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Abstract. Isosurface extraction is one of the most e�ective and powerful
techniques for the investigation of volume datasets in scienti�c visualization.
Previous isosurface techniques are all main-memory algorithms, often not ap-
plicable to large scienti�c visualization applications. In this paper we survey
our recent work that gives the �rst external memory techniques for isosurface
extraction. The �rst technique, I/O-�lter, uses the existing I/O-optimal in-
terval tree as the indexing data structure (where the corner structure is not
implemented), together with the isosurface engine of Vtk (one of the currently
best visualization packages). The second technique improves the �rst version
of I/O-�lter by replacing the I/O interval tree with the metablock tree (whose
corner structure is not implemented). The third method further improves the
�rst two, by using a two-level indexing scheme, together with a new meta-cell
technique and a new I/O-optimal indexing data structure (the binary-blocked
I/O interval tree) that is simpler and more space-e�cient in practice (whose
corner structure is not implemented). The experiments show that the �rst two
methods perform isosurface queries faster than Vtk by a factor of two orders of
magnitude for datasets larger than main memory. The third method further
reduces the disk space requirement from 7.2{7.7 times the original dataset size
to 1.1{1.5 times, at the cost of slightly increasing the query time; this method
also exhibits a smooth trade-o� between disk space and query time.

1. Introduction

The �eld of computer graphics can be roughly classi�ed into two sub�elds:
surface graphics, in which objects are de�ned by surfaces, and volume graphics [17,
18], in which objects are given by datasets consisting of 3D sample points over their
volume. In volume graphics, objects are usually modeled as fuzzy entities. This
representation leads to greater freedom, and also makes it possible to visualize the
interior of an object. Notice that this is almost impossible for traditional surface-
graphics objects. The ability to visualize the interior of an object is particularly
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important in scienti�c visualization. For example, we might want to visualize the
internal structure of a patient's brain from a dataset collected from a computed
tomography (CT) scanner, or we might want to visualize the distribution of the
density of the mass of an object, and so on. Therefore volume graphics is used in
virtually all scienti�c visualization applications. Since the dataset consists of points
sampling the entire volume rather than just vertices de�ning the surfaces, typical
volume datasets are huge. This makes volume visualization an ideal application
domain for I/O techniques.

Input/Output (I/O) communication between fast internal memory and slower
external memory is the major bottleneck in many large-scale applications. Algo-
rithms speci�cally designed to reduce the I/O bottleneck are called external-memory
algorithms. In this paper, we survey our recent work that gives the �rst external
memory techniques for one of the most important problems in volume graphics:
isosurface extraction in scienti�c visualization.

1.1. Isosurface Extraction. Isosurface extraction represents one of the most
e�ective and powerful techniques for the investigation of volume datasets. It has
been used extensively, particularly in visualization [20, 22], simpli�cation [14],
and implicit modeling [23]. Isosurfaces also play an important role in other areas
of science such as biology, medicine, chemistry, computational uid dynamics, and
so on. Its widespread use makes e�cient isosurface extraction a very important
problem.

The problem of isosurface extraction can be stated as follows. The input dataset
is a scalar volume dataset containing a list of tuples (x;F(x)), where x is a 3D
sample point and F is a scalar function de�ned over 3D points. The scalar function
F is an unknown function; we only know the sample value F(x) at each sample
point x . The function F may denote temperature, density of the mass, or intensity
of an electronic �eld, etc., depending on the applications. The input dataset also
has a list of cells that are cubes or tetrahedra or of some other geometric type.
Each cell is de�ned by its vertices, where each vertex is a 3D sample point x given
in the list of tuples (x;F(x)). Given an isovalue (a scalar value) q, to extract
the isosurface of q is to compute and display the isosurface C(q) = fpjF(p) =
qg. Note that the isosurface point p may not be a sample point x in the input
dataset: if there are two sample points with their scalar values smaller and larger
than q, respectively, then the isosurface C(q) will go between these two sample
points via linear interpolation. Some examples of isosurfaces (generated from our
experiments) are shown in Fig. 1, where the Blunt Fin dataset shows an airow
through a at plate with a blunt �n, and the Combustion Chamber dataset comes
from a combustion simulation. Typical use of isosurface is as follows. A user may
ask: \display all areas with temperature equal to 25 degrees." After seeing that
isosurface, the user may continue to ask: \display all areas with temperature equal
to 10 degrees." By repeating this process interactively, the user can study and
perform detailed measurements of the properties of the datasets. Obviously, to
use isosurface extraction e�ectively, it is crucial to achieve fast interactivity, which
requires e�cient computation of isosurface extraction.

