scene polygons using Weiler and Atherton’s exact method, thus defining smaller beams intersecting only one
polygon (see Fig. 5.9(a)). If the a polygon is a mirror, a reflection beam is recursively generated. Its apex is the
symmetric to the viewpoint with respect to the light source (Fig. 5.9(b)). It is clipped against the scene, and the
computation proceeds.

Shadow beams are sent from the light source in a preprocess step similar to Atherton et al’s shadowing
[AWG78]. Refraction can be approximated by sending refraction beams. Unfortunately, since refraction is not
linear, this computation is not exact.

Dadoon et al. [DKW85] propose an efficient version optimized using BSP trees.

4. SHADOWS VOLUMES AND BEAMS 47

A
B

C

source

A
B

source

C1 C2

(a) (b)

Figure 5.8: 2D equivalent of shadow BSP. The splitting planes of the shadow BSP are represented with dashed
lines. (a) Polygon C is tested against the current shadow BSP. (b) It is split into a part in shadow C 1 and a lit
part C2. The boundary of the lit part generates a new splitting plane.

A

C

(a) (b)

B

Figure 5.9: Beam tracing. (a) A beam is traced from the eye to the scene polygons. It is clipped against the
other polygons. (b) Since polygon A is a mirror, a reflected beam is recursively traced and clipped.

Amanatides [Ama84] and Kirk [Kir87] use cones instead of beams. Cone-tracing allows antialiasing as well
as depth-of-field and soft shadow effects. The practical use of this method is however questionable because
secondary cones are hard to handle and because object-cone intersections are difficult to perform. Shinya et al.
[STN87] have formalized these concepts under the name of pencil tracing.

Beam tracing has been used for efficient specular sound propagation by Funkhouser and his co-author.
[FCE+98]. A bidirectional version has also been proposed where beams are propagated both from the sound
source and from the receiver [FMC99].They moreover amortize the cost of beam propagation as listeners and
sources move smoothly.

Speer [SDB85] has tried to take advantage of the coherence of bundles of rays by building cylinders in free-
space around a ray. If subsequent rays are within the cylinder, they will intersect the same object. Unfortunately
his method did not procure the expected speed-up because the construction of the cylinders was more costly
than a brute-force computation.

Beams defined by rectangular windows of the image can allow high-quality antialiasing with general scenes.
Ghazanfarpour and Hasenfratz [GH98, Has98] classify non-simple pixels in a manner similar to the A-buffer
or to the ZZ-buffer, but they take shadows, reflection and refraction into account.

Teller and Alex [TA98] propose the use of beam-casting (without reflection) in a real-time context. Beams
are adaptively subdivided according to a time budget, permitting a trade-off between time and image quality.

48 CHAPTER 5. OBJECT-SPACE

Finally Watt [Wat90] traces beams from the light source to simulate caustic effects which can for example
be caused by the refraction of light in water.

4.4 Occlusion culling from a point

Sometimes, nearby large objects occlude most of the scene. This is the case in a city where nearby facades
hide most of the buildings. Coorg and Teller [CT96, CT97b] quickly reject the objects hidden by some con-
vex polygonal occluders. The scene is organised into an octree. A Shadow volume is generated for each
occluder, and the cells of the octree are recursively classified against it as occluded, visible or partially visible,
as illustrated in Fig. 5.10.

scene octree

big convex
occluder

Figure 5.10: Occlusion culling with large occluders. The cells of the scene octree are classified against the
shadow volumes. In dark grey we show the hidden cells, while those partially occluded are in light grey.

The occlusion by a conjunction of occluders in not taken into account, as opposed to the hierarchical z-
buffer method exposed in section 3 of chapter 6. However we will see in section 4.2 of chapter 7 that they treat
frame-to-frame coherence very efficiently.

Similar approaches have been developed by Hudson et al. [HMC +97]. Bittner et al. [BHS98] use shadow
volume BSP tree to take into account the occlusion caused by multiple occluders.

Woo and Amanatides [WA90] propose a similar scheme to speed-up hard shadow computation in ray-
tracing. They partition the scene in a regular grid and classify each voxel against shadow volumes as completely
lit, completely in umbra or complicated. Shadow rays are then sent only from complicated voxels.

Indoor architectural scenes present the dual characteristic feature to occlusion by large blockers: one can see
outside a room only through doors or windows. These opening are named portals. Luebke and George [LG95]
following ideas by Jones [Jon71] and Clark [Cla76] use the portals to reject invisible objects in adjacent rooms.
The geometry of the current room is completely rendered, then the geometry of adjacent rooms is tested against
the screen bounding box of the portals as shown in Fig. 5.11. They also apply their technique to the geometry
reflected by mirrors.

This technique was also used for a walk through a virtual colon for the inspection of acquired medical data
[HMK+97] and has been implemented in a 3D game engine [BEW +98].

4.5 Best-next-view

Best-next-view methods are used in model reconstruction to infer the position of the next view from the data
already acquired. The goal is to maximize the visibility of parts of the scene which were occluded in the
previous view. They are delimited by the volume of occlusion as represented in Fig. 5.12. These volumes are
in fact the shadow volumes where the camera is considered as a light source.

Reed and Allen [RA96] construct a BSP model of the object as well as the boundaries of the occlusion
volume. They then attempt to maximize the visibility of the latter. This usually results roughly in a 90 ◦ rotation
of the camera since the new viewpoint is likely to be perpendicular to the view volume.

Similar approaches have been developed by Maver and Bajcsy [MB93] and Banta et al. [BZW +95].

5. AREA LIGHT SOURCES 49

portal portal

current room

adja-
cent
room
1

adja-
cent
room
2

Figure 5.11: Occlusion culling using image-space portals. The geometry of the adjacent rooms is tested against
the screen bounding boxes of the portals

volume of
occlusion

scanned
object

camera

Figure 5.12: Acquisition of the model of a 3D object using a range image. The volume of occlusion is the
unknown part of space.

This problem is very similar to the problem of gaps in image-based view warping (see section 1.7 of chapter
2 and Fig. 2.7 page 12). When a view is reprojected, the regions of indeterminate visibility lie on the boundary
of the volumes of occlusion.

5 Area light sources

5.1 Limits of umbra and penumbra

Nishita and Nakamae [NN85, NON85, NN83] have computed the regions of umbra and penumbra caused by
convex blockers. They show that the umbra from a polygonal light source of a convex object is the intersection
of the umbra volumes from the vertices of the source (see Fig. 5.13). The penumbra is the convex hull of the
union of the umbra volumes. They use Crow’s shadow volumes to compute these regions.

The umbra is bounded by portions of EV events generated by one vertex of the source and one edge of the
blocker, while the penumbra is bounded EV events generated by edges and vertices of both the source and the
blocker.

Their method fails to compute the exact umbra caused by multiple blockers, since it is no longer the inter-

50 CHAPTER 5. OBJECT-SPACE

Figure 5.13: Umbra (dark grey) and penumbra (light grey) of a convex blocker (adapted from [NN85]).

section of their umbras. The penumbra boundary is however valid, but some parts of the umbra are incorrectly
classified as penumbra. This is not a problem in their method because a shadow computation is performed in
the penumbra region (using an exact hidden line removal method). The umbra of a concave object is bounded
by EV visual events and also by EEE events (for example in Fig. 3.5 page 27 if polygon R is a source, the
EEE event exhibited is an umbra boundary). Penumbra regions are bounded only by EV events.

Drawings by da Vinci exhibit the first description of the limits of umbra and penumbra (Fig. 5.14).

5.2 BSP shadow volumes for area light sources

Chin and Feiner [CF92] have extended their BSP method to handle area light sources. They build two shadow
BSP, one for the umbra and one for the penumbra.

As in Nishita and Nakamae’s case, their algorithm does not compute the exact umbra volume due to the
occlusion by multiple blockers.

5.3 Discontinuity meshing

Heckbert [Hec92b, Hec92a] has introduced the notion of discontinuity meshing for radiosity computations.
At a visual event, a C2 discontinuity occurs in the illumination function (see [Arv94] for the computation of
illumination gradients). Heckbert uses EV discontinuity surfaces with one generator on the source.

Other authors [LTG93, LTG92, Stu94, Cam91, CF91a, GH94] have used similar techniques. See Fig. 5.15
for an example. Hardt and Teller [HT96] also consider discontinuities which are caused by indirect lighting.
Other discontinuity meshing techniques will be treated in section 2.3 of chapter 7 and 2.1 of chapter 8.

However, discontinuity meshing approaches have not yet been widely adopted because they are prone to
robustness problems and also because the irregular meshes induced are hard to handle.

5.4 Linear time construction of umbra volumes

Yoo et al. [YKSC98] perform the same umbra/penumbra classification as Nishita and Nakamae, but they avoid
the construction and intersection/union of all the shadow volumes from the vertices of the source.

They note that only EV events on separating and supporting planes have to be considered. Their algorithm
walks along the chain of edges and vertices simultaneously on the source and on the blocker as illustrated in
Fig. 5.16.

5. AREA LIGHT SOURCES 51

Figure 5.14: Penumbra by Leonardo da Vinci (Manuscript). Light is coming from the lower window, and the
sphere causes soft shadows.

This can be interpreted in line space as a walk along the chain of 1 dimensional sets of lines defined by
visual events.

Related methods can be found in [Cam91, TTK96].

5.5 Viewpoint constraints

As we have seen, viewpoint optimisation is often performed for the monitoring of robotics tasks. In this
setting, the visibility of a particular feature of object has to be enforced. This is very similar to the computation
of shadows considering that the feature is an extended light source.

Cowan and Kovesi [CK88] use an approach similar to Nishita and Nakamae. They compute the penumbra
region caused by a convex blocker as the intersection of the half spaces defined by the separating planes of
the feature and blockers (i.e. planes tangent to both objects such that each object lies on a different side of the
plane). The union of the penumbra of all the blockers is taken and constraints related to the sensor are then
included: resolution of the image, focus, depth of field and view angle. The admissible region is the intersection
of these constraints.

Briggs and Donald [BD98] propose a 2D method which uses the intersection of half-planes defined by
bitangents. They also reject viewpoints from which the observation can be ambiguous because of similarities
in the workspace or in the object to be manipulated.

Tarabanis and Tsai [TTK96] compute occlusion free viewpoints for a general polyhedral scene and a general

52 CHAPTER 5. OBJECT-SPACE

(a) (b)

Figure 5.15: Global illumination simulation. (a) Without discontinuity meshing. Note the jagged shadows. (b)
Using discontinuity meshing, shadows are finer (images courtesy of Dani Lischinski, Program of Computer
Graphics, Cornell University).

(a) (b)

(c) (d)

Figure 5.16: Linear time construction of a penumbra volume.

polygonal feature. They enumerate possible EV wedges and compute their intersection.

Kim et al. [KYCS98] also present an efficient algorithm which computes the complete visibility region of
a convex object.

6. SHAFTS 53

5.6 Light from shadows

Poulin et al. [PF92, PRJ97] have developed inverse techniques which allow a user to sketch the positions of
shadows. The position of the light source is then automatically deduced.

The principle of shadow volumes is reversed: A point P lies in shadow if the point light source is in a
shadow volume emanating from point P. The sketches of the user thus define constraints under the form of an
intersection of shadow volumes (see Fig. 5.17).

Figure 5.17: Sketching shadows. The user specifies the shadows of the ellipsoid on the floor with the thick
strokes. This generates constraint cones (dashed). The position of the light source is then deduced (adapted
from [PRJ97]).

Their method can also handle soft shadows, and additional constraints such as the position of highlights.

6 Shafts

Shaft method are based on the fact that occlusion between two objects can be caused only by objects inside
their convex hull. Shafts can be considered as finite beams for which the apex is not a point. They can also be
seen as the volume of space defined by the set of rays between two objects.

6.1 Shaft culling

Haines and Wallace [HW91] have developed shaft culling in a global illumination context to speed up form
factor computation using ray-casting. They define a shaft between two objects (or patches of the scene) as the
convex hull of their bounding box (see Fig. 5.18).

A

B

C

Figure 5.18: Shaft culling. The shaft between A and B is defined as the convex hull of the union of their
bounding boxes. Object C intersects the shaft, it may thus cause occlusion between A and B.

54 CHAPTER 5. OBJECT-SPACE

They have developed an efficient construction of approximate shafts which takes advantage of the axis
aligned bounding boxes. The test of an object against a shaft is also optimized for bounding boxes.

Similar methods have been independently devised by Zhang [Zha91] and Campbell [Cam91].
Marks et al [MWCF90], Campbell [Cam91] and Drettakis and Sillion [DS97] have derived hierarchical

versions of shaft culling. The hierarchy of shafts is implicitly defined by a hierarchy on the objects. This
hierarchy of shaft can also be seen as a hierarchy in line-space [DS97]. Brière and Poulin [BP96] also use a
hierarchy of shafts or tubes to accelerate incremental updates in ray tracing.

6.2 Use of a dual space

Zao and Dobkin [ZD93] use shaft culling between pairs of triangles. They speed up the computation by the
use of a multidimensional dual space. They decompose the shaft between a pair of triangles into tetrahedra
and derive the conditions for another triangle to intersect a tetrahedron. These conditions are linear inequalities
depending on the coordinates of the triangle.

They use multidimensional spaces depending on the coordinates of the triangles to speed up these tests.
The queries in these spaces are optimized using binary trees (kd-trees in practice).

6.3 Occlusion culling from a volume

Cohen-Or and his co-authors [COFHZ98, COZ98] compute potentially visible sets from viewing cells. That
is, the part of the scene where the viewer is allowed (the viewing space in short) is subdivided into cells from
which the set of objects which may be visible is computed. This method can thus be seen as a viewpoint space
method, but the core of the computation is based on the shaft philosophy.

Their method detects if a convex occluder occludes an object from a given cell. If convex polygonal objects
are considered, it is sufficient to test if all rays between pairs of vertices are blocked by the occluder. The test
is early terminated as soon as a non-blocked ray is found. It is in fact sufficient to test only silhouette rays (a
ray between two point is a silhouette ray if each point is on the silhouette as seen from the other).

The drawback of this method is that it can not treat the occlusion caused by many blockers. The amount
of storage required by the potentially visible set information is also a critical issue, as well as the cost of
ray-casting.

7 Visibility propagation through portals

As already introduced, architectural scenes are organized into rooms, and inter-room visibility occurs only
along openings named portals. This makes them particularly suitable for visibility preprocessing. Airey [Air90]
and Teller [Tel92b, TS91] decompose a building into cells (roughly representing rooms) and precompute Po-
tentially Visible Sets for each set. These are superset of objects visible from the cell which will then typically
be sent to a z-buffer in a walkthrough application (see below).

7.1 Visibility computation

We describe here the methods proposed by Teller [Tel92b]. An adjacency graph is built connecting cells
sharing a portal. Visibility is then propagated from a cell to neighbouring cells through portal sequences in a
depth-first manner. Consider the situation illustrated in Fig. 5.19(a). Cell B is visible from cell A through the
sequence of portals p1 p2. Cell C is neighbour of B in the adjacency graph, its visibility from A is thus tested.
A sightline stabbing the portals p1, p2 and p3 is searched (see Fig. 5.19(b)). A stab-tree is built which encodes
the sequences of portals.

If the scene is projected on a floorplan, this stabbing problem reduces to find a stabber for a set of segments
and can be solved using linear programming (see [Tel92b, TS91]).

If rectangular axis-aligned portals are considered in 3D, Teller [Tel92b] shows that the problem can be
solved by projecting it in 2D along the three axis directions.

If arbitrary oriented portals are computed, he proposes to compute a conservative approximation to the
visible region [Tel92b, TH93]. As each portal is added to the sequence, the EV events bounding the visibility

7. VISIBILITY PROPAGATION THROUGH PORTALS 55

(a) (b)

A

B C

p1

p2

p3

p1

p2

p3

Figure 5.19: Visibility computations in architectural environments. (a) In grey: part of the scene visible from
the black cell. (b) A stabbing line (or sightline) through a sequence of portals.

region are updated. These EV events correspond to separating planes between the portals. For each edge of
the sequence of portals, only the extremal event is considered. The process is illustrated Fig. 5.20. It is a
conservative approximation because EEE boundaries are not considered.

p1

p2
p3e

v2 v3

p1

p2
p3 p4

v4

e

(a) (b)

Figure 5.20: Conservative visibility propagation through arbitrary portals. (a) The separating plane considered
for e is generated by v3 because it lies below the one generated by v2. (b) As a new portal is added to the
sequence, the separating plane is updated with the same criterion.

If the visibility region is found to be empty, the new cell is not visible from the current cell. Otherwise,
objects inside the cell are tested for visibility against the boundary of the visibility region as in a shaft method.

Airey [Air90] also proposes an approximate scheme where visibility between portals is approximated by
casting a certain number of rays (see section 4 of chapter 8 for the approaches involving sampling with rays).
See also the work by Yagel and Ray [YR96] who describe similar ideas in 2D.

The portal sequence can be seen as a sort of infinite shaft. We will also study it as the set of lines going
through the portals in section 3.3 of chapter 8.

7.2 Applications

The primary focus of these potentially visible sets methods was the use in walkthrough systems. Examples
can be found in both Airey [ARB90] and Teller’s thesis [TS91, Tel92b]. Teller also uses an online visibility
computation which restricts the visible region to the current viewpoint. The stab-tree is used to speed up a
beam-like computation.

Funkhouser et al. [FS93] have extended Teller’s system to use other rendering acceleration techniques such
as mesh simplification in a real time context to obtain a constant framerate. He and his co-authors [FST92,
Fun96c] have also used the information provided by the potentially visible sets to efficiently load from the disk
or from the network only the parts of the geometry which may become visible in the subsequent frames. It can
also be used in a distributed virtual environment context to limit the network bandwidth to messages between
clients who can see each other [Fun95].

These computations have also been applied to speed-up radiosity computations by limiting the calculation
of light interactions between mutually visible objects [TH93, ARB90]. It also permits lighting simulations for
scenes which cannot fit into memory [TFFH94, Fun96b].

56 CHAPTER 5. OBJECT-SPACE

CHAPTER 6

Image-Space

L’art de peindre n’est que l’art d’exprimer l’invisible
par le visible

Eugène FROMENTIN

OST OF the image-space methods we present are based on a discretisation of an image.
They often take advantage of the specialised hardware present in most of today’s comput-
ers, which makes them simple to implement and very robust. Sampling rate and aliasing
are however often the critical issues. We first present some methods which detect oc-
clusions using projections on a sphere or on planes. Section 1 deals with the use of the

z-buffer hardware to speed-up visibility computation. We then survey extensions of the z-buffer to perform
occlusion-culling. Section 4 presents the use of a z-buffer orthogonal to the view for occlusion-culling for
terrain-like scenes. Section 5 presents epipolar geometry and its use to perform view-warping without depth
comparison. Section 6 discusses the computation of soft shadow using convolution, while section 7 deals with
shadow-coherence in image-space.

1 Projection methods

1.1 Shadow projection on a sphere

Bouknight and Kelly [BK70] propose an optimization to compute shadows during a scan-line process as pre-
sented in section 6 of chapter 4. Their method avoids the need to intersect the wedge defined by the current
span and the light source with all polygons of the scene.

As a preprocess, the polygons of the scene are projected onto a sphere centered at the point light source. A
polygon can cast shadows on another polygon only if their projections overlap. They use bounding-box tests
to speed-up the process.

Slater [Sla92] proposes a similar scheme to optimize the classification of polygons in shadow volume BSPs.
He uses a discretized version of a cube centered on the source. Each tile (pixel) of the cube stores the polygon
which project on it. This speeds up the determination of overlapping polygons on the cube. This shadow tiling
is very similar to the light-buffer and to the hemicube which we will present in section 2.

57

58 CHAPTER 6. IMAGE-SPACE

1.2 Area light sources

Chrysanthou and Slater [CS97] have extended this technique to handle area light sources. In the methods
presented above, the size of the sphere or cube does not matter. This is not the case of the extended method: a
cube is taken which encloses the scene.

For each polygon, the projection used for point light sources becomes the intersection of its penumbra
volume with the cube. The polygons with which it interacts are those which project on the same tiles.

1.3 Extended projections

The extended projection method proposed in chapter 5 of [Dur99] can be seen as an extension of the latter
technique to perform offline occlusion culling from a volumetric cell (it can also be seen as an extension
of Greene’s hierarchical z-buffer surveyed in section 3). The occluders and occludees are projected onto a
projection plane using extended projection operators. The extended projection of an occluder is the intersection
of its views from all the viewpoints inside the cell. The extended projection of an occludee is the union of its
views (similar to the penumbra used by Chrysanthou et al.).

If the extended projection of an occludee is in the cumulative extended projection of some occluders (and
if it lies behind them), then it is ensured that it is hidden from any point inside the cell. This method handles
occluder fusion.

2 Advanced z-buffer techniques

The versatility and robustness of the z-buffer together with efficient hardware implementations have inspired
many visibility computation and acceleration schemes1. The use of the frame-buffer as a computational model
has been formalized by Fournier and Fussel [FF88].

2.1 Shadow maps

As evoked in section 1.2 of chapter 2, hard shadow computation can be seen as the computation of the points
which are visible from a point-light source. It is no surprise then that the z-buffer was used in this context.

Figure 6.1: Shadow map principle. A shadow map is computed from the point of view of the light source
(z-values are represented as grey levels). Then each point in the final image is tested for shadow occlusion by
projecting it back in the shadow map (gallion model courtesy of Viewpoint Datalab).

A two pass method is used. An image is first computed from the source using a z-buffer. The z values of
the closest points are stored in a depth map called shadow map. Then, as the final image is rendered, deciding

1Unexpected applications of the z-buffer have also been proposed such as 3D motion planning [LRDG90], Voronoi diagram computa-
tion [Hae90, ICK+99] or collision detection [MOK95].

2. ADVANCED Z-BUFFER TECHNIQUES 59

if a point is in shadow or not consists in projecting it back to the shadow map and comparing its distance to
the stored z value (similarly to shadow rays, using the depth map as a query data-structure). The shadow map
process is illustrated in Fig 6.1. Shadow maps were developed by Williams [Wil78] and have the advantage
of being able to treat any geometry which can be handled by a z-buffer. Discussions of improvements can be
found in [Gra92, Woo92].

The main drawback of shadow masks is aliasing. Standard filtering can not be applied, because averaging
depth values makes no sense in this context. This problem was addressed by Reeves et al. [RSC87]. Averaging
the depth values of the neighbouring pixels in the shadow map before performing the depth comparison would
make no sense. They thus first compare the depth value with that of the neighbouring pixels, then they compute
the average of the binary results. Had-oc soft shadows are obtained with this filtering, but the size of the
penumbra is arbitrary and constant. See also section 6 for soft computation using an image-space shadow-map.

Soft shadow effects can be also achieved by sampling an extended light source with point light sources and
averaging the contributions [HA90, HH97, Kel97]. See also [Zat93] for a use of shadow maps for high quality
shadows in radiosity lighting simulation.

Shadow maps now seem to predominate in production. Ray tracing and shadow rays are used only when the
artifacts caused by shadow maps are too noticeable. A hardware implementation of shadow maps is now avail-
able on some machines which allow the comparison of a texture value with a texture coordinate [SKvW +92]2.

Zhang [Zha98a] has proposed an inverse scheme in which the pixels of the shadow map are projected in
the image. His approach consists in warping the view from the light source into the final view using the view
warping technique presented in section 1.7 of chapter 2. This is similar in spirit to Atherton and Weiler’s
method presented in section 2.1 of chapter 4: the view from the source is added to the scene database.

2.2 Ray-tracing optimization using item buffers

A z-buffer can be used to speed up ray-tracing computations. Weghorst et al. [WHG84] use a z-buffer from
the viewpoint to speed up the computation of primary rays. An identifier of the objects is stored for each pixel
(for example each object is assigned a unique color) in a so called item buffer. Then for each pixel, the primary
ray is intersected only with the corresponding object. See also [Sun92].

Haines and Greenberg [HG86] propose a similar scheme for shadow rays. They place a light buffer centered
on each point light source. It consists of 6 item buffers forming a cube (Fig. 6.2(a)). The objects of the scene
are projected onto this buffer, but no depth test is performed, all objects projecting on a pixel are stored. Object
lists are sorted according to their distance to the point light source. Shadow rays are then intersected only with
the corresponding objects, starting with the closest to the source.

Poulin and Amanatides [PA91] have extended the light-buffer to linear light sources. This latter method
is a first step towards line-space acceleration techniques that we present in section 1.4 of chapter 8, since it
precomputes all objects intersected by the rays emanating from the light source.

Salesin and Stolfi [SS89, SS90] have extended the item buffer concept for ray-tracing acceleration. Their
ZZ-buffer performs anti-aliasing through the use of an A-buffer like scheme. They detect completely covered
pixels, avoiding the need for a subsampling of that pixel. They also sort the objects projecting on a non -
simple pixel by their depth intervals. The ray-object intersection can thus be terminated earlier as soon as an
intersection is found.

ZZ buffers can be used for primary rays and shadow rays. Depth of field and penumbra effects can also be
obtained with a slightly modified ZZ-buffer.

In a commercial products such as Maya from Alias Wavefront [May99], an A-buffer and a ray-tracer are
combined. The A-buffer is used to determine the visible objects, and ray-tracing is used only for pixels where
high quality refraction or reflection is required, or if the shadow maps cause too many artifacts.

2A shadow map is computed from the point light source and copied into texture memory. The texture coordinate matrix is set to the
perspective matrix from the light source. The initial u,v,w texture coordinate of a vertex are set to its 3D coordinates. After transformation,
w represents the distance to the light source. It is compared against the texture value at u,v, which encodes the depth of the closest object.
The key feature is the possibility to draw a pixel only if the value of w is smaller than the texture value at u,v.See [MBGN98] section 9.4.3.
for implementation details.

60 CHAPTER 6. IMAGE-SPACE

A

B

C

(a) (b)

Figure 6.2: (a) Light buffer. (b) Form factor computation using the hemicube. Five z-buffers are placed around
the center of patch A. All form factors between A and the other patches are evaluated simultaneously, and
occlusion of C by B is taken into account.

2.3 The hemicube

Recall that form factors are used in radiosity lighting simulations to model the proportion of light leaving a
patch which arrives at another. The first method developed to estimate visibility for form factor computations
was the hemicube which uses five item-buffer images from the center of a patch as shown in Fig. 6.2(b). The
form factor between one patch and all the others is evaluated simultaneously by counting the number of pixels
covered by each patch.

The hemicube was introduced by Cohen et al. [CG85] and has long been the standard method for radiosity
computations. However, as for all item buffer methods, sampling and aliasing problems are its main drawbacks.
In section 2.2 of chapter 4 and section 4 of chapter 8 we present some solutions to these problems.

Sillion and Puech [SP89] have proposed an alternative to the hemicube which uses only one plane parallel
the patch (the plane is however not uniformly sampled: A Warnock subdivision scheme is used.

Pietrek [Pie93] describe an anti-aliased version of the hemicube using a heuristic based on the variation
between a pixel and its neighbours. See also [Mey90, BRW89]. Alonso and Holzschuch [AH97] present
similar ideas as well as a deep discussion of the efficient access to the graphics hardware resources.

2.4 Sound occlusion and non-binary visibility

The wavelengths involved in sound propagation make it unrealistic to neglect diffraction phenomena. Simple
binary visibility computed using ray-object intersection is far from accurate.

Tsingos and Gascuel [TG97a] use Fresnel ellipsoids and the graphics hardware to compute semi-quantitative
visibility values between a sound source and a microphone. Sound does not propagate through lines; Fresnel
ellipsoids describe the region of space in which most of the sound propagation occurs. Their size depends on
the sound frequency considered. Sound attenuation can be modeled as the amount of occluders present in the
Fresnel ellipsoid. They use the graphics hardware to compute a view from the microphone in the direction of
the source, and count the number of occluded pixels.

They also use such a view to compute diffraction patterns on an extended receiver such as a plane [TG97b].
One view is computed from the source, and then for each point on the receiver, and integral is computed using
the z values of the view. The contribution of each pixel to diffraction is then evaluated (see Fig. 6.3 for an
example).

3. HIERARCHICAL Z-BUFFER 61

Figure 6.3: Non binary visibility for sound propagation. The diffraction by the spheres of the sound emitted by
the source causes the diffraction pattern on the plane. (a) Geometry of the scene. (b) z-buffer from the source.
(c) Close up of the diffraction pattern of the plane. (Courtesy of Nicolas Tsingos, iMAGIS-GRAVIR).

3 Hierarchical z-buffer

The z-buffer is simple and robust, however it has linear cost in the number of objects. With the ever increasing
size of scenes to display, occlusion culling techniques have been developed to avoid the cost incurred by objects
which are not visible.

Greene et al. [GKM93, Gre96] propose a hierarchical version of the z-buffer to quickly reject parts of the
scene which are hidden. The scene is partitioned to an octree, and cells of the octree are rendered from front to
back (the reverse of the original painter algorithm, see e.g. [FvDFH90, Rog97] or section 4 of chapter 4) to be
able to detect the occlusion of back objects by frontmost ones. Before it is rendered, each cell of the octree is
tested for occlusion against the current z values. If the cell is occluded, it is rejected, otherwise its children are
treated recursively.

The z-buffer is organised in a pyramid to avoid to test all the pixels of the cell projection. Fig. 6.4 shows
the principle of the hierarchical z-buffer.

scene octreehierarchical z-buffer

Figure 6.4: Hierarchical z-buffer.

The hierarchical z-buffer however requires many z-value queries to test the projection of cells and the
maintenance of the z-pyramid; this can not be performed efficiently on today’s graphics hardware. Zhang et
al. [ZMHH97, Zha98b] have presented a two pass version of the hierarchical z-buffer which they have suc-
cessfully implemented using available graphics hardware. They first render a subset of close and big objects
called occluders, then read the frame buffer and build a so-called hierarchical occlusion map against which they
test the bounding boxes of the objects of the scene. This method has been integrated in a massive model ren-
dering system system [ACW+99] in combination with geometric simplification and image-based acceleration
techniques.

The strength of these methods is that they consider general occluders and handle occluder fusion, i.e. the

62 CHAPTER 6. IMAGE-SPACE

occlusion by a combination of different objects.
The library Open GL Optimizer from Silicon Graphics proposes a form of screen space occlusion culling

which seems similar to that described by Zhang et al. Some authors [BMT98] also propose a modification to
the current graphics hardware to have access to z-test information for efficient occlusion culling.

4 Occluder shadow footprints

Many 3D scenes have in fact only two and a half dimensions. Such a scene is called a terrain, i.e., a function
z = f (x,y). Wonka and Schmalstieg [WS99] exploit this characteristic to compute occlusions with respect to a
point using a z-buffer with a top view of a scene.

occluder shadow
footprint

occluder

occluder
shadow
wedge

occludee

viewpoint

side view top view

occluder shadow
footprint

occludee

occluder

Figure 6.5: Occluder shadow footprints. A projection from above is used to detect occlusion. Objects are hidden
if they are below the occluder shadows. The footprints (with height) of the occluded regions are rasterized using
a z-buffer. Depth is represented as grey levels. Note the gradient in the footprint due to the slope of the wedge.

