
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; V:1–11 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Tackling the Provenance
Challenge One Layer at a
Time

Carlos Scheidegger1, David Koop2, Emanuele Santos1, Huy Vo1,
Steven Callahan1, Juliana Freire2, Cláudio Silva1

1 Scientific Computing and Imaging Institute, University of Utah
2 School of Computing, University of Utah

SUMMARY

VisTrails is a new workflow and provenance management system that provides
support for scientific data exploration and visualization. Whereas workflows have been
traditionally used to automate repetitive tasks, for applications that are exploratory in
nature, change is the norm. VisTrails uses a new change-based provenance mechanism
which was designed to handle rapidly-evolving workflows. It uniformly and automatically
captures provenance information for data products and for the evolution of the workflows
used to generate these products. In this paper, we describe how the VisTrails provenance
data is organized in layers and present a first approach for querying this data that we
developed to tackle the Provenance Challenge queries.

key words: visualization, provenance, workflow evolution

1. Introduction

Workflows are emerging as a paradigm for representing and managing complex computations.
Workflows capture elaborate processes in a structured way and provide the provenance
information necessary for result reproducibility, publication, and sharing among collaborators.
Because of the formalism they provide and the automation they support, workflows have
the potential to accelerate and transform the information analysis process [6]. Workflows are
rapidly replacing primitive shell scripts as evidenced by the release of Apple’s Mac OS X
Automator [1] and Microsoft’s Workflow Foundation [12]. Existing workflow systems, however,
fail to provide the necessary infrastructure for exploratory tasks that are common in the
scientific process. Although these systems are effective for automating repetitive tasks, they
are not suitable for applications that are exploratory in nature, where several different, albeit
related workflows need to be created.

Copyright c© 2007 John Wiley & Sons, Ltd.



2 C. SCHEIDEGGER, D. KOOP, E. SANTOS ET AL.

(a) (b)

Figure 1: The VisTrails Version Tree (a) captures the process followed to construct the
Challenge workflows and the VisTrails Spreadsheet (b) allows the workflow outputs to be
compared side by side.

To address this limitation, we introduced the notion of workflow provenance and designed
a novel change-based provenance model that uniformly captures provenance information for
the evolution of the workflows and the data products they derive [4, 8]. This model not only
ensures that results can be reproduced, but it also simplifies data exploration by allowing
scientists to easily navigate through the space of workflows and parameter settings for a given
computational task. The information about how different workflow versions are related can
be leveraged to streamline the scientific discovery process. For example, to aid users in the
creation of new workflows that solve similar or related problems.

In this paper, we present our first attempt at designing a formalism and interface for
querying the change-based model. In Section 2, we detail how provenance is modeled in our
framework and describe how the framework is implemented in the VisTrails system. We discuss
a new language designed for querying workflow provenance in Section 3 and show how it
leverages our layered provenance model to answer all the queries defined for the Challenge.
Our implementation of the challenge queries and their results are presented in Section 4. We
conclude in Section 5 with a discussion of similarities and differences between our approach
and those of the other participants.

2. The VisTrails Change-Based Provenance Mechanism

With VisTrails, we introduced a new model for capturing and representing provenance—
VisTrails captures changes users make to a workflow. This model has important benefits.
The changes are automatically captured as users iteratively refine their workflows, providing

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



TACKLING THE PROVENANCE CHALLENGE ONE LAYER AT A TIME 3

Visualization

Spreadsheet

Workflow 

Builder
Vistrails

Repository

Cache

Manager

Workflow

Execution 

Engine

Query 

Server

Optimizer
Vistrails

Log

History

Manager

Figure 2: Simplified Architecture of VisTrails.

detailed information about the trial-and-error process followed in an exploratory task. To make
this paper self-contained, before describing the change-based provenance model, we give a brief
overview of the components of VisTrails that are directly related to the provenance model. For
more details on the system architecture and implementation the reader is referred to [3, 5].

The VisTrails System. Although the initial motivation for developing VisTrails was to provide
support for data exploration through visualization (the name is derived from the phrase
“visualization trails”), the system provides infrastructure for managing metadata and processes
involved in the creation of data products in general, not just visualizations. VisTrails provides
infrastructure that allows users to visually create, maintain, and explore large ensembles of
workflows. The high-level architecture of the system is shown in Figure 2. Below, we briefly
describe its key components.