The computational process of isosurface extraction can be viewed as consisting
of two phases (see Fig. 2). First, in the search phase, one �nds all active cells of
the dataset that are intersected by the isosurface. Next, in the generation phase,
depending on the type of cells, one can apply an algorithm to actually generate the
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Figure 1. Typical isosurfaces are shown. The upper two are for
the Blunt Fin dataset. The ones in the bottom are for the Com-
bustion Chamber dataset.

isosurface from those active cells (Marching Cubes [20] is one such algorithm for
hexahedral cells). Notice that the search phase is usually the bottleneck of the entire
process, since it searches the 3D dataset and produces 2D data. In fact, letting N
be the total number of cells in the dataset and K the number of active cells, it
is estimated that the typical value of K is O(N2=3) [15]. Therefore an exhaustive
scanning of all cells in the search phase is ine�cient, and a lot of research e�orts
have thus focused on developing output-sensitive algorithms to speed up the search
phase.

In the rest of the paper we use N and K to denote the total number of cells in
the dataset and the number of active cells, respectively, andM and B to respectively
denote the numbers of cells �tting in main memory and in a disk block. Each I/O
operation reads or writes one disk block.



4 YI-JEN CHIANG AND CL�AUDIO T. SILVA

marching cubes Triangles
(simplification)

Triangles

Search Phase Generation Phase

Volume Data decimation

stripping

Triangle StripsDisplay

Figure 2. A pipeline of the isosurface extraction process.

1.2. Overview of Main Memory Isosurface Techniques. There is a very
rich literature for isosurface extraction. Here we only briey review the results that
focus on speeding up the search phase. For an excellent and thorough review,
see [19].

In Marching Cubes [20], all cells in the volume dataset are searched for iso-
surface intersection, and thus O(N) time is needed. Concerning the main memory
issue, this technique does not require the entire dataset to �t into main memory, but
dN=Be disk reads are necessary. Wilhems and Van Gelder [30] propose a method
of using an octree to optimize isosurface extraction. This algorithm has worst-case
time of O(K +K log(N=K)) (this analysis is presented by Livnat et al. [19]) for
isosurface queries, once the octree has been built.

Itoh and Kayamada [15] propose a method based on identifying a collection
of seed cells from which isosurfaces can be propagated by performing local search.
Basically, once the seed cells have been identi�ed, they claim to have a nearly
O(N2=3) expected performance. (Livnat et al. [19] estimate the worst-case running
time to be O(N), with a high memory overhead.) More recently, Bajaj et al. [3]
propose another contour propagation scheme, with expected performance of O(K).

Livnat et al. [19] propose NOISE, an O(
p
N +K)-time algorithm. Shen et al. [27,

28] also propose nearly optimal isosurface extraction methods.
The �rst optimal isosurface extraction algorithmwas given by Cignoni et al. [11],

based on the following two ideas. First, for each cell, they produce an interval
I = [min;max] where min and max are the minimum and maximum of the scalar
values in the cell vertices. Then the active cells are exactly those cells whose in-
tervals contain q. Searching active cells then amounts to performing the following
stabbing queries: Given a set of 1D intervals, report all intervals (and the associ-
ated cells) containing the given query point q. Secondly, the stabbing queries are
solved by using an internal-memory interval tree [12]. After an O(N logN)-time
preprocessing, active cells can be found in optimal O(logN +K) time.