Consider the situation depicted in Fig. 6.5 (side view). They call the part of the scene hidden by the
occluder from the viewpoint the occluder shadow (as if the viewpoint were a light source). This occluder
shadow is delimited by wedges. The projection of such a wedge on the floor is called the footprint, and an
occludee is hidden by the occluder if it lies on the shadow footprint and if it is below the edge.

The z-buffer is used to scan-convert and store the height of the shadow footprints, using an orthographic
top view (see Fig. 6.5). An object is hidden if its projection from above is on a shadow footprint and if it is
below the shadow wedges i.e, if it is occluded by the footprints in the top view.

5 Epipolar rendering

Epipolar geometry has been developed in computer vision for stereo matching (see e.g. [Fau93]). Assume that
the geometry of two cameras is known. Consider a point A in the first image (see Fig. 6.6). The possible point
of the 3D scene must lie on the line LA going through A and viewpoint 1. The projection of the corresponding
point of the scene on the second image is constrained by the epipolar geometry: it must be on line L ′

A which is
the projection of LA on image 2. The search for a correspondence can thus be restricted from a 2D search over
the entire image to a 1D search on the epipolar line.

Mc Millan and Bishop [MB95] have taken advantage of the epipolar geometry for view warping. Consider
the warping from image 2 to image 1 (image 2 is the initial image, and we want to obtain image 1 by reprojecting
the points of image 2). We want to decide which point(s) is reprojected on A. These are necessarily points on
the epipolar line L′

A. However, many points may project on A; only the closest has to be displayed. This can be
achieved without actual depth comparison, by warping the points of the epipolar line L ′

A in the order shown by
the thick arrow, that is, from the farthest to the closest. If more than one point projects on A, the closest will
overwrite the others. See also section 1.5 of chapter 8 for a line-space use of epipolar geometry.

6. SOFT SHADOWS USING CONVOLUTION 63

1 2

A L'A

image 1 image 2

LA

Figure 6.6: Epipolar geometry. LA is the set of all points of the scene possibly projecting on A. L ′
A is the

projection on image 2. For a warping from image 2 to image 1, points of image 2 have to be reprojected to
image 1 in the order depicted by the arrows for correct occlusion.

6 Soft shadows using convolution

Soler and Sillion [SS98a, Sol98] have developed efficient soft shadow computations based on the use of con-
volutions. Some of the ideas are also present in a paper by Max [Max91]. A simplification could be to see their
method as a “wise” blurring of shadow maps depending on the shape of the light source.

source

blocker

convolution
kernel

(a) (b) (c)

Figure 6.7: Soft shadows computation using convolution. (a) Geometry of the scene. (b) Projection on a
parallel approximate geometry. (c) The shadow is the convolution of the projection of the blockers with the
inverse image of the source.

Consider an extended light source, a receiver and some blockers as shown in Fig. 6.7(a). This geometry is
first projected onto three parallel planes (Fig. 6.7(b)). The shadow computation for this approximate geometry
is equivalent to a convolution: the projection of the blocker(s) is convolved with the inverse projection of the
light source (see Fig. 6.7(c)). The shadow map obtained is then projected onto the receiver (this is not necessary
in our figures since the receiver is parallel to the approximate geometry).

In the general case, the shadows obtained are not exact: the relative sizes of umbra and penumbra are not
correct. They are however not constant if the receiver is not parallel to the approximate geometry. The results
are very convincing (see Fig. 6.8).

For higher quality, the blockers can be grouped according to their distance to the source. A convolution
is performed for each group of blockers. The results then have to be combined; Unfortunately the correlation
between the occlusions of blockers belonging to different groups is lost (see also [Gra92] for a discussion of
correlation problems for visibility and antialiasing).

This method has also been used in a global simulation system based on radiosity [SS98b].

7 Shadow coherence in image-space

Haines and Greenberg [HG86] propose a simple scheme to accelerate shadow computation in ray-tracing. Their
shadow cache simply stores a pointer to the object which caused a shadow on the previous pixel. Because of

64 CHAPTER 6. IMAGE-SPACE

Figure 6.8: Soft shadows computed using convolutions (image courtesy of Cyril Soler, iMAGIS-GRAVIR)

coherence, it is very likely that this object will continue to cast a shadow on the following pixels.
Pearce and Jevans [PJ91] extend this idea to secondary shadow rays. Because of reflection and refrac-

tion, many shadow rays can be cast for each pixel. They thus store a tree of pointers to shadowing objects
corresponding to the secondary ray-tree.

Worley [Wor97] pushes the idea a bit further for efficient soft shadow computation. He first computes
simple hard shadows using one shadow-ray per pixel. He notes that pixels where shadow status changes are
certainly in penumbra, and so are their neighbours. He thus “spreads” soft shadows, using more shadow rays
for these pixels. The spreading operation stops when pixels in umbra or completely lit are encountered.

Hart et al [HDG99] perform a similar image-space floodfill to compute a blocker map: for each pixel,
the objects casting shadows on the visible point are stored. They are determined using a low number of rays
per pixel, but due to the image-space flood-fill the probability to miss blockers is very low. They then use an
analytic clipping of the source by the blockers to compute the illumination of each pixel.

CHAPTER 7

Viewpoint-Space

On ne voit bien qu’avec le cœur. L’essentiel est invisible
pour les yeux.

Antoine de Saint-EXUPERY, Le Petit Prince

IEWPOINT-SPACE methods characterize viewpoints with respect to some visibility property.
We first present the aspect graph which partitions viewpoint space according to the qualitative
aspect of views. It is a fundamental visibility data-structure since it encodes all possible views
of a scene. Section 2 presents some methods which are very similar to the aspect graph.
Section 3 deals with the optimization of a viewpoint or set of viewpoints to satisfy some

visibility criterion. Finally section 4 presents two methods which use visual events to determine the viewpoints
at which visibility changes occur.

1 Aspect graph

As we have seen in section 2 of chapter 2 and Fig. 2.8 page 14, model-based object recognition requires a
viewer-centered representation which encodes all the possible views of an object. This has led Koenderink
and Van Doorn [Kv76, Kv79] to develop the visual potential of an object which is now more widely known
as the aspect graph (other terminology are also used in the literature such as view graph, characteristic views,
principal views, viewing data, view classes or stable views).

Aspect graph approaches consist in partitioning viewpoint space into cells where the view of an object are
qualitatively invariant. The aspect graph is defined as follows:

• Each node represents a general view or aspect as seen form a connected cell of viewpoint space.

• Each arc represents a visual event, that is, a transition between two neighbouring general views.

The aspect graph is the dual graph of the partition of viewpoint space into cells of constant aspect. This
partition is often named viewing data or viewpoint space partition. The terminology aspect graph and viewpoint
space partition are often used interchangeably although they refer to dual concepts.

65

66 CHAPTER 7. VIEWPOINT-SPACE

Even though all authors agree on the general definition, the actual meaning of general view and visual event
varies. First approximate approaches have considered the set of visible features as defining a view. However for
exact approaches the image structure graph has rapidly imposed itself. It is the graph formed by the occluding
contour or visible edges of the object. This graph may be labeled with the features of the object.

It is important to understand that the definition of the aspect graph is very general and that any definition of
the viewing space and aspect can be exchanged. This makes the aspect graph concept a very versatile tool as
we will see in section 2.

Aspect graphs have inspired a vast amount of work and it is beyond the scope of this survey to review all
the literature in this field. We refer the reader to the survey by Eggert et al. [EBD92] or to the articles we
cite and the references therein. Approaches have usually been classified according to the viewpoint space used
(perspective or orthographic) and by the class of objects considered. We will follow the latter, reviewing the
methods devoted to polyhedra before those related to smooth objects. But first of all, we survey the approximate
method which use a discretization of viewpoint space.

1.1 Approximate aspect graph

Early aspect graph approaches have used a quasi uniform tessellation of the viewing sphere for orthographic
projection. It can be obtained through the subdivision of an initial icosahedron as shown by Fig. 7.1. Sample
views are computed from the vertices of this tessellation (the typical number of sample views is 2000). They
are then compared, and similar views are merged. Very often, the definition of the aspect is the set of visible
features (face, edge, vertex) and not their adjacencies as it is usually the case for exact aspect graphs This
approach is very popular because of its simplicity and robustness, which explains that it has been followed by
many researchers e.g. [Goa83, FD84, HK85]. We will see that most of the recognition systems using aspect
graphs which have been implemented use approximate aspect graphs.

Figure 7.1: Quasi uniform subdivision of the viewing sphere starting with an icosahedron.

We will see in section 3.2 that this quasi uniform sampling scheme has also been applied for viewpoint
optimization problems.

A similar approach has been developed for perspective viewpoint space using voxels [WF90].
The drawback of approximate approaches is that the sampling density is hard to set, and approximate

approach may miss some important views, which has led some researchers to develop exact methods.

1.2 Convex polyhedra

In the case of convex polyhedra, the only visual events are caused by viewpoints tangent to faces. See Fig.
7.2 where the viewpoint partition and aspect graph of a cube are represented. For orthographic projection, the
directions of faces generate 8 regions on the viewing sphere, while for perspective viewpoint space, the 6 faces
of the cube induce 26 regions.

The computation of the visual events only is not sufficient. Their arrangement must be computed, that is,
the decomposition of viewpoint space into cells, which implies the computation of the intersections between
the events to obtain the segments of events which form the boundaries of the cells. Recall that the arrangement
of n lines (or well-behaved curves) in 2D has O(n2) cells. In 3D the arrangement of n planes has complexity
O(n3) in size [dBvKOS97, O’R94, Ede87, BY98].

The first algorithms to build the aspect graph of 3D objects have dealt with convex polyhedra under ortho-
graphic [PD86] and perspective [SB90, Wat88] projection.

1. ASPECT GRAPH 67

(b) (c)(a)

1

2
3

1

2
3

4

2 3

1

2
6

4

26

1

2
31

2

2

2 3

4

2

1
6

26

4

2 36 2

2

4

(d) (e)

1

2
6

4

2 3

4

53

1

5
3

1

5
6

4

5 6

4

26

1

2
3

1

2
3

1

2

2 3

4

2 3

2

4

26

4

6 2

2

1
6

2

Figure 7.2: Aspect graph of a convex cube. (a) Initial cube with numbered faces. (b) and (c) Partition of
the viewpoint space for perspective and orthographic projection with some representative aspects. (d) and
(e) Corresponding aspect graphs. Some aspects are present in perspective projection but not in orthographic
projection, for example when only two faces are visible. Note also that the cells of the perspective viewpoint
space partition have infinite extent.

1.3 General polyhedra

General polyhedra are more involved because they generate edge-vertex and triple-edge events that we have
presented in chapter 3. Since the number of triple-edge events can be as high as O(n 3), the size of the aspect
graph of a general polygon is O(n6) for orthographic projection (since the viewing sphere is two dimensional),
and O(n9) for perspective projection for which viewpoint space is three-dimensional. However these bounds
may be very pessimistic. Unfortunately the lack of available data impede a realistic analysis of the actual
complexity. Note also that we do not count here the size of the representative views of aspects, which can be
O(n2) each, inducing a size O(n8) for the orthographic case and O(n11) for the perspective case.

The cells of the aspect graph of a general polyhedron are not necessary convex. Partly because of the EEE
events, but also because of the EV events. This is different from the 2D case where all cells are convex because
in 2D visual events are line segments.

We detail here the algorithms proposed by Gigus and his co-authors [GM90, GCS91] to build the aspect
graph of general polyhedra under orthographic projection.

In the first method [GM90], potential visual events are considered for each face, edge-vertex pair and triple
of edges. At this step, occlusion is not taken into account: objects lying between the generators of the events
are considered transparent. These potential events are projected on the viewing sphere, and the arrangement is
built using a plane sweep.

However, some boundaries of the resulting partition may correspond to false visual event because of occlu-
sion. For example, an object may lie between the edge and vertex of an EV event as shown in Fig. 7.3. Each
segment of cell boundary (that is, each portion of visual event) has to be tested for occlusion. False segment
are discarded, and the cells are merged.

Gigus Canny and Seidel [GCS91] propose to cope with the problem of false events before the arrangement
is constructed. They compute the intersection of all the event with the object in object space as shown in Fig.

68 CHAPTER 7. VIEWPOINT-SPACE

V

E

P

Q

(a) (b)

R

actual event

Figure 7.3: False event (“transparent” event). Object R occludes vertex V from edge E, thus only a portion
of the potential visual event corresponds to an actual visual event. (a) In object space. (b) In orthographic
viewpoint space.

7.3(a), and only the unoccluded portion is used for the construction of the arrangement.

They also propose to store and compute the representative view efficiently. They store only one aspect for
an arbitrary seed cell. Then all other views can be retrieved by walking along the aspect graph and updating
this initial view at each visual event.

(a) (b)

Figure 7.4: Aspect graph of a L-shaped polyhedron under orthographic projection (adapted from [GM90]). (a)
Partition of the viewing sphere and representative views. (b) Aspect graph.

These algorithms have however not been implemented to our knowledge. Fig. 7.4 shows the partition of
the viewing sphere and the aspect graph of a L-shaped polyhedron under orthographic transform.

Similar construction algorithms have been proposed by Stewman and Bowyer [SB88] and Stewman [Ste91]
who also deals with perspective projection.

We will see in section 1.1 of chapter 8 that Plantinga and Dyer [PD90] have proposed a method to build the
aspect graph of general polyhedra which uses an intermediate line space data-structure to compute the visual
events.

1. ASPECT GRAPH 69

1.4 Curved objects

Methods to deal with curved objects were not developed till later. Seales and Dyer [SD92] have proposed the
use of a polygonal approximation of curved objects with polyhedra, and have restricted the visual events to
those involving the silhouette edges. For example, an edge-vertex event EV will be considered only if E is a
silhouette edge from V (as this is the case in Fig. 3.3 page 26). This is one example of the versatility of the
aspect graph definition: here the definition of the aspect depends only on the silhouette.

Kriegman and Ponce [KP90] and Eggert and Bowyer [EB90] have developed methods to compute aspect
graphs of solids of revolution under orthographic projection, while Eggert [Egg91] also deals with perspective
viewpoint space. Objects of revolution are easier to handle because of their rotational symmetry. The problem
reduces to a great circle on the viewing sphere or to one plane going through the axis of rotation in perspective
viewpoint space. The rest of the viewing data can then be deduced by rotational symmetry. Eggert et al.
[EB90, Egg91] report an implementation of their method.

The case of general curved object requires the use of the catalogue of singularities as proposed by Callahan
and Weiss [CW85]; they however developed no algorithm.

Petitjean and his co-authors [PPK92, Pet92] have presented an algorithm to compute the aspect graph of
smooth objects bounded by arbitrary smooth algebraic surface under orthographic projection. They use the
catalogue of singularities of Kergosien [Ker81]. There approach is similar to that of Gigus and Malik [GM90].
They first trace the visual events of the “transparent” object (occlusion is not taken into account) to build a
partition of the viewing sphere. They then have to discard the false (also called occluded) events and merge
the corresponding cells. Occlusion is tested using ray-casting at the center of the boundary. To trace the visual
event, they derive their equation using a computer algebra system and powerful numerical techniques. The
degree of the involved algebraic systems is very large, reaching millions for an object described by an equation
of degree 10. This algorithm has nevertheless been implemented and an example of result is shown in Fig. 7.5.

Figure 7.5: Partition of orthographic viewpoint space for a dimple object with representative aspects. (adapted
from [PPK92]).

Similar methods have been developed by Sripradisvarakul and Jain [SJ89], Ponce and Kriegman [PK90]
while Rieger [Rie92, Rie93] proposes the use of symbolic computation and cylindrical algebraic decomposition
[Col75] (for a good introduction to algebraic decomposition see the book by Latombe [Lat91] p. 226).

Chen and Freeman [CF91b] have proposed a method to handle quadric surfaces under perspective projec-
tion. They use a sequence of growing concentric spheres centered on the object. They trace the visual events
on each sphere and compute for which radius the aspects change.

Finally PetitJean has studied the enumerative properties of aspect graphs of smooth and piecewise smooth
objects [Pet95, Pet96]. In particular, he gives bounds on the number of topologically distinct views of an object
using involved mathematical tools.

70 CHAPTER 7. VIEWPOINT-SPACE

1.5 Use of the aspect graph

The motivation of aspect graph research was model-based object recognition. The aspect graph provides infor-
mations on all the possible views of an object. The use of this information to recognise an object and its pose
are however far from straightforward, one reason being the huge number of views. Once the view of an object
has been acquired from a camera and its features extracted, those features can not be compared to all possible
views of all objects in a database: indexing schemes are required. A popular criterion is the number of visible
features (face, edge, vertex) [ESB95].

The aspect graph is then often used to build offline a strategy tree [HH89]or an interpretation tree [Mun95].
At each node of an interpretation tree corresponds a choice of correspondence, which then recursively leads to
a restricted set of possible interpretation. For example if at a node of the tree we suppose that a feature of the
image corresponds to a given feature A of a model, this may exclude the possibility of another feature B to be
present because feature A and B are never visible together.

The information of the viewing space partition can then be used during pose estimation to restrict the
possible set of viewpoint [Ike87, ESB95]. If the observation is ambiguous, Hutchinson and Kak [HK89] and
Gremban and Ikeuchi [GI87] also use the information encoded in the aspect graph to derive a new relevant
viewpoint from which the object and pose can be discriminated.

Dickinson et al. [DPR92] have used the aspect for object composed of elementary objects which they call
geons. They use an aspect graph for each geon and then use structural information on the assembly of geons to
recognise the object.

However the aspect graph has not yet really imposed itself for object recognition. The reasons seem to
be the difficulty of robust implementation of exact methods, huge size of the data-structure and the lack of
obvious and efficient indexing scheme. One major drawback of the exact aspect graphs is that they capture all
the possible views, whatever their likelihood or significance. The need of a notion “importance” or scale of the
features is critical, which we will discuss in section 1 of chapter 9.

For a good discussion of the pros and cons of the aspect graph, see the report by Faugeras et al. [FMA +92].
Applications of the aspect graph for rapid view computation have also been proposed since all possible

views have been precomputed [PDS90, Pla93]. However, the only implementation reported restricted the
viewpoint movement to a rotation around one axis.

More recently Gu and his coauthors [GGH+99] have developed a data-structure which they call a silhouette
tree which is in fact an aspect graph for which the aspect is defined only by the exterior silhouette. It is built
using a sampling and merging approach on the viewing sphere. It is used to obtain images with a very fine
silhouette even if a very simplified version of the object is rendered.

Pellegrini [Pel99] has also used a decomposition of the space of direction similar to the aspect graph to
compute the form factor between two unoccluded triangles. The sphere S 2 is decomposed into regions where
the projection of the two triangles has the same topology. This allows an efficient integration because no
discontinuity of the integration kernel occur in these regions.

A somehow related issue is the choice of a good viewpoint for the view of a 3D graph. Visual intersections
should be avoided. These in fact correspond to EV or EEE events. Some authors [BGRT95, HW98, EHW97]
thus propose some methods which avoid points of the viewing sphere where such events project.

2 Other viewpoint-space partitioning methods

The following methods exhibit a typical aspect graph philosophy even though they use a different terminology.
They subdivide the space of viewpoints into cells where a view is qualitatively invariant.

2.1 Robot Localisation

Deducing the position of a mobile robot from a view is exactly the same problem as determining the pose of an
object. The differences being that a range sensor is usually used and that the problem is mostly two dimensional
since mobile robots are usually naturally constrained on a plane.

Methods have thus been proposed which subdivide the plane into cells where the set of visible walls is
constant [GMR95, SON96, TA96]. See Fig. 7.6. Visual events occur when the viewpoint is aligned with a

2. OTHER VIEWPOINT-SPACE PARTITIONING METHODS 71

wall segments or along a line going through two vertices. Indexing is usually done using the number of visible
walls.

Figure 7.6: Robot self-localization. Partition of a scene into cells of structurally invariant views by visual events
(dashed).

Guibas and his co-authors [GMR95] also propose to index the aspects in a multidimensional space. To
summarize, they associate to a view with m visible vertices a vector of 2m dimensions depending on the
coordinates of the vertices. They then use standard multidimensional search methods [dBvKOS97].

2.2 Visibility based pursuit-evasion

The problem of pursuit-evasion presented in section 3 and Fig. 2.14 page 18 can also be solved using an
aspect-graph-like structure. Remember that the robot has to “clean” a scene by checking if an intruder is
present. “Contaminated” regions are those where the intruder can hide. We present here the solution developed
by LaValle et al. [LLG+97, GLL+97, GLLL98].

gap edges

contaminated
region0

visual
event

cleaned
region

11

0

(a) (b)

visible
region

gap edge

cleaned
region

11

(0)

(0,0) (0,1) (1,0) (1,1)

(1)

(c)

Figure 7.7: Pursuit-Evasion strategy. (a) The contaminated region can be cleaned only if the visual event is
crossed. The status of the neighbouring regions is coded on the gap edges. (b) The robot has moved to a second
cell, cleaning a region. (c) Part of the graph of possible states (upper node correspond to cell in (a) while lower
nodes correspond to the cell in (b)). In thick we represent the goal states and the move from (a) to (b).

Consider the situation in Fig. 7.7(a). The view from the robot is in dark grey. The contaminated region can
be cleaned only when the indicated visual event is crossed as in Fig. 7.7(b).

The scene is partitioned by the visibility event with the same partition as for robot localization (see Fig.
7.6). For each cell of the partition, the structure of the view polygon is invariant, and in particular the gap edges
(edges of the view which are not on the boundary of the scene). The status of the neighbouring regions is coded
on these gap edges: 0 indicates a contaminated region while 1 indicates a cleaned one.

The state of the robot is thus coded by its current cell and the status of the corresponding gap edges. In
Fig 7.7(a) the robot status is (1,0), while in (b) it is (1). Solving the pursuit problem consists in finding the
succession of states of the robot which end at a state where all gap edges are at 1. A graph is created with one
node for each state (that means 2m states for a cell with m edges). Edges of the graph correspond to possible

72 CHAPTER 7. VIEWPOINT-SPACE

transition. A transition is possible only to neighbouring cells, but not to all corresponding states. Fig. 7.7
represents a portion of this graph.

The solution is then computed using a standard Dijkstra search. See Fig. 2.14 page 18 for an example.
Similar methods have also been proposed for curved environments [LH99].

2.3 Discontinuity meshing with backprojections

We now turn to the problem of soft shadow computation in polygonal environments. Recall that the penumbra
region corresponds to zones where only a part of an extended light source is visible. Complete discontinuity
meshing subdivides the scene polygons into regions where the topology of the visible part of the source is
constant. In this regions the illumination varies smoothly, and at the region boundary there is a C 2 discontinuity.

Moreover a data-structure called backprojection encodes the topology of the visible part of the source as
represented in Fig. 7.8(b) and 7.9(b). Discontinuity meshing is an aspect graph method where the aspect is
defined by the visible part of the source, and where viewpoint space is the polygons of the scene.

V

E

(a)

V

source

(b)

discontinuity
surface

E

source

Figure 7.8: Complete discontinuity meshing with backprojections. (a) Example of an EV event intersecting the
source. (b) In thick backprojection from V (structure of the visible part of the source)

R
P

Q

(a)

R

Q

(b)

source EQ
ER

EP

Figure 7.9: Discontinuity meshing. (a) Example of an EEE event intersecting the source. (b) In thick backpro-
jection from a point on EP (structure of the visible part of the source)

Indeed the method developed and implemented by Drettakis and Fiume [DF94] is the equivalent of Gigus
Canny and Seidel’s algorithm [GCS91] presented in the previous section. Visual events are the EV and EEE
event with one generator on the source or which intersect the source (Fig. 7.8(a) and 7.9(a)). An efficient
space subdivision acceleration is used to speed up the enumeration of potential visual events. For each vertex
generator V an extended pyramid is build with the light source, and only the generators lying inside this volume
are considered. Space subdivision is used to accelerate this test. A similar scheme is used for edges. Space
subdivision is also used to speed-up the discontinuity surface-object intersections. See Fig. 7.10 for an example
of shadows and discontinuity mesh.

2. OTHER VIEWPOINT-SPACE PARTITIONING METHODS 73

Figure 7.10: Complete discontinuity mesh of a 1000 polygons scene computed with Drettakis and Fiume’s
algorithm [DF94].

This method has been used for global illumination simulation using radiosity [DS96]. Both the mesh and
form-factor problem are alleviated by this approach, since the backprojection allows for efficient point-to-area
form factor computation (portion of the light leaving the light source arriving at a point). The experiments

exhibited show that both the quality of the induced mesh and the precision of the form-factor computation are
crucial for high quality shadow rendering.

2.4 Output-sensitive discontinuity meshing

Stewart and Ghali [SG94] have proposed an output-sensitive method to build a complete discontinuity mesh.
They use a similar discontinuity surface-object intersection, but their enumeration of the discontinuity surfaces
is different.

It is based on the fact that a vertex V can generate a visual event with an edge E only if E lies on the
boundary of the visible part of the source as seen from V (see Fig. 7.8). A similar condition arises for EEE
events: the two edges closest to the source must belong to the backprojection of some part of the third edge,
and must be adjacent in this backprojection as shown in Fig. 7.9.

They use an update of the backprojections at visual events. They note that a visual event has effect only
on the parts of scene which are farther from the source than its generators. They thus use a sweep with planes
parallel to the source. Backprojections are propagated along the edges and vertices of the scene, with an update
at each edge-visual event intersection.

Backprojection have however to be computed for scratch at each peak vertex, that is, for each polyhedron,
the vertex which is closest to the source. Standard hidden surface removal is used.

The algorithm can be summarized as follows:

• Sort the vertices of the scene according to the distance to the source.

• At peak vertices compute a backprojection and propagate it to the beginning of the edges below.

• At each edge-visual event intersection update the backprojection.

• For each new backprojection cast (intersect) the generated visual event through the scene.

This algorithm has been implemented [SG94] and extended to handle degenerate configuration [GS96]
which cause some C1 discontinuities in the illumination function.

74 CHAPTER 7. VIEWPOINT-SPACE

3 Viewpoint optimization

In this section we present methods which attempt to chose a viewpoint or a set of viewpoints to optimize the
visibility of all or some of the features of a scene. The search is here exhaustive, all viewpoints (or a sampling)
are tested. The following section will present some methods which alleviate the need to search the whole space
of viewpoints. Some related results have already been presented in section 4.5 and 5.5 of chapter 5.

3.1 Art galleries

We present the most classical results on art gallery problems. The classic art gallery theorem is due to Chvátal
[Chv75] but he exhibited a complex proof. We here present the proof by Fisk [Fis78] which is much simpler.
We are given an art-gallery modeled by a simple (with no holes) 2D polygons.

Theorem: � n
3� stationary guards are always sufficient and occasionally necessary to guard a polygonal

art gallery with n vertices.

1
3

1 2

1

2
3

2

2

1

2

2

1

2
1

3

3

3

(a) (b)

Figure 7.11: Art gallery. (a) The triangulation of a simple polygon is 3-colored with colors 1, 2 and 3. Color 3 is
the less frequent color. Placing a guard at each vertex with color 3 permits to guard the polygon with less than
� n

3� guards. (b) Worst-case scene. To guard the second spike, a camera is needed in the grey region. Similar
constraints for all the spikes thus impose the need of at least � n

3� guards

The proof relies on the triangulation of the polygon with diagonals (see Fig. 7.11(a)). The vertices of such
a triangulation can always be colored with 3 colors such that no two adjacent vertices share the same color
(Fig. 7.11(a)). This implies that any triangle has one vertex of each color. Moreover, each vertex can guard its
adjacent triangles.

Consider the color which colors the minimum number of vertices. The number of corresponding vertices is
lower than � n

3�, and each triangle has such a vertex. Thus all triangles are guarded by this set of vertices. The
lower bound can be shown with a scene like the one presented in Fig. 7.11(b).

Such a set of guards can be found in O(n) time using a linear time triangulation algorithm by Chazelle
[dBvKOS97]. The problem of finding the minimum number of guards has however been shown NP-hard by
Aggarwal [Aga84] and Lee and Lin [LL86].

For other results see the surveys on the domain [O’R87, She92, Urr98].

3.2 Viewpoint optimization

The methods which have been developed to optimize the placement of sensors or lights are all based on a
sampling approach similar to the approximate aspect graph.

We present here the methods developed by Tarbox and Gottschlich [TG95]. Their aim is to optimize the
placement of a laser and a camera (as presented in Fig. 2.12 page 16) to be able to inspect an object whose
pose and geometry are known. The distance of the camera and laser to the object is fixed, viewpoint space is

3. VIEWPOINT OPTIMIZATION 75

thus a viewing sphere even if perspective projection is used. The viewing sphere is tessellated starting with an
icosahedron (Fig. 7.1 page 66). Sample points are distributed over the object. For each viewpoint, the visibility
of each sample point is tested using ray-casting. It is recorded in a two dimensional array called the viewability
matrix indexed by the viewpoint and sample point. (In fact two matrices are used since the visibility constraints
are not the same for the camera and for the laser.)

The viewability matrix can be seen as a structure in segment space: each entry encodes if the segment
joining a given viewpoint and a given sample point intersects the object.

The set of viewpoints which can see a given feature is called the viewpoint set. For more robustness,
especially in case of uncertainties in the pose of the object, the viewpoints of the boundary of a viewpoint set
are discarded, that is, the corresponding entry in the viewability matrix is set to 0. For each sample point, a
difficulty-to-view is computed which depends on the number of viewpoints from which it is visible.

A set of pairs of positions for the laser and the camera are then searched which resumes to a set-cover
problem. The first strategy they propose is greedy. The objective to maximize is the number of visible sample
points weighted by their difficulty-to-view. Then each new viewpoint tries to optimize the same function
without considering the already seen points until all points are visible from at least one viewpoint.

The second method uses simulated annealing (which is similar to a gradient descend which can “jump”
over local minima). An arbitrary number of viewpoints are randomly placed on the viewing sphere, and their
positions are then perturbated to maximize the number of visible sample points. If no solution is found for n, a
new viewpoint is added and the optimization proceeds. This method provides results with fewer viewpoints.

Similar methods have been proposed for sensor placement [MG95, TUWR97], data acquisition for mobile
robot on a 2D floorplan [GL99] and image-based representation [HLW96]. See Fig. 7.12 for an example of
sensor planning.