The Workflow Builder provides a visual interface for creating and revising workflows (see
Figure 4. As a user modifies a workflow, her actions are captured by the History Manager
and saved in the VisTrails Repository. These actions include adding or deleting a module
and setting the value of a parameter, and they capture detailed information about how a
set of xrelated workflows evolves over time. Users may interact with workflows by invoking
them directly or by importing them into the Visualization Spreadsheet. The spreadsheet allows
the results of different workflows to be compared side-by-side (see Figure 1a. In addition,
the spreadsheet helps a user explore different parameter settings for a given workflow. The
spreadsheet layout makes efficient use of screen space, and the row/column groupings help
users explore the workflow parameter space [5].

Individual workflows are executed by the Workflow Execution Engine. Run-time information
(e.g., which modules were executed, when, where and by whom) is saved in the VisTrails Log.
Users may also query the saved information using the Query Server. More details about the
query capabilities of VisTrails are presented in Section 3.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



4 C. SCHEIDEGGER, D. KOOP, E. SANTOS ET AL.

2.1. Change-Based Provenance

By recording the modifications users apply to a workflow, VisTrails maintains detailed
provenance of the exploration process. This information not only ensures reproducibility, but it
also allows scientists to easily navigate through the space of workflows and parameter settings
used in a given exploration task. In particular, this gives them the ability to return to previous
versions of a workflow and compare their results.

As shown in Figure 1a, VisTrails stores the trail of changes to workflows as a version tree—
a vistrail, where each node corresponds to a version of a workflow and each directed edge
corresponds to a change which transforms one workflow into another.Thus, each workflow is
represented as a sequence of changes. This is similar to the versioning mechanism used in
DARCS [17]. Powerful operations, like the ability to support collaborative data exploration in
a distributed and disconnected fashion, are enabled by this representation and greatly simplify
the scientific discovery process [5].

The change-based mechanism uniformly captures provenance of both the workflow evolution
and associated data products. This in contrast to previous approaches, which have addressed
only the problem of data provenance (see e.g., [15, 2, 19, 16]). Although data provenance
is necessary to allow for reproducibility, it fails to capture useful information about the
relationship among the different workflows used in an exploratory task. Currently, this
information is often recorded manually, forcing users to save and manage a large number
of files with different workflow specifications as well as data products. This process not only
is time-consuming and error-prone, but it also greatly limits a scientist’s ability to further
explore the data.

Another advantage of the change-based mechanism is the compactness of its representation.
Instead of individually storing a set of related workflows, it stores only the changes that are
applied to workflows. This representation eliminates redundancy and leads to substantial space
savings. Finally, by representing the provenance information in a structured way, the system
allows the workflow provenance to be queried and mined. As we discuss in Section 3, this
provenance structure enables the construction of an intuitive interface that allows scientists to
both understand and interact with the provenance.

2.2. Organizing Provenance into Layers

As illustrated in Figure 3, the VisTrails provenance information is organized into three
layers: workflow evolution, workflow, and execution. The workflow evolution layer captures
the relationships among the series of workflows created in an exploratory task; the workflow
layer consists of specifications of individual workflows; and the execution layer stores run-time
information about the execution of workflow modules (e.g., execution time, machine name,
date, etc.). The information for the first two layers is naturally captured by the change-based
provenance mechanism. Run-time information is captured by the Workflow Execution Engine
and stored in the Vistrails Log (see Figure 2). This structure clearly reflects the relationships
among the different provenance components. The version tree stores a set of related workflow
definitions, and each workflow definition is connected to a set of execution instances.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



TACKLING THE PROVENANCE CHALLENGE ONE LAYER AT A TIME 5

Workflow Evolution Workflow Execution

Figure 3: The Layered Provenance Model.

Structuring the provenance information into layers leads to a normalized representation
that avoids the storage of redundant information. This is in contrast to other provenance
mechanisms, where the information about the workflow specification is also saved in the
execution log, i.e., a module name, parameter, and values are saved for each invocation of
a given module [15, 2].

The layered provenance also makes the framework extensible. It allows layers to be replaced
and new layers to be added. Since different execution engines may record different kinds of
execution provenance, the execution layer can be replaced with that of the execution engine.
For example, for systems like Pegasus [7] that plan and schedule the execution of scientific
workflows on a grid, it is useful to save the scheduling information as part of the execution
provenance. In addition, to support higher level, semantic queries, it may be useful to add
other layers of application-specific metadata and ontologies such as those in Taverna [13].

