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Abstract

Efficient sorting is a key requirement for many computer science algorithms. Acceleration of existing techniques
as well as developing new sorting approaches is crucial for many realtime graphics scenarios, database systems,
and numerical simulations to name just a few. It is one of the most fundamental operations to organize and filter
the ever growing massive amounts of data gathered on a daily basis. While optimal sorting models for serial
execution on a single processor exist, efficient parallel sorting remains a challenge. In this paper we present a
hardware-optimized parallel implementation of the radix sort algorithm that results in a significant speed up over
existing sorting implementations. We outperform all known GPU based sorting systems by about a factor of two
and eliminate restrictions on the sorting key space. This makes our algorithm not only the fastest, but also the first
general GPU sorting solution.

1. Introduction

Efficient sorting is a key requirement for many computer sci-
ence algorithms, as there often exists a need to reorder input
data so that it can be further explored. Today, this becomes
more important than ever as the rapidly growing amount
of raw, unprocessed data easily overloads the capabilities
of many processing systems. In many scenarios, however,
only very few input values carry the important information.
Algorithms used to extract those bits and pieces frequently
involve a sorting approach at their core. But not only the
data preprocessing steps in the visualization pipeline require
sorting algorithms also many rendering approaches and ac-
celeration structures need some type of sorting to process
the data. Many of these algorithms will not only simply run
faster with improvements in the sorting subsystems but they
require extremely fast sorting routines to allow for their use
in interactive scenarios. Finally, it is worth noting that the ap-
plication of ultra fast sorting is not restricted to visualization
of large datasets, also many other computer graphics systems
benefit tremendously from the improved performance. Only
recently the area of physics based simulation in virtual envi-
ronments and computer games has gained enormous atten-
tion due to its potential to dramatically increase the realism
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of these systems. Physics based simulation in many scenar-
ios involves collision detection of large quantities of objects
(see Figure 1), this in turn requires fast sorting of the data.

With the possibilities to increase the raw processing
power of single core system seemingly coming to a halt,
parallel solutions seem to be the best way for future per-
formance improvements. Therefore, we employ the massive
parallelism of current GPU architectures to sort large quanti-
ties of data at very high speed. To design an efficient sorting
scheme on these systems we need to overcome two main is-
sues:

• The first issue is how to map the efficient sequential sort-
ing on CPUs to parallel GPU-based sorting. Although,
sorting has long been studied under sequential and parallel
processing models, choosing and writing an efficient sort-
ing implementation for the GPU is still a challenge. We
choose use a radix sort variant for our sorting core. Firstly,
because radix sort has a linear time performance for a
given range of values, which makes it superior to other ap-
proaches previously considered for GPU implementation
such as merge- or bitonic-sort. Secondly, radix sort ex-
hibits a strong dependency between successive elements
as compared to previous approaches. Furthermore, our so-
lution does not require special hardware extensions such
as atomic counting as required by previous implementa-
tions [SA07] which would limit its applicability to certain
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Figure 1: Various scenes with vast amounts of objects colliding with each other a) thousands of falling chairs b) millions of
particles colliding with a landscape and each other and c) n-body galaxy problem. In these scenes, object sorting is a must for
collision detection, requiring a large amounts of objects to be sorted at interactive frame rates.

hardware. The fast 4-way parallel radix sort we propose
gives us the ability to fully exploit the parallel compu-
tational power of many GPUs. Different from previous
approaches of binary-radix sort based on the CUDPP li-
brary [SHZO07], we demonstrate how to perform effi-
cient 4-way radix (2 bits-radix). This effectively reduces
the number of radix loops in half, and doubles the perfor-
mance on a GPU. We also introduce a couple of improve-
ments to minimize the overhead, and remove redundancy
by a merging strategy, exploiting fast shared-memory as
the computational bridge. Thereby we minimize the slow
global memory access. Finally, we apply an efficient order
checking strategy to be able to terminate our sorter early
if we are reaching a sorted state or if the input is already
sorted. This plays a particularly important role in evolving
systems were the data does not change dramatically from
state to state, such as the collision detection applications
mentioned earlier.
• The second issue we are addressing is how to general-

ize the sorting strategy such that it can be applied to ar-
bitrary types of data, for instance, negative- or floating-
point-numbers, indices or pointers, and general records.
This again sets us aside from previous work. Beyond that,
we also present how to handle the general record sorting
optimally based on index sorting, we carefully analyze the
bottleneck of the problem and give a solution that can
maximally exploit hardware features like instant thread
switching, execution blocks, and fast random texture ac-
cess of graphics memory.