Figure 7.12: Planning of a stereo-sensor to inspect an object (adapted from [TUWR97])

Stuerzlinger [Stu99] also proposes a similar method for the image-based representation of scenes. His view-
point space is a horizontal plane at human height. Both objects and viewpoint space are adaptively subdivided
for more efficient results. He then uses simulated annealing to optimize the set of viewpoints.

3.3 Local optimization and target tracking

Yi, Haralick and Shapiro [YHS95] optimize the position of both a camera and a light source. The position of
the light should be such that features have maximal contrast in the image observed by the camera. Occlusion

76 CHAPTER 7. VIEWPOINT-SPACE

is not really handled in their approach since they performed their experiments only on a convex box. However
their problem is in spirit very similar to that of viewpoint optimization for visibility constraints, so we include
it in this survey because occlusion could be very easily included in their optimization metric.

They use no initial global computation such as the viewability matrix studied in the previous paragraph, but
instead perform a local search. They perform a gradient descent successively on the light and camera positions.
This method does not necessarily converge to a global maximum for both positions, but they claim that in their
experiments the function to optimize is well behaved and convex and that satisfactory results are obtained.

Local optimization has also been proposed [LGBL97, FL98] for the computation of the motion of a mobile
robot which has to keep a moving target in view. Assume the motion of the target is only partially predictable
(by bound on the velocity for example). A local optimization is performed in the neighbourhood of the pursuer
position in a game theoretic fashion: the pursuer has to take into account all the possible movements of the
target to decide its position at the next timestep. For a possible pursuer position in free space, all the possible
movements of the target are enumerated and the probability of its being visible is computed. The pursuer
position with the maximum probability of future visibility is chosen. See Fig. 7.13 for an example of pursuit.
The range of the sensor is taken into account.

Figure 7.13: Tracking of a mobile target by an observer. The region in which the target is visible is in light grey
(adapted from [LGBL97]).

They also propose another strategy for a better prediction [LGBL97]. The aim is here to maximize the
escape time of the target. For each possible position of the pursuer, its visibility region is computed (the inverse
of a shadow volume). The distance of the target to the boundary of this visibility region defines the minimum
distance it has to cover to escape the pursuer (see Fig. 7.14).

The extension of these methods to the prediction of many timesteps is unfortunately exponential.

4 Frame-to-frame coherence

In section 1.5 we have presented applications of the aspect graph to updating a view as the observer continu-
ously moves. The cost induced by the aspect graph has prevented the use of these methods. We now present
methods which use the information encoded by visual events to update views, but which consider only a subset
of them.

4.1 Coherence constraints

Hubschman and Zucker [HZ81, HZ82] have studied the so-called frame-to-frame coherence for static scenes.
This approach is based on the fact that if the viewpoint moves continuously, two successive images are usually
very similar. They study the occlusions between pairs of convex polyhedra.

4. FRAME-TO-FRAME COHERENCE 77

Figure 7.14: Tracking of a mobile target by an observer. The region in light grey is the region in which the
target is visible from the observer. The thick arrow is the shortest path for the target to escape.

They note that a polyhedron will start (or stop) occluding another one only if the viewpoint crosses one of
their separating planes. This corresponds to EV visual events. Moreover this can happen only for silhouette
edges.

Each edge stores all the separating planes with all other polyhedra. These planes become active only when
the edge is on the silhouette in the current view. As the viewpoint crosses one of the active planes, the occlusion
between the two corresponding polyhedra is updated.

This approach however fails to detect occlusions caused by multiple polyhedra (EEE events are not consid-
ered). Furthermore, a plane is active even if both polyhedra are hidden by a closer one, in which case the new
occlusion has no actual effect on the visibility of the scene; Transparent as well as opaque events are consid-
ered. These limitations however simplify the approach and make it tractable. Unfortunately, no implementation
is reported.

4.2 Occlusion culling with visual events

Coorg and Teller [CT96] have extended their shadow-volume based occlusion culling presented in section 4.4
of chapter 5 to take advantage of frame-to-frame coherence.

The visibility of a cell of the scene subdivision can change only when a visual event is crossed. For each
large occluder visibility changes can occur only for the neighbourhood of partially visible parts of the scene
(see Fig. 7.15). They thus dynamically maintain the visual events of each occluders and test the viewpoint
against them.

visibility event

Figure 7.15: Occlusion culling and visual events

They explain that this can be seen as a local linearized version of the aspect graph. Indeed they maintain a
superset of the EV boundaries of the current cell of the perspective aspect graph of the scene.

78 CHAPTER 7. VIEWPOINT-SPACE

CHAPTER 8

Line-Space

Car il ne sera fait que de pure lumière
Puisée au foyer saint des rayons primitifs

Charles BAUDELAIRE, Les Fleurs du Mal

INE-SPACE methods characterize visibility with respect to line-object intersections. The
methods we present in section 1 partition lines according to the objects they intersect. Section
2 introduces graphs in line-space, while section 3 discusses Plücker coordinates, a powerful
parameterization which allows the characterization of visibility using hyperplanes in 5D. Fi-
nally section 4 presents stochastic and probabilistic approaches in line-space.

1 Line-space partition

1.1 The Asp

Plantinga and Dyer [PD87, PD90, Pla88] devised the asp as an auxiliary data-structure to compute the aspect
graph of polygonal objects. The definition of the asp depends on the viewing space considered. We present the
asp for orthographic projection.

A duality is used which maps oriented lines into a 4 dimensional space. Lines are parameterized as pre-
sented in section 1.4 of chapter 3 and Fig. 3.2(a) (page 25) by their direction, denoted by two angles (θ,ϕ) and
the coordinates (u,v) on an orthogonal plane. The asp for θ and ϕ constant is thus an orthographic view of the
scene from direction (θ,ϕ). The asp of an object corresponds to the set of lines intersecting this object. See
Fig. 8.1(a) and (b).

Occlusion in a view corresponds to subtraction in the asp: if object A is occluded by object B, then the asp
of B has to be subtracted from the asp of A as shown in Fig. 8.1(c). In fact the intersection of the asp of two
objects is the set of lines going through them. Thus if object B is in front of object A, and these lines no longer
“see” A, they have to be removed from the asp of A.

The 1 dimensional boundaries of the asp correspond to the visual events necessary to build the aspect graph.
See Fig. 8.1(c) where an EV event is represented. Since it is only a slice of the asp, only one line of the event

79

80 CHAPTER 8. LINE-SPACE

v v

u u

θθ

y

z
x

y

z
x

v

u

θ

y

z
x

A A

BB

(a) (b) (c)

ev

e
v

B A

Figure 8.1: Slice of the asp for ϕ = 0 (adapted from [PD90]). (a) and (b) Asp for one triangle. The θ slices in
white correspond to orthographic views of the triangle. When θ = 90 ◦ the view of the triangle is a segment.
(c) Occlusion corresponds to subtraction in asp space. We show the asp of triangle A which is occluded by B.
Note the occlusion in the θ slices in white. We also show the outline of the asp of B. The visual event EV is a
point in asp asp space.

is present under the form of a point. Since occlusion has been taken into account with subtraction, the asp
contains only the opaque events, transparent events do not have to be detected and discarded as in Gigus and
Malik’s method [GM90] presented in section 1.3. Unfortunately no full implementation is reported. The size
of the asp can be as high as O(n4), but as already noted, this does not give useful information about its practical
behaviour with standard scenes.

In the case of perspective projection, the asp is defined in the 5 dimensional space of rays. Occlusion is
also handled with subtractions. Visual events are thus the 2 dimensional boundaries of the asp.

1.2 The 2D Visibility Complex

Pocchiola and Vegter [PV96b, PV96a] have developed the 2D visibility complex which is a topological structure
encoding the visibility of a 2D scene. The idea is in a way similar to the asp to group rays which “see” the
same objects. See [DP95] for a simple video presentation.

The central concept is that of maximal free segments. These are segments of maximal length that do not
intersect the interior of the objects of the scene. More intuitively, a maximal free segment has its extremities
on the boundary of objects, it may be tangent to objects but does not cross them. A line is divided in many
maximal free segment by the objects it intersects. A maximal free segment represents a group of colinear rays
which see the same objects. The manifold of 2D maximal free segments is two-dimensional nearly everywhere,
except at certain branchings corresponding to tangents of the scene. A tangent segment has neighbours on both
sides of the object and below the object (see Fig. 8.2).

The visibility complex is the partition of maximal free segments according to the objects at their extremities.
A face of the visibility complex is bounded by chains of segments tangent to one object (see Fig. 8.3).

Pocchiola and Vegter [PV96b, PV96a] propose optimal output sensitive construction algorithms for the
visibility complex of scenes of smooth objects. Rivière [Riv95, Riv97] has developed an optimal construction
algorithm for polygonal scenes.

The visibility complex implicitly encodes the visibility graph (see section 2 of chapter 5) of the scene: its

1. LINE-SPACE PARTITION 81

θ

r

class of
segments

(a) (b)

A

B1

B2 B1

B2

A
C

C

Figure 8.2: Topology of maximal free segments. (a) In the scene. (b) In a dual space where lines are mapped
into points (the polar parameterization of line is used).

θ

r

(a) (b)

A
B

C

D

E

A

B C

D

E

f

f

Figure 8.3: A face of the visibility complex. (a) In the scene. (b) In a dual space.

vertices are the bitangents forming the visibility graph.
The 2D visibility complex has been applied to the 2D equivalent of lighting simulation by Orti et al.

[ORDP96, DORP96]. The form factor between two objects corresponds to the face of the complex grouping
the segments between these two objects. The limits of umbra and penumbra are the vertices (bitangents) of the
visibility complex.

1.3 The 3D Visibility Complex

Durand et al. [DDP96, DDP97b] have proposed a generalization of the visibility complex for 3D scenes of
smooth objects and polygons. The space of maximal free segments is then a 4D manifold embedded in 5D
because of the branchings. Faces of the complex are bounded by tangent segments (which have 3 dimensions),
bitangent segments (2 dimension), tritangent segments (1D) and finally vertices are segments tangent to four
objects. If polygons are considered, the 1-faces are the EV and EEE critical lines.

The visibility complex is similar to the asp, but the same structure encodes the information for both per-
spective and orthographic projection. It moreover provides adjacencies between sets of segments.

Langer and Zucker [LZ97] have developed similar topological concepts (particularly the branchings) to
describe the manifold of rays of a 3D scene in a shape-from-shading context.

See also section 4 where the difference between lines and maximal free segments is exploited.

1.4 Ray-classification

Ray classification is due to Arvo and Kirk [AK87]. The 5 dimensional space of rays is subdivided to accelerate

82 CHAPTER 8. LINE-SPACE

ray-tracing computation. A ray is parameterized by its 3D origin and its direction which is encoded on a cube
for simpler calculations. Beams in ray-space are defined by an XYZ interval (an axis aligned box) and an
interval on the cube of directions (see Fig. 8.4).

(b)

(a)

(c)

Figure 8.4: Ray classification. (a) interval in origin space. (b) interval in direction space. (c) Corresponding beam of rays.

The objects lying in the beam are computed using a cone approximation of the beam. They are also sorted
by depth to the origin box. Each ray belonging to the beam then needs only be intersected with the objects
inside the beam. The ray-intervals are lazily and recursively constructed. See Fig. 8.5 for an example of result.

Figure 8.5: Image computed using ray classification (courtesy of Jim Arvo and David Kirk, Apollo Computer Inc.)

Speer [Spe92b] describes similar ideas and Kwon et al [KKCS98] improve the memory requirements of
ray-classification, basically by using 4D line space instead of 5D ray-space. This method is however still
memory intensive, and it is not clear that it is much more efficient that 3D regular grids.

The concept of the light buffer presented in section 2.2 of chapter 6 has been adapted for linear and area
light source by Poulin and Amanatides [PA91] and by Tanaka and Takahashi [TT95, TT97]. The rays going
through the source are also classified into beams. The latter paper uses an analytical computation of the visible
part of the light source using the cross-scanline method reviewed in section 6 of chapter 4.

Lamparter et al. [LMW90] discretize the space of rays (using adaptive quadtrees) and rasterize the objects
of the scene using a z-buffer like method. Hinkenjann and Müller [HM96] propose a similar scheme to classify

2. GRAPHS IN LINE-SPACE 83

segments using a 6 dimensional space (3 for each extremity of a segment).

1.5 Multidimensional image-based approaches

Recently there has been great interest in both computer vision and computer graphics for the study of the de-
scription of a scene through the use of a multidimensional function in ray-space. A 3D scene can be completely
described by the light traveling through each point of 3D space in each direction. This defines a 5D function
named the plenoptic function by Adelson and Bergen [AB91].

The plenoptic function describes light transport in a scene, similar data-structures have thus been applied
for global illumination simulation [LF96, LW95, GSHG98].

Gortler et al. [GGSC96] and Levoy and Hanrahan [LH96] have simplified the plenoptic function by as-
suming that the viewer is outside the convex hull of the scene and that light is not modified while traveling in
free-space. This defines a function in the 4 dimensional space of lines called lumigraph or light-field. This
space is discretized, and a color is kept for each ray. A view can then be extracted very efficiently from any
viewpoint by querying rays in the data structure. This data structure is more compact than the storage of one
view for each 3D point (which defines a 5D function) for the same reason exposed before: a ray is relevant for
all the viewpoints lying on it. There is thus redundancy if light does not vary in free-space.

A two plane parameterization is used both in the light-field [LH96] and lumigraph [GGSC96] approaches
(see Fig 3.2(b) page 25). Xu et al. [GGC97] have studied the form of some image features in this dual
space, obtaining results similar to those obtained in the aspect graph literature [PD90, GCS91]. Camahort et
al. [CLF98] have studied the (non) uniformity of this parameterization and proposed alternatives based on
tessellations of the direction sphere. Their first parameterization is similar to the one depicted in Fig. 3.2(a)
using a direction and an orthogonal plane, while the second uses parameterization line using two points on
a sphere bounding the scene. See section 4 and the book by Santalo [San76] for the problems of measure
and probability on sets of lines. See also the paper by Halle [Hal98] where images from multiple viewpoints
(organised on a grid) are rendered simultaneously using epipolar geometry.

Chrysanthou et al. [CCOL98] have adapted the lumigraph methods to handle ray occlusion query. They
re-introduce a fifth dimension to handle colinear rays, and their scheme can be seen as a discretization of the
3D visibility complex.

Wang et al. [WBP98] perform an occlusion culling preprocessing which uses concepts from shaft culling,
ray classification and lumigraph. Using a two-plane parameterization of rays leaving a given cell of space, they
recursively subdivide the set of rays until each beam can be classified as blocked by a single object or too small
to be subdivided.

2 Graphs in line-space

In this section we present some methods which build a graph in line space which encodes the visual events of
a scene. As opposed to the previous section, only one and zero dimensional sets of lines are considered.

2.1 The Visibility Skeleton

Durand et al [DDP97c, DDP97a] have defined the visibility skeleton which can be seen either as a simplification
of the 3D visibility complex or as a graph in line space defined by the visual events.

Consider the situation represented in Fig. 8.6(a). A visual event V1V2 and the corresponding critical line set
are represented. Recall that it is a one dimensional set of lines. It is bounded by two extremal stabbing lines
V1V2 and V1V3. Fig. 8.6(b) shows another visual event V2E2 which is adjacent to the same extremal stabbing
line. This defines a graph structure in line space represented in Fig. 8.6(c). The arcs are the 1D critical line sets
and the nodes are the extremal stabbing lines. Other extremal stabbing lines include lines going through one
vertex and two edges and lines going through four edges (see Fig. 8.7).

Efficient access to the arcs of this graph is achieved through a two dimensional array indexed by the poly-
gons at the extremity of each visual event. The visibility skeleton is built by detecting the extremal stabbing
lines. The adjacent arcs are topologically deduced thanks to a catalogue of adjacencies. This avoids explicit
geometric calculations on the visual events.

84 CHAPTER 8. LINE-SPACE

E1

V2

V1

E1

V2

V1

E2

E3

(a) (b) (c)

E1V1

V3
E2V2

V1V3

E3V1

V1V2

Figure 8.6: (a) An EV critical line set. It is bounded by two extremal stabbing lines V1V2 and V1V3. (b) Other
EV critical line sets are adjacent to V1V2. (c) Corresponding graph structure in line space.

Figure 8.7: Four lines in general position are stabbed by two lines (adapted from [Tel92b])

The visibility skeleton has been implemented and used to perform global illumination simulation [DDP99].
Point-to-area form factors can be evaluated analytically, and the limits of umbra and penumbra can be quickly
computed considering any polygon as a light source (as opposed to standard discontinuity meshing where only
a small number of primary light sources are considered).

2.2 Skewed projection

McKenna et O’Rourke [MO88] consider a scene which is composed of lines in 3D space. Their aim is to
study the class of another line in a sense similar to the previous section if the original lines are the edges of
polyhedron, or to compute the mutually visible faces of polyhedra.

They use a skewed projection to reduce the problem to 2D computations. Consider a pair of lines L 1 and
L2 as depicted in Fig. 8.8. Consider the segment joining the two closest points of the lines (shown dashed) and
the plane P orthogonal to this segment and going through its mid-point. Each point on P defines a unique line
going through L1 and L2. Consider a third line L3. It generates EEE critical lines. The intersections of these
critical lines with plane P lie on an hyperbola H.

The intersections of the hyperbolae defined by all other lines of the scene allow the computation of the
extremal stabbing lines stabbing L1 and L2. The computation of course has to be performed in the O(n 2) planes
defined by all pairs of lines. A graph similar to the visibility skeleton is proposed (but for sets of lines). No
implementation is reported.

The skewed projection duality has also been used by Jaromczyk and Kowaluk [JK88] in a stabbing context

3. PLÜCKER COORDINATES 85

L1

L2

L3

H

P

C

Figure 8.8: Skewed projection.

and by Bern et al. [BDEG90] to update a view along a linear path (the projection is used to compute the visual
events at which the view has to be updated).

3 Plücker coordinates

3.1 Introduction to Plücker coordinates

Lines in 3D space can not be parameterized continuously. The parameterizations which we have introduced
in section 1.4 of chapter 3 both have singularities. In fact there cannot be a smooth parameterization of lines
in 4D without singularity. One intuitive way to see this is to note that it is not possible to parameterize the S 2

sphere of directions with two parameters without a singularity. Nevertheless, if S 2 is embedded in 3D, there is
a trivial parameterization, i.e. x,y,z. However not all triples of coordinates correspond to a point on S 2.

Similarly, oriented lines in space can be parameterized in a 5D space with the so-called Pl ücker coordinates
[Plü65]. The equations are given in appendix 11, here we just outline the principles. One nice property of
Plücker coordinates is that the set of lines which intersect a given line a is a hyperplane in Plücker space (its
dual Πa; The same notation is usually used for the dual of a line and the corresponding hyperplane). It separates
Plücker space into oriented lines which turn around � clockwise or counterclockwise (see Fig. 8.9).

a
b

(a)

a
b

(a)

a
b

(c)

∏b

∏a ∏a ∏a

∏b

∏b

Plücker space

3D space

Figure 8.9: In Plücker space the hyperplane corresponding to a line a separates lines which turn clockwise and
counterclockwise around a. (The hyperplane is represented as a plane because a five-dimensional space is hard
to illustrate, but note that the hyperplane is actually 4D).

As for the embedding of S 2 which we have presented, not all 5-uples of coordinates in Plücker space cor-

86 CHAPTER 8. LINE-SPACE

respond to a real line. The set of lines in this parameterization lie on a quadric called the Pl ücker hypersurface
or Grassman manifold or Klein quadric.

Now consider a triangle in 3D space. All the lines intersecting it have the same orientation with respect
to the three lines going through its edges (see Fig. 8.10). This makes stabbing computations very elegant
in Plücker space. Linear calculations are performed using the hyperplanes corresponding to the edges of the
scene, and the intersection of the result with the Plücker hypersurface is then computed to obtain real lines.

a

b

c

3D space Plücker space

Plücker
hypersurface

(4D)

∏c

∏b
∏a

stabbers

Figure 8.10: Lines stabbing a triangle. In 3D space, if the edges are well oriented, all stabbers rotate around
the edges counterclockwise. In Plücker space this corresponds to the intersection of half spaces. To obtain real
lines, the intersection with the Plücker hypersurface must be considered. (In fact the hyperplanes are tangent
to the Plücker hypersurface)

Let us give a last example of the power of Plücker duality. Consider three lines in 3D space. The lines
stabbing each line lie on its (4D) hyperplanes in Plücker space. The intersection of the three hyperplane is a
2D plane in Plücker space which can be computed easily. Once intersected with the Plücker hypersurface, we
obtain the EEE critical line set as illustrated Fig. 8.11.

a ∏a

b

c
∏b

EEE (1D)

3D space Plücker space

Plücker
hypersurface

(4D)

∏c

hyperplanes (4D)

2D planeEEE

Figure 8.11: Three lines define a EEE critical line set in 3D space. This corresponds to the intersection of
hyperplanes (not halfspaces) in Plücker space. Note that hyperplanes are 4D while their intersection is 2D.
Unfortunately they are represented similarly because of the lack of dimensions of this sheet of paper.(adapted
from [Tel92b]).

More detailed introductions to Plücker coordinates can be found in the books by Sommerville [Som51] or
Stolfi [Sto91] and in the thesis by Teller [Tel92b] 1. See also Appendix 11.

1Plücker coordinates can also be extended to use the 6 coordinates to describe forces and motion. See e.g. [MS85, PPR99]

4. STOCHASTIC APPROACHES 87

3.2 Use in computational geometry

Plücker coordinates have been used in computational geometry mainly to find stabbers of sets of polygons, for
ray-shooting and to classify lines with respect to sets of lines (given a set of lines composing the scene and two
query lines, can we continuously move the first to the second without intersecting the lines of the scene).

We give an overview of a paper by Pellegrini [Pel93] which deals with ray-shooting in a scene composed
of triangles. He builds the arrangement of hyperplanes in Plücker space corresponding to the scene edges. He
shows that each cell of the arrangement corresponds to lines which intersect the same set of triangles. The
whole 5D arrangement has to be constructed, but then only cells intersecting the Plücker hypersurface are
considered. He uses results by Clarkson [Cla87] on point location using random sampling to build a point-
location data-structure on this arrangement. Shooting a ray then consists in locating the corresponding line in
Plücker space. Other results on ray shooting can be found in [Pel90, PS92, Pel94].

This method is different in spirit from ray-classification where the object-beam classification is calculated
in object space. Here the edges of the scene are transformed into hyperplanes in Plücker space.

The first use of Plücker space in computational geometry can be found. in a paper by Chazelle et al.
[CEG+96]. The orientation of lines in space also has implications on the study of cycles in depth order as
studied by Chazelle et al. [CEG+92] who estimate the possible number of cycles in a scene . Other references
on lines in space and the use of Plücker coordinates can be found in the survey by Pellegrini [Pel97b].

3.3 Implementations in computer graphics

Teller [Tel92a] has implemented the computation of the antipenumbra cast by a polygonal source through a
sequence of polygonal openings portals (i.e. the part of space which may be visible from the source). He
computes the polytope defined by the edges of all the openings, then intersects this polytope with the Plücker
hypersurface, obtaining the critical line sets and extremal stabbing lines bounding the antipenumbra (see Fig.
8.12 for an example).

Figure 8.12: Antipenumbra cast by a triangular light source through a sequence of three polygonal openings.
EEE boundaries are in red (image courtesy of Seth J. Teller, University of Berkeley).

He however later noted [TH93] that this algorithm is not robust enough for practical use.
Nevertheless, in this same paper he and Hanrahan [TH93] actually used Plücker coordinates to classify the

visibility of objects with respect to parts of the scene in a global illumination context for architectural scenes
(see section 7 of chapter 5). They avoid robustness issues because no geometric construction is performed in
5D space (like computing the intersection between two hyperplanes), only predicates are evaluated (“is this
point above this hyperplane?”).

4 Stochastic approaches

This section surveys methods which perform visibility calculation using a probabilistic sampling in line-space.

88 CHAPTER 8. LINE-SPACE

4.1 Integral geometry

The most relevant tool to study probability over sets of lines is integral geometry introduced by Santalo [San76].
Defining probabilities and measure in line-space is not straightforward. The most natural constraint is to impose
that this measure be invariant under rigid motion. This defines a unique measure in line-space, up to a scaling
factor.

Probabilities can then be computed on lines, which is a valuable tool to understand ray-casting. For exam-
ple, the probability that a line intersects a convex object is proportional to its surface.

An unexpected result of integral geometry is that a uniform sampling of the lines intersecting a sphere can
be obtained by joining pairs of points uniformly distributed on the surface of the sphere (note that this is not
true in 2D).

The classic parameterization of lines x = az+ p, y = bz+q (similar to the two plane parameterization of Fig.
3.2(b) page 25) has density dadbd pdq

(1+a2+b2)2 . If a,b, p,q are uniformly and randomly sampled, this formula expresses

the probability that a line is picked. It also expresses the variation of sampling density for light-field approaches
described in section 1.5. Regions of line space with large values of a,b will be more finely sampled. Intuitively,
sampling is higher for lines that have a gazing angle with the two planes used for the parameterization.

Geometric probability is also covered in the book by Solomon [Sol78].

4.2 Computation of form factors using ray-casting

Most radiosity implementations now use ray-casting to estimate the visibility between two patches, as intro-
duced by Wallace et al. [WEH89]. A number of rays (typically 4 to 16) are cast between a pair of patches. The
number of rays can vary, depending on the importance of the given light transfer. Such issues will be treated in
section 1.1 of chapter 9.

The integral geometry interpretation of form factors has been studied by Sbert [Sbe93] and Pellegrini
[Pel97a]. They show that the form factor between two patches is proportional the probability that a line in-
tersecting the first one intersects the second. This is the measure of lines intersecting the two patches divided
by the measure of lines intersecting the first one. Sbert [Sbe93] proposes some estimators and derives expres-
sions for the variance depending on the number of rays used.

4.3 Global Monte-Carlo radiosity

Buckalew and Fussel [BF89] optimize the intersection calculation performed on each ray. Indeed, in global
illumination computation, all intersections of a line with the scene are relevant for light transfer. As shown
in Fig. 8.13, the intersections can be sorted and the contribution computed for the interaction between each
consecutive pair of objects. They however used a fixed number of directions and a deterministic approach.

Sbert [Sbe93] introduced global Monte-Carlo radiosity. As in the previous approach all intersections of a
line are taken into account, but a uniform random sampling of lines is used, using pairs of points on a sphere.

Related results can be found in [Neu95, SPP95, NNB97]. Efficient hierarchical approaches have also been
proposed [TWFP97, BNN+98].

4.4 Transillumination plane

Lines sharing the same direction can be treated simultaneously in the previous methods. This results in a sort
of orthographic view where light transfers are computed between consecutive pairs of objects overlapping in
the view, as shown in Fig. 8.14.

The plane orthogonal to the projection direction is called the transillumination plane. An adapted hidden-
surface removal method has to be used. The z-buffer can be extended to record the z values of all objects
projecting on a pixel [SKFNC97], or an analytical method can be used [Pel99, Pel97a].

4. STOCHASTIC APPROACHES 89

Figure 8.13: Global Monte-Carlo radiosity. The intersection of the line in bold with the scene allows the
simulation of light exchanges between the floor and the table, between the table and the cupboard and between
the cupboard and the ceiling.

Figure 8.14: Transillumination plane. The exchanges for one direction (here vertical) are all evaluated simulta-
neously using an extended hidden surface removal algorithm.

90 CHAPTER 8. LINE-SPACE

CHAPTER 9

Advanced issues

Au reste, il n’est pas inutile de remarquer que tout
ce qu’on démontre, soit dans l’optique, soit dans la
perspective sur les ombres des corps, est exact à la
vérité du côté mathématique, mais que si on traite cette
matière physiquement, elle devient alors fort différente.
L’explication des effets de la nature dépend presque tou-
jours d’une géométrie si compliquée qu’il est rare que
ces effets s’accordent avec ce que nous en aurions at-
tendu par nos calculs.

FORMEY, article sur l’ombre de l’Encyclopédie.

E NOW TREAT two issues which we believe crucial for visibility computations and which
unfortunately have not received much attention. Section 1 deals with the control of the
precision of computations either to ensure that a required precision is satisfied, or to
simplify visibility information to make it manageable. Section 2 treats methods which
attempt to take advantage of temporal coherence in scenes with moving objects.

1 Scale and precision

Visibility computations are often involved and costly. We have surveyed some approximate methods which may
induce artifacts, and some exact methods which are usually resource-intensive. It is thus desirable to control
the error in the former, and trade-off time versus accuracy in the latter. Moreover, all visibility information is
not always relevant, and it can be necessary to extract what is useful.

1.1 Hierarchical radiosity: a paradigm for refinement

Hierarchical radiosity [HSA91] is an excellent paradigm of refinement approaches. Computational resources
are spent for “important” light exchanges. We briefly review the method and focus on the visibility problems
involved.

91

92 CHAPTER 9. ADVANCED ISSUES

In hierarchical radiosity the scene polygons are adaptively subdivided into patches organised in a pyramid.
The radiosity is stored using Haar wavelets [SDS96]: each quadtree node stores the average of its children.
The light exchanges are simulated at different levels of precision: exchanges will be simulated between smaller
elements of the quadtree to increase precision as shown in Fig. 9.1. Clustering improves hierarchical radiosity
by using a full hierarchy which groups clusters of objects [SAG94, Sil95].

A

B

C

hierarchy
of C

Figure 9.1: Hierarchical radiosity. The hierarchy and the exchanges arriving at C are represented. Exchanges
with A are simulated at a coarser level, while those with B are refined.

The crucial component of a hierarchical radiosity system is the refinement criterion (or oracle) which
decides at which level a light transfer will be simulated. Originally, Hanrahan et al. [HSA91] used a radiometric
criterion (amount of energy exchanged) and a visibility criterion (transfers with partial visibility are refined
more). This results in devoting more computational resources for light transfers which are important and in
shadow boundary regions. See also [GH96].

For a deeper analysis and treatment of the error in hierarchical radiosity, see e.g., [ATS94, LSG94, GH96,
Sol98, HS99].

1.2 Other shadow refinement approaches

The volumetric visibility method presented in section 1.3 of chapter 5 is also well suited for a progressive
refinement scheme. An oracle has to decide at which level of the volumetric hierarchy the transmittance has to
be considered. Sillion and Drettakis [SD95] use the size of the features of the shadows.

The key observation is that larger object which are closer to the receiver cast more significant shadows, as
illustrated by Fig. 9.2. They moreover take the correlation of multiple blockers into account using an image-
based approach. The objects inside a cluster are projected in a given direction onto a plane. Bitmap erosion
operators are then used to estimate the size of the connected portions of the blocker projection. This can be
seen as a first approximation of the convolution method covered in section 6 of chapter 6 [SS98a].

Soler and Sillion [SS96b, Sol98] propose a more complete treatment of this refinement with accurate error
bounds. Unfortunately, the bounds are harder to derive in 3D and provide looser estimates.