While the automatic capture of provenance information simplifies scientific discovery, it is
also important to allow scientists to manually add their own provenance information. These
pieces of additional information are referred to as annotations. Annotations are allowed at
all levels of our layered provenance model. We should note that allowing annotations at
the different layers was a requirement for answering the Challenge queries. The next section
discusses our implementation of annotations.

3. Querying Provenance

The VisTrails provenance query language (vtPQL) is designed to take advantage of the
structure of our layered provenance. Queries are broken into pieces that relate to versions,
workflows, and executions. Each part of the query is tagged by a qualifier that specifies which
layer it refers to. On the vistrail (vt) level, the search criteria for all workflow versions is
specified; on the workflow (wf) level, users can search based on specific module or parameter
information; on the execution (log) level, users can further refine queries to, for example,
include only workflows that have run on specific architectures or during a given year. This

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



6 C. SCHEIDEGGER, D. KOOP, E. SANTOS ET AL.

piecewise query design simplifies both query specification and execution. Each level of the
query is a simple SQL-like expression with some additional functions, predicates, and attributes
(described below). These expressions allow standard set operators, boolean comparisons,
boolean operators, and a regular expression matching function.

We have identified basic operations that are useful for common querying tasks over
workflows, and that further simplify the query syntax. The operations used in the Challenge
queries are described below. They take as input a workflow or set of workflows x.

• upstream(x) returns all modules that precede x in the workflow;
• inputs(x) returns all modules that immediately precede the given module(s) in the

workflow; and
• executed(x) returns true if the module(s) have been executed (there is an entry in the

VisTrails Log) or false otherwise.

We have also defined a set of predicates and attributes which return specific information
about versions, modules, and executions. For example: annotation(key ) returns the value
associated with the given key. As discussed earlier, annotations are available at each layer,
and therefore, the language supports searching for annotations at each of these levels. There
are other predicates that are only available for specific layers: vt:user refers to the user
who created a given workflow version; wf:parameter(name ) refers to the module parameter
specified by the given name; and log:date refers to the date a log entry was created.

The operational semantics for a vtPQL query corresponds to a nested loop over the objects
returned from each layer. For example, the expression

wf{*}: x where x.module = AlignWarp and log{x}: y where y.date = ‘2006-09-15’

searches over all workflow versions (wf{*}) for workflows x that contain a module named
AlignWarp and that have associated execution log entries y for the given date, i.e., workflows
that were run on ’2006-09-15’.

As we further develop this language, we plan to continue to emphasize both its simplicity and
power. By using layered provenance, we are able to leverage the distinctions between the levels
and break queries into more manageable and understandable pieces. By adding constructs for
specific functionality (like the upstream operation), we are able to further simplify queries
while retaining great flexibility.

4. Challenge: Implementation and Results

Collecting Provenance Data. To generate the provenance data required to answer the
Challenge queries, we constructed and ran the two workflows in VisTrails. Using the VisTrails
plug-in mechanism, we were able to quickly wrap the AIR∗ and FSL† suites used in the

∗http://air.bmap.ucla.edu/AIR5
†http://www.fmrib.ox.ac.uk/fsl

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



TACKLING THE PROVENANCE CHALLENGE ONE LAYER AT A TIME 7

(a) Pipeline 1 (b) Pipeline 2

Figure 4: Challenge workflows. Pipeline 1 corresponds to the original workflow; and Pipeline
2 is the result of replacing the convert procedures in Pipeline 1 by the sequence pgmtoppm,
pnmtojpeg. These workflows correspond to the nodes labeled pipeline 1 and pipeline 2 in
Figure 1a.

workflows. By wrapping these tools and importing the wrappers into VisTrails, their functions
are automatically (and dynamically) made available as modules in the Workflow Builder. The
Challenge workflows, shown in Figure 4, were then constructed and executed. The provenance
information gathered consisted of the version tree (which contains the specifications for both
workflows), and the execution log. In our current prototype, the version tree is saved in an
XML file and the log is saved onto a set of MySQL tables.