In summary: To our best knowledge we present the fastest
implementation of a sorter on the GPU. In addition, it is
more general than other existing approaches as it eliminates
restrictions on key or value length and structure. Thus, a
wide variety of other graphics and non-graphics applications
will benefit from this work.

The remainder of this paper is organized as follows:
In Section 2 we review the previous work on GPU-based
sorting. Section 3 gives an overview of our GPU sorting
approach; Section 4 explains the details of the optimized
CUDA realization followed by a performance evaluation in

Section 5. We conclude the paper with a discussion of the
results and directions of future work.

2. Related work

While CPU sorting techniques have a long history and
seem to have reached their theoretical limitation as sin-
gle core systems are not significantly increasing in perfor-
mance, recently, parallel sorting, especially GPU based sort-
ing, emerges as an alternative solution for this basic algo-
rithm.

Parallel sorting networks have long been recognized as
the preferred way to achieve high performance in super-
computing systems such as Cray machines. Back in 1968,
Batcher [Bat68] proposed comparison-based sorting net-
works: the odd-even merge sort and bitonic sort. Although,
having the sub-optimal complexity bound O(n log2 n), these
algorithms exploit the simplicity and symmetry to produce
highly efficient parallel sorters, hence they are still widely
used in parallel machines. An optimal comparison-based al-
gorithm O(n logn) was described by Ajtai et al. [AKS83],
however the constant hidden in the order notation is fairly
large. An O(n logn) parallel sorting algorithm is also de-
scribed by Leighton [Lei84] for an n-processor hypercube
using random operations. Though possible, in general, a re-
alistic O(n logn) algorithm for a parallel network is a goal
not easy to achieve with comparison-based parallel sorting
algorithms.

Counting based parallel sorters are an alternatives for
comparison based approaches, they can lower the overall
complexity to O(n) or can even achieve a parallel runtime
of O(n/p) with p being the number of processors, however,
these algorithms require inputs to be integers or values that
can be mapped to integers. The most notable counting-based
sorter is the parallel radix sorter. In 1991, Zagha and Blel-
loch implemented a parallel radix sorter on the 8-processor
CRAY Y-MP vector multiprocessor machine [ZB91]. The
results showed a linear scale over the number of processor
and were significantly faster than a parallel quick-sort imple-
mentation on the same platform. Algorithmically, our 4-way
radix is similar to this approach, however, the architecture
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and programming model of CRAY machine is quite different
from the one of current GPUs, making our implementation
distinguishable different from their approach.

The coming of the new computing architectures such as
multi-core SIMD CPUs platform or Cell processors, raised
the issue of how to adapt existing parallel sorting algorithms
to these new architectures to get the optimal performance
out of the box. Recently, Gedik et al. [GBY07] implemented
a bitonic sorter that was able to sort 100 million numbers
in a second on the 16-SPE IBM processor machine using
the Cell processor architecture. Similar performance was re-
ported by Chhugani et al. [CNL∗08] on the new Intel Q9550
quad-core processor. Their bitonic merge sorting implemen-
tation is highly optimized for the Intel multi-core and SSE
architecture.

Our implementation targets high performance sorting on
the General Processing Units (GPUs) platform. General
computing on GPU (GPGPU) has achieved remarkable suc-
cess, emerging as a new computing platform with high
power efficiency and high scalability, being used in a variety
of applications outside the scope of computer graphics and
visualization, like scientific computing, geometric process-
ing, databases, computer vision and imaging applications.
For a thorough review of recent work in the field of GPGPU
we refer the reader to Owens et al. [OLG∗07, OHL∗08].

Sorting on GPUs is not new and is becoming an essen-
tial component for a growing number of GPU applications.
In particular for computer graphics applications, we want
to keep the data inside the GPU memory and perform sort-
ing directly on GPU rather than on CPU and transfer results
back and forth between the CPU and the GPU. The early
GPU based implementations by Kipfer et al. [KSW04] as
well as their successors [GGKM06, KW05] employed the
bitonic sorting algorithm. Despite the suboptimal complex-
ity bound of O(n log2 n) it has gained great popularity due
to the fact that this sorting approach is based on a data in-
dependent sorting network making the GPU implementa-
tion easier. The complexity drawback was tackled by Gres
et al. [GZ06] employing an adaptive bitonic sorting strat-
egy, lowering the total complexity to the optimal bound of
O(n logn) for comparison based sorters.