The refinement of shadow computation depending on the relative distances of blockers and source has also
been studied by Asensio [Ase92] in a ray-tracing context.

Telea and van Overveld [Tv97] efficiently improve shadows in radiosity methods by performing costly
visibility computations only for blockers which are close to the receiver.

1.3 Perception

The goal of most image synthesis methods is to produce images which will be seen by human observers. Gibson
and Hubbold [GH97] thus perform additional computation in a radiosity method only if they may induce a
change which will be noticeable. Related approaches can be found in [Mys98, BM98, DDP99, RPG99].

1. SCALE AND PRECISION 93

source

Figure 9.2: Objects which are larger and closer to the receiver cast more significant shadows. Note that the left
hand sphere casts no umbra, only penumbra.

Perceptual metrics have also been applied to the selection of discontinuities in the illumination function
[HWP97, DDP99].

1.4 Explicitly modeling scale

One of the major drawbacks of aspect graphs [FMA+92] is that they have been defined for perfect views: all
features are taken into account, no matter the size of their projection.

The Scale-space aspect graph has been developed by Eggert et al. [EBD +93] to cope with this. They
discuss different possible definitions of the concept of “scale”. They consider that two features are not distin-
guishable when their subtended angle is less than a given threshold. This defines a new sort of visual event,
which corresponds to the visual merging of two features. These are circles in 2D (the set of points which form
a given angle with a segment is a circle). See Fig. 9.3.

Figure 9.3: Scale-space aspect graph in 2D using perspective projection for the small object in grey. Features
which subtend an angle of less than 4◦ are considered indistinguishable. The circles which subdivide the plane
are the visual events where features of the object visually merge.

Scale (the angle threshold) defines a new dimension of the viewpoint space. Fig. 9.3 in fact represents a slice
scale = 4◦ of the scale-space aspect graph. Cells of this aspect graph have a scale extent, and their boundaries
change with the scale parameter. This approach allows an explicit model of the resolution of features, at the
cost of an increases complexity.

94 CHAPTER 9. ADVANCED ISSUES

Shimshoni and Ponce [SP97] developed the finite resolution aspect graph in 3D. They consider ortho-
graphic projection and a single threshold. When resolution is taken into account, some accidental views are
likely to be observed: An edge and a vertex seem superimposed in the neighbourhood of the exact visual event.
Visual events are thus doubled as illustrated in Fig. 9.4.

V

E

P

Q

(a) (b)

1

2

3

4

Figure 9.4: Finite resolution aspect graph. (a) The EV event is doubled. Between the two events (viewpoint 2
and 3), E and V are visually superimposed. (b) The doubled event on the viewing sphere.

For the objects they test, the resulting finite resolution aspect graph is larger. The number events discarded
because the generators are merged does not compensate the doubling of the other events. However, tests on
larger objects could exhibit different results.

See also the work by Weinshall and Werman on the likelihood and stability of views [WW97].

1.5 Image-space simplification for discontinuity meshing

Stewart and Karkanis [SK98] propose a finite resolution construction of discontinuity meshes using an image-
space approach. They compute views from the vertices of the polygonal source using a z-buffer. The image is
segmented to obtain a visibility map. The features present in the images are used as visual event generators.

This naturally eliminates small objects or features since they aggregate in the image. Robustness problems
are also avoided because of the image-space computations. Unfortunately, only partial approximate disconti-
nuity meshes are obtained, no backprojection computation is proposed yet.

2 Dynamic scenes

We have already evoked temporal coherence in the case of a moving viewpoint in a static scene (section 4.2
of chapter 7). In this section we treat the more general case of a scene where objects move. If the motions
are continuous, and especially if few objects move, there is evidence that computation time can be saved by
exploiting the similarity between consecutive timesteps.

In most cases, the majority of the objects are assumed static while a subset of objects actually move. We can
distinguish cases where the motion of the objects is known in advance, and those where no a priori information
is known, and thus updates must be computed on a per frame basis.

Different approaches can be chosen to take advantage of coherence:

• The computation is completely re-performed for a sub-region of space;

• The dynamic objects are deleted (and the visibility information related to them is discarded) then re-
inserted at their new position;

• A validity time-interval is computed for each piece of information;

2. DYNAMIC SCENES 95

• The visibility information is “smoothly updated”.

2.1 Swept and motion volumes

A swept volume is the volume swept by an object during a time interval. Swept volumes can also be used to
bound the possible motion of an object, especially in robotics where the degrees of freedom are well defined
[AA95]. These swept volumes are used as static blockers.

A motion volume is a simplified version of swept volumes similar to the shafts defined in section 6.1 of
chapter 5. They are simple volume which enclose the motion of an object. Motion volumes were first used in
radiosity by Baum et al. [BWCG86] to handle the motion of one object. A hemicube is used for form-factor
computation. Pixels where the motion volume project are those which need recomputation.

Shaw [Sha97] and Drettakis and Sillion [DS97] determine form factors which require recomputation using
a motion volume-shaft intersection technique.

Sudarsky and Gotsman [SG96] use motion volumes (which they call temporal bounding volumes) to per-
form occlusion culling with moving objects. They alleviate the need to update the spatial data-structure (BSP
or octree) for each frame, because these volumes are used in place of the objects, making computations valid
for more than one frame.

2.2 4D methods

Some methods have been proposed to speed-up ray-tracing animations using a four dimensional space-time
framework developed by Glassner [Gla88]. The temporal extent of ray-object intersections is determined,
which avoids recomputation when a ray does not intersect a moving object. See also [MDC93, CCD91] for
similar approaches.

Ray-classification has also been extended to 6D (3 for the origin of a ray, 2for its direction, and 1 for time)
[Qua96, GP91].

Global Monte-Carlo radiosity presented in section 4.3 of chapter 8 naturally extends to 4D as demonstrated
by Besuievsky et al [BS96]. Each ray-static object intersection is used for the whole length of the animation.
Only intersections with moving objects require recomputation.

2.3 BSP

BSP trees have been developed for rapid view computation in static scenes. Unfortunately, their construction
is a preprocessing which cannot be performed for each frame.

Fuchs et al. [FAG83] consider pre-determined paths and place bounding planes around the paths. Torres
[Tor90] builds a multi-level BSP tree, trying to separate objects with different motion without splitting them.

Chrysanthou and Slater [CS92, CS95, CS97] remove the moving objects from the database, update the BSP
tree, and then re-introduce the object at its new location. The most difficult part of this method is the update of
the BSP tree when removing the object, especially when the polygons of the object are used at a high level of
the tree as splitting planes. In this case, all polygons which are below it in the BSP-tree have to be updated in
the tree. This approach was also used to update limits of umbra and penumbra [CS97].

Agarwal et al. [AEG98] propose an algorithm to maintain the cylindrical BSP tree which we have presented
in section 1.4 of chapter 5. They compute the events at which their BSP actually needs a structural change. This
happens when a triangle becomes vertical, when an edge becomes parallel to the yz plane, or when a triangle
enters or leaves a cell defined by the BSP tree.

2.4 Aspect graph for objects with moving parts

Bowyer et al. [EB93] discuss the extension of aspect graphs for articulated assemblies. The degrees of freedom
of the assembly increase the dimensionality of viewpoint space (which they call aspect space). For example, if
the assembly has only one translational degree of freedom and if 3D perspective is used, the aspect graph has
to be computed in 4D, 3 dimensions for the viewpoint and one for translation. This is similar to the scale-space
aspect graph presented in section 1.4 where scale increases dimensionality.

96 CHAPTER 9. ADVANCED ISSUES

Accidental configurations correspond to values of the parameters of the assembly where the aspect graph
changes. They occur at a generalization of visual events in the higher dimensional aspect space. For example
when two faces become parallel.

Two extensions of the aspect graph are proposed, depending on the way accidental configurations are
handled. They can be used to partition aspect space like in the standard aspect graph definition. They can also
be used to partition first the configuration space (in our example, it would result in intervals of the translational
parameter), then a different aspect graph is computed for each cell of the configuration space partition. This
latter approach is more memory demanding since cells of different aspect graphs are shared in the first approach.
Construction algorithms are just sketched, and no implementation is reported.

2.5 Discontinuity mesh update

Loscos and Drettakis [LD97] and Worall et al. [WWP95, WHP98] maintain a discontinuity mesh while one
of the blockers moves. Limits of umbra and penumbra move smoothly except when an object starts or stops
casting shadows on another one. Detecting when a shadow limit goes off an object is easy.

To detect when a new discontinuity appears on one object, the discontinuities cast on other objects can be
used as illustrated in Fig. 9.5.

v
e

(a) (b)

Figure 9.5: Dynamic update of limits of shadow. The situation where shadows appear on the moving object can
be determined by checking the shadows on the floor. This can be generalized to discontinuity meshes (after
[LD97]).

2.6 Temporal visual events and the visibility skeleton

In chapter 2 and 3 of [Dur99], we have presented the notion of a temporal visual event. Temporal visual events
permit the generalization of the results presented in the previous section. They correspond to the accidental
configurations studied for the aspect graph of an assembly.

Temporal visual events permit the update of the visibility skeleton while objects move in the scene. This is
very similar to the static visibility skeleton, since temporal visual events describe adjacencies which determine
which nodes and arcs of the skeleton should be modified.

Similarly, a catalogue of singularities has been developed for moving objects, defining a temporal visibility
complex.

CHAPTER 10

Conclusions of the survey

Ils ont tous gagné !

Jacques MARTIN

URVEYING work related to visibility reveals a great wealth of solutions and techniques. The
organisation of the second part of this thesis has attempted to structure this vast field. We
hope that this survey will be an opportunity to derive new methods or improvements from
techniques developed in other fields. Considering a problem under different angles is a pow-
erful way to open one’s mind and find creative solutions. We again invite the reader not to

consider our classification as restrictive; on the contrary, we suggest that methods which have been presented
in one space be interpreted in another space. In what follows, we give a summary of the methods which we
have surveyed, before presenting a short discussion.

1 Summary

In chapter 2 we have presented visibility problems in various domains: computer graphics, computer vision,
robotics and computational geometry.

In chapter 3 we have propose a classification of these methods according to the space in which the com-
putations are performed: object space, image space, viewpoint space and line-space. We have described the
visual events and the singularities of smooth mappings which explain “how” visibility changes in a scene: the
appearance or disappearance of objects when an observer moves, the limits of shadows, etc.

We have briefly surveyed the classic hidden-part removal methods in chapter 4.
In chapter 5 we have dealt with object-space methods. The two main categories of methods are those which

use a “regular” spatial decomposition (grid, hierarchy of bounding volumes, BSP trees), and those which use
frusta or shafts to characterize visibility. Among the latter class of methods, the main distinction is between
those which are interested in determining if a point (or an object) lies inside the frustum or shaft, and those
which compute the boundaries of the frustum (e.g., shadow boundaries). Fundamental data-structures have also
been presented: The 2D visibility graph used in motion planning links all pairs of mutually visible vertices of a

97

98 CHAPTER 10. CONCLUSIONS OF THE SURVEY

planar polygonal scene, and the visual hull of an object A represents the largest object with the same occlusion
properties as A.

Images-space methods, surveyed in chapter 6 perform computation directly in the plane of the final image,
or use an intermediate plane. Most of them are based on the z-buffer algorithm.

Chapter 7 has presented methods which consider viewpoints and the the visibility properties of the corre-
sponding views. The aspect graph encodes all the possible views of an object. The viewpoints are partitioned
into cells where a view is qualitatively invariant, that is, the set of visible features remains constant. The
boundaries of such cells are the visual events. This structure has important implications and applications in
computer vision, robotics, and computer graphics. We have also presented methods which optimize the view-
point according to the visibility of a feature, as well as methods based on visual events which take advantage
of temporal coherence by predicting when a view changes.

In chapter 8 we have surveyed work in line or ray space. We have presented methods which partition the
rays according to the object they see. We have seen that visual events can be encoded by lines in line-space. A
powerful dualisation has been studied which maps lines into five dimensional points, allowing for efficient and
elegant visibility characterization. We have presented some elements of probability over sets of lines, and their
applications to lighting simulation.

Finally, in the previous chapter we have discussed two important issues: precision and moving objects. We
have studied techniques which refine their computations where appropriate, as well as techniques which attempt
to cope with intensive and intricate visibility information by culling too fine and unnecessary information.
Techniques developed to deal with dynamic scenes include swept or motion volumes, 4D method (where time
is the fourth dimension), and smooth updates of BSP trees or shadow boundaries.

Table 10.1 summarizes the techniques which we have presented, by domain and space.

2 Discussion

A large gap exists between exact and approximate methods. Exact methods are often costly and prone to
robustness problems, while approximate methods suffer from aliasing artifacts. Smooth trade-off and efficient
adaptive approximate solutions should be developed. This requires both to be able to refine a computation and
to efficiently determine the required accuracy.

Visibility with moving objects and temporal coherence have received little attention. Dynamic scenes are
mostly treated as successions of static timesteps for which everything is recomputed from scratch. Solutions
should be found to efficiently identify the calculations which actually need to be performed after the movement
of objects.

As evoked in the introduction of this survey, no practical guide to visibility techniques really exists. Some
libraries or programs are available (see for example appendix 12) but the implementation of reusable visibility
code in the spirit of C-GAL [FGK+96] would be a major contribution, especially in the case of 3D visibility.

2. DISCUSSION 99

O
bj

ec
ts

pa
ce

Im
ag

e
sp

ac
e

V
ie

w
po

in
ts

pa
ce

L
in

e
sp

ac
e

vi
ew

co
m

pu
ta

tio
n

B
SP

H
ar

d
sh

ad
ow

sh
ad

ow
vo

lu
m

e
sh

ad
ow

m
ap

sh
ad

ow
B

SP
sh

ad
ow

ca
ch

e
So

ft
sh

ad
ow

s
lim

its
of

pe
nu

m
br

a
sa

m
pl

in
g

co
m

pl
et

e
di

sc
on

tin
ui

ty
m

es
h

an
tip

en
um

br
a

co
nv

ol
ut

io
n

O
cc

lu
si

on
cu

lli
ng

us
e

of
fr

us
ta

hi
er

ar
ch

ic
al

z-
bu

ff
er

te
m

po
ra

lc
oh

er
en

ce
lin

e-
sp

ac
e

su
bd

iv
is

io
n

ar
ch

ite
ct

ur
al

sc
en

es
sh

ad
ow

fo
ot

pr
in

ts
us

e
of

th
e

as
pe

ct
gr

ap
h

fr
om

a
vo

lu
m

e
R

ay
-t

ra
ci

ng
bo

un
di

ng
vo

lu
m

es
ite

m
an

d
lig

ht
bu

ff
er

ra
y

cl
as

si
fic

at
io

n
sp

ac
e

su
bd

iv
is

io
n

Z
Z

-b
uf

fe
r

be
am

-t
ra

ci
ng

R
ad

io
si

ty
di

sc
on

tin
ui

ty
m

es
h

he
m

ic
ub

e
co

m
pl

et
e

di
sc

on
tin

ui
ty

m
es

h
vi

si
bi

lit
y

sk
el

et
on

sh
af

tc
ul

lin
g

co
nv

ol
ut

io
n

gl
ob

al
M

on
te

C
ar

lo
vo

lu
m

et
ri

c
vi

si
bi

lit
y

Pl
üc

ke
r

fo
r

bl
oc

ke
rs

ar
ch

ite
ct

ur
al

sc
en

es
Im

ag
e-

ba
se

d
ep

ip
ol

ar
re

nd
er

in
g

si
lh

ou
et

te
tr

ee
lu

m
ig

ra
ph

,l
ig

ht
-fi

el
d

O
bj

ec
tr

ec
og

ni
tio

n
as

pe
ct

gr
ap

h
as

p
C

on
to

ur
in

te
rs

ec
tio

n
vi

su
al

hu
ll

Se
ns

or
pl

ac
em

en
t

vi
ew

po
in

tc
on

st
ra

in
t

vi
ew

po
in

to
pt

im
iz

at
io

n
be

st
-n

ex
tv

ie
w

ar
tg

al
le

ry
M

ot
io

n
pl

an
ni

ng
vi

si
bi

lit
y

gr
ap

h
us

e
of

th
e

z-
bu

ff
er

pu
rs

ui
t-

ev
as

io
n

se
lf

lo
ca

lis
at

io
n

ta
rg

et
tr

ac
ki

ng

Table 10.1: Recapitulation of the techniques presented by field and by space.

100 CHAPTER 10. CONCLUSIONS OF THE SURVEY

CHAPTER 11

Some Notions in Line Space

Plücker coordinates

Consider a directed line � in 3D defined by two points P(xP,yP,zP) and Q(xQ,yQ,zQ). The Plücker coordinates
[Plü65] of � are:

π�0

π�1

π�2

π�3

π�4

π�5

=

xPyQ − yPxQ

xPzQ − zPxQ

xP − xQ

yPzQ − zPyQ

zP − zQ

yQ − yP

(The signs and order may vary with the authors). These coordinates are homogenous, any choice of P and Q
will give the same Plücker coordinates up to a scaling factor (Plücker space is thus a 5D projective space).

The dot product between two lines a and b with Plücker duals Π a and Πb is defined by

Πa �Πb = πa0πb4 + πa1πb5 + πa2πb3 + πa4πb0 + πa5πb1 + πa3πb2

The sign of the dot products indicates the relative orientation of the two lines. If the dot product is null, the
two lines intersect. The equation Πa �Π� = 0 defines the hyperplane associated with a.

The Plücker hypersurface or Grassman manifold or Klein quadric is defined by

Π��Π� = 0

101

102 CHAPTER 11. SOME NOTIONS IN LINE SPACE

CHAPTER 12

Online Ressources

1 General ressources

An index of computer graphics web pages can be found at
http://www-imagis.imag.fr/˜Fredo.Durand/book.html

A lot of computer vision ressources are listed at
http://www.cs.cmu.edu/ cil/vision.html
A commented and sorted vision bibliography:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
An excellent Compendium of Computer Vision:
http://www.dai.ed.ac.uk/CVonline/

For robotics related pages, see
http://www-robotics.cs.umass.edu/robotics.html
http://www.robohoo.com/

Many sites are dedicated to computational geometry, e.g.:
http://www.ics.uci.edu/˜eppstein/geom.html
http://compgeom.cs.uiuc.edu/˜jeffe/compgeom/

Those interested in human and animal vision will find several links at:
http://www.visionscience.com/.

An introduction to perception is provided under the form of an excellent web book at:
http://www.yorku.ca/eye/

2 Available code.

CGAL is a robust and flexible computational geometry librairy
http://www.cs.ruu.nl/CGAL

103

104 CHAPTER 12. ONLINE RESSOURCES

Nina Amenta maintains some links to geometrical softwares:
http://www.geom.umn.edu/software/cglist/welcome.html

The implementation of Luebke and George’s online portal occlusion-culling technique is available at:
http://www.cs.virginia.edu/˜luebke/visibility.html

Electronic articles on shadows, portals, etc.:
http://www.flipcode.com/features.htm

Information on Open GL, including shadow computation:
http://reality.sgi.com/opengl/

Visibility graph programs can be found at:
http://www.cs.uleth.ca/˜wismath/vis.html
http://cs.smith.edu/˜halef/research.html
http://willkuere.informatik.uni-wuerzburg.de/ lupinho/java.html

Many ray-tracer are available e.g.:
http://www.povray.org/
http://www-graphics.stanford.edu/- cek/rayshade/rayshade.html
http://www.rz.tu-ilmenau.de/˜juhu/GX/intro.html (with different acceleration schemes, including ray-
classification)

A radiosity implementation:
http://www.ledalite.com/software/software.htm

RenderPark provides many global illumination methods, such as radiosity or Monte-Carlo path-tracing:
http://www.cs.kuleuven.ac.be/cwis/research-/graphics/RENDERPARK/

Aspect graphs:
http://www.dai.ed.ac.uk/staff/-personal pages/eggertd/software.html

BSP trees:
http://www.cs.utexas.edu/users/atc/

A list of info and links about BSP:
http://www.ce.unipr.it/ marchini/jaluit.html

Mel Slater’s shadow volume BSP:
ftp://ftp.dcs.qmw.ac.uk/people/mel/BSP/

CONTENTS

1 Introduction 5
1 Spirit of the survey . 5
2 Flaws and bias . 6
3 Structure . 6

2 Visibility problems 7
1 Computer Graphics . 7

1.1 Hidden surface removal . 7
1.2 Shadow computation . 8
1.3 Occlusion culling . 8
1.4 Global Illumination . 9
1.5 Ray-tracing and Monte-Carlo techniques . 10
1.6 Radiosity . 11
1.7 Image-based modeling and rendering . 12
1.8 Good viewpoint selection . 13

2 Computer Vision . 13
2.1 Model-based object recognition . 13
2.2 Object reconstruction by contour intersection . 14
2.3 Sensor placement for known geometry . 15
2.4 Good viewpoints for object exploration . 16

3 Robotics . 16
3.1 Motion planning . 17
3.2 Visibility based pursuit-evasion . 17
3.3 Self-localisation . 18

4 Computational Geometry . 19
4.1 Hidden surface removal . 19
4.2 Ray-shooting and lines in space . 19
4.3 Art galleries . 20
4.4 2D visibility graphs . 20

5 Astronomy . 21
5.1 Eclipses . 21
5.2 Sundials . 21

6 Summary . 22

105

106 CONTENTS

3 Preliminaries 23
1 Spaces and algorithm classification . 23

1.1 Image-space . 23
1.2 Object-space . 24
1.3 Viewpoint-space . 24
1.4 Line-space . 24
1.5 Discussion . 25

2 Visual events, singularities . 26
2.1 Visual events . 26
2.2 Singularity theory . 28

3 2D versus 3D Visibility . 29

4 The classics of hidden part removal 31
1 Hidden-Line Removal . 32

1.1 Robert . 32
1.2 Appel . 32
1.3 Curved objects . 32

2 Exact area-subdivision . 32
2.1 Weiler-Atherton . 32
2.2 Application to form factors . 32
2.3 Mulmuley . 33
2.4 Curved objects . 33

3 Adaptive subdivision . 33
4 Depth order and the painter’s algorithm . 33

4.1 Newell Newell and Sancha . 33
4.2 Priority list preprocessing . 34
4.3 Layer ordering for image-based rendering . 34

5 The z-buffer . 35
5.1 Z-buffer . 35
5.2 A-buffer . 35

6 Scan-line . 36
6.1 Scan-line rendering . 36
6.2 Shadows . 36

7 Ray-casting . 36
8 Sweep of the visibility map . 37

5 Object-Space 39
1 Space partitioning . 39

1.1 Ray-tracing acceleration using a hierarchy of bounding volumes 40
1.2 Ray-tracing acceleration using a spatial subdivision 40
1.3 Volumetric visibility . 40
1.4 BSP trees . 41
1.5 Cylindrical decomposition . 42

2 Path planning using the visibility graph . 42
2.1 Path planning . 42
2.2 Visibility graph construction . 43
2.3 Extensions to non-holonomic visibility . 43

3 The Visual Hull . 43
4 Shadows volumes and beams . 45

4.1 Shadow volumes . 45
4.2 Shadow volume BSP . 46
4.3 Beam-tracing and bundles of rays . 46
4.4 Occlusion culling from a point . 48
4.5 Best-next-view . 48

5 Area light sources . 49

CONTENTS 107

5.1 Limits of umbra and penumbra . 49
5.2 BSP shadow volumes for area light sources . 50
5.3 Discontinuity meshing . 50
5.4 Linear time construction of umbra volumes . 50
5.5 Viewpoint constraints . 51
5.6 Light from shadows . 53

6 Shafts . 53
6.1 Shaft culling . 53
6.2 Use of a dual space . 54
6.3 Occlusion culling from a volume . 54

7 Visibility propagation through portals . 54
7.1 Visibility computation . 54
7.2 Applications . 55

6 Image-Space 57
1 Projection methods . 57

1.1 Shadow projection on a sphere . 57
1.2 Area light sources . 58
1.3 Extended projections . 58

2 Advanced z-buffer techniques . 58
2.1 Shadow maps . 58
2.2 Ray-tracing optimization using item buffers . 59
2.3 The hemicube . 60
2.4 Sound occlusion and non-binary visibility . 60

3 Hierarchical z-buffer . 61
4 Occluder shadow footprints . 62
5 Epipolar rendering . 62
6 Soft shadows using convolution . 63
7 Shadow coherence in image-space . 63

7 Viewpoint-Space 65
1 Aspect graph . 65

1.1 Approximate aspect graph . 66
1.2 Convex polyhedra . 66
1.3 General polyhedra . 67
1.4 Curved objects . 69
1.5 Use of the aspect graph . 70

2 Other viewpoint-space partitioning methods . 70
2.1 Robot Localisation . 70
2.2 Visibility based pursuit-evasion . 71
2.3 Discontinuity meshing with backprojections . 72
2.4 Output-sensitive discontinuity meshing . 73

3 Viewpoint optimization . 74
3.1 Art galleries . 74
3.2 Viewpoint optimization . 74
3.3 Local optimization and target tracking . 75

4 Frame-to-frame coherence . 76
4.1 Coherence constraints . 76
4.2 Occlusion culling with visual events . 77

108 CONTENTS

8 Line-Space 79
1 Line-space partition . 79

1.1 The Asp . 79
1.2 The 2D Visibility Complex . 80
1.3 The 3D Visibility Complex . 81
1.4 Ray-classification . 81
1.5 Multidimensional image-based approaches . 83

2 Graphs in line-space . 83
2.1 The Visibility Skeleton . 83
2.2 Skewed projection . 84

3 Plücker coordinates . 85
3.1 Introduction to Plücker coordinates . 85
3.2 Use in computational geometry . 87
3.3 Implementations in computer graphics . 87

4 Stochastic approaches . 87
4.1 Integral geometry . 88
4.2 Computation of form factors using ray-casting . 88
4.3 Global Monte-Carlo radiosity . 88
4.4 Transillumination plane . 88

9 Advanced issues 91
1 Scale and precision . 91

1.1 Hierarchical radiosity: a paradigm for refinement . 91
1.2 Other shadow refinement approaches . 92
1.3 Perception . 92
1.4 Explicitly modeling scale . 93
1.5 Image-space simplification for discontinuity meshing 94

2 Dynamic scenes . 94
2.1 Swept and motion volumes . 95
2.2 4D methods . 95
2.3 BSP . 95
2.4 Aspect graph for objects with moving parts . 95
2.5 Discontinuity mesh update . 96
2.6 Temporal visual events and the visibility skeleton . 96

10 Conclusions of the survey 97
1 Summary . 97
2 Discussion . 98

11 Some Notions in Line Space 101

12 Online Ressources 103
1 General ressources . 103
2 Available code. 103

Contents 105

List of Figures 109

Index 113

References 119

LIST OF FIGURES

2.1 Study of shadows by Leonardo da Vinci and Johann Heinrich Lambert 8
2.2 Soft shadow . 9
2.3 BRDF . 10
2.4 Global illumination . 10
2.5 Principle of recursive ray-tracing . 11
2.6 Radiosity . 11
2.7 View warping . 12
2.8 Model-based object recognition . 14
2.9 Object reconstruction by contour intersection . 14
2.10 Viewpoint optimization for a screwdriver . 15
2.11 Viewpoint optimization for a peg insertion . 15
2.12 Object acquisition using a laser plane . 16
2.13 Motion planning on a floorplan . 17
2.14 Visibility based pursuit-evasion . 18
2.15 2D Robot localisation . 18
2.16 View with size O(n2) . 19
2.17 Line stabbing a set of convex polygons in 3D space . 20
2.18 Eclipse by Purbach and Halley . 21
2.19 Solar and lunar eclipse . 21
2.20 Sundials . 22

3.1 orthographic viewpoint space . 24
3.2 Line parameterisations . 25
3.3 EV visual event . 26
3.4 Locus an EV visual event . 26
3.5 A EEE visual event . 27
3.6 Locus of a EEE visual event . 27
3.7 Line drawing of the view of a torus . 28
3.8 Tangent crossing singularity . 29
3.9 Disappearance of a cusp at a swallowtail singularity . 29
3.10 Opaque and semi-transparent visual singularities . 30

4.1 Classic example of a cycle in depth order . 34
4.2 A priori depth order . 34
4.3 A buffer . 35

109

110 LIST OF FIGURES

4.4 Ray-casting by Dürer . 37
4.5 Sweep of a visibility map . 38

5.1 A 2D analogy of ray-tracing acceleration . 41
5.2 2D BSP tree . 42
5.3 Path planning using the visibility graph. 43
5.4 Shadow for non-holonomic path-planning . 44
5.5 Visual hull . 44
5.6 Shadow volume . 45
5.7 Construction of a shadow by Dürer . 46
5.8 2D equivalent of shadow BSP . 47
5.9 Beam tracing . 47
5.10 Occlusion culling with large occluders . 48
5.11 Occlusion culling using image-space portals . 49
5.12 Volume of occlusion for model acquisition . 49
5.13 Umbra and penumbra of a convex blocker . 50
5.14 Penumbra by da Vinci . 51
5.15 Global illumination simulation with discontinuity meshing 52
5.16 Linear time construction of a penumbra volume. 52
5.17 Sketching shadows . 53
5.18 Shaft culling . 53
5.19 Visibility computations in architectural environments . 55
5.20 Conservative visibility propagation through arbitrary portals 55

6.1 Shadow map principle . 58
6.2 Light buffer and hemicube . 60
6.3 Non binary visibility for sound propagation . 61
6.4 Hierarchical z-buffer. 61
6.5 Occluder shadow footprints . 62
6.6 Epipolar geometry . 63
6.7 Soft shadows computation using convolution . 63
6.8 Soft shadows computed using convolutions . 64

7.1 Quasi uniform subdivision of the viewing sphere starting with an icosahedron. 66
7.2 Aspect graph of a convex cube . 67
7.3 False event . 68
7.4 Aspect graph of a L-shaped polyhedron under orthographic projection 68
7.5 Partition of orthographic viewpoint space for a dimple object 69
7.6 Scene partition for robot self-localisation . 71
7.7 Pursuit-Evasion strategy . 71
7.8 Complete discontinuity meshing: example of an EV . 72
7.9 Complete discontinuity meshing: example of a EEE . 72
7.10 Complete discontinuity mesh of a scene . 73
7.11 Art gallery . 74
7.12 Planning of a stereo-sensor . 75
7.13 Tracking of a mobile target by an observer . 76
7.14 Shortest path for the target to escape . 77
7.15 Occlusion culling and visual events . 77

8.1 Slice of the asp for ϕ = 0 . 80
8.2 Topology of maximal free segments . 81
8.3 A face of the visibility complex . 81
8.4 Ray classification . 82
8.5 Image computed using ray classification . 82
8.6 Adjacencies of critical lines and extremal stabbing lines . 84