Executing Queries. Table I shows the nine Challenge queries expressed in our language. We
implemented a Python API that supports the basic constructs of vtPQL. Using this API,
it was straightforward to write the queries. It is worthy of note that Query 7 was already
supported in VisTrails, through the visual difference interface.

Displaying Query Results. In addition to providing information about the results (e.g.,
workflow identifiers and attributes), VisTrails has the ability to visually display query results by
highlighting the workflows and modules (at the vistrail and workflow levels, respectively) that
satisfy the query. Due to space limitations, we discuss only the results for two of the Challenge
queries. More details on the other queries are available in [20]. The results for Query 4 are shown
in Figure 5a. All the workflow versions that match the query conditions are highlighted in the
version tree. If the user clicks on a given version, the workflow is displayed and the modules

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



8 C. SCHEIDEGGER, D. KOOP, E. SANTOS ET AL.

Query 1
wf{*}: upstream(x) union x where x.module = FileSink and x.parameter(‘name’) = ‘atlas-x.gif’

and executed(x)

Query 2
wf{*}: (upstream(x) union x) - upstream(y) where x.module = FileSink

and x.parameter(‘name’) = ‘atlas-x.gif’ and executed(x) and y.module = SoftMean

Query 3
wf{*}: upstream(x) union x where x.module = FileSink and x.parameter(’name’) = ‘atlas-x.gif’

and x.annotation(‘stage’) in {‘3’,‘4’,‘5’} and executed(x)

Query 4
wf{*}: x where x.module = AlignWarp and x.parameter(‘model’) = ‘12’

and (log{x}: y where y.dayOfWeek = ‘Monday’)

Query 5
wf{*}: upstream(x) where x.module = FileSink and matches(x.parameter(‘name’), ‘.*atlas.*_gif’)

and y in upstream(x) and y.module = File

and (log{y}: z where z.annotation(‘globalmaximum’) = ‘4095’)

Query 6
wf{*}: upstream(x) union x where x.module = SoftMean and executed(x) and y in upstream(x)

and y.module = AlignWarp and y.parameter(‘model’) = ‘12’

Query 7 (operation is a feature of Workflow Builder—see result in Figure 5b)

Query 8
wf{*}: upstream(x) union x where x.module = AlignWarp and y in inputs(x)

and y.annotation(‘center’) = ‘UChicago’

Query 9
wf{*}: x where x.module = File

and x.annotation(‘studyModality’) in {‘speech’, ‘visual’, ‘audio’}

Table I. Challenge Queries

that match the query are highlighted. The user can then click on the individual modules to
view execution log records associated with modules. The versions, modules, and parameters
returned by a query can be explored interactively by the user. For example, if a query asks
for a specific workflow fragment, like the signal processing piece of a complicated workflow, we
allow the user to extract and run this fragment. Note that this is only possible because of the
inherent connectivity between workflow representation and provenance in VisTrails.

As noted in Table I, we uses the VisTrails’ visual difference interface to answer Query 7.
In the verion tree, by dragging one workflow over another, VisTrails computes the differences
between the workflow specifications. As Figure 5b shows, these differences are displayed visually
via color cues: blue and orange colors represent modules present in one workflow but not the
other, dark-grey indicates modules that are present in both workflows, and light-grey depicts
modules whose parameter values differ.

5. Discussion and Future Work

In this paper, we give an overview of the VisTrails provenance management framework and
how it was used to answer the Provenance Challenge queries. There are important features of
our provenance approach that set it apart from the approaches used by the other Challenge
participants. Instead of requiring users to write complicated SQL or Prolog syntax, we have
designed a new, a domain-specific language tailored for querying workflow provenance. This
language leads to concise queries that are easy to write and understand. The simplicity,
however, does not sacrifice expressiviness: the language can express all of the Challenge queries.
In addition, VisTrails provides a way to visually display and explore the results of queries in
the same framework used to create the workflows.

The VisTrails system provides a flexible and extensible infrastructure for integrating new
tools and libraries, creating workflows, and managing their provenance. Our component-based
architecture makes it possible to integrate the VisTrails provenance framework with existing

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



TACKLING THE PROVENANCE CHALLENGE ONE LAYER AT A TIME 9

(a) Query 4

pipeline 1

Shared

Parameter changes

pipeline 2

(b) Query 7

Figure 5: The visual answers for two of the queries

scientific workflow [15, 21, 10] and workflow-based visualization systems [11, 14]. In addition,
the query language, while designed according to the layered provenance model, is independent
from the provenance representation, allowing it to be used with other provenance data. We
plan to further investigate interoperability issues in the future.