To further reduce the complexity, recently, counting based
sorters on the GPU have gained attention. Sintorn and As-
sarsson [SA07] proposed a hybrid sorting algorithm based
on a vectorized mergesort in combination with a bucketsort
using atomic GPU operations. According to their results,
the hybrid algorithm is twice as fast as the fastest previ-
ous GPU-based bitonic sort algorithm. However, their ap-
proach requires atomic functions which in turn require serial
updates on the data thus wasting much of the GPU’s par-
allel processing capabilities, consequently the performance
depends heavily on the input distribution. Equally fast per-
formance is reported by Sengupta et al. [SHZO07] who em-
ployed the optimized parallel prefix sum technique by Har-

ris et al. [HSO07] to implement binary-radix sorting on the
GPU using CUDA. Another GPU radix variation proposed
by Le Grand [Gra07] also exploits the programming flexi-
bility and controllability of the fast access GPU scratch pad
memory (CUDA block shared memory) to increase the ef-
fectiveness and reduce number of radix passes over the data
using a larger radix, radix-16. While giving competitive per-
formance with uniform random inputs, the Le Grand sort-
ing scheme seems to give the best performance with real in-
puts, which is illustrated in the broad phase collision frame-
work [Gra07], and show benefits with small size of inputs.
So far these three approaches are the fastest sorting schemes
on the GPU outperforming all known CPU solutions.

Compared to these fastest known approaches on the GPU,
our radix sorting is not only almost twice as fast but also pro-
vides a more complete sorting framework with value, index,
and record sorting. Our approach can be applied not only to
graphic-related problems but also to any other domain that
requires fast sorting of large data.

3. Algorithm Overview

Our four-way GPU radix sorting algorithm is composed of
four major subsystems:

• the order checking function
• an implicit four-way radix counting
• the prefix sum positioning
• the final mapping

We consolidate all the pseudo-code for the algorithms in
this paper in the Appendix. Algorithm 1 (see Appendix)
gives the implementation of a 4-way radix sorter for 32 bit
keys. For the sake of simplicity we focus the discussion of
the implementation on 2-bit unsigned integers while our im-
plementation is able to handle any n-bit numerical value in-
cluding floating point values. The later are first mapped to
integers as proposed by Terdiman [Ter00], and then sorted
in d n

2e passes, each on the 2-bit radix pair, from the least
significant bit to the most significant one.

At the very beginning of the sorting loop, we check the or-
der of the current input, and immediately terminate the loop
if all elements are in order. This test can be implemented
very efficiently based on the optimized reduction operation
as proposed by Harris [Har07]. This check is very inexpen-
sive. It accounts only for about one-tenth of a percent of the
overall sorting time, yet in many cases it greatly reduces
the number of passes when the range of the input is much
smaller then the full range of 32 bits, or if the array is al-
ready sorted. This is a particularly important property for
many real time systems were the input array is usually close
to being sorted, since it has been sorted in the last frame al-
ready.

The next step, after our algorithm made sure the array
is not fully sorted already, we start the radix sorting pro-
cess by computing the frequency of every element in the
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Figure 2: The basic steps of our 4-way radix sort algorithm operating on a 20 component array of 2-bit integers. The right block
from top to bottom shows the steps involved in the four-way radix sorting. In the left zoom-in the computation of the local
prefix sum array is shown in more detail for the digit “0”.

list. To do this process in parallel, we divide the input ar-
ray into blocks (see Figure 2a). The block size is determined
as a multiplier of the SIMD size to exploit the full power of
SIMD processing unit. Moreover, it should be large enough
to hide the memory latency of global memory access and
be small enough to fit onto the internal memory cache, so
that all computation and memory look up can be performed
with the highest possible bandwidth. However, for illustra-
tion purposes we chose the block size of four element in Fig-
ure 2.

In each of these blocks we compute the local frequency
of all possible elements. As two bits are being sorted per
pass we generate four counters. This counting is performed
by first generating a bit mask for each of the four possible
digits. To this mask we apply the shared-memory parallel
optimized prefix sum computation at the same time on four
counting bit combinations (see Appendix for pseudo code)
and store the total count of every element in a block in the
global memory (Figure 2 left zoom-in shows the computa-
tion for the “0” digit). Figure 2d depicts these counters or-
dered by digit. We observed that for each digit, we only con-
cern about the local prefix result at the corresponding posi-
tion of that digit in the input data, so instead of using four
separated arrays to store the local prefix-sum arrays of the
four digits, we use only one “local prefix sum” array with
the same size as the input, and we output the corresponding
local prefix of the digit, shown as red in Figure 2iii, to the
local prefix sum array in Figure 2iv. This strategy greatly re-
duces the memory requirement of the algorithm. The local
prefix sum itself, Figure 2b, indicates the order of the data in
the sorted chunk of the same radix counting bit. To prevent
a non-coalesced scattering effect of element wise mapping
at the final state we shuffle data locally, in other words, we
perform the radix sorting iteration per block. This leads to
the clustering of numbers with same radix counting bit com-

bination inside a block and enable cluster-based mapping,
precondition for coalesced memory writing.