LIST OF FIGURES 111

8.7 Four lines in general position are stabbed by two lines . 84
8.8 Skewed projection. 85
8.9 Plücker space and line orientation . 85
8.10 Lines stabbing a triangle in Plücker space . 86
8.11 EEE in Plücker spaces . 86
8.12 Antipenumbra . 87
8.13 Global Monte-Carlo radiosity . 89
8.14 Transillumination plane . 89

9.1 Hierarchical radiosity . 92
9.2 Shadow refinement . 93
9.3 Scale-space aspect graph . 93
9.4 Finite resolution aspect graph . 94
9.5 Dynamic update of limits of shadow . 96

112 LIST OF TABLES

LIST OF TABLES

10.1 Recapitulation of the techniques presented by field and by space. 99

INDEX

2D vs. 3D 29

A

a priori order 34
A-buffer 35, 47, 59
accidental configuration 95
accidental viewpoint 28, 94
active vision (see sensor placement), 15
adaptive subdivision 33, 60
Alias Wavefront Maya 36, 59
aliasing 8, 12, 35, 46, 47, 57, 59, 60, 66
amortized beam-tracing 47
antialiasing 34–36, 59
antipenumbra 87
architectural scene (see portal), 54
arrangement 66
art gallery 17, (see sensor placement), 20, 74
asp 79, 81
aspect 13, 65
aspect graph 14, 65–70

approximate aspect graph 66, 74
asp 79
convex polyhedra 66
curved objects 69
finite resolution 93
general polyhedra 67
local and linearized 77
moving parts 95
scale-space 93
use 70

assembly planning 17

B

backprojection 72–73
beam 45–49

beam-tracing 46
amortized 47
antialiasing 47
bidirectional 47
BSP 46
caustics 47
real-time 47
sound propagation 47

best-next-view 16, 48
bifurcation (see singularity), 28
binary space partitioning tree (see BSP), 41
bitangent 27, 30, 42, 51, 81
bounding volumes 40
BRDF 9
BSP 34, 41

beam tracing 46
cylindrical BSP 41, 95
dynamic 95
feudal priority 41
modeling 41, 48
occlusion culling 41, 48
Quake 42
shadow 46, 57
soft shadow 50

bundle of rays 46

C

camera placement (see sensor placement), 13
catastrophe (see singularity), 28
caustics 47
characteristic view (see aspect graph), 65
classification of lines 20
cluster 40, 92
computational geometry 19–20
computer graphics 7–13
computer vision 13–16
cone-tracing 46

113

114 INDEX

configuration space 17
conflict 33
conservative 9, 54
constructive geometry 41
contour intersection (see silhouette intersection), 14
convolution 63, 92
correlation 63, 92
critical line 27, 81, 83, 87
cross scan-line 36
curved object

adaptive subdivision 35, 36
aspect graph 69
BSP 41
pursuit-evasion 72
shadow 59
singularity 32
soft shadow 32
view computation 33, 35, 36
visibility complex 80
visibility graph 42, 80
visual hull 45

cylindrical BSP 41, 95
cylindrical partition 42

D

da Vinci (Leonardo) 8, 50
degeneracy 29, 32
depth order 13, 33, 41, 87
differential geometry 29
diffraction 10, 60
diffuse 9, 11
discontinuity mesh

moving object 95, 96
discontinuity meshing (see soft shadow), 12, 46,

50, 73, 81, 83, 92
backprojection 72
complete 72
finite resolution 94
indirect lighting 50, 83
output-sensitive 73

Dürer 37, 46
dynamic scene 94–96

E

epipolar geometry 62, 83
extended projection 58
extremal stabbing line 83, 87

F

feature of the shadow 92
feature-based visibility 92

feudal priority 41
finite resolution aspect graph 93
finite-element 11
flight simulator 7, 9, 34, 36
footprint 62
form factor 11, 32, 60, 70, 73, 81, 83

analytical 11, 32
frame-to-frame coherence (see temporal coherence),

76
Fresnel ellipsoid 60
from factor 88

G

game 13, 42, 48
gap edge 71
gasp 48
general view (see aspect), 65
generator 27
generic viewpoint 28
geodesic 43
geographical information system 6
geon 70
GIS 6
global illumination 9, 83
global Monte-Carlo radiosity 88, 95
global visibility 22
good viewpoint (see sensor placement), 13
graph drawing 13, 70
graph in line space 83
Grassman manifold 86

H

hard shadow 8, 23, 24, 45–46
added to the scene 32, 46
BSP 46, 57
ray-tracing 10, 36, 48, 59, 63
scan-line 36, 57
shadow volume 45
shadow-map 58

hardware 9, 35, 36, 46, 57–61
heat-transfer 11
height field 6, 62
hemicube 60
hidden-line removal 32
hidden-part removal 7, 19, 20, 31–37, 41
hierarchical occlusion map 61
hierarchical z-buffer 42, 61
human perception 8, 13, 92

I

image precision 31

INDEX 115

image structure graph 66
image-based modeling and rendering 12, 34, 48,

62, 75, 83
importance 88
inflexion point 27
integral geometry 88
interpretation tree 70
interval arithmetic 32
invariant 14
item buffer 59

K

Klein quadric 86

L

Lambert 8
lambertian (see diffuse), 9
laser plane 16
layer 13, 34
level of detail 55, 61
light buffer 59, 82
light-field 83
lighting simulation 9
limb (see silhouette), 28
line classification 20, 84
line drawing 27, 28, 32
line parameterization 25, 30, 83–85, 88
linear light source 59
localisation (see self-localisation), 18
lumigraph 83

M

matching 13
maximal free segment 25, 80
Maya 36, 59
measure of a set of lines 88
model-based recognition (see recognition), 13
Monte-Carlo 10, 88
motion planning 17, 20, 42

NP-complete 42
pursuit-evasion 17, 71
target tracking 18, 76
use of the z-buffer 58

motion volume 95
motion-planning 20

non-holonomic 43

N

network 9, 55
non-binary visibility 10, 60
non-holonomic 43

non-photorealistic rendering 7, 8, 32
NP-complete

art-gallery 74
motion-planning 42

NURBS 33

O

object precision 31
object recognition (see recognition), 13
object-centered representation 13
object-precision 19, 32, 36
occluder fusion 48, 49, 54, 58, 61, 77
occluder shadow 62
occluding contour (see silhouette), 28
occlusion culling 8

BSP 41, 48
extended projection 58
from a volume 54
hierarchical occlusion map 61
hierarchical z-buffer 61
line-space 83
moving object 95
occluder simplification 45
offline 54, 58, 83
online 41, 48, 61, 77
portal 48, 54
shadow footprint 62
shadow volume 48
temporal coherence 77

occlusion-free viewpoint 51
opaque vs. transparent 28, 29, 67, 77
Open GL Optimizer 62
oracle 92
output-sensitive 19, 43

P

painter’s algorithm 33, 41
path planning (see motion planning), 42
peak vertex 73
pencil tracing 47
penumbra (see soft shadow), 8, 49, 51, 87
perception 92
Pixar Renderman 36
pixel-plane 46
Plücker 85–87
plenoptic function 83
portal 48, 54, 87
potentially visible set 9, 54
predicate 87
probability 10, 40, 88
production rendering 35, 45, 59
purposive viewpoint adjustment 16

116 INDEX

pursuit-evasion 17, 71

Q

Quake 42
quantitative invisibility 32, 33

R

radiosity 11
2D 81
architectural scenes 55
convolution 63
discontinuity mesh 12, 46, 50, 72, 81, 83
form factor 11, 32, 60, 70, 73, 81, 83, 88
global Monte-Carlo 88, 95
hemicube 60
hierarchical radiosity 91
moving object 95
mutual visibility 53, 55, 87
perceptual metric 92
shadow improvement 92
visibility preprocessing 55, 81, 83
volumetric visibility 40

randomized 33
randomized algorithm 33
range image 16
raster 24, 31, 35
ray classification 81, 87, 95
ray-shooting 87
ray-tracing 10, 36, 88

4D 95
antialiasing 36, 46, 47, 59
beam-tracing 46
bounding volume 40
computational geometry 19
cone-tracing 46
depth of field 46, 59
item buffer 59
light-buffer 59
octree 40
pencil tracing 46
production rendering 59
ray-classification 81, 95
ray-surface intersection 36
shadow cache 63
shadow ray 10, 36, 48, 59, 63
shadow volume 45
soft shadow 46, 59, 64
space-time 95
spatial subdivision 40
update 54
ZZ-buffer 59

reachability 43

recognition 18, 65, 70
refinement 63, 91–93
reflection 9, 10, 36, 46, 48
refraction 10, 36, 46
rendering equation 9
Renderman 36
Riemannian geometry 43
robotics 16–19
robustness (see degeneracy), 29, 32, 50, 70, 87

S

scale 70, 91–94
scale space 93
scale-space aspect graph 93
scan-line 36, 45, 57, 82
self-localisation 18, 70
sensor placement 13

known geometry 15, 20, 51, 74–76
object exploration 16, 48

separating plane 41, 50, 51, 77
shadow 8, 24

importance in perception 8
shape from shadow 6
sketching 8, 53

shadow BSP 46, 50, 57
shadow cache 63
shadow floodfill 64
shadow footprint 62
shadow map 45, 58, 59
shadow ray 10, 36, 48, 59, 63
shadow volume 24, 45–49

area light source 49
BSP 46, 57
Dürer 46
hardware implementation 46
light scattering 46
occlusion culling 48
ray-tracing 45
scan-line 45
sketching shadow 53
tiling 57
volume of occlusion 48
z-buffer 45

shaft culling 53–55
dual space 54
hierarchical 54
motion volume 95

shape from shadow 6
silhouette 28, 32, 33, 70

non-photorealistic rendering 8, 32
silhouette intersection 14, 43
silhouette tree 70
singularity 28–29, 69

INDEX 117

catalogue 29
cusp 28
fold (see silhouette), 28, 32
stability 28
swallowtail 29
t-vertex 28, 32, 37
tangent crossing 28
view update 28, 32

sketching shadow 8, 53
skewed projection 84
soft shadow 8, 32, 82, 92

boundary 49–51
convolution 63, 92
radiosity 12, 60
ray-tracing 47, 59, 64
shadow-map 59, 63
supersampling 45
visible part of the source 8, 24, 31, 32, 64

sound propagation 9, 60
beam-tracing 47

space partition 40, 48, 61
space-time 95
span 36
spatial subdivision (see space partition), 40
stab-tree 54
stabbing line 20, 54, 83, 84, 86
stable views (see aspect graph), 65
strategy tree 70
sub-sampling 35, 36, 59
supporting plane 50
swallowtail 29
swath 27
swept volume 95

T

target tracking 18, 76
temporal bounding volume 95
temporal coherence 76–77, 85, 94
temporal visibility complex 96
temporal visual event 96
terrain 6, 62
texel 41
tiling 57
tracking (see target tracking), 18
transillumination plane 88
transmittance 40
transparency 35, 36
transparent vs. opaque (see opaque vs. transpar-

ent), 28
transversal (see stabbing line), 20
trapezoidal decomposition 33

U

umbra (see shadow), 8

V

view classes (see aspect graph), 65
view computation 7, 19
view graph (see aspect graph), 65
view warping 12, 48, 59, 62
view-dependent 10
view-independent 11
viewability matrix 75
viewer-centered representation 13, 65
viewing data 65, (see aspect graph), 65
viewing sphere 24
viewing sphere tessellation 66, 75, 83
viewpoint constraint 51
viewpoint planning (see sensor placement), 15
viewpoint set 75
viewpoint space partition 65
visibility complex 80, 81

dynamic update 96
visibility culling 9
visibility event (see visual event), 26
visibility graph 17, 20, 42, 45

construction 43, 80
visibility map 31, 37
visibility skeleton 83

dynamic update 96
vision 13–16
visual event 26–28

2D 27, 30
aspect graph 65
discontinuity meshing 50, 72, 73
EEE 27, 44, 50, 67, 72, 84, 86
EV 26, 49–51, 72, 76, 83
face 27
generator 27
line-space 83, 87
moving object 95
occlusion-free viewpoint 26, 51
shadow boundary 26, 45, 50, 72, 73
temporal 95, 96
view update 26, 76, 77
visual hull 44

visual hull 14, 44
visual potential (see aspect graph), 65
volume of occlusion 48
volumetric visibility 40, 92
voxel 40

W

walkthrough 9, 11, 55

118 INDEX

volumetric visibility 41
warping 12, 48, 59, 62
window (Warnock) 33

Z

z-buffer 35, 58–62
ZZ-buffer 59

REFERENCES

[AA95] Steven Abrams and Peter K. Allen. Swept volumes and their use in viewpoint computation in
robot work-cells. In Proceedings IEEE International Symposium on Assembly and Task Plan-
ning, August 1995. http://www.cs.columbia.edu/˜abrams/. (cited on page 95)

[AAA+92] A. L. Abbott, N. Ahuja, P.K. Allen, J. Aloimonos, M. Asada, R. Bajcsy, D.H. Ballard, B. Bederson, R. M.
Bolle, P. Bonasso, C. M. Brown, P. J. Burt, D. Chapman, J. J. Clark, J. H. Connell, P. R. Cooper, J. D.
Crisman, J. L. Crowley, M. J. Daily, J.O. Eklundh, F. P. Firby, M. Herman, P. Kahn, E. Krotkov, N. da Vito-
ria Lobo, H. Moraff, R. C. Nelson, H. K. Nishihara, T. J. Olson, D. Raviv, G. Sandini, and E. L. Schwartz.
Promising directions in active vision. International Journal on Computer Vision, 1992. (cited on page 16)

[AB91] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision. M. Landy and J.
A. Movshon, (eds) Computational Models of Visual Processing, 1991. (cited on page 83)

[Abr96] Michael Abrash. Inside quake: Visible-surface determination. Dr. Dobb’s Journal of Software Tools,
21(??):41–??, January/February 1996. (cited on page 42)

[ACW+99] D. Aliaga, J. Cohen, A. Wilson, Eric Baker, H. Zhang, C. Erikson, K. Hoff, T. Hudson, W. Stuerzlinger,
R. Bastos, M. Whitton, F. Brooks, and D. Manocha. Mmr: An interactive massive model rendering system
using geometric and image-based acceleration. In 1999 Symposium on Interactive 3D Graphics. ACM
SIGGRAPH, April 1999. http://www.cs.unc.edu:80/˜walk/research/index.html. (cited on page 61)

[AEG98] Pankaj K. Agarwal, Jeff Erickson, and Leonidas J. Guibas. Kinetic binary space partitions for intersect-
ing segments and disjoint triangles. In Proceedings of the 9th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA-98), pages 107–116, New York, January 25–27 1998. ACM Press. (cited on
pages 41, 42, 95)

[Aga84] P. K. Agarwal. The art gallery problem: Its Variations, applications, and algorithmic aspects. PhD thesis,
Johns Hopkins University, Baltimore, 1984. (cited on page 74)

[AGMV97] P. Agarwal, L. Guibas, T. Murali, and J. Vitter. Cylindrical static and kinetic binary space partitions. In
Proceedings of the 13th International Annual Symposium on Computational Geometry (SCG-97), pages
39–48, New York, June 4–6 1997. ACM Press. (cited on pages 41, 42)

[AH97] Laurent Alonso and Nicolas Holzschuch. Using graphics hardware to speed up your visibility queries.
Technical Report 99-R-030, LORIA, March 1997. http://www.loria.fr. (cited on page 60)

[Air90] John M. Airey. Increasing Update Rates in the Building Walkthrough System with Automatic Model-Space
Subdivision and Potentially Visible Set Calculations. PhD thesis, Dept. of CS, U. of North Carolina, July
1990. TR90-027. (cited on pages 54, 55)

119

120 REFERENCES

[AK87] James Arvo and David Kirk. Fast ray tracing by ray classification. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH ’87 Proceedings), volume 21-4, pages 55–64, July 1987. (cited on page 81)

[AK89] James Arvo and David Kirk. A survey of ray tracing acceleration techniques. In Andrew S. Glassner,
editor, An introduction to ray tracing, pages 201–262. Academic Press, 1989. (cited on pages 11, 40)

[Ama84] John Amanatides. Ray tracing with cones. Computer Graphics, 18(3):129–135, July 1984. (cited on
page 47)

[App67] Arthur Appel. The notion of quantitative invisibility and the machine rendering of solids. Proc. ACM Natl.
Mtg., page 387, 1967. (cited on page 32)

[App68] Arthur Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968 Spring Joint
Computer Conf., volume 32, pages 37–45, 1968. (cited on pages 10, 36)

[ARB90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards image realism with interactive update
rates in complex virtual building environments. In Rich Riesenfeld and Carlo Sequin, editors, Computer
Graphics (1990 Symposium on Interactive 3D Graphics), volume 24-2, pages 41–50, March 1990. (cited
on page 55)

[Arn69] V.I. Arnold. Singularities of smooth mappings. Russian Mathematical Surveys, pages 3–44, 1969. (cited
on page 28)

[Arv94] James Arvo. The irradiance Jacobian for partially occluded polyhedral sources. In Andrew Glassner, editor,
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics Proceedings,
Annual Conference Series, pages 343–350. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-
667-0. (cited on pages 32, 50)

[Ase92] Frederic Asensio. A hierarchical ray-casting algorithm for radiosity shadows. Third Eurographics Work-
shop on Rendering, pages 179–188, May 1992. (cited on page 92)

[Ash94] Ian Ashdown. Radiosity: A Programmer’s Perspective. John Wiley & Sons, New York, NY, 1994. (cited
on page 11)

[ATS94] James Arvo, Kenneth Torrance, and Brian Smits. A Framework for the Analysis of Error in Global Illumina-
tion Algorithms. In Computer Graphics Proceedings, Annual Conference Series, 1994 (ACM SIGGRAPH
’94 Proceedings), pages 75–84, 1994. (cited on page 92)

[AW87] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing. In G. Marechal, editor,
Eurographics ’87, pages 3–10. North-Holland, August 1987. (cited on page 40)

[AWG78] P. Atherton, K. Weiler, and D. Greenberg. Polygon shadow generation. In Computer Graphics (SIGGRAPH
’78 Proceedings), volume 12(3), pages 275–281, August 1978. (cited on pages 32, 46)

[Bax95] Michael Baxandall. Shadows and enlightenment. Yale University Press, London, UK, 1995. (Ombres et
Lumières, Gallimard). (cited on page 8)

[BB82] D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, Englewood Cliffs, 2 edition, 1982. (cited
on page 13)

[BB84] Lynne Shapiro Brotman and Norman I. Badler. Generating soft shadows with a depth buffer algorithm.
IEEE Computer Graphics and Applications, 4(10):5–12, October 1984. (cited on page 45)

[BD98] Amy J. Briggs and Bruce R. Donald. Visibility-based planning of sensor control strategies. Algorithmica,
1998. accepted for publication, http://www.middlebury.edu/˜briggs/Research/alg.html. (cited on page 51)

[BDEG90] Marshall Bern, David Dobkin, David Eppstein, and Robert Grossman. Visibility with a moving point of
view. In David Johnson, editor, Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’90), pages 107–117, San Francisco, CA, USA, January 1990. SIAM. (cited on page 85)

[Ber86] P. Bergeron. A general version of Crow’s shadow volumes. IEEE Computer Graphics and Applications,
6(9):17–28, 1986. (cited on page 45)

[Ber93] M. De Berg. Ray shooting, depth orders and hidden surface removal. In Lecture Notes in Computer Science,
volume 703. Springer Verlag, New York, 1993. (cited on pages 7, 19, 34, 37)

REFERENCES 121

[BEW+98] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael Shantz. Designing a PC game engine.
IEEE Computer Graphics and Applications, 18(1):46–53, January/February 1998. (cited on page 48)

[BF89] Chris Buckalew and Donald Fussell. Illumination networks: Fast realistic rendering with general re-
flectance functions. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume
23(3), pages 89–98, July 1989. (cited on page 88)

[BGRT95] P. Bose, F. Gomez, P. Ramos, and G. Toussaint. Drawing nice projections of objects in space. Lecture
Notes in Computer Science, 1027:52–??, 1995. (cited on page 70)

[BHS98] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility culling with occlusion trees. In IEEE Com-
puter Society Press, editor, Proceedings of Computer Graphics International ’98 (CGI’98), pages 327–335,
June 1998. (cited on page 48)

[BK70] W. J. Bouknight and K. C. Kelly. An algorithm for producing half-tone computer graphics presentations
with shadows and movable light sources. In Proc. AFIPS JSCC, volume 36, pages 1–10, 1970. (cited on
page 57)

[Bli78] J. F. Blinn. A scan line algorithm for displaying parametrically defines surfaces. Computer Graphics
(Special SIGGRAPH ’78 Issue, preliminary papers), pages 1–7, August 1978. (cited on page 36)

[BM98] Mark R. Bolin and Gary W. Meyer. A perceptually based adaptive sampling algorithm. In Michael F.
Cohen, editor, Computer graphics: proceedings: SIGGRAPH 98 Conference proceedings, July 19–24,
1998, Computer Graphics -proceedings- 1998, pages 299–310, New York, NY 10036, USA and Reading,
MA, USA, 1998. ACM Press and Addison-Wesley. (cited on page 92)

[BMT98] D. Bartz, M. Meissner, and T.Huettner. Extending graphics hardware for occlusion queries in opengl. In
Eurographics/Siggraph Workshop on Graphics Hardware Lisbon, Portugal August 31 and September 1,
1998. (cited on page 62)

[BNN+98] Ph. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y.D. Willems. Hierarchical monte carlo radiosity.
In George Drettakis and Nelson Max, editors, Eurographics Rendering Workshop 1998, New York City,
NY, June 1998. Eurographics, Springer Wein. (cited on page 88)

[Bou70] W. Jack Bouknight. A procedure for generation of three-dimensional half-toned computer graphics presen-
tations. Communications of the ACM, 13(9):527–536, September 1970. (cited on page 36)

[Bou85] C. Bouville. Bounding ellipsoids for ray-fractal intersection. In B. A. Barsky, editor, Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19(3), pages 45–52, July 1985. (cited on page 40)

[BP96] Normand Brière and Pierre Poulin. Hierarchical view-dependent structures for interactive scene manipu-
lation. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 83–90. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09
August 1996. (cited on page 54)

[Bre92] M. Quinn Brewster. Thermal Radiative Transfer & Properties. John Wiley & Sons, New York, 1992. (cited
on page 11)

[BRW89] Daniel R. Baum, Holly E. Rushmeier, and James M. Winget. Improving radiosity solutions through the
use of analytically determined form-factors. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89
Proceedings), volume 23(3), pages 325–334, July 1989. (cited on pages 32, 60)

[BS96] Gonzalo Besuievsky and Mateu Sbert. The multi-frame lighting method: A monte carlo based solution for
radiosity in dynamic environments. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering
Workshop 1996, pages 185–194, New York City, NY, June 1996. Eurographics, Springer Wien. ISBN
3-211-82883-4. (cited on page 95)

[BWCG86] Daniel R. Baum, John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. The Back-Buffer Algo-
rithm: An Extension of the Radiosity Method to Dynamic Environments. The Visual Computer, 2(5):298–
306, September 1986. (cited on page 95)

[BY98] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic geometry. Cambridge University Press, 1998.
(cited on pages 19, 66)

122 REFERENCES

[BZW+95] J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith, and M.A. Abidi. A “best-next-view” algorithm
for three dimensional scene reconstruction using range images. In Computer Graphics (SIGGRAPH ’87
Proceedings)SPI Intelligent Robots and Computer Vision XIV. Algorithms, Techniques, Active Vision and
Material Handling, Philadelphia, PA, 1995. (cited on page 48)

[Cam91] A. T. Campbell, III. Modeling Global Diffuse Illumination for Image Synthesis. PhD thesis, CS Dept, Uni-
versity of Texas at Austin, December 1991. Tech. Report TR-91-39, http://www.cs.utexas.edu/users/atc/.
(cited on pages 46, 50, 51, 54)

[Can88] John F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, Massachusetts, 1988.
(cited on page 42)

[Car84] Loren Carpenter. The A-buffer, an antialiased hidden surface method. In Hank Christiansen, editor,
Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 103–108, July 1984. (cited on
pages 35, 36)

[Cat74] Edwin E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph.d. thesis,
University of Utah, December 1974. (cited on page 35)

[Cat75] Edwin E. Catmull. Computer display of curved surfaces. In Proceedings of the IEEE Conference on
Computer Graphics, Pattern Recognition, and Data Structure, pages 11–17, May 1975. (cited on page 35)

[Cat78] E. Catmull. A hidden-surface algorithm with anti-aliasing. In Computer Graphics (SIGGRAPH ’78 Pro-
ceedings), volume 12(3), pages 6–11, August 1978. (cited on page 35)

[CCC87] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The reyes image rendering architecture. In Mau-
reen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21(4), pages 95–102,
July 1987. (cited on page 36)

[CCD91] J. Chapman, T. W. Calvert, and J. Dill. Spatio-temporal coherence in ray tracing. In Proceedings of
Graphics Interface ’91, pages 101–108, June 1991. (cited on page 95)

[CCOL98] Yiorgos Chrysanthou, Daniel Cohen-Or, and Dani Lischinski. Fast approximate quantitative vis-
ibility for complex scenes. In Proceedings of Computer Graphics International, June 1998.
http://www.math.tau.ac.il/˜daniel/. (cited on page 83)

[CDL+96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin, and John Snyder. Fast rendering of
complex environments using a spatial hierarchy. In Wayne A. Davis and Richard Bartels, editors, Graph-
ics Interface ’96, pages 132–141. Canadian Information Processing Society, Canadian Human-Computer
Communications Society, May 1996. ISBN 0-9695338-5-3. (cited on page 41)

[CDP95] Frédéric Cazals, George Drettakis, and Claude Puech. Filtering, clustering and hierarchy construction: a
new solution for ray-tracing complex scenes. Computer Graphics Forum, 14(3):371–382, August 1995.
Proceedings of Eurographics ’95. ISSN 1067-7055. (cited on page 40)

[CEG+92] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and J. Snoeyink. Counting
and cutting cycles of lines and rods in space. Comput. Geom. Theory Appl., 1:305–323, 1992. (cited on
page 87)

[CEG+96] B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and J. Stolfi. Lines in space: Combinatorics and
algorithms. Algorithmica, 15(5):428–447, May 1996. (cited on page 87)

[CF89] Norman Chin and Steven Feiner. Near real-time shadow generation using BSP trees. In Jeffrey Lane,
editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 99–106, July 1989. (cited
on page 46)

[CF90] A. T. Campbell, III and Donald S. Fussell. Adaptive Mesh Generation for Global Diffuse Illumination.
In Computer Graphics (ACM SIGGRAPH ’90 Proceedings), volume 24-4, pages 155–164, August 1990.
http://www.cs.utexas.edu/users/atc/. (cited on page 46)

[CF91a] A. T. Campbell III and Donald S. Fussell. An analytic approach to illumination with area
light sources. Technical Report CS-TR-91-25, University of Texas, Austin, August 1, 1991.
http://www.cs.utexas.edu/users/atc/. (cited on page 50)

REFERENCES 123

[CF91b] S. Chen and H. Freeman. On the characteristic views of quadric-surfaced solids. In IEEE Workshop on
Directions in Automated CAD-Based Vision, pages 34–43, June 1991. (cited on page 69)

[CF92] Norman Chin and Steven Feiner. Fast object-precision shadow generation for area light source using BSP
trees. In Marc Levoy and Edwin E. Catmull, editors, Proceedings of the 1992 Symposium on Interactive
3D Graphics, pages 21–30, Cambridge, MA, March–April 1992. ACM Press. (cited on page 50)

[CG85] M. F. Cohen and D. P. Greenberg. The hemicube: A radiosity solution for complex environments. In
Proceedings of SIGGRAPH ’85, volume 19(3), pages 31–40, San Francisco, CA, 22–26 July 1985. ACM
SIGGRAPH. (cited on page 60)

[Cha96] B. Chazelle. The computational geometry impact task force report: An executive summary. Lecture Notes
in Computer Science, 1148:59–??, 1996. http://www.cs.princeton.edu/˜chazelle/. (cited on page 19)

[Chv75] V. Chvátal. A combinatorial theorem in plane geometry. J. Combin. Theory Ser. B, 18:39–41, 1975. (cited
on page 74)

[CK88] Cregg K. Cowan and Peter D. Kovesi. Automatic sensor placement from vision task requirements. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-10(3):407–416, May 1988. (cited on
page 51)

[CL97] D. Crevier and R. Lepage. Knowledge-based image understanding systems: A survey. Computer Vision
and Image Understanding: CVIU, 67(2):161–??, ???? 1997. (cited on page 13)

[Cla76] James H. Clark. Hierarchical geometric models for visible surface algorithms. Communications of the
ACM, 19(10):547–554, October 1976. (cited on pages 9, 48)

[Cla79] James H. Clark. A fast scan-line algorithm for rendering parametric surfaces. Computer Graphics, Special
SIGGRAPH ’79 Issue, 13(2):7–11, August 1979. (cited on page 36)

[Cla87] K. L. Clarkson. New applications of random sampling to computational geometry. Discrete and Computa-
tional Geometry, 2:195–222, 1987. (cited on page 87)

[CLF98] Emilio Camahort, Apostolos Lerios, and Don Fussell. Uniformly sampled light fields. In George Dret-
takis and Nelson Max, editors, Eurographics Rendering Workshop 1998, New York City, NY, June 1998.
Eurographics, Springer Wein. (cited on page 83)

[CLR80] Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld. Discrete B-spline subdivision techniques in
computer-aided geometric design and computer graphics. Computer Graphics and Image Processing,
14:87–111, October 1980. (cited on page 35)

[CLSS97] Per H. Christensen, Dani Lischinski, Eric J. Stollnitz, and David H. Salesin. Clustering for glossy global
illumination. ACM Transactions on Graphics, 16(1):3–33, January 1997. ISSN 0730-0301. (cited on
page 41)

[COFHZ98] Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. Conservative visibility and strong oc-
clusion for visibility partitionning of densely occluded scenes. In Proceedings of Eurographics, September
1998. http://www.math.tau.ac.il/˜daniel/. (cited on page 54)

[Col75] George Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In
Proceedings Second GI Conference on Automata Theory and Formal Languages, volume 33 of Lecture
Notes in Computer Science, pages 134–183, Berlin, 1975. Springer-Verlag. (cited on page 69)

[COZ98] Daniel Cohen-Or and Eyal Zadicario. Visibility streaming for network-based walkthroughs. In Proceedings
of Graphics Interface, June 1998. http://www.math.tau.ac.il/˜daniel/. (cited on pages 9, 54)