While VisTrails automatically captures the provenance data for workflow evolution and
executions, it does not capture information about temporary files that may be created during
workflow execution, but that are not specified in the workflow. For example, the AIR tools
used in the Challenge workflows create and depend on temporary files which are not explicitly
defined in the workflows. To properly capture this information in the VisTrails execution log,
these tools need wrapped appropriately. In contrast, systems like ES3 [9] and PASS [18], in
contrast, which track workflow execution at the operating system level, are able to detect the
creation of such files. It should be noted, however, that these systems require tools that depend
on specific operating systems, thus, machines need to be properly configured to make use of
these systems.

The VisTrails system was released under the GPL license and can be downloaded from
http://www.vistrails.org.

Acknowledgments. We thank Erik Anderson and Nathan Smith for their contributions to
the VisTrails system. This work was partially supported by the National Science Foundation
under grants IIS-0513692, IIS-0534628, OCE-0424602 , CCF-0401498, CNS-0524096, and
OISE-0405402, the Department of Energy, an IBM Faculty Award, and a University of Utah
Seed Grant.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls



10 C. SCHEIDEGGER, D. KOOP, E. SANTOS ET AL.

REFERENCES

1. Apple’s Mac OS X Automator. http://www.apple.com/downloads/macosx/automator.
2. R. S. Barga and L. A. Digiampietri. Automatic capture and efficient storage of escience experiment

provenance. Concurrency and Computation: Practice and Experience, 2007.
3. L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo. Vistrails: Enabling

interactive multiple-view visualizations. In IEEE Visualization 2005, pages 135–142, 2005.
4. S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. Managing the evolution of dataflows

with visTrails (Extended Abstract). In IEEE Workshop on Workflow and Data Flow for Scientific
Applications (SciFlow), 2006.

5. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegge, and H. T. Vo. Using provenance to streamline data
exploration through visualization. Technical Report UUSCI-2006-016, SCI Institute, University of Utah,
2006.

6. E. Deelman and Y. Gil. NSF Workshop on Challenges of Scientific Workflows. Technical report, NSF,
2006. http://vtcpc.isi.edu/wiki/index.php/Main Page.

7. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Scientific Programming Journal, 13(3):219–237, 2005.

8. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo. Managing rapidly-
evolving scientific workflows. In International Provenance and Annotation Workshop (IPAW), LNCS
4145, pages 10–18. Springer Verlag, 2006.

9. J. Frew, D. Metzger, and P. Slaughter. Automatic capture and reconstruction of computational
provenance. Concurrency and Computation: Practice and Experience, 2007.

10. J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar. Provenance trails in the wings/pegasus system.
Concurrency and Computation: Practice and Experience, 2007.

11. Kitware. The Visualization Toolkit. http://www.vtk.org.
12. MSFT Workflow Foundation. http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx.
13. T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull,

D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons
in creating a workflow environment for the life sciences: Research articles. Concurrency and Computation:
Practice & Experience, 18(10):1067–1100, 2006.

14. S. G. Parker and C. R. Johnson. SCIRun: a scientific programming environment for computational
steering. In Supercomputing, page 52, 1995.

15. N. Podhorszki, B. Ludaescher, I. Altintas, S. Bowers, and T. McPhillips. Recording data provenance for
kepler scientific workflows. Concurrency and Computation: Practice and Experience, 2007.

16. The EU Provenance Project. http://twiki.gridprovenance.org/bin/view/Provenance.
17. D. Roundy. Darcs. http://abridgegame.org/darcs.
18. M. Seltzer, D. A. Holland, U. Braun, and K.-K. Muniswamy-Reddy. Pass-ing the provenance challenge.

Concurrency and Computation: Practice and Experience, 2007.
19. Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science. SIGMOD Record,

34(3):31–36, 2005.
20. VisTrails—Provenance Challenge, 2006. http://twiki.ipaw.info/bin/view/Challenge/VisTrails.
21. J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining taverna’s semantic web of provenance. Concurrency

and Computation: Practice and Experience, 2007.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; V:1–11
Prepared using cpeauth.cls