In the next step we convert the local frequency lists into
global positions by computing the prefix sum over the block
sum array (Figure 2e). In the final step, we use these indices
to permute the values to the sorted positions. Therefore, for
a digit d, in input chunk n, with a local prefix sum value m,
we derive the following final position from the prefix sum
block P (Figure 2e) as:

Sorted Position = Pd [n]+m (1)

As an example consider the sorted position of the second
“2” in the fourth chunk in Figure 2a. In this case d = 2,
n = 3, m = 1. To compute the final position we look in the
third block of the prefix bock sum (Figure 2e) at the fourth
position which returns 12 = P2[3] and add 1 from the corre-
sponding local prefix sum entry (Figure 2b) to get the final
index 13. This index is used to permute value from the local
shuffle array (Figure 2c) into its sorted form (Figure 2g).

4. Implementation Details

While in the previous section we explained the basic algo-
rithm of our sorter we use this section to take a closer look
at the CUDA implementation of the different stages of our
radix-sorting algorithm.

4.1. Blocking

The key idea of the parallel radix sort is the blocking scheme.
By dividing the data into small chunks and performing many
independent operations in parallel on these chunks we can
efficiently use parallel architectures such as the GPU. How-
ever, the blocking should not be chosen arbitrarily. The first
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thing to consider is that CUDA generally requires more than
100 threads per thread block to fully hide memory latencies.
In addition, the block size should be a multiple of the warp
size (32 on current GPUs) to guarantee coalesced reading
and writing and thus achieve peak memory bandwidth over
the relatively slow GPU global memory channel. Also the
limitation of the shared memory (16KB on current GPUs)
as well as the number of registers per block (currently 8192)
set the upper limit on the number of threads inside a block.
Therefore, our implementation assigns 128 threads to each
block, whereas each thread handles two data inputs, hence a
total of 256 elements is processed per block. Note that, none
of these values are simply hard-coded into our system but
based on an initialization-time query to the hardware.

4.2. Order checking

To exit the sorting loop early in case the array is sorted af-
ter processing only some of the significant bits, we employ
a fast order checking algorithm in each iteration. Our im-
plementation is based on the checking function used in the
CUDPP binary radix sort library which works as follows:

• Perform parallel comparison between the current element
with the next data elements, write out result to the com-
parison array, 0 if in correct order, 1 other wise.
• Perform parallel reduction sum on the comparison array

as proposed by Harris [Har07]. If the final result is 0 then
input data is in order, otherwise not in order.

While the second step is already extremely well opti-
mized, the first step, has a couple of drawbacks in the ref-
erence implementation. Firstly, each thread has to read two
consecutive elements thus every value is read twice and the
GPU is unable to perform coalesced reading, which is very
important for achieving peak performance. Secondly, the
first step writes the result of the comparison into relatively
slow global memory while in the second step that very data
is read back into shared memory to perform the reduction.

By successfully addressing the above mentioned issues
we were able to triple the performance of the order check-
ing routine. Firstly, we read only one element per thread
into shared memory thus allowing for coalesced reading and
cutting the read operations in half. Secondly, we perform a
partly reduce-add, the parallel reduction sum operating on
block-based data, in shared memory and write only the sin-
gle block sum into global memory for the second step. Algo-
rithm 3 in the Appendix shows the pseudo code of parallel
test function.

While this parallel order checking approach is very fast it
still is an atomic operation that always executes completely
before returning a decision. In contrast to this, a serial or-
der checking approach would stop once the first out of order
element is found. To approximate this behavior, we first per-
form the test on the first n′ elements of the entire array of n
elements. If this quick test fails we perform the next sorting

step and a complete test is avoided. If we can not find any out
of order elements in the quick test we perform the check on
the remaining 1+n−n′ including the last element of the n′

set. This approach introduces no measurable overhead in the
worst case scenario where the subset test does not detect out
of order elements, but it significantly improves the runtime
otherwise as our experiments have shown.