[CP97] Frédéric Cazals and Claude Puech. Bucket-like space partitioning data structures with applications to
ray-tracing. In Proceedings of the 13th International Annual Symposium on Computational Geometry
(SCG-97), pages 11–20, New York, June 4–6 1997. ACM Press. (cited on page 40)

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics. In James George, editor, Computer Graphics
(SIGGRAPH ’77 Proceedings), volume 11(2), pages 242–248, July 1977. (cited on page 45)

124 REFERENCES

[Cro84] Gary A. Crocker. Invisibility coherence for faster scan-line hidden surface algorithms. In Hank Chris-
tiansen, editor, Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 95–102, July 1984.
(cited on page 36)

[CS92] Y. Chrysanthou and M. Slater. Computing dynamic changes to BSP trees. In A. Kilgour and L. Kjelldahl,
editors, Computer Graphics Forum (EUROGRAPHICS ’92 Proceedings), volume 11-3, pages 321–332,
September 1992. (cited on page 95)

[CS94] D. Cohen and Z. Sheffer. Proximity clouds: An acceleration technique for 3D grid traversal. The Visual
Computer, 11?:27–38, 1994? (cited on page 40)

[CS95] Yiorgos Chrysanthou and Mel Slater. Shadow volume BSP trees for computation of shadows in dynamic
scenes. In Pat Hanrahan and Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages
45–50. ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7. (cited on pages 46, 95)

[CS97] Yiorgos Chrysanthou and Mel Slater. Incremental updates to scenes illuminated by area light sources. In
Julie Dorsey and Philipp Slusallek, editors, Eurographics Rendering Workshop 1997, pages 103–114, New
York City, NY, June 1997. Eurographics, Springer Wein. ISBN 3-211-83001-4. (cited on pages 58, 95)

[CT96] Satyan Coorg and Seth Teller. Temporally coherent conservative visibility. In Proceedings of the Twelfth
Annual Symposium On Computational Geometry (ISG ’96), pages 78–87, New York, May 1996. ACM
Press. http://graphics.lcs.mit.edu/˜satyan/pubs.html. (cited on pages 48, 77)

[CT97a] Michael Capps and Seth Teller. Communications visibility in shared virtual worlds. In Sixth Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 187–192. ACM Press, June18–
2- 1997. http://graphics.lcs.mit.edu/˜capps/. (cited on page 9)

[CT97b] Satyan Coorg and Seth Teller. Real-time occlusion culling for models with large occluders (color plate S.
189). In Proceedings of the Symposium on Interactive 3D Graphics, pages 83–90, New York, April27–
30 1997. ACM Press. http://graphics.lcs.mit.edu/˜satyan/pubs.html. (cited on page 48)

[CW85] J. Callahan and R. Weiss. A model for describing surface shape. In Proceedings, CVPR ’85 (IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 10–13,
1985), IEEE Publ. 85CH2145-1., pages 240–245. IEEE, IEEE, 1985. (cited on page 69)

[CW93a] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In James T. Kajiya,
editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 279–288, August 1993. (cited
on page 12)

[CW93b] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Academic Press Profes-
sional, Boston, MA, 1993. (cited on pages 9, 11)

[CW96] H.-M. Chen and W.-T. Wang. The feudal priority algorithm on hidden-surface removal. Computer Graph-
ics, 30(Annual Conference Series):55–64, 1996. (cited on page 41)

[Dal96] Bengt-Inge L. Dalenbäck. Room acoustic predictiom based on a unified treatment of diffuse and specular
reflection. Journal of the Acoustical Society of America, 100(2):899–909, August 1996. (cited on page 9)

[dBvKOS97] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 1997. (cited on pages 19, 33, 66, 71, 74)

[DDP96] Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility complex: A new approach to the
problems of accurate visibility. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering
Workshop 1996, pages 245–256, New York City, NY, June 1996. Eurographics, Springer Wein. ISBN
3-211-82883-4, http://www-imagis.imag.fr/Publications/. (cited on page 81)

[DDP97a] F. Durand, G. Drettakis, and C. Puech. 3d visibility made visibly simple. In video 13th Annu. ACM Sympos.
Comput. Geom., 1997. (cited on page 83)

[DDP97b] Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex: a unified data-structure
for global visibility of scenes of polygons and smooth objects. In Canadian Conference on Computational
Geometry, August 1997. http://www-imagis.imag.fr/˜Fredo.Durand. (cited on page 81)

REFERENCES 125

[DDP97c] Fredo Durand, George Drettakis, and Claude Puech. The visibility skeleton: a powerful and efficient
multi-purpose global visibility tool. Computer Graphics, 31(3A):89–100, August 1997. http://www-
imagis.imag.fr/Publications/. (cited on page 83)

[DDP99] Frédo Durand, George Drettakis, and Claude Puech. Fast and accurate hierarchical radiosity us-
ing global visibility. ACM Transactions on Graphics, April 1999. to appear. http://www-
imagis.imag.fr/˜Fredo.Durand. (cited on pages 84, 92, 93)

[DF94] G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources using backpro-
jection. Computer Graphics, 28(Annual Conference Series):223–230, July 1994. http://www-
imagis.imag.fr/˜George.Drettakis/pub.html. (cited on pages 72, 73)

[DKW85] Nou Dadoun, David G. Kirkpatrick, and John P. Walsh. The geometry of beam tracing. In Proceedings of
the ACM Symposium on Computational Geometry, pages 55–61, June 1985. (cited on page 46)

[Dor94] Susan Dorward. A survey of object-space hidden surface removal. International Journal of Computational
Geometry and Applications, 4(3):325–362, 1994. (cited on pages 7, 19, 37)

[DORP96] Frédo Durand, Rachel Orti, Stéphane Rivière, and Claude Puech. Radiosity in flatland made visibly simple.
In video 12th Annu. ACM Sympos. Comput. Geom., 1996. (cited on page 81)

[DP95] Frédo Durand and Claude Puech. The visibility complex made visibly simple. In video 11th Annu. ACM
Sympos. Comput. Geom., 1995. (cited on page 80)

[DPR92] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using distributed aspect matching.
IEEE Transactions on Pattern Analysis and machine Intelligence, 14(2):174–198, February 1992. (cited
on page 70)

[Dru87] M. Drumheller. Mobile robot localization using sonar. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, PAMI-9(2):325–332, 1987. See also: S. B. Thesis, Dept. of Mechanical Engineering, MIT, 1984
and MIT AI Lab Memo BZ6, Mobile Robot Localization Osing Sonar. (cited on page 18)

[DS96] George Drettakis and François Sillion. Accurate visibility and meshing calculations for hierarchical ra-
diosity. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages
269–278, New York City, NY, June 1996. Eurographics, Springer Wein. ISBN 3-211-82883-4, http://www-
imagis.imag.fr/˜George.Drettakis/pub.html. (cited on page 73)

[DS97] George Drettakis and François Sillion. Interactive update of global illumination using A line-space hi-
erarchy. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 57–64. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7, http://www-
imagis.imag.fr/˜George.Drettakis/pub.html. (cited on pages 54, 95)

[DSSD99] Xavier Decoret, Gernot Schaufler, Francois Sillion, and Julie Dorsey. Improved image-based impostors
foraccelerated rendering. In Eurographics’99, August 1999. (cited on page 34)

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based approach. In Holly Rushmeier, editor, SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 11–20. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996. (cited on page 12)

[Dub57] L. E. Dubins. On curves of minimal length with a constraint on average curvature and with prescribed
initial and terminal positions and tangents. Amer. J. Math., 79:497–516, 1957. (cited on page 43)

[Dür38] Albrecht Dürer. Underweysung der Messung mit dem Zirckel und richtscheyd. Nuremberg, 1538. (cited
on pages 37, 46)

[Dur99] Frédo Durand. 3D Visibility, analysis and applications. PhD thesis, U. Joseph Fourier, Grenoble, 1999.
http://www-imagis.imag.fr. (cited on pages 58, 96)

[DW85] Mark A. Z. Dippé and Erling Henry Wold. Antialiasing through stochastic sampling. In B. A. Barsky,
editor, Computer Graphics (SIGGRAPH ’85 Proceedings), volume 19, pages 69–78, July 1985. (cited on
page 36)

126 REFERENCES

[DZ95] Steven M. Drucker and David Zeltzer. CamDroid: A system for implementing intelligent camera control.
In Pat Hanrahan and Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages 139–144.
ACM SIGGRAPH, April 1995. ISBN 0-89791-736-7. (cited on page 13)

[EB90] David W. Eggert and Kevin W. Bowyer. Computing the orthographic projection aspect graph of solids of
revolution. Pattern Recognition Letters, 11(11):751–763, November 1990. (cited on page 69)

[EB92] Shimon Edelman and Heinrich H. Bulthoff. Orientation dependence in the recognition of familiar and
novel views of 3D objects. Vision Research, 32:2385–2400, 1992. http://eris.wisdom.weizmann.ac.il/-
˜edelman/abstracts.html#visres. (cited on page 13)

[EB93] D.W. Eggert and K.W. Bowyer. Computing the generalized aspect graph for objects with moving parts.
PAMI, 15(6):605–610, June 1993. (cited on page 95)

[EBD92] David Eggert, Kevin Bowyer, and Chuck Dyer. Aspect graphs: State-of-the-art and applications in digital
photogrammetry. In Proceedings of the 17th Congress of the International Society for Photogrammetry
and Remote Sensing, Part B5, pages 633–645, 1992. (cited on page 66)

[EBD+93] David W. Eggert, Kevin W. Bowyer, Charles R. Dyer, Henrik I. Christensen, and Dmitry B. Goldgof. The
scale space aspect graph. Pattern Analysis and Machine Intelligence, 15(11):1114–1130, November 1993.
(cited on page 93)

[EC90] Gershon Elber and Elaine Cohen. Hidden curve removal for free form surfaces. In Forest Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24-4, pages 95–104, August 1990. (cited on
page 32)

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987. (cited on pages 19, 66)

[EG86] Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrangement. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 389–403, Berkeley, California,
28–30 May 1986. (cited on page 43)

[Egg91] D.W. Eggert. Aspect graphs of solids of revolution. In Ph. D., 1991. (cited on page 69)

[EHW97] P. Eades, M. E. Houle, and R. Webber. Finding the best viewpoints for three-dimensional graph drawings.
Lecture Notes in Computer Science, 1353:87–??, 1997. (cited on page 70)

[EK89] K. S. Eo and C. M. Kyung. Hybrid shadow testing scheme for ray tracing. Computer-Aided Design,
21(1):38–48, January/February 1989. (cited on page 45)

[ES94] R. Endl and M. Sommer. Classification of ray-generators in uniform subdivisions and octrees for ray
tracing. Computer Graphics Forum, 13(1):3–19, March 1994. (cited on page 40)

[ESB95] D.W. Eggert, L. Stark, and K.W. Bowyer. Aspect graphs and their use in object recognition. Annals of
Mathematics and Artificial Intelligence, 13(3-4):347–375, 1995. (cited on page 70)

[Eve90] H. Everett. Visibility Graph Recognition. PhD thesis, Department of. Computer Science, University of
Toronto, 1990. Tech. Report 231/90. (cited on page 20)

[FAG83] H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded display of rigid objects. In Computer
Graphics (SIGGRAPH ’83 Proceedings), volume 17(3), pages 65–72, July 1983. (cited on pages 41, 95)

[Fau93] O. Faugeras. Three-dimensional computer vision. MIT Press, Cambridge, MA, 1993. (cited on
pages 13, 62)

[FCE+98] Thomas Funkhouser, Ingrid Carlbom, Gary Elko, Gopal Pingali, Mohan Sondhi, and Jim West. A beam
tracing approach to acoustic modeling for interactive virtual environments. In Michael F. Cohen, editor,
Computer graphics: proceedings: SIGGRAPH 98 Conference proceedings, July 19–24, 1998, Computer
Graphics -proceedings- 1998, pages 21–32, New York, NY 10036, USA and Reading, MA, USA, 1998.
ACM Press and Addison-Wesley. (cited on pages 9, 47)

[FD84] G. Fekete and L. S. Davis. Property spheres: a new representation for 3-D object recognition. In Proceed-
ings of the Workshop on Computer Vision: Representation and Control (Annapolis, MD, April 30-May 2,
1984), IEEE Publ. 84CH2014-9., pages 192–201. IEEE, IEEE, 1984. (cited on page 66)

REFERENCES 127

[FF88] Alain Fournier and Donald Fussell. On the power of the frame buffer. ACM Transactions on Graphics,
7(2):103–128, 1988. (cited on page 58)

[FFR83] E. Fiume, A. Fournier, and L. Rudolph. A parallel scan conversion algorithm with anti-aliasing for a general
purpose ultracomputer. In Computer Graphics (SIGGRAPH ’83 Proceedings), volume 17(3), pages 141–
150, July 1983. (cited on page 35)

[FGH+85] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D. Austin, Frederick P. Brooks, Jr.,
John G. Eyles, and John Poulton. Fast spheres, shadows, textures, transparencies, and image enhancements
in Pixel-Planes. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH ’85 Proceedings), volume 19,
pages 111–120, July 1985. (cited on page 46)

[FGK+96] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schoenherr. The cgal kernel: A basis for geo-
metric computation. in proceedings workshop on applied computational geometry. In roceedings of the
Workshop on Applied Computational Geometry, May 27-28, 1996, Philadelphia, Pennsylvania., 1996.
http://www.cs.ruu.nl/CGAL. (cited on pages 19, 98)

[Fis78] S. Fisk. Short proof of chvatal’s watchman theorem. Journal of Combinatorial Theory, 24:374, 1978.
(cited on page 74)

[FKN80] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures. In
Computer Graphics (SIGGRAPH ’80 Proceedings), volume 14(3), pages 124–133, July 1980. (cited on
page 41)

[FL98] Patrick Fabiani and Jean-Claude Latombe. Tracking a partially predictable object with uncertainty and
visibility constraints: a game-theoretic approach. Technical report, Univeristy of Stanford, December
1998. http://underdog.stanford.edu/. (cited on page 76)

[FMA+92] Olivier Faugeras, Joe Mundy, Narendra Ahuja, Charles Dyer, Alex Pentland, Ramesh Jain, and Katsushi
Ikeuchi. Why aspect graphs are not (yet) practical for computer vision. Computer Vision and Image
Understanding: CVIU, 55(2):322–335, March 1992. (cited on pages 70, 93)

[FMC99] Thomas A. Funkhouser, Patrick Min, and Ingrid Carlbom. Real-time acoustic modeling for distributed
virtual environments. In Computer Graphics (SIGGRAPH ’99 Proceedings), August 1999. (cited on
page 47)

[FPM98] L. De Floriani, E. Puppo, and P. Magillo. Geometric structures and algorithms for geographical informa-
tion systems. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook on Computational Geometry.
Elsevier Science, 1998. Preliminary version available as: Technical Report DISI-TR-97-08, Department of
Computer and Information Sciences, University of Genova, http://www.disi.unige.it/person/DeflorianiL/.
(cited on page 6)

[FS93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for interactive frame rates during
visualization of complex virtual environments. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH
’93 Proceedings), volume 27, pages 247–254, August 1993. http://www.bell-labs.com/user/funk/. (cited
on page 55)

[FST92] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller. Management of large amounts of data in inter-
active building walkthroughs. In David Zeltzer, editor, Computer Graphics (1992 Symposium on Interactive
3D Graphics), volume 25-2, pages 11–20, March 1992. http://www.bell-labs.com/user/funk/. (cited on
page 55)

[FTI86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS: Accelerated ray tracing system. IEEE Com-
puter Graphics and Applications, 6(4):16–26, 1986. (cited on page 40)

[Fun95] T. Funkhouser. RING - A client-server system for multi-user virtual environments. SIGGRAPH Symposium
on Interactive 3D Graphics, pages 85–92, 1995. (cited on pages 9, 55)

[Fun96a] T. Funkhouser. Network topologies for scalable multi-user virtual environments. Proceedings of VRAIS’96,
Santa Clara CA, pages 222–229, 1996. (cited on page 9)

[Fun96b] Thomas A. Funkhouser. Coarse-grained parallelism for hierarchical radiosity using group iterative meth-
ods. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 343–352. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09
August 1996. (cited on page 55)

128 REFERENCES

[Fun96c] Thomas A. Funkhouser. Database management for interactive display of large architectural models. In
Wayne A. Davis and Richard Bartels, editors, Graphics Interface ’96, pages 1–8. Canadian Information
Processing Society, Canadian Human-Computer Communications Society, May 1996. ISBN 0-9695338-
5-3, http://www.bell-labs.com/user/funk. (cited on pages 9, 55)

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley Publishing Co., Reading, MA, 2nd edition, 1990. T 385.C587. (cited on
pages 7, 9, 24, 31, 40, 61)

[GCS91] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and representing aspect graphs of
polyhedral objects. IEEE Trans. on Pat. Matching & Mach. Intelligence, 13(6), June 1991. (cited on
pages 67, 72, 83)

[GGC97] X. Gu, S. J. Gortler, and M. Cohen. Polyhedral geometry and the two-plane parameterization. In Julie
Dorsey and Philipp Slusallek, editors, Eurographics Rendering Workshop 1997, New York City, NY, June
1997. Eurographics, Springer Wein. ISBN 3-211-83001-4, http://hillbilly.deas.harvard.edu/˜sjg/. (cited on
page 83)

[GGH+99] X. Gu, S.J. Gortler, H. Hoppe, L. Mcmillan, B. Brown, and A. Stone. Silhouette mapping. Technical Re-
port TR-1-99, Harvard Computer Science, March 1999. http://cs.harvard.edu/˜xgu/paper/Silhouette Map/.
(cited on page 70)

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 43–54.
ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996,
http://hillbilly.deas.harvard.edu/˜sjg/. (cited on page 83)

[GH94] Neil Gatenby and W. T. Hewitt. Optimizing Discontinuity Meshing Radiosity. In Fifth Eurographics
Workshop on Rendering, pages 249–258, Darmstadt, Germany, June 1994. (cited on page 50)

[GH96] S. Gibson and R. J. Hubbold. Efficient hierarchical refinement and clustering for radiosity in complex
environments. Computer Graphics Forum, 15(5):297–310, 1996. ISSN 0167-7055. (cited on page 92)

[GH97] S. Gibson and R. J. Hubbold. Perceptually-driven radiosity. Computer Graphics Forum, 16(2):129–141,
1997. ISSN 0167-7055. (cited on page 92)

[GH98] Djamchid Ghazanfarpour and Jean-Marc Hasenfratz. A beam tracing with precise antialiasing for polyhe-
dral scenes. Computer & Graphics, 22(1):103–115, 1998. (cited on page 47)

[Gho97] Ghosh. On recognizing and characterizing visibility graphs of simple polygons. GEOMETRY: Discrete &
Computational Geometry, 17, 1997. (cited on page 20)

[GI87] Keith D. Gremban and Katsushi Ikeuchi. Planning multiple observation for object recognition. Interna-
tional Journal of Computer Vision, 1(2):145–65, 1987. (cited on page 70)

[GKM93] Ned Greene, Michael Kass, and G.avin Miller. Hierarchical Z-buffer visibility. In Computer Graphics
Proceedings, Annual Conference Series, 1993, pages 231–240, 1993. (cited on page 61)

[GL99] Héctor González-Baños and Jean-Claude Latombe. Planning robot motions for range-image acquisition
and automatic 3d model construction. In AAAI Spring Symposium, 1999. (cited on page 75)

[Gla84] Andrew S. Glassner. Space sub-division for fast ray tracing. IEEE Computer Graphics and Applications,
October 1984, 4:15–22, 1984. (cited on page 40)

[Gla88] Andrew S. Glassner. Spacetime ray tracing for animation. IEEE Computer Graphics and Applications,
8(2):60–70, March 1988. (cited on page 95)

[Gla89] Andrew Glassner. An introduction to raytracing. Academic Press, Reading, MA, 1989. (cited on page 10)

[Gla95] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, CA, 1995.
(cited on page 9)

[GLL+97] Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin, and Rajeev Motwani. Visibility-
based pursuit-evasion in a polygonal environment. In Algorithms and Data Structures, 5th International
Workshop, Lecture Notes in Computer Science, Halifax, Nova Scotia, Canada, 6–8 August 1997. Springer.
http://underdog.stanford.edu/. (cited on page 71)

REFERENCES 129

[GLLL98] L. J. Guibas, J.-C. Latombe, S. M. LaValle, and D. Lin. Visibility-based pursuit-evasion in a polygonal
environment. Lecture Notes in Computer Science, 1272:17–??, 1998. (cited on page 71)

[GM90] Ziv Gigus and Jitendra Malik. Computing the aspect graph for the line drawings of polyhedral objects.
IEEE Trans. on Pat. Matching & Mach. Intelligence, 12(2), February 1990. (cited on pages 67, 68, 69, 80)

[GM91] Subir Kumar Ghosh and David M. Mount. An output-sensitive algorithm for computing visibility graphs.
SIAM Journal on Computing, 20(5):888–910, October 1991. (cited on page 43)

[GMR95] Guibas, Motwani, and Raghavan. The robot localization problem. In Goldberg, Halperin, Latombe, and
Wilson, editors, Algorithmic Foundations of Robotics, The 1994 Workshop on the Algorithmic Foundations
of Robotics, A. K. Peters, 1995. (cited on pages 70, 71)

[GN71] Robert A. Goldstein and Roger Nagel. 3-D visual simulation. Simulation, 16(1):25–31, January 1971.
(cited on page 36)

[Goa83] Chris Goad. Special purpose automatic programming for 3D model-based vision. In Martin A Fischler Os-
car Firschein, editor, Readings in Computer Vision, pages 371–381. Morgan Kaufman Publishers, August
1983. (cited on page 66)

[GP91] E. Gröller and W. Purgathofer. Using temporal and spatial coherence for accelerating the calculation of
animation sequences. In Werner Purgathofer, editor, Eurographics ’91, pages 103–113. North-Holland,
September 1991. (cited on page 95)

[Gra92] Charles W. Grant. Visibility Algorithms in Image Synthesis. PhD thesis, U. of California, Davis, 1992.
http://www.hooked.net/˜grant/. (cited on pages 7, 22, 31, 59, 63)

[Gre96] Ned Greene. Hierarchical polygon tiling with coverage masks. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 65–74. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996. (cited on page 61)

[GS96] Sherif Ghali and A. James Stewart. A complete treatment of D1 discontinuities in a discontinuity mesh.
In Wayne A. Davis and Richard Bartels, editors, Graphics Interface ’96, pages 122–131. Canadian In-
formation Processing Society, Canadian Human-Computer Communications Society, May 1996. ISBN
0-9695338-5-3, http://www.dgp.toronto.edu/people/ghali/papers/. (cited on page 73)

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The irradiance volume. IEEE
Computer Graphics & Applications, 18(2):32–43, 1998. (cited on page 83)

[Gue98] Concettina Guerra. Vision and image processing algorithms. In M. Atallah, editor, CRC Handbook of
Algorithms and Theory of Computation. CRC Press, 1998. (cited on page 13)

[HA90] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware support for high-quality rendering. In
Forest Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 309–318,
August 1990. (cited on page 59)

[Hae90] Paul Haeberli. Paint by numbers: Abstract image representations. In Forest Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 207–214, August 1990. (cited on page 58)

[Hai] Eric Haines. Ray tracing news. http://www.povray.org/rtn/. (cited on page 10)

[Hai91] Eric A. Haines. Beams O’ Light: Confessions of a Hacker. In SIGGRAPH ’91 Course Notes - Frontiers in
Rendering. ACM, July 1991. (cited on page 46)

[Hal98] Michael Halle. Multiple viewpoint rendering. In Michael Cohen, editor, SIGGRAPH 98 Conference Pro-
ceedings, Annual Conference Series, pages 243–254. ACM SIGGRAPH, Addison Wesley, July 1998. ISBN
0-89791-999-8. (cited on page 83)

[Han89] Pat Hanrahan. A survey of ray-surface intersection algorithms. In Andrew S. Glassner, editor, An introduc-
tion to ray tracing, pages 79–119. Academic Press, 1989. (cited on page 36)

[Has98] Jean-Marc Hasenfratz. Lancer de Faisceaux en Synthèse d’Image. PhD thesis, Université de Limoges,
1998. (cited on page 47)

130 REFERENCES

[HCS96] Li-wei He, Michael F. Cohen, and David H. Salesin. The virtual cinematographer: A paradigm for auto-
matic real-time camera control and directing. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 217–224. ACM SIGGRAPH, Addison Wesley, August 1996.
held in New Orleans, Louisiana, 04-09 August 1996. (cited on page 13)

[HDG99] David Hart, Philip Dutré, and Donald P. Greenberg. Direct illumination with lazy visibility evaluation. In
Computer Graphics (SIGGRAPH ’99 Proceedings), August 1999. (cited on page 64)

[Hec92a] Paul Heckbert. Discontinuity meshing for radiosity. Third Eurographics Workshop on Rendering, pages
203–226, May 1992. http://www.cs.cmu.edu/ ph. (cited on page 50)

[Hec92b] Paul S. Heckbert. Radiosity in flatland. In A. Kilgour and L. Kjelldahl, editors, Computer Graphics Forum
(EUROGRAPHICS ’92 Proceedings), volume 11(3), pages 181–192, September 1992. (cited on page 50)

[HG86] Eric A. Haines and Donald P. Greenberg. The light buffer: A ray tracer shadow testing accelerator. IEEE
Computer Graphics and Applications, 6(9):6–16, September 1986. (cited on pages 59, 63)

[HG94] P. Heckbert and M. Garland. Multiresolution modelling for fast rendering. Proceedings of Graphics Inter-
face‘94, pages 43–50, 1994. (cited on page 9)

[HH84] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18(3), pages 119–127, July 1984. (cited on page 46)

[HH89] Charles Hansen and Thomas C. Henderson. CAGD-based computer vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-11(11):1181–1193, November 1989. (cited on page 70)

[HH96] Seth Hutchinson and Gregory D. Hager. A tutorial on visual servo control. IEEE Transactions on Robotics
and Automation, 12(5):651–670, October 1996. (cited on page 15)

[HH97] Paul S. Heckbert and Michael Herf. Simulating soft shadows with graphics hardware. Technical Report
CMU-CS-97-104, CS Dept., Carnegie Mellon U., January 1997. http://www.cs.cmu.edu/˜ph. (cited on
page 59)

[HK85] M. Hebert and T. Kanade. The 3-D profile method for object recognition. In Proceedings, CVPR ’85
(IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
June 10–13, 1985), IEEE Publ. 85CH2145-1., pages 458–463. IEEE, IEEE, 1985. (cited on page 66)

[HK89] Seth A. Hutchinson and Avinash C. Kak. Planning sensing strategies in a robot work cell with multi-sensor
capabilities. IEEE Journal of Robotics and Automation, 5(6):765–783, December 1989. (cited on page 70)

[HKL97] Dan Halperin, Lydia Kavraki, and Jean-Claude Latombe. Robotics. In J.E. Goodman and
J. O’Rourke, editors, CRC Handbook of Discrete and Computational Geometry. CRC Press, 1997.
http://robotics.stanford.edu/˜latombe/pub.html. (cited on page 16)

[HKL98] D. Halperin, L.E. Kavraki, and J.C. Latombe. Robot algorithms. In M. Atallah, editor, CRC Handbook of
Algorithms and Theory of Computation. CRC Press, 1998. http://robotics.stanford.edu/˜latombe/pub.html.
(cited on pages 15, 16, 17)

[HLW96] V. Hlavac, A. Leonardis, and T. Werner. Automatic selection of reference views for image-based scene
representations. Lecture Notes in Computer Science, 1064:526–??, 1996. (cited on page 75)

[HM96] André Hinkenjann and Heinrich Müller. Hierarchical blocker trees for global visibility calculation. Re-
search Report 621/1996, University of Dortmund, Universität Dortmund, 44221 Dortmund, Germany, Au-
gust 1996. http://ls7-www.cs.uni-dortmund.de/˜hinkenja/. (cited on page 82)

[HMC+97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated occlusion culling us-
ing shadow frusta. In Proceedings of the 13th International Annual Symposium on Computational Ge-
ometry (SCG-97), pages 1–10, New York, June4–6 1997. ACM Press. http://www.cs.unc.edu/ hud-
son/projects/occlusion/scg97.ps. (cited on page 48)

[HMK+97] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage: Interactive
navigation in the human colon. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 27–34. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.
(cited on page 48)

REFERENCES 131

[Hof92] Georg Rainer Hofmann. Who invented ray tracing? a historical remark. The Visual Computer, 9(1):120–
125, 1992. (cited on page 37)

[HS99] Nicolas Holzschuch and Franois X. Sillion. An exhaustive error-bounding algorithm for hierarchical ra-
diosity. Computer Graphics Forum, 1999. to appear, http://www.loria.fr/˜holzschu. (cited on page 92)

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm. In Thomas W.
Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 197–206, July
1991. (cited on pages 91, 92)

[HSD94] Nicolas Holzschuch, Francois Sillion, and George Drettakis. An Efficient Progressive Refinement Strategy
for Hierarchical Radiosity. In Fifth Eurographics Workshop on Rendering, pages 343–357, Darmstadt,
Germany, June 1994. http://www.loria.fr/˜holzschu. (cited on page 11)

[HT96] Stephen Hardt and Seth Teller. High-fidelity radiosity rendering at interactive rates. In Xavier Pueyo and
Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages 71–80, New York City, NY, June
1996. Eurographics, Springer Wein. ISBN 3-211-82883-4. (cited on page 50)

[HW91] Eric Haines and John Wallace. Shaft culling for efficient ray-traced radiosity. In Eurographics Workshop
on Rendering, 1991. (cited on page 53)

[HW98] Michael E. Houle and Richard Webber. Approximation algorithms for finding best viewpoints. In Sue H.
Whitesides, editor, Proceedings of the 6th International Symposium on Graph Drawing, number vol. 1547
in Lecture Notes in Computer Science, pages 210–223. Springer, Heidelberg, Germany, 1998. (cited on
page 70)

[HWP97] David Hedley, Adam Worrall, and Derek Paddon. Selective culling of discontinuity lines. In J. Dorsey
and P. Slusallek, editors, Rendering Techniques ’97, pages 69–81, 8th EG workshop on Rendering, Saint
Etienne, France, June 1997. Springer Verlag. (cited on page 93)

[HZ81] H. Hubschman and S. W. Zucker. Frame-to-frame coherence and the hidden surface computation: con-
straints for a convex world. Computer Graphics, 15(3):45–54, August 1981. (cited on page 76)

[HZ82] H. Hubschman and S. W. Zucker. Frame-to-frame coherence and the hidden surface computation: con-
straints for a convex world. ACM Transactions on Graphics, 1(2):129–162, April 1982. (cited on page 76)

[ICK+99] Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha. Fast computation of gener-
alized voronoi diagrams using graphics hardware. In Computer Graphics (SIGGRAPH ’99 Proceedings),
August 1999. (cited on page 58)