All the isosurface techniques mentioned above are main-memory algorithms.
Except for the ine�cient exhaustive scanning method of Marching Cubes, all of
them require the time and main memory space to read and keep the entire dataset
in main memory, plus additional preprocessing time and main memory space to
build and keep the search structure. Unfortunately, for (usually) very large volume
datasets, these methods often su�er the problem of not having enough main mem-
ory, which can cause a major slow-down of the algorithms due to a large number of
page faults. Another issue is that the methods need to load the dataset into main
memory and build the search structure each time we start the running process.
This start-up cost can be very expensive since loading a large volume dataset from
disk is very time-consuming.
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1.3. Summary of External Memory Isosurface Techniques. In [8] we
give I/O-�lter, the �rst I/O-optimal technique for isosurface extraction. We follow
the ideas of Cignoni et al. [11], but use the I/O-optimal interval tree of Arge and
Vitter [2] as an indexing structure to solve the stabbing queries. This enables us
to �nd the active cells in optimal O(logB N +K=B) I/O's. We give the �rst imple-
mentation of the I/O interval tree (where the corner structure is not implemented,
which may result in non-optimal disk space and non-optimal query I/O cost in
the worst case), and also implement our method as an I/O �lter for the isosurface
extraction routine of Vtk [24, 25] (which is one of the currently best visualization
packages). The experiments show that the isosurface queries are faster than Vtk by
a factor of two orders of magnitude for datasets larger than main memory. In fact,
the search phase is no longer a bottleneck, and the performance is independent of
the main memory available. Also, the preprocessing is performed only once to build
an indexing structure in disk, and later on there is no start-up cost for running the
query process. The major drawback is the overhead in disk scratch space and the
preprocessing time necessary to build the search structure, and of the disk space
needed to hold the data structure.

In [9], we give the second version of I/O-�lter, by replacing the I/O interval
tree [2] with the metablock tree of Kanellakis et al. [16]. We give the �rst imple-
mentation of the metablock tree (where the corner structure is not implemented to
reduce the disk space; this may result in non-optimal query I/O cost in the worst
case). While keeping the query time the same as in [8], the tree construction time,
the disk space and the disk scratch space are all improved.

In [10], at the cost of slightly increasing the query time, we greatly improve
all the other cost measures. In the previous methods [8, 9], the direct vertex
information is duplicated many times; in [10], we avoid such duplications by em-
ploying a two-level indexing scheme. We use a new meta-cell technique and a new
I/O-optimal indexing data structure (the binary-blocked I/O interval tree) that is
simpler and more space-e�cient in practice (where the corner structure is not im-
plemented, which may result in non-optimal I/O cost for the stabbing queries in
the worst case). Rather than fetching only the active cells into main memory as in
I/O-�lter [8, 9], this method fetches the set of active meta-cells, which is a superset
of all active cells. While the query time is still at least one order of magnitude
faster than Vtk, the disk space is reduced from 7.2{7.7 times the original dataset
size to 1.1{1.5 times, and the disk scratch space is reduced from 10{16 times to less
than 2 times. Also, instead of being a single-cost indexing approach, the method
exhibits a smooth trade-o� between disk space and query time.

1.4. Organization of the Paper. The rest of the paper is organized as fol-
lows. In Section 2, we review the I/O-optimal data structures for stabbing queries,
namely the metablock tree [16] and the I/O interval tree [2] that are used in the two
versions of our I/O-�lter technique, and the binary-blocked I/O-interval tree [10]
that is used in our two-level indexing scheme. The preprocessing algorithms and
the implementation issues, together with the dynamization of the binary-blocked
I/O interval tree (which is not given in [10] and may be of independent interest; see
Section 2.3.3) are also discussed. We describe the I/O-�lter technique [8, 9] and
summarize the experimental results of both versions in Section 3. In Section 4 we
survey the two-level indexing scheme [10] together with the experimental results.
Finally we conclude the paper in Section 5.
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2. I/O Optimal Data Structures for Stabbing Queries