4.3. 4-way prefix sum

Algorithm 2 in the appendix shows the pseudo code of 4-way
prefix sum implementation. Our implementation extends the
reference CUDPP implementation. Figure 2 left illustrates
the algorithm output with radix combination value the 0. We
concurrently generate the binary mask for each radix com-
bination (ii), compute the local prefix sum of the mask (iii),
merge the prefix sum’s results for all combinations (iv) and
send the total number of each radix combination in each
block to the output block sum array (v).

4.4. Global counting

The 4-way prefix sum algorithm outputs the local count-
ing result of each block that shows the sorted order of el-
ements inside the block. To compute the global order, we
have to know the position of the first similar element of that
block, that is the total number of similar element of previ-
ous blocks. Once again, this information can be computed
by a prefix sum over the block sum of each individual radix
combination, but in this case, we do not need four-way pre-
fix sum, since it yields the same results with one-way pre-
fix sum when we layout the block sum output of 4-bit com-
bination sequentially. For optimal performance we use the
fully optimized version ofthe prefix sum provided in the lat-
est CUDPP release [HOS∗07].

4.5. Positioning and final mapping

As mentioned earlier, the global position is computed by
adding the local block position to the prefix block sum of
each bit combination. The resulting fetch returns the new
position of the data in the sorted array, a simple mapping
function will then permute the data. Similar to the full order
checking operation, we only need the position to perform
the mapping function, so we can combine these two steps
into one, and compute the global position value in shared
memory only without explicitly moving it into global mem-
ory, this strategy saves us one read/write operation into the
global position array which is costly. Overall, this improve-
ment alone results in a 20% speedup.

4.6. Local shuffling and coalesced mapping

The major weakness of the traditional radix sorting is the
final shuffle step. Since radix sorting shuffles data globally
in a random-like pattern, the shuffling is cache-unfriendly.
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This explains why radix sorting may be slower than other
cache-friendly sorts like quick-sort, with small input size,
despite its lower complexity bound O(n) vs O(n logn) of
quick-sort. Though there is no cache strategy implemented
on the GPU’s global memory, random-like scattering pat-
terns lead to non-coalesced writing, reducing the efficiency
of GPU radix sorting significantly, and accounting up to 36%
of the sorting time.

To address this issue, we propose in-block shuffle radix
sorting. The in-block shuffle radix sorting strategy is based
on the observation that the Least Significant Byte (LSD)
radix sorting is stable, it preserves the order of numbers with
the same radix combination bits in a block, that means con-
secutive numbers of the same radix sorting bits in a block
will move together to successive positions in the output.
Thus, if we perform local radix shuffling inside a block, it
will produce clusters of the same radix combination bits in
sorted order, the number of a cluster in a block is at most
the number of the combination. The numbers in the same
cluster will move together to the new location in the global
shuffle step, this is likely to produce the needed condition for
coalesced writing.

The in-block shuffle radix sorting procedure is similar
to an implicit four-way radix counting with an additional
step: in-block shuffle, in which we reorder the number in
the shared memory before we output the result into global
memory. Since in-block shuffle was performed in the shared
memory, it is fast, efficient, and no longer constrained by
the coalesced writing condition. Moreover, since the map-
ping position of a number in a cluster can be defined implic-
itly based on the mapping position of the first number in the
cluster, we do not need to store all the mapping positions
but only the first one in a cluster. This consequently, reduces
the memory footprint needed by traditional radix sorting ap-
proach.

To fully utilize the available bandwidth, we modified the
non-coalesced element-wise mapping in the shuffle steps to
coalesced cluster-wise mapping. To accomplish this we have
to satisfy the coalesced writing condition that the ith threads
will output the data to the ith position in 128-byte aligned re-
gion. In this case, since we know the mapping position, we
can determine the corresponding thread. We exploit shared
memory to achieve both coalesced reading and writing. The
mapping involves three steps, as shown in Algorithm 4: (1)
read data in block to shared memory, (2) compute the posi-
tion of first elements in a cluster and corresponding thread,
(3) each thread outputs corresponding data to global mem-
ory output. We perform the last two steps in parallel with all
threads, once for each radix combination.

Overall the modified version with in-block shuffle radix
counting and coalesced cluster-wise mapping process gives a
50% improvement in the performance on graphics cards that
support CUDA 1.0 and 1.1, e.g. G80 and Geforce Quadro

FX generation. And even on the newer cards, e.g. GTX 280,
it still gives a 10% improvement.