[Ike87] Katsushi Ikeuchi. Generating an interpretation tree from a CAD model for 3-D object recognition in bin-
picking tasks. International Journal of Computer Vision, 1(2):145–65, 1987. (cited on page 70)

[JF93] A. K. Jain and P. J. Flynn. Three Dimensional Object Recognition Systems. Elsevier, Amsterdam, 1993.
(cited on page 13)

[JK88] J. W. Jaromczyk and M. Kowaluk. Skewed projections with an application to line stabbing in R3. In
Proceedings of the Fourth Annual Symposium on Computational Geometry (Urbana-Champaign, IL, June
6–8, 1988), pages 362–370, New York, 1988. ACM, ACM Press. (cited on page 84)

[Jon71] C. B. Jones. A new approach to the ‘hidden line’ problem. The Computer Journal, 14(3):232–237, August
1971. (cited on page 48)

[JW89] David Jevans and Brian Wyvill. Adaptive voxel subdivision for ray tracing. In Proceedings of Graphics
Interface ’89, pages 164–172, June 1989. (cited on page 40)

[Kaj82] James T. Kajiya. Ray tracing parametric patches. In Computer Graphics (SIGGRAPH ’82 Proceedings),
volume 16(3), pages 245–254, July 1982. (cited on page 36)

[Kaj86] J. T. Kajiya. The rendering equation. In David C. Evans and Rusell J. Athay, editors, Computer Graphics
(SIGGRAPH ’86 Proceedings), volume 20(4), pages 143–150, August 1986. (cited on page 9)

[KB98] D. Kriegman and P. Belhumeur. What shadows reveal about object structure. In Proceedings European
Conference on Computer Vision, pages 399–414, 19998. http://www-cvr.ai.uiuc.edu/˜kriegman/. (cited on
page 6)

132 REFERENCES

[Kel97] Alexander Keller. Instant radiosity. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 49–56. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-
89791-896-7. (cited on page 59)

[Ker81] Y.L. Kergosien. La famille des projections orthogonales d’une surface et ses singularités. C.R. Acad. Sc.
Paris, 292:929–932, 1981. (cited on pages 29, 69)

[KG79] Douglas S. Kay and Donald P. Greenberg. Transparency for computer synthesized images. In Computer
Graphics (SIGGRAPH ’79 Proceedings), volume 13(3), pages 158–164, August 1979. (cited on page 36)

[Kir87] D. B. Kirk. The simulation of natural features using cone tracing. The Visual Computer, 3(2):63–71, August
1987. (cited on page 47)

[KK86] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In David C. Evans and Russell J.
Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 269–278, August
1986. (cited on page 40)

[KKCS98] Bomjun Kwon, Dae Seoung Kim, Kyung-Yong Chwa, and Sung Yong Shin. Memory-efficient ray classi-
fication for visibility operations. IEEE Transactions on Visualization and Computer Graphics, 4(3), July –
September 1998. ISSN 1077-2626. (cited on page 82)

[KKMB96] D. Kersten, D.C. Knill, P. Mamassian, and I. Bülthoff. Illusory motion from shadow. Nature, 379(31),
1996. (cited on page 8)

[KM94] S. Krishnan and D. Manocha. Global visibility and hidden surface algorithms for free form surfaces.
Technical Report TR94-063, UNC Chapel Hill, February 1994. http://www.cs.unc.edu/Research/tech-
report.html. (cited on page 33)

[Kø84] J. J. Kœnderink. What does the occluding contour tell us about solid shape? Perception, 13:321–330, 1984.
(cited on page 28)

[Koe87] J. J. Koenderink. An internal representation for solid shape based on the topological properties of the
apparent contour. In W. Richards and S. Ullman, editors, Image Understanding 1985–86, pages 257–285,
Norwood, NJ, 1987. Ablex. (cited on page 28)

[Koe90] Jan J. Koenderink. Solid Shape. MIT Press, Cambridge, Massachusetts, 1990. (cited on page 28)

[KP90] D. Kriegman and J. Ponce. Computing exact aspect graphs of curved objects: Solids of revolution. Inter-
national Journal of Computer Vision, 5(2):119–135, 1990. (cited on page 69)

[KS97] Krzysztof S. Klimaszewski and Thomas W. Sederberg. Faster ray tracing using adaptive grids. IEEE
Computer Graphics and Applications, 17(1):42–51, January 1997. bounding volume hierarchy with grids
at each level & more. (cited on page 40)

[Kut91] H. Kutruff. Room Acoustics (3rd edition). Elseiver Applied Science, 1991. (cited on page 9)

[Kv76] J.J. Koenderink and A.J. vanDoorn. The singularities of the visual mapping. BioCyber, 24(1):51–59, 1976.
(cited on pages 28, 65)

[Kv79] J.J. Koenderink and A.J. vanDoorn. The internal representation of solid shape with respect to vision.
BioCyber, 32:211–216, 1979. (cited on page 65)

[KvD82] Jan J. Kœnderink and Andrea J van Doorn. What does the occluding contour tell us about solid shape?
Perception, 11:129–137, 1982. (cited on page 28)

[KWCH97] Kris Klimaszewski, Andrew Woo, Frederic Cazals, and Eric Haines. Additional notes on nested grids. Ray
Tracing News, 10(3), December 1997. http://www.povray.org/rtn/. (cited on page 40)

[KYCS98] Kim, Yoo, Chwa, and Shin. Efficient algorithms for computing a complete visibility region in three-
dimensional space. Algorithmica, 20, 1998. (cited on page 52)

[Lat91] Jean-Claude Latombe. Robot Motion Planning. Kluwer, Dordrecht, The Netherlands, 1991. (cited on
pages 16, 17, 69)

[Lau94] A. Laurentini. The visual hull concept for silhouette-based image understanding. T-PAMI, 16:150–162,
1994. (cited on pages 44, 45)

REFERENCES 133

[Lau95] A. Laurentini. How far 3d shapes can be understood from 2d silhouettes. T-PAMI, 17:188–195, 1995.
(cited on page 44)

[Lau97] A. Laurentini. How many 2D silhouettes does it take to reconstruct a 3D object? Computer Vision and
Image Understanding: CVIU, 67(1):81–??, ???? 1997. (cited on page 44)

[Lau99] A. Laurentini. Computing the visual hull of solids of revolution. Pattern Recognition, 32(3), 1999. (cited
on pages 44, 45)

[LC79] Jeff Lane and Loren Carpenter. A generalized scan line algorithm for the computer display of parametrically
defined surfaces. Computer Graphics and Image Processing, 11(3):290–297, November 1979. (cited on
page 36)

[LCWB80] Jeffrey M. Lane, Loren C. Carpenter, J. Turner Whitted, and James F. Blinn. Scan line methods for dis-
playing parametrically defined surfaces. Communications of the ACM, 23(1):23–34, January 1980. (cited
on page 36)

[LD97] Celine Loscos and George Drettakis. Interactive high-quality soft shadows in scenes with mov-
ing objects. Computer Graphics Forum, 16(3):C219–C230, September 4–8 1997. http://www-
imagis.imag.fr/Publications/. (cited on page 96)

[LF94] Stephane Laveau and Olivier Faugeras. 3-D scene representation as a collection of images and funda-
mental matrices. Technical Report RR-2205, Inria, Institut National de Recherche en Informatique et en
Automatique, 1994. (cited on page 13)

[LF96] Robert R. Lewis and Alain Fournier. Light-driven global illumination with a wavelet representation of light
transport. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages
11–20, New York City, NY, June 1996. Eurographics, Springer Wien. ISBN 3-211-82883-4. (cited on
page 83)

[LG95] David Luebke and Chris Georges. Portals and mirrors: Simple, fast evaluation of potentially visible sets. In
Pat Hanrahan and Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages 105–106. ACM
SIGGRAPH, April 1995. ISBN 0-89791-736-7, http://www.cs.unc.edu/˜luebke/publications/portals.html.
(cited on page 48)

[LGBL97] Steven LaValle, Hector H. González-Baños, Craig Becker, and Jean-Claude Latombe. Motion strategies for
maintaining visibility of a moving target. In Proceedings of the IEEE International Conference on Robotics
and Automation, 1997. (cited on page 76)

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, editor, SIGGRAPH 96 Confer-
ence Proceedings, Annual Conference Series, pages 31–42. ACM SIGGRAPH, Addison Wesley, August
1996. held in New Orleans, Louisiana, 04-09 August 1996, http://www-graphics.stanford.edu/papers/light/.
(cited on page 83)

[LH99] Steven M. LaValle and John E. Hinrichsen. Visibility-based pursuit-evasion: The case of curved
environments. In IEEE International Conference on Robotics and Automation, August 1999.
http://janowiec.cs.iastate.edu/˜lavalle. (cited on page 72)

[LL86] D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE Transactions on
Information Theory, 32:276–282, 1986. (cited on page 74)

[LLG+97] Steven M. LaValle, David Lin, Leonidas J. Guibas, Jean-Claude Latombe, and Rajev Motwani. Finding
an unpredictable target in a workspace with obstacles. In IEEE International Conference on Robotics and
Automation, August 1997. http://janowiec.cs.iastate.edu/˜lavalle. (cited on page 71)

[LM98] M. Lin and D. Manocha. Applied computational geometry. In Encyclopedia on Computer Science and
Technology. Marcel Dekker, 1998. http://www.cs.unc.edu/˜lin. (cited on page 19)

[LMW90] Bernd Lamparter, Heinrich Müller, and Jorg Winckler. The ray-z-buffer - an approach for ray-tracing
arbitrarily large scenes. Technical Report 675/1998, University of Freiburg, Institut fur Mathematik, April
1990. (cited on page 82)

[LPW79] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths among poly-
hedral obstacles. Communications of the ACM, 22(10):560–570, October 1979. (cited on page 42)

134 REFERENCES

[LRDG90] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-time robot motion planning
using rasterizing computer graphics hardware. In Forest Baskett, editor, Computer Graphics (SIGGRAPH
’90 Proceedings), volume 24(4), pages 327–335, August 1990. (cited on page 58)

[LS97] Jed Lengyel and John Snyder. Rendering with coherent layers. In Turner Whitted, editor, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages 233–242. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7. (cited on page 13)

[LSG94] Dani Lischinski, Brian Smits, and Donald P. Greenberg. Bounds and error estimates for radiosity. In
Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer
Graphics Proceedings, Annual Conference Series, pages 67–74. ACM SIGGRAPH, ACM Press, July 1994.
ISBN 0-89791-667-0. (cited on page 92)

[LT99] Fei-Ah Law and Tiow-Seng Tan. Preprocessing occlusion for real-time selective refinement. In 1999
Symposium on Interactive 3D Graphics. ACM SIGGRAPH, April 1999. (cited on page 45)

[LTG92] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Discontinuity meshing for ac-
curate radiosity. IEEE Computer Graphics and Applications, 12(6):25–39, November 1992.
http://www.cs.huji.ac.il/%7Edanix/publications.html. (cited on page 50)

[LTG93] D. Lischinski, F. Tampieri, and D. P. Greenberg. Combining hierarchical radiosity and
discontinuity meshing. Computer Graphics, 27(Annual Conference Series):199–208, 1993.
http://www.cs.huji.ac.il/%7Edanix/publications.html. (cited on page 50)

[LW95] Eric P. Lafortune and Yves D. Willems. A 5D Tree to Reduce the Variance of Monte Carlo Ray Trac-
ing. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95 (Proceedings of the Sixth
Eurographics Workshop on Rendering), pages 11–20, New York, NY, 1995. Springer-Verlag. (cited on
page 83)

[LZ97] M. S. Langer and S. W. Zucker. Casting light on illumination: A computational model and dimensional
analysis of sources. Computer Vision and Image Understanding: CVIU, 65(2):322–335, February 1997.
(cited on page 81)

[MAG68] MAGI. 3-D simulated graphics offered by service bureau. Datamation, 14:69, February 1968. (cited on
page 36)

[Mal87] Jitendra Malik. Interpreting line drawings of curved objects. International Journal of Computer Vision,
1:73–103, 1987. (cited on page 28)

[Max91] Nelson L. Max. Unified sun and sky illumination for shadows under trees. Computer Vision, Graphics,
and Image Processing. Graphical Models and Image Processing, 53(3):223–230, May 1991. (cited on
page 63)

[May99] Using Maya, rendering. Alias Wavefront, (Maya user manual), 1999. (cited on page 59)

[MB93] J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(5):417–433, May 1993. (cited on page 48)

[MB95] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. Computer Graphics,
29(Annual Conference Series):39–46, 1995. (cited on pages 13, 62)

[MBGN98] Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson. Advanced graphics programming
techniques using Open GL. Siggraph’1998 course notes, 1998. (cited on pages 46, 59)

[McK87] Michael McKenna. Worst-case optimal hidden-surface removal. ACM Transactions on Graphics, 6(1):19–
28, January 1987. (cited on page 19)

[MDC93] Herve Maurel, Ives Duthen, and Rene Caubet. A 4D ray tracing. In R. J. Hubbold and R. Juan, editors,
Eurographics ’93, pages 285–294, Oxford, UK, 1993. Eurographics, Blackwell Publishers. (cited on
page 95)

[Mey90] Urs Meyer. Hemi-cube ray-tracing: A method for generating soft shadows. In C. E. Vandoni and D. A.
Duce, editors, Eurographics ’90, pages 365–376. North-Holland, September 1990. (cited on page 60)

REFERENCES 135

[MG95] Scott O. Mason and Armin Grün. Automatic sensor placement for accurate dimensional inspection. Com-
puter Vision and Image Understanding: CVIU, 61(3):454–467, May 1995. (cited on page 75)

[MGBY99] Yohai Makbily, Craig Gotsman, and Reuven Bar-Yehuda. Geometric algorithms for message filtering in
decentralized virtual environments. In 1999 Symposium on Interactive 3D Graphics. ACM SIGGRAPH,
April 1999. (cited on page 9)

[MI98] Jun Miura and Katsushi Ikeuchi. Task-oriented generation of visual sensing strategies in assembly tasks.
IEEE Transactions on Pattern Analysis and machine Intelligence, 20(2):126–138, February 1998. also
available as Carnegie Mellon University Technical Report CS-95-116. (cited on page 15)

[Mit87] Don P. Mitchell. Generating antialiased images at low sampling densities. In Maureen C. Stone, editor,
Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 65–72, July 1987. (cited on page 36)

[MKT+97] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel Goldstein, and
John F. Hughes. Real-time nonphotorealistic rendering. In Turner Whitted, editor, SIGGRAPH 97 Confer-
ence Proceedings, Annual Conference Series, pages 415–420. ACM SIGGRAPH, Addison Wesley, August
1997. ISBN 0-89791-896-7. (cited on pages 8, 32)

[MO88] M. McKenna and J. O’Rourke. Arrangements of lines in 3-space: a data structure with applications. In
Proceedings of the Fourth Annual Symposium on Computational Geometry (Urbana-Champaign, IL, June
6–8, 1988), pages 371–380, New York, 1988. ACM, ACM Press. (cited on page 84)

[MOK95] Karol Myszkowski, Oleg G. Okunev, and Tosiyasu L. Kunii. Fast collision detection between complex
solids using rasterizing graphics hardware. The Visual Computer, 11(9):497–512, 1995. ISSN 0178-2789.
(cited on page 58)

[MS85] Matthew T. Mason and J. Kenneth Salisbury Jr. Robot hands and the mechanics of manipulation. Cam-
bridge, Mass. : MIT Press, c1985, 298 p. (The MIT Press series in artificial intelligence) CALL NUMBER:
TJ211 .M366 1985, 1985. (cited on page 86)

[Mue95] Carl Mueller. Architecture of image generators for flight simulators. Technical Report TR-95-015, UNC
Chapel Hill, February 1995. http://www.cs.unc.edu/Research/tech-report.html. (cited on pages 7, 36)

[Mul89] Ketan Mulmuley. An efficient algorithm for hidden surface removal. In Jeffrey Lane, editor, Proceedings of
the ACM SIGGRAPH Conference on Computer Graphics (SIGGRAPH ’89), pages 379–388, Boston, MA,
USA, July 1989. ACM Press. (cited on page 33)

[Mul91] Mulmuley. Hidden surface removal with respect to a moving view point (extended abstract). In STOC:
ACM Symposium on Theory of Computing (STOC), 1991. (cited on pages 37, 42)

[Mun95] Olaf Munkelt. Aspect-trees: Generation and interpretation. Computer Vision and Image Understanding:
CVIU, 61(3):365–386, May 1995. (cited on page 70)

[MWCF90] Joseph Marks, Robert Walsh, Jon Christensen, and Mark Friedell. Image and intervisibility coherence in
rendering. In Proceedings of Graphics Interface ’90, pages 17–30, May 1990. (cited on pages 33, 54)

[Mys98] Karol Myszkowski. The visible differences predictor: applications to global illumination problems. In
Eurographics Workshop on Rendering, Vienna, Austria, June 1998. (cited on page 92)

[MZ92] J.L. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MIT press, Cambridge, MA,
1992. (cited on page 14)

[NAT90] Bruce Naylor, John Amanatides, and William Thibault. Merging BSP trees yields polyhedral set operations.
In Forest Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 115–
124, August 1990. (cited on page 41)

[Nay92] Bruce F. Naylor. Partitioning tree image representation and generation from 3D geometric models. In
Proceedings of Graphics Interface ’92, pages 201–212, May 1992. (cited on page 42)

[Neu95] Laszlo Neumann. Monte Carlo Radiosity. Computing, 55(1):23–42, 1995. (cited on page 88)

[Ney96] Fabrice Neyret. Synthesizing verdant landscapes using volumetric textures. In Xavier Pueyo and Peter
Schröder, editors, Eurographics Rendering Workshop 1996, pages 215–224, New York City, NY, June
1996. Eurographics, Springer Wien. ISBN 3-211-82883-4. (cited on page 41)

136 REFERENCES

[Ney98] Fabrice Neyret. Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures. IEEE
Transactions on Visualization and Computer Graphics, 4(1):55–70, January 1998. (cited on page 41)

[Nil69] Nils J. Nilsson. A mobile automaton: An application of artificial intelligence techniques. In Donald E.
Walker and Lewis M. Norton, editors, Proceedings of the 1st International Joint Conference on Artificial
Intelligence, pages 509–520, Washington, D. C., May 1969. William Kaufmann. (cited on page 42)

[NMN87] Tomoyuki Nishita, Yasuhiro Miyawaki, and Eihachiro Nakamae. A shading model for atmospheric scat-
tering considering luminous intensity distribution of light sources. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH ’87 Proceedings), volume 21(4), pages 303–310, July 1987. (cited on page 46)

[NN83] Tomoyuki Nishita and Eihachiro Nakamae. Half-tone representation of 3-D objects illuminated by area or
polyhedron sources. In Proc. of IEEE Computer Society’s Seventh International Computer Software and
Applications Conference (COMPSAC83), pages 237–242, November 1983. (cited on page 49)

[NN85] T. Nishita and E. Nakamae. Continuous tone representation of three-dimensional objects taking account of
shadows and interreflection. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH ’85 Proceedings),
volume 19(3), pages 23–30, July 1985. (cited on pages 32, 49, 50)

[NNB97] L. Neumann, A. Neumann, and P. Bekaert. Radiosity with well distributed ray sets. Computer Graphics
Forum, 16(3):261–270, August 1997. Proceedings of Eurographics ’97. ISSN 1067-7055. (cited on
page 88)

[NNS72] M. E. Newell, R. G. Newell, and T. L. Sancha. A solution to the hidden surface problem. In Proceedings
of the ACM Annual Conference, volume I, pages 443–450, Boston, Massachusetts, August 1972. (cited on
page 33)

[NON85] T. Nishita, I. Okamura, and E. Nakamae. Shading models for point and linear sources. ACM Transactions
on Graphics, 4(2):124–146, April 1985. (cited on page 49)

[NR95] Bruce Naylor and Lois Rogers. Constructing partitioning trees from bezier-curves for efficient intersections
and visibility. In Wayne A. Davis and Przemyslaw Prusinkiewicz, editors, Graphics Interface ’95, pages
44–55. Canadian Information Processing Society, Canadian Human-Computer Communications Society,
May 1995. ISBN 0-9695338-4-5. (cited on page 41)

[NSL99] C. Nissoux, T. Simeon, and J.P. Laumond. Visibility based probabilistic roadmaps. Technical Report
99057, LAAS, February 1999. doc@laas.fr. (cited on page 43)

[O’R87] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, NY, 1987. (cited
on pages 20, 74)

[O’R94] Joseph O’Rourke. Computational geometry in C. Cambridge University Press, 1994. (cited on
pages 19, 66)

[ORDP96] Rachel Orti, Stéphane Rivière, Frédo Durand, and Claude Puech. Radiosity for dynamic scenes in flatland
with the visibility complex. In Jarek Rossignac and François Sillion, editors, Computer Graphics Forum
(Proc. of Eurographics ’96), volume 16(3), pages 237–249, Poitiers, France, September 1996. (cited on
page 81)

[OS97] J. O’Rourke and I. Streinu. Vertex-edge pseudo-visibility graphs: Characterization and recognition. In
Proceedings of the 13th International Annual Symposium on Computational Geometry (SCG-97), pages
119–128, New York, June 4–6 1997. ACM Press. (cited on page 20)

[OW88] M. H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proceedings of the
Fourth Annual Symposium on Computational Geometry (Urbana-Champaign, IL, June 6–8, 1988), pages
164–171, New York, 1988. ACM, ACM Press. (cited on page 43)

[PA91] Pierre Poulin and John Amanatides. Shading and shadowing with linear light sources. Computers and
Graphics, 15(2):259–265, 1991. (cited on pages 59, 82)

[PBG92] Cary B. Phillips, Norman I. Badler, and John Granieri. Automatic viewing control for 3D direct manipula-
tion. In Marc Levoy and Edwin E. Catmull, editors, Proceedings of the 1992 Symposium on Interactive 3D
Graphics, pages 71–74, Cambridge, MA, March–April 1992. ACM Press. (cited on page 13)

REFERENCES 137

[PD86] W. H. Plantinga and C. R. Dyer. An algorithm for constructing the aspect graph. In 27th Annual Sympo-
sium on Foundations of Computer Science, pages 123–131, Los Angeles, Ca., USA, October 1986. IEEE
Computer Society Press. (cited on page 66)

[PD87] H. Plantinga and C. R. Dyer. The asp: a continuous viewer-centered representation for 3D object recogni-
tion. In First International Conference on Computer Vision, (London, England, June 8–11, 1987), pages
626–630, Washington, DC., 1987. IEEE Computer Society Press. (cited on page 79)

[PD90] H. Plantinga and C. R. Dyer. Visibility, occlusion, and the aspect graph. International Journal of Computer
Vision, 5(2):137–160, 1990. (cited on pages 68, 79, 80, 83)

[PDS90] Harry Plantinga, Charles R. Dyer, and W. Brent Seales. Real-time hidden-line elimination for a rotating
polyhedral scene using the aspect representation. In Proceedings of Graphics Interface ’90, pages 9–16,
May 1990. (cited on page 70)

[Pel90] M. Pellegrini. Stabbing and ray shooting in 3-dimensional space. In Proc. 6th Annu. ACM Sympos. Comput.
Geom., pages 177–186, 1990. (cited on page 87)

[Pel93] Marco Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471–494, 1993. (cited on page 87)

[Pel94] Pellegrini. On lines missing polyhedral sets in 3-space. GEOMETRY: Discrete & Computational Geometry,
12, 1994. (cited on page 87)

[Pel96] Marco Pellegrini. Repetitive hidden surface removal for polyhedra. Journal of Algorithms, 21(1):80–101,
July 1996. http://www.imc.pi.cnr.it/˜marcop. (cited on page 37)

[Pel97a] Pellegrini. Monte carlo approximation of form factors with error bounded a priori. Discrete & Computa-
tional Geometry, 17, 1997. (cited on page 88)

[Pel97b] Marco Pellegrini. Ray-shooting and lines in space. In J.E. Goodman and J. O’Rourke, edi-
tors, CRC Handbook of Discrete and Computational Geometry, pages 599–614. CRC Press, 1997.
http://www.imc.pi.cnr.it/˜marcop/. (cited on pages 20, 87)

[Pel99] Marco Pellegrini. A geometric approach to computing higher-order form factors. In Proceedings of the
15th International Annual Symposium on Computational Geometry (SCG-99), New York, June 4–6 1999.
ACM Press. (cited on pages 70, 88)

[Pet92] Sylvain PetitJean. Computing exact aspect graphs of smooth objects bounded by smooth algebraic surfaces.
Master’s thesis, University of Illinois, Urbana-Champaign, IL, June 1992. availabel as technical report
UIUC-BI-AI-RCV-92-04. (cited on pages 28, 69)

[Pet95] Sylvain Petitjean. The number of views of piecewise-smooth algebraic objects. Proceedings of Proceed-
ings of the Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science,
900:571–??, 1995. (cited on page 69)

[Pet96] Sylvain Petitjean. The enumerative geometry of projective algebraic surfaces and the complexity of aspect
graphs. International Journal of Computer Vision, 19(3):1–27, 1996. (cited on page 69)

[Pet98] Sylvain Petitjean. A computational geometric approach to visual hulls. International Journal of Computa-
tional Geometry and Applications, 8(4):407–436, 1998. Special issue on applied computational geometry,
edited by Ming Lin and Dinesh Manocha. http://www.loria.fr/ petitjea/. (cited on page 45)

[PF92] Pierre Poulin and Alain Fournier. Lights from highlights and shadows. In David Zeltzer, editor, Com-
puter Graphics (1992 Symposium on Interactive 3D Graphics), volume 25(2), pages 31–38, March 1992.
http://www.iro.umontreal.ca/labs/infographie/papers/. (cited on page 53)

[Pie93] Georg Pietrek. Fast Calculation of Accurate Formfactors. In Fourth Eurographics Workshop on Rendering,
Series EG 93 RW, pages 201–220, Paris, France, June 1993. (cited on page 60)

[PJ91] Andrew Pearce and David Jevans. Exploiting shadow coherence in ray-tracing. In Proceedings of Graphics
Interface ’91, pages 109–116, June 1991. (cited on page 64)

[PK90] Jean Ponce and David J. Kriegman. Computing exact aspect graphs of curved objects: parametric surfaces.
In William Dietterich, Tom; Swartout, editor, Proceedings of the 8th National Conference on Artificial
Intelligence, pages 1074–1081, Hynes Convention Centre?, July 29–August 3 1990. MIT Press. (cited on
page 69)

138 REFERENCES

[Pla88] William Harry Plantinga. The asp: a continuous, viewer-centered object representation for computer vision.
PhD thesis, The University of Wisconsin, Madison, December 1988. (cited on page 79)

[Pla93] Harry Plantinga. Conservative visibility preprocessing for efficient walkthroughs of 3D scenes. In Proceed-
ings of Graphics Interface ’93, pages 166–173, Toronto, Ontario, Canada, May 1993. Canadian Information
Processing Society. (cited on page 70)

[Plü65] J. Plücker. On a new geometry of space. Phil. Trans. Royal Soc. London, 155:725–791, 1865. (cited on
pages 85, 101)

[Pop94] Arthur R. Pope. Model-based object recognition: A survey of recent research. Technical
Report TR-94-04, University of British Columbia, Computer Science Department, January 1994.
http://www.cs.ubc.ca/tr/1994/TR-94-04. (cited on page 13)

[Pot87] Michael Potmesil. Generating octree models of 3D objects from their silhouettes in a sequence of images.
Computer Vision, Graphics, and Image Processing, 40(1):1–29, October 1987. (cited on page 14)

[PPK92] S. Petitjean, J. Ponce, and D.J. Kriegman. Computing exact aspect graphs of curved objects: Algebraic
surfaces. IJCV, 1992. (cited on page 69)

[PPR99] Helmut Pottmann, Martin Peternell, and Bahram Ravani. An introduction to line geometry with application.
Computer-Aided Design, 31:3–16, 1999. (cited on page 86)

[PRJ97] Pierre Poulin, Karim Ratib, and Marco Jacques. Sketching shadows and highlights to position lights. In
Proceedings of Computer Graphics International 97, pages 56–63. IEEE Computer Society, June 1997.
(cited on page 53)

[PS92] Pellegrini and Shor. Finding stabbing lines in 3-space. GEOMETRY: Discrete & Computational Geometry,
8, 1992. (cited on page 87)

[PV96a] Pocchiola and Vegter. Topologically sweeping visibility complexes via pseudotriangulations. GEOMETRY:
Discrete & Computational Geometry, 16, 1996. (cited on page 80)

[PV96b] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput. Geom. Appl., 1996. special issue
devoted to ACM-SoCG’93. (cited on page 80)

[PY90] Paterson and Yao. Efficient binary space partitions for hidden-surface removal and solid modeling. GE-
OMETRY: Discrete & Computational Geometry, 5, 1990. (cited on page 41)

[Qua96] Matthew Quail. Space time ray-tracing using ray classification. Master’s thesis, Macquarie University,
November 1996. (cited on page 95)

[RA96] Michael Reed and Peter K. Allen. Automated model acquisition using volumes of occlusion. In IEEE
International Conference on Robotics and Automation, April 1996. http://www.cs.columbia.edu/robotics/.
(cited on page 48)

[Rie87] J.H. Rieger. On the classification of views of piecewise smooth objects. Image and Vision Computing,
1987. (cited on page 29)

[Rie90] J. H. Rieger. The geometry of view space of opaque objects bounded by smooth surfaces. Artificial
Intelligence(1-2), 44:1–40, 1990. (cited on page 29)

[Rie92] J.H. Rieger. Global bifurcation sets and stable projections of non-singular algebraic surface. IJCV, 1992.
(cited on page 69)

[Rie93] J. H. Rieger. Computing view graphs of algebraic surfaces. Journal of Symbolic Computation, 16(3):259–
272, September 1993. (cited on page 69)

[Riv95] S. Rivière. Topologically sweeping the visibility complex of polygonal scenes. In Comm. 11th Annu. ACM
Sympos. Computat. Geom., 1995. (cited on page 80)

[Riv97] S. Rivière. Calculs de visibilit dans un environnement polygonal 2D. PhD thesis, Universit Joseph Fourier
(Grenoble), 1997. PhD Thesis. (cited on page 80)

REFERENCES 139

[RM97] D.R. Roberts and A.D. Marshall. A review of viewpoint planning. Technical Report 97007, Univeristy
of Wales, Cardiff, August 1997. http://www.cs.cf.ac.uk/Research/Rrs/1997/detail007.html. (cited on
page 16)

[Rob63] L.G. Roberts. Machine perception of three dimensional solids. Technical Report TR-315, Lincoln Lab-
oratory, MIT, Cambridge, MA, May 1963. Also in Tippet, J.T et al., eds., Optical and Electro Optical
Information Processing, MIT Press, Cambridge, MA, 1964. (cited on page 32)