4.7. Index and Record Sorting

The sorting value alone is hardly of any use for real appli-
cations. What we need is the sorted index, or data pointer to
determine the related information. The main difference be-
tween value and index sorting is that index sorting requires
an additional shuffle step of the indices. As a result, index
sorting requires higher memory bandwidth, and exacerbates
the effect of cache-misses.

Normally the index is not included in the original data, so
for each input value we have to generate a companion index
indicating the position of the value in the original input array.
In its simplest form, the index array is a sequence of number
from 0 to n− 1. Index sorting only requires operations on
the key value and its accompanied index, other related infor-
mation can be traced back from the original array using the
sorted index.

It is not obvious from other GPU sorting methods how to
extend the value sorting frameworks to such an index sort-
ing, as often, only the timings for sorting the keys are given
but not the timings for the entire sorting pipeline of rearrang-
ing the associated records. A typical strategy is to combine
the sorting value and the index into the same sorting reg-
ister and only consider the bits of the sorting value during
the actual sort. While this idea can be integrated into very
much every sorting framework without impacting the per-
formance, there are several disadvantages to this approach:

• The number of bits available for the position being sorted
is reduced, which—in the case of physical based simula-
tion like a collision detection system—results in a signifi-
cant loss in precision;

• The number of bits available for index range is also sig-
nificantly reduced, limiting the number of sorting objects
and thus putting the use of the GPU—which is usually
most efficient on large data—in question.

With our radix sort approach, however, the key counting
process is independent from the value of related indices, we
simply generate the permutation array and finally shuffle the
indices or data pointer with this array. Thus, with the current
generation of 32 bit GPUs up to 4 billion key-index pairs or
records can be sorted in theory.

While index sorting is sufficient in most applications,
sometime a full record sorting is desired, especially to in-
crease the cache coherency with frequently-accessed sorted
data. In comparison to index sorting, record sorting can be
implemented similarly by first generating a simple spatial
index for each input value, performing index sorting on the
key-index pair array, and then perform the full shuffling step
for record sorting if needed. Because the sorted index ar-
ray is a permutation of the index sequence, as we perform
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Figure 3: Record shuffling with typical size of record 32, 64
and 128 bits. We break regular array of record structure to
structure of array with typical length types. The figure shows
the benefit of using texture to improve shuffling rate versus
normal mapping using global memory

the final shuffle step, we have to access data in arbitrary-
like order from the original data array while we can output
sorted data sequentially. The whole process leads to non-
coalesced reading—coalesced writing pattern on the GPU
memory. Consequentially, the reading time for the final shuf-
fle step could become a major bottleneck in the performance
of record sorting. Fortunately, limited bandwidth of the non-
coalesced reading can be significantly improved using tex-
ture memory, with uniformly distributed inputs we observe
the factor of three in the shuffling performance by using tex-
ture fetching over the typical mapping using global memory,
as shown on the Figure 3.

5. Results

In the following we compare our implementation to the
fastest GPU and CPU sorters in existence today: The opti-
mized CPU RadixSort as proposed by Herf [Her01], the STL
sort [Col08], the multi-threaded TBB parallel quick-sort by
Intel [Int08], the GPU binary-radix sort from the the CUDA
Data Parallel Primitives Library [HOS∗07], the radix-16 sort
by Le Grand [Gra07], and an eight-way parallel version of
our radix sort. All test were performed on an Opteron AMD
275 quad dual-core 2.2Ghz, system with 6 GB of memory,
and 1024K L1 cache equipped with an NVIDIA Geforce
8800 GTX.

The timings were performed with varying number of in-
puts ranging from 0.5M to 16M elements with uniform and

Gaussian distribution. The running time measured in mil-
liseconds is averaged over 100 runs, with the inputs re-drawn
randomly for each run. The running times do not include the
data transfering time between CPU and GPU because the
bandwidth between CPU and GPU is low, making transfer-
ring process a performance bottleneck. Moreover, we want
to exploit GPU sorting for GPU applications, in that case the
data are already available in the graphic memory.

As can be seen in Figure 4, our coalesced 4-way radix sort
gives the best performance, both, with uniform and Gaussian
distribution inputs. It is between 1.5 and 2.2 times faster than
the next best GPU sorting result: the radix-16 that also run-
ning on CUDA by Le Grand. Figure 4 also shows a speedup
of 1.5 from the 4-way non-coalesced mapping radix to the
final version of 4-way radix, it demonstrates the impact of
coalesced access on the performance of CUDA GPU imple-
mentation. On our system, the fastest CPU sorting imple-
mentation is the optimized CPU radix sort, however, even
this sorter is still 1.5-2.2 times slower than our GPU radix
implementation. Expensive thread creation explains why In-
tel TBB sorting does not give competitive performance on
our system.

In comparison to the performance of value sorting only,
we experience a reduction by a factor between 1.5 and 1.8 of
the typical radix index sorting approach with the same value
input array, which we attribute mainly to the non-coalesced
shuffling pattern. As we apply the coalesced radix index sort-
ing scheme, as discussed on Section 4.6, the performance
only suffers a negligible factor of about 1.1. Since only the
shuffling process is impacted by the non-coalesced memory
access pattern, the coalesced scheme results in a much more
stable performance than the arbitrary non-coalesced sorting
approach.

To confirm that our choice of a 4-way radix sort imple-
mentation is optimal at least on the current hardware, we
implement a similar framework with 8-way radix sorting
scheme. The timing result with 8-way radix value sorting
is shown in Figure 4. From the timings, our 8-way radix
GPU with value sorting, is about 5%-10% slower than 4-
way radix. The 8-way radix index sorting approach using
the scan framework is currently not feasible due to limited
amount of shared memory available on the current genera-
tion of graphics cards. As this may be different on the next
generation hardware, we realized our entire algorithm as a
template with the parallelization factor as the template pa-
rameter. This way we can embed our sorting algorithm in an
automatic tuning program, that on a new system runs a cali-
bration procedure consisting of a few sorts to select the best
approach for the actual hardware it is running on.

To test the scalability of our approach on future devices,
we ran our sorting framework on the latest GPU platform
an NVIDIA GTX 280. The results from the Figure 5 clearly
show that our radix algorithm scales well with the latest gen-
eration of GPUs. As the memory bandwidth offered by GTX
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Figure 4: Average sorting runtime for varying input sizes with different sorting strategies, with uniform distribution and Gaus-
sian distribution input, with value sorting and index sorting .

Figure 5: Performance on the newest generation of NVIDIA
GPUs, the Geforce 280GTX. It can be seen clearly that as the
memory bandwidth doubles so does our sorting performance

280 doubles the available bandwidth of GTX 8800 GTX, it
doubles the performance of our sorting approach.

6. Applications

To illustrate the importance and benefit of GPU sorting
framework on practical problem, we applied our framework
to a GPU broad-phase collision system.

6.1. Broad-phase collision detection

Our collision detection system builds on the proven sweep
and prune strategy, a broad phase algorithm developed

by Baraff [Bar92] and then implemented by Cohen et
al. [CLMP95]. The method is mainly used for interactive
and exact collision detection in a large-scale complex en-
vironments, such as what are shown in Figure 1. The core
function and also the main performance bottleneck is a sort-
ing subsystem that first sorts the projected extents of ob-
jects’ bounding boxes on a cartesian axis, then use a second
pass over the sorted list to determine overlaps between these
boxes.

In our implementation we first compute the axis aligned
bounding boxes (AABBs) of the objects. We have chosen
AABBs since they can be efficiently computed on GPU us-
ing parallel reduction max and min on the input meshes.
From the AABBs a list of records is generated. Every AABB
contributes two records: the max/min AABB-coordinates
combined with an index to the object, and a bit indicating
if this is the max or the min coordinate. This list is sorted
with respect to the x-coordinate and scanned for out of order
indices in parallel. Where out of order means that we scan
for a min index of one bounding box not being followed by
the max index of the same AABB but by an index of another
AABB. From the AABBs associated with the out of order
indices a new list of AABBs which overlap in x projection
is generated. By using the min/max bit we make sure that
every collision is only detected once. This entire process is
repeated in y- and z-direction using the overlap list of the
previous scan, finally only the small list of actually overlap-
ping AABBs is returned for narrow-phase collision detection
an the CPU. We accelerate this algorithm by embedding our
novel optimized GPU-based radix sorting system as the core
algorithm. To further improve the performance of the overall
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Figure 6: Timings result for the GPU based collision detec-
tion system and the embedded 4-way radix sorter, compared
to an optimized CPU system also based on a radix sorter

system we also implement other functions in the framework
with its optimized parallel version on GPU. The AABB sort-
ing in the framework is a variation of index sorting scheme,
in that each value is corresponding to one end value of an
object’s bounding box stored together with the index of the
object.

In Figure 6 we present timings for our entire GPU broad-
phase collision detection system on an NVIDIA Quadro FX
5600 graphics card with 1.5 GB local video memory. We
compare this system to a highly optimized CPU implemen-
tation that uses an optimized radix sort implementation. The
CPU approach makes use of all the cores of our quad dual-
core AMD Opteron 275 processor with 6 GB memory.