[Rog97] David F. Rogers. Procedural Elements for Computer Graphics. Mc Graw-Hill, 2 edition, 1997. (cited on
pages 7, 31, 36, 40, 61)

[RPG99] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. A perceptually based physical
error metric for realistic image synthesis. In Computer Graphics (SIGGRAPH ’99 Proceedings), August
1999. (cited on page 92)

[RS90] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pacific
Journal of Mathematics, 145(2), 1990. (cited on page 43)

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth
maps. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21(4),
pages 283–291, July 1987. (cited on page 59)

[RW80] Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering of complex scenes.
In Computer Graphics (SIGGRAPH ’80 Proceedings), volume 14(3), pages 110–116, July 1980. (cited on
page 40)

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for radiosity in complex envi-
ronments. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series, pages 435–442. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0. (cited on page 92)

[San76] L. A. Santaló. Integral Geometry and Geometric Probability. Addison-Wesley, Reading, MA, 1976. (cited
on pages 83, 88)

[SB87] John M. Snyder and Alan H. Barr. Ray tracing complex models containing surface tessellations. In Mau-
reen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21(4), pages 119–128,
July 1987. (cited on page 40)

[SB88] J. Stewman and K. Bowyer. Creating the perspective projection aspect graph of polyhedral objects. In
Second International Conference on Computer Vision (Tampa,, FL, December 5–8, 1988), pages 494–500,
Washington, DC,, 1988. Computer Society Press. (cited on page 68)

[SB90] John H. Stewman and Kevin W. Bowyer. Direct construction of the perspective projection aspect graph of
convex polyhedra. Computer Vision, Graphics, and Image Processing, 51(1):20–37, July 1990. (cited on
page 66)

[Sbe93] M. Sbert. An integral geometry based method for fast form-factor computation. Computer Graphics Forum,
12(3):C409–C420, 1993. (cited on page 88)

[SBGS69] R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for applying computer-generated images
to visual simulation. Technical Report AFHRL–TR–69–14, U.S. Air Force Human Resources Laboratory,
1969. (cited on page 34)

[SD92] W. Brent Seales and Charles R. Dyer. Viewpoint from occluding contour. Computer Vision, Graphics and
Image Processing: Image Understanding, 55:198–211, 1992. (cited on page 69)

[SD95] François Sillion and George Drettakis. Feature-based control of visibility error: A multi-resolution clus-
tering algorithm for global illumination. In Robert Cook, editor, SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 145–152. ACM SIGGRAPH, Addison Wesley, August 1995. held
in Los Angeles, California, 06-11 August 1995, http://www-imagis.imag.fr/˜Francois.Sillion/. (cited on
pages 40, 92)

[SDB85] L. R. Speer, T. D. Derose, and B. A. Barsky. A theoretical and empirical analysis of coherent ray-tracing.
In M. Wein and E. M. Kidd, editors, Graphics Interface ’85 Proceedings, pages 1–8. Canadian Inf. Process.
Soc., 1985. (cited on page 47)

140 REFERENCES

[SDB97] François Sillion, George Drettakis, and Benoit Bodelet. Efficient impostor manipulation for real-time visu-
alization of urban scenery. In D. Fellner and L. Szirmay-Kalos, editors, Computer Graphics Forum (Proc.
of Eurographics ’97), volume 16-3, pages 207–218, Budapest, Hungary, September 1997. http://www-
imagis.imag.fr/˜Francois.Sillion/Papers/Index.html. (cited on page 13)

[SDS96] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Computer Graphics: Theory and
Applications. Morgann Kaufmann, San Francisco, CA, 1996. (cited on page 92)

[SG82] S. Sechrest and D. P. Greenberg. A visible polygon reconstruction algorithm. ACM Transactions on
Graphics, 1(1):25–42, January 1982. (cited on page 36)

[SG94] A. James Stewart and Sherif Ghali. Fast computation of shadow boundaries using spatial coherence and
backprojections. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 231–238. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0, http://www.dgp.toronto.edu/people/JamesStewart/papers/.
(cited on page 73)

[SG96] Oded Sudarsky and Craig Gotsman. Output-sensitive visibility algorithms for dynamic scenes with
applications to virtual reality. Computer Graphics Forum, 15(3):C249–C258, September 1996.
http://www.cs.technion.ac.il/˜sudar/cv eng.html. (cited on page 95)

[SH93] Peter Schröder and Pat Hanrahan. On the form factor between two polygons. In Computer Graphics
Proceedings, Annual Conference Series, 1993, pages 163–164, 1993. (cited on page 11)

[Sha97] Erin Shaw. Hierarchical radiosity for dynamic environments. Computer Graphics Forum, 16(2):107–118,
1997. ISSN 0167-7055. (cited on page 95)

[She92] Thomas Shermer. Recent results in art galleries. In Proc. IEEE, pages 80:1384–1399, September 1992.
(cited on pages 20, 74)

[Sil95] Francois X. Sillion. A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and
Object Clusters. IEEE Transactions on Visualization and Computer Graphics, 1(3):240–254, September
1995. (cited on pages 40, 92)

[Sil99] François Sillion. Will anyone really use radiosity? In Invited talk at Graphics Interface, Kingston, Ontario,
1999. http://www.dgp.toronto.edu/gi99/papers/programme.html. (cited on page 12)

[SJ89] T. Sripradisvarakul and R. Jain. Generating aspect graphs for curved objects. In Proceedings, Workshop on
Interpretation of 3D Scenes (Austin, TX, November 27–29, 1989), pages 109–115, Washington, DC., 1989.
Computer Society Press, Computer Society Press. (cited on page 69)

[SK97] Sudhanshu K. Semwal and Hakan Kvarnstrom. Directed safe zones and the dual extend algorithms for
efficient grid tracing during ray tracing. In Wayne A. Davis, Marilyn Mantei, and R. Victor Klassen,
editors, Graphics Interface ’97, pages 76–87. Canadian Information Processing Society, Canadian Human-
Computer Communications Society, May 1997. ISBN 0-9695338-6-1 ISSN 0713-5424. (cited on page 40)

[SK98] A. James Stewart and Tasso Karkanis. Computing the approximate visibility map, with applica-
tions to form factors and discontinuity meshing. Eurographics Workshop on Rendering, June 1998.
http://www.dgp.toronto.edu/people/JamesStewart/. (cited on page 94)

[SKFNC97] L. Szirmay-Kalos, T. Fóris, L. Neumann, and B. Csébfalvi. An analysis of quasi-monte carlo integration
applied to the transillumination radiosity method. Computer Graphics Forum, 16(3):271–282, August
1997. Proceedings of Eurographics ’97. ISSN 1067-7055. (cited on page 88)

[SKvW+92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast shadows and lighting
effects using texture mapping. In Edwin E. Catmull, editor, Proceedings of the 19th Annual ACM Confer-
ence on Computer Graphics and Interactive Techniques, pages 249–252, New York, NY, USA, July 1992.
ACM Press. (cited on page 59)

[SL98] John Snyder and Jed Lengyel. Visibility sorting and compositing without splitting for image layer decom-
position. In Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings, Annual Conference Series,
pages 219–230. ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8. (cited on page 34)

REFERENCES 141

[Sla92] M. Slater. A comparison of three shadow volume algorithms. The Visual Computer, 9(1):25–38, 1992.
(cited on page 57)

[SLH89] Partha Srinivasan, Ping Liang, and Susan Hackwood. Computational Geometric Methods in Volumetric
Intersection for 3D Reconstruction. In Proc. 1989 IEEE Int. Conf. Robotics and Automation, pages 190–
195, 1989. (cited on page 14)

[SLSD96] J. Shade, D. Lischinski, D. H. Salesin, and T. DeRose. Hierarchical image caching for accelerated walk-
throughs of complex environments. Computer Graphics, 30(Annual Conference Series):75–82, 1996.
(cited on page 13)

[Smi99] Brian Smits. Efficiency issues for ray tracing. Journal of Graphics Tools, 1999. to appear,
http://www2.cs.utah.edu/˜bes/. (cited on page 40)

[Sny92] John M. Snyder. Interval analysis for computer graphics. In Edwin E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26(2), pages 121–130, July 1992. (cited on page 32)

[Sol78] Herbert Solomon. Geometruc Probability. SIAM CBMS-NSF Regional Conference Series in Applied
Mathematics, Philadelphia, PA, 1978. (cited on page 88)

[Sol98] Cyril Soler. Représentation hiérarchique de la visibilité pour le contrôle de l’erreur en simulation
de l’éclairage. PhD thesis, Université Joseph Fourier, Grenoble I, December 1998. http://www-
imagis.imag.fr/˜Cyril.Soler. (cited on pages 63, 92)

[Som51] D. M. Y. Sommerville. Analytical Geometry in Three Dimensions. Cambridge University Press, Cambridge,
1951. (cited on page 86)

[SON96] Kristian T. Simsarian, Thomas J. Olson, and N. Nandhakumar. View-invariant regions and mobile robot
self-localization. IEEE Transactions on Robotics and Automation, 12(5):810–816, October 1996. (cited
on page 70)

[SP89] Francois Sillion and Claude Puech. A general two-pass method integrating specular and diffuse reflection.
In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 335–344,
July 1989. (cited on page 60)

[SP94] Francois Sillion and Claude Puech. Radiosity and Global Illumination. Morgan Kaufmann, San Francisco,
CA, 1994. (cited on pages 9, 11)

[SP97] I. Shimshoni and J. Ponce. Finite-resolution aspect graphs of polyhedral objects. PAMI, 19(4):315–327,
April 1997. http://pete.cs.uiuc.edu/˜trpethe/ponce publ.html. (cited on page 94)

[Spe92a] L. Richard Speer. An updated cross-indexed guide to the ray-tracing literature. Computer Graphics,
26(1):41–72, January 1992. (cited on page 10)

[Spe92b] R. Speer. A new data structure for high-speed, memory efficient ray shooting. In Eurographics Workshop
on Rendering, 1992. (cited on page 82)

[SPP95] Mateu Sbert, Frederic Perez, and Xavier Pueyo. Global Monte Carlo: A Progressive Solution. In P. M.
Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95 (Proceedings of the Sixth Eurographics
Workshop on Rendering), pages 231–239, New York, NY, 1995. Springer-Verlag. (cited on page 88)

[SS89] David Salesin and Jorge Stolfi. The ZZ-buffer: a simple and efficient rendering algorithm with reliable
antialiasing. In Proceedings of the PIXIM ’89, pages 451–466, 1989. (cited on page 59)

[SS90] David Salesin and Jorge Stolfi. Rendering CSG models with a ZZ-buffer. In Forest Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 67–76, August 1990. (cited
on page 59)

[SS96a] G. Schaufler and W. Stürzlinger. A three-dimensional image cache for virtual reality. In Proceedings of
EUROGRAPHICS’96, 1996. (cited on page 13)

[SS96b] Cyril Soler and François Sillion. Accurate error bounds for multi-resolution visibility. In Xavier
Pueyo and Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages 133–142, New
York City, NY, June 1996. Eurographics, Springer Wein. ISBN 3-211-82883-4, http://www-
imagis.imag.fr/˜Cyril.Soler/csoler.gb.html. (cited on page 92)

142 REFERENCES

[SS98a] Cyril Soler and François Sillion. Fast calculation of soft shadow textures using convolution. In Com-
puter Graphics Proceedings, Annual Conference Series: SIGGRAPH ’98 (Orlando, FL), page ?? ACM
SIGGRAPH, New York, July 1998. http://www-imagis.imag.fr/˜Cyril.Soler/csoler.gb.html. (cited on
pages 63, 92)

[SS98b] Cyril Soler and François Sillion. Automatic calculation of soft shadow textures for fast, high-quality ra-
diosity. In Nelson Max and George Drettakis, editors, Eurographics Rendering Workshop 1998, New York
City, NY, June 1998. Eurographics, Springer Wein. http://www-imagis.imag.fr/˜Cyril.Soler/csoler.gb.html.
(cited on page 63)

[SSS74] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characterization of ten hidden-surface
algorithms. ACM Computing Surveys, 6(1):1–55, March 1974. (cited on pages 7, 23, 31, 36)

[Ste82] Ian Stewart. Oh Catastrophe ! Belin, 1982. (cited on page 28)

[Ste91] J.H. Stewman. Viewer-centered Representation for Polyhedral Objects. PhD thesis, Department of Com-
puter Science and Engineering, University of South Florida, Tampa, 1991. PhD Dissertation. (cited on
page 68)

[STN87] Mikio Shinya, Tokiichiro Takahashi, and Seiichiro Naito. Principles and applications of pencil tracing. In
Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21(4), pages 45–54,
July 1987. (cited on page 47)

[Sto91] J. Stolfi. Oriented Projective Geometry: A Framework for Geometric Computations. Academic Press,
1991. (cited on page 86)

[Stu94] W. Sturzlinger. Adaptive Mesh Refinement with Discontinuities for the Radiosity Method. In
Fifth Eurographics Workshop on Rendering, pages 239–248, Darmstadt, Germany, June 1994.
http://prometheus.gup.uni-linz.ac.at:8001/papers/. (cited on page 50)

[Stu99] Wolfgang Stuerzlinger. Imaging all visible surfaces. In Proceedings of Graphics Interface, Kingston,
Ontario, 1999. http://www.dgp.toronto.edu/gi99/papers/programme.html. (cited on page 75)

[Sun92] Kelvin Sung. Area sampling buffer: Tracing rays with Z-buffer hardware. In A. Kilgour and L. Kjelldahl,
editors, Computer Graphics Forum (EUROGRAPHICS ’92 Proceedings), volume 11(3), pages 299–310,
September 1992. (cited on page 59)

[SZ89] Thomas W. Sederberg and Alan K. Zundel. Scan line display of algebraic surfaces. In Jeffrey Lane, editor,
Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 147–156, July 1989. (cited on
page 36)

[TA96] Raj Talluri and J.K. Aggarwal. Mobile robot self-location using model-image feature correspondence.
IEEE Transactions on Robotics and Automation, 12(1):63–77, February 1996. (cited on page 70)

[TA98] Seth Teller and John Alex. Frustum casting for progressive interactive rendering. Technical Report TR-740,
MIT Laboratory for Computer Science, January 1998. (cited on page 47)

[TAA+96] Roberto Tamassia, Pankaj K. Agarwal, Nancy Amato, Danny Z. Chen, David Dobkin, Scot Drysdale,
Steven Fortune, Michael T. Goodrich, John Hershberger, Joseph O’Rourke, Franco P. Preparata, Joerg-
Rudiger Sack, Subhash Suri, Ioannis Tollis, Jeffrey S. Vitter, and Sue Whitesides. Strategic directions in
computational geometry. ACM Computing Surveys, 28(4):591–606, December 1996. (cited on page 19)

[TAT95] K.A. Tarabanis, P.K. Allen, and R.Y. Tsai. A survey of sensor planning in computer vision. IEEE Transac-
tions on robotics and automation, 11(1):86–104, February 1995. (cited on page 16)

[Tel92a] Seth J. Teller. Computing the antipenumbra of an area light source. In Edwin E. Catmull, ed-
itor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26-2, pages 139–148, July 1992.
http://graphics.lcs.mit.edu/˜seth/pubs/pubs.html. (cited on page 87)

[Tel92b] Seth J. Teller. Visibility Computations in Densely Occluded Polyhedral Environments.
PhD thesis, CS Division, UC Berkeley, October 1992. Tech. Report UCB/CSD-92-708,
http://graphics.lcs.mit.edu/˜seth/pubs/pubs.html. (cited on pages 54, 55, 84, 86)

REFERENCES 143

[TFFH94] Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and ordering large ra-
diosity computations. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 443–450. ACM SIG-
GRAPH, ACM Press, July 1994. ISBN 0-89791-667-0, http://graphics.lcs.mit.edu/˜seth/pubs/pubs.html.
(cited on page 55)

[TG95] G. H. Tarbox and S. N. Gottschlich. Planning for complete sensor coverage in inspection. Computer Vision
and Image Understanding: CVIU, 61(1):84–111, January 1995. (cited on page 74)

[TG97a] Nicholas Tsingos and Jean-Dominique Gascuel. Sound rendering in dynamic environments with occlu-
sions. In Wayne A. Davis, Marilyn Mantei, and R. Victor Klassen, editors, Graphics Interface ’97, pages
9–16. Canadian Information Processing Society, Canadian Human-Computer Communications Society,
May 1997. ISBN 0-9695338-6-1 ISSN 0713-5424, http://www.bell-labs.com/user/tsingos/. (cited on
page 60)

[TG97b] Nicolas Tsingos and Jean-Dominique Gascuel. Fast rendering of sound occlusion and diffraction effects
for virtual acoustic environments. In 104th AES convention, Amsterdam, The Netherlands, preprint n. 4699
(P4-7), May 1997. http://www.bell-labs.com/user/tsingos/. (cited on page 60)

[TH93] Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination computations.
In Computer Graphics Proceedings, Annual Conference Series, 1993, pages 239–246, 1993.
http://graphics.lcs.mit.edu/˜seth/pubs/pubs.html. (cited on pages 54, 55, 87)

[Tho56] R. Thom. Les singularités des applications différentiables. Annales Institut Fourier, 6:43–87, 1956. (cited
on page 28)

[Tho72] R. Thom. Structural Stability and Morphogenesis. Benjamin, New-York, 1972. (cited on page 28)

[Tor90] Enric Torres. Optimization of the binary space partition algorithm (BSP) for the visualization of dynamic
scenes. In C. E. Vandoni and D. A. Duce, editors, Eurographics ’90, pages 507–518. North-Holland,
September 1990. (cited on page 95)

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs. In Thomas W.
Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 61–69, July 1991.
http://graphics.lcs.mit.edu/˜seth/pubs/pubs.html. (cited on pages 54, 55)

[TT90] Toshimitsu Tanaka and Tokiichiro Takahashi. Cross scanline algorithm. In C. E. Vandoni and D. A. Duce,
editors, Eurographics ’90, pages 63–74. North-Holland, September 1990. (cited on page 36)

[TT95] Toshimitsu Tanaka and Tokiichiro Takahashi. Fast shadowing algorithm for linear light sources. Computer
Graphics Forum, 14(3):205–216, August 1995. Proceedings of Eurographics ’95. ISSN 1067-7055. (cited
on page 82)

[TT97] T. Tanaka and T. Takahashi. Fast analytic shading and shadowing for area light sources. Computer Graphics
Forum, 16(3):231–240, August 1997. Proceedings of Eurographics ’97. ISSN 1067-7055. (cited on
pages 36, 82)

[TTK96] Konstantinos Tarabanis, Roger Y. Tsai, and Anil Kaul. Computing occlusion-free viewpoints. PAMI,
18(3):279–292, March 1996. (cited on page 51)

[TUWR97] Emmanuelle Trucco, Manickam Umasuthan, Andrew M. Wallace, and Vito Roberto. Model-based planning
of optimal sensor placement for inspection. IEEE Transactions on Robotics and Automation, 13(2):182–
194, April 1997. (cited on page 75)

[Tv97] A. C. Telea and C. W. A. M. van Overveld. The close objects buffer: a sharp shadow detection technique
for radiosity methods. Journal of Graphics Tools, 2(2):1–8, 1997. ISSN 1086-7651. (cited on page 92)

[TWFP97] Robert F. Tobler, Alexander Wilkie, Martin Feda, and Werner Purgathofer. A hierarchical subdivision
algorithm for stochastic radiosity methods. In Julie Dorsey and Philipp Slusallek, editors, Eurographics
Rendering Workshop 1997, pages 193–204, New York City, NY, June 1997. Eurographics, Springer Wien.
ISBN 3-211-83001-4. (cited on page 88)

[Ull89] Shimon Ullman. Aligning pictorial descriptions: An approach to object recognition. Cognition, 32(3):193–
254, August 1989. (cited on page 13)

144 REFERENCES

[Urr98] Jorge Urrutia. Art gallery and illumination problems. In Jörg-Rüdiger Sack and
Jorge Urrutia, editors, Handbook on Computational Geometry. Elsevier Science, 1998.
http://www.csi.uottawa.ca:80/˜jorge/online papers. (cited on pages 20, 74)

[Vea97] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. Ph.d. thesis, Stanford University,
December 1997. http://www-graphics.stanford.edu/˜ericv/. (cited on page 10)

[Ved93] Christophe Vedel. Computing Illumination from Area Light Sources by Approximate Contour Integra-
tion. In Proceedings of Graphics Interface ’93, pages 237–244, San Francisco, CA, May 1993. Morgan
Kaufmann. (cited on page 32)

[VLN96] M. Venditelli, J.P. Laumond, and C. Nissoux. Obstacle distances and visibility in the car-like robot metrics.
Technical Report 96437, LAAS, November 1996. doc@laas.fr. (cited on pages 43, 44)

[WA77] K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting. Computer Graphics,
11(2):214–222, July 1977. Proceedings of SIGGRAPH’77, held in San Jose, California; 20–22 July 1977.
(cited on pages 32, 46)

[WA90] Andrew Woo and John Amanatides. Voxel occlusion testing: a shadow accelerator for ray tracing. In
Proceedings of Graphics Interface ’90, pages 213–220, June 1990. (cited on page 48)

[Wal75] David Waltz. Understanding lines drawings of scenes with shadows. In Patrick H. Winston, editor, The
Psychology of Computer Vision, Computer Science Series, pages 19–91. McGraw-Hill, 1975. (cited on
page 6)

[Wan92] Leonard Wanger. The effect of shadow quality on the perception of spatial relationships in computer
generated imagery. In David Zeltzer, editor, Computer Graphics (1992 Symposium on Interactive 3D
Graphics), volume 25(2), pages 39–42, March 1992. (cited on page 8)

[War69] J. Warnock. A hidden-surface algorithm for computer generated half-tone pictures. Technical Report TR
4–15, NTIS AD-733 671, University of Utah, Computer Science Department, 1969. (cited on page 33)

[Wat70] G.S. Watkins. A Real Time Visible Surface Algorithm. Ph.d. thesis, University of Utah, June 1970. (cited
on page 36)

[Wat88] N. A. Watts. Calculating the principal views of a polyhedron. In Ninth International Conference on Pattern
Recognition (Rome, Italy, November 14–17, 1988), pages 316–322, Washington, DC, 1988. Computer
Society Press. (cited on page 66)

[Wat90] Mark Watt. Light-water interaction using backward beam tracing. In Forest Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 377–385, August 1990. (cited on page 48)

[WBP98] Y. Wang, H Bao, and Q. Peng. Accelerated walkthroughs of virtual environments based on visibility
processing and simplification. In Computer Graphics Forum (Proc. of Eurographics ’98), volume 17-3,
pages C–187–C195, Lisbon, Portugal, September 1998. (cited on page 83)

[WC91] Andrew Woo and Steve Chall. An efficient scanline visibility implementation. In Proceedings of Graphics
Interface ’91, pages 135–142, June 1991. (cited on page 36)

[WEH89] John R. Wallace, Kells A. Elmquist, and Eric A. Haines. A ray tracing algorithm for progressive radiosity.
In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 315–324,
July 1989. (cited on page 88)

[Wei93] I. Weiss. Geometric invariant and object recognition. Internat. J. Comput. Vision, 10(3):207–231, 1993.
(cited on page 14)

[WF90] R. Wang and H. Freeman. Object recognition based on characteristic view classes. In Proceedings 10th
International Conference on Pattern Recognition, Atlantic City, NJ, 17-21 June 1990. (cited on page 66)

[WH96] L. R. Williams and A. R. Hanson. Perceptual completion of occluded surfaces. Computer Vision and Image
Understanding: CVIU, 64(1), 1996. (cited on page 29)

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved computational methods for ray tracing.
ACM Transactions on Graphics, 3(1):52–69, January 1984. (cited on pages 40, 59)

REFERENCES 145

[Whi55] H. Whitney. On singularities of mappings of euclidean spaces. i. mappings of the plane into the plane.
Annals of Mathematica, 62(3):374–410, 1955. (cited on page 28)

[Whi78] T. Whitted. A scan line algorithm for computer display of curved surfaces. In Computer Graphics (Special
SIGGRAPH ’78 Issue, preliminary papers), pages 8–13, August 1978. (cited on page 36)

[Whi80] Turner Whitted. An improved illumination model for shaded display. CACM, 1980, 23(6):343–349, 1980.
(cited on pages 10, 36, 40, 46)

[WHP98] Adam Worrall, David Hedley, and Derek Paddon. Interactive animation of soft shadows. In
Proceedings of Computer Animation 1998, pages 88–94. IEEE Computer Society, June 1998.
http://www.cs.bris.ac.uk/˜worrall/scope/port95.html. (cited on page 96)

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In Computer Graphics (SIGGRAPH ’78
Proceedings), volume 12(3), pages 270–274, August 1978. (cited on page 59)

[Wil96] L. R. Williams. Topological reconstruction of a smooth manifold-solid from its oclluding contour. Com-
puter Vision and Image Understanding: CVIU, 64(2), 1996. (cited on pages 29, 30)

[Woo92] Andrew Woo. The shadow depth map revisited. In David Kirk, editor, Graphics Gems III, pages 338–342,
582. Academic Press, Boston, MA, 1992. (cited on page 59)

[Woo97] Andrew Woo. Recursive grids and ray bounding box comments and timings. Ray Tracing News, 10(3),
December 1997. http://www.povray.org/rtn/. (cited on page 40)

[Wor97] Steve Worley. Fast soft shadows. Ray Tracing News, 10(1), January 1997. http://www.povray.org/rtn/.
(cited on page 64)

[WPF90] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow algorithms. IEEE Computer Graph-
ics and Applications, 10(6):13–32, November 1990. http://www.iro.umontreal.ca/labs/infographie/papers/.
(cited on pages 8, 24)

[WREE67] C. Wylie, G.W. Romney, D.C. Evans, and A.C. Erdahl. Halftone perspective drawings by computer. In
FJCC, pages 49–58, 1967. (cited on page 36)

[WS94] G. Winkenbach and D. H. Salesin. Computer-generated pen-and-ink illustration. Computer Graphics,
28(Annual Conference Series):91–100, July 1994. http://www.cs.washington.edu/research/graphics/pub/.
(cited on page 8)

[WS99] Peter Wonka and Dieter Schmalstieg. Occluder shadows for fast walkthroughs ofurban environments. In
Eurographics’99, August 1999. (cited on page 62)

[WW92] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques: Theory and Practice. Addison-
Wesley, 1992. (cited on pages 7, 35, 40)

[WW97] Daphna Weinshall and Michael Werman. On view likelihood and stability. T-PAMI, 19-2:97–108, 1997.
(cited on page 94)

[WWP95] Adam Worrall, Claire Willis, and Derek Paddon. Dynamic discontinuities for radiosity. In
Edugraphics + Compugraphics Proceedings, pages 367–375, P.O. Box 4076, Massama, 2745
Queluz, Portugal, December 1995. GRASP- Graphic Science Promotions and Publications.
http://www.cs.bris.ac.uk/˜worrall/scope/port95.html. (cited on page 96)

[Yan85] Johnson K. Yan. Advances in computer-generated imagery for flight simulation. IEEE Computer Graphics
and Applications, 5(8):37–51, August 1985. (cited on page 34)

[YHS95] Seungku Yi, Robert M. Haralick, and Linda G. Shapiro. Optimal sensor and light source positioning for
machine vision. Computer Vision and Image Understanding: CVIU, 61(1):122–137, January 1995. (cited
on page 75)

[YKSC98] Kwan-Hee Yoo, Dae Seoung Kim, Sung Yong Shin, and Kyung-Yong Chwa. Linear-time algorithms for
finding the shadow volumes from a convex area light source. Algorithmica, 20(3):227–241, March 1998.
(cited on page 50)

146 REFERENCES

[YR96] R. Yagel and W. Ray. Visibility computation for efficient walkthrough complex environments. PRESENCE,
5(1):1–16, 1996. http://www.cis.ohio-state.edu/volviz/Papers/1995/presence.ps.gz. (cited on page 55)

[Zat93] Harold R. Zatz. Galerkin radiosity: A higher order solution method for global illumination. In Computer
Graphics Proceedings, Annual Conference Series, 1993, pages 213–220, 1993. (cited on page 59)

[ZD93] Ze Hong (Jenny) Zhao and David Dobkin. Continuous Algorithms for Visibility: the Space Searching
Approach. In Fourth Eurographics Workshop on Rendering, pages 115–126, Paris, France, June 1993.
(cited on page 54)

[Zha91] Ning Zhang. Two Methods for Speeding up Form-factor Calculation. In Second Eurographics Workshop
on Rendering, Barcelona, Spain, May 1991. (cited on page 54)

[Zha98a] Hanson Zhang. Forward shadow mapping. In George Drettakis and Nelson Max, editors, Eurographics
Rendering Workshop 1998, New York City, NY, June 1998. Eurographics, Springer Wien. SBN 3-211-
83213-0, http://www.cs.unc.edu/ zhangh/shadow.html. (cited on page 59)

[Zha98b] Hansong Zhang. Effective Occlusion Culling for the Interactive Display of Arbitrary Models. PhD thesis,
University of North Carolina, Chapel Hill, 1998. http://www.cs.unc.edu/ zhangh/research.html. (cited on
page 61)

[ZMHH97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III. Visibility culling using
hierarchical occlusion maps. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 77–88. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7,
http://www.cs.unc.edu/˜zhangh/hom.html. (cited on page 61)

	part4.pdf
	Introduction
	Spirit of the survey
	Flaws and bias
	Structure

	Visibility problems
	References
	Computer Graphics
	Computer Vision
	Robotics
	Computational Geometry
	Astronomy
	Summary

	Preliminaries
	Spaces and algorithm classification
	Visual events, singularities
	2D versus 3D Visibility

	The classics of hidden part removal
	Hidden-Line Removal
	Exact area-subdivision
	Adaptive subdivision
	Depth order and the painter’s algorithm
	The z-buffer
	Scan-line
	Ray-casting
	Sweep of the visibility map

	Object-Space
	Space partitioning
	Path planning using the visibility graph
	The Visual Hull
	Shadows volumes and beams
	Area light sources
	Shafts
	Visibility propagation through portals

	Image-Space
	Projection methods
	Advanced z-buffer techniques
	Hierarchical z-buffer
	Occluder shadow footprints
	Epipolar rendering
	Soft shadows using convolution
	Shadow coherence in image-space

	Viewpoint-Space
	Aspect graph
	Other viewpoint-space partitioning methods
	Viewpoint optimization
	Frame-to-frame coherence

	Line-Space
	Line-space partition
	Graphs in line-space
	Plucker coordinates
	Stochastic approaches

	Advanced issues
	Scale and precision
	Dynamic scenes

	Conclusions of the survey
	Summary
	Discussion

	Appendices
	Some Notions in Line Space
	Online Ressources

	Contents
	List of Figures
	Index
	References