As can be seen in Figure 6, sorting is the most costly op-
eration in the algorithm as it accounts for about 70% of the
overall performance. Figure 6 also gives a comparison of our
approach to the highly optimized CPU sorter showing a 1.5x
to 2.0x speedup depending on the data size; as usual the GPU
becomes more efficient with increasing data size.

7. Discussion and Future Work

In this paper we have presented a GPU linear-time sorting
framework that outperforms previously published methods.
At the same time we lift the previously imposed limitations
on the element count and sorting precision of a GPU based
sorter. Thus, we provide a complete solution for the sort-
ing problem, making our solution superior to CPU based ap-
proaches.

While we improved the current state of the art in sorting,
there is still room for further improvement: A more efficient
histogram and counting sort could make sorting more than
two bits a time more efficient, and a hybrid input-adaptive

framework that will select the best sorting method for each
type of inputs and input size.

In the future we will also investigate novel applications for
our GPU based radix sorter outside of the computer graphics
area, such as data mining applications. For these applications
additional out of (GPU-) core sorting approaches and GPU
cluster solutions may be required to handle extremely very
large data sets in reasonable time.
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Appendix A: Pseudocode

Algorithm 1 Four-way radix sorting
blockSize← 256
Allocate and initialize 4 block-sum array on GPU mem
for bit = 0 to 30 do

Perform order checking on the current stage
if elements are in order then

break;
end if
Divide input data into equal blocks
for all blocks in parallel do

Perform shared-memory 4-way scan on each block
Output total number of each scan path to block sum array

end for
Perform scan prefix sum on the block sum array
Compute the new position for elements of radix sort
Map the element to the right position
bit← bit + 2

end for

Algorithm 2 4-way prefix sum with in-block shuffle
Allocate 4 counting arrays, cnt[4]
Read data in to shared-memory block s_data
for all threadId in thread block do

Extract 2 bits combination from the input data[id]
for b = 0 to 3 do

cnt[b][threadId]← (b == extract_bits)
end for
Built four way sum tree, Algorithm 5
Clear the last element of each counting array
Down sweep the tree, scan in place Algorithm 6
synchthread
Shuffle data in the shared memory
s_data[cnt[extract_bits][threadId]]← data
synchthread
Output local sorted data to global memory

end for

Algorithm 3 Parallel order checking
Allocate shared memory for each thread block
//Compute elements id
id← threadIdx.x + threadIdx.y∗blockSize
for all threads inside thread block do

//Reading one value per thread to the shared memory
shared[threadIdx.x]← data[tid];
if threadIdx.x = 0 then

Read the next element to the last data inside block
end if

end for
//Wait for all threads to finish reading
syncthreads()
//Perform order checking
shared[id]← (shared[i] > shared[i + 1]);
Perform optimized reduction on shared array
Write out reduction result to global array
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Algorithm 4 Coalesced block mapping for the n chunk input
if threadIdx.x = 0 then

Load block count and block prefix sum of each counting bits
end if
for all threads inside thread block do

Load the block-sorted data to the block shared-memory
end for
syncthreads()
for d = 0 to 3 do

Determine the first position of output block: the block prefix
sum value Pd [n]
Find the first aligned coalesced position on the output
Aligned_pos = Pd [n] - Pd [n]%warp_size
for all threads inside thread block do

Data access position m← threadId−Pd [n]%warp_size
SortedPosition← Aligned_pos + threadId
if Sorted Position is in the output range then

Map the data from shared memory position m to global
memory

end if
end for

end for

Algorithm 5 Build 4 ways sum tree
for d = 0 to log2 n−1 do

for all i=0 to (n−1)/2d+1 in parallel do
#pragma unroll
for b = 0 to 3 do

cnt[b][i + 2d+1 − 1] ← cnt[b][i + 2d − 1] + cnt[b][i +
2d+1−1]

end for
end for

end for

Algorithm 6 Down-Sweep 4 ways
for b = 0 to 3 do

count[b][n−1]← 0
end for
for d = log2 n−1 downto 0 do

for all i=0 to (n−1)/2d+1 in parallel do
#pragma unroll
for b = 0 to 3 do

t← count[b][i + 2d −1]
cnt[b][i + 2d −1]← cnt[b][i + 2d+1−1]
cnt[b][i + 2d+1−1]← t + cnt[b][i + 2d+1−1]

end for
end for

end for
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