In this section we review the metablock tree [16], the I/O interval tree [2],
and the binary-blocked I/O interval tree [10]. The metablock tree is an external-
memory version of the priority search tree [21]. The static version of the metablock
tree is the �rst I/O-optimal data structure for static stabbing queries (where the set
of intervals is �xed); its dynamic version only supports insertions of intervals and
the update I/O cost is not optimal. The I/O interval tree is an external-memory
version of the main-memory interval tree [12]. In addition to being I/O-optimal
for the static version, the dynamic version of the I/O interval tree is the �rst I/O-
optimal fully dynamic data structure that also supports insertions and deletions of
intervals with optimal I/O cost. Both the metablock tree and the I/O interval tree
have three kinds of secondary lists and each interval is stored up to three times in
practice. Motivated by the practical concern on the disk space and the simplicity
of coding, the binary-blocked I/O interval tree is an alternative external-memory
version of the main-memory interval tree [12] with only two kinds of secondary
lists. In practice, each interval is stored twice and hence the tree is more space-
e�cient and simpler to implement. We remark that the powerful dynamization
techniques of [2] for dynamizing the I/O interval tree can also be applied to the
binary-blocked I/O interval tree to support I/O-optimal updates (amortized rather
than worst-case bounds as in the I/O interval tree | although we believe the
techniques of [2] can further turn the bounds into worst-case, we did not verify the
details. See Section 2.3.3). For our application of isosurface extraction, however,
we only need the static version, and thus all three trees are I/O-optimal. We only
describe the static version of the trees (but in addition we discuss the dynamization
of the binary-blocked I/O interval tree in Section 2.3.3). We also describe the
preprocessing algorithms that we used in [8, 9, 10] to build these static trees, and
discuss their implementation issues.

Ignoring the cell information associated with the intervals, we now use M and
B to respectively denote the numbers of intervals that �t in main memory and in
a disk block. Recall that N is the total number of intervals, and K is the number
of intervals reported from a query. We use Bf to denote the branching factor of a
tree.

2.1. Metablock Tree.
2.1.1. Data Structure. We briey review the metablock tree data structure [16],

which is an external-memory version of the priority search tree [21]. The stabbing
query problem is solved in the dual space, where each interval [left; right] is mapped
to a dual point (x; y) with x = left and y = right. Then the query \�nd intervals
[x; y] with x � q � y" amounts to the following two-sided orthogonal range query
in the dual space: report all dual points (x; y) lying in the intersection of the half
planes x � q and y � q. Observe that all intervals [left; right] have left � right,
and thus all dual points lie in the half plane x � y. Also, the \corner" induced by
the two sides of the query is the dual point (q; q), so all query corners lie on the
line x = y.

The metablock tree stores dual points in the same spirit as a priority search
tree, but increases the branching factor Bf from 2 to �(B) (so that the tree height
is reduced from O(log2N) to O(logB N)), and also stores Bf �B points in each tree
node. The main structure of a metablock tree is de�ned recursively as follows (see
Fig. 3(a)): if there are no more than Bf �B points, then all of them are assigned to
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Figure 3. A schematic example of metablock tree: (a) the main
structure; (b) the TS list. In (a), Bf = 3 and B = 2, so each node
has up to 6 points assigned to it. We relax the requirement that
each vertical slab have the same number of points.

the current node, which is a leaf; otherwise, the topmost Bf�B points are assigned to
the current node, and the remaining points are distributed by their x-coordinates
into Bf vertical slabs, each containing the same number of points. Now the Bf
subtrees of the current node are just the metablock trees de�ned on the Bf vertical
slabs. The Bf�1 slab boundaries are stored in the current node as keys for deciding
which child to go during a search. Notice that each internal node has no more than
Bf children, and there are Bf blocks of points assigned to it. For each node, the
points assigned to it are stored twice, respectively in two lists in disk of the same
size: the horizontal list, where the points are horizontally blocked and stored sorted
by decreasing y-coordinates, and the vertical list, where the points are vertically
blocked and stored sorted by increasing x-coordinates. We use unique dual point
ID's to break a tie. Each node has two pointers to its horizontal and vertical lists.
Also, the \bottom"(i.e., the y-value of the bottommost point) of the horizontal list
is stored in the node.

The second piece of organization is the TS list maintained in disk for each node
U (see Fig. 3(b)): the list TS(U) has at most Bf blocks, storing the topmost Bf
blocks of points from all left siblings of U (if there are fewer than Bf � B points
then all of them are stored in TS(U)). The points in the TS list are horizontally
blocked, stored sorted by decreasing y-coordinates. Again each node has a pointer
to its TS list, and also stores the \bottom" of the TS list.

The �nal piece of organization is the corner structure. A corner structure
can store t = O(B2) points in optimal O(t=B) disk blocks, so that a two-sided
orthogonal range query can be answered in optimal O(k=B + 1) I/O's, where k
is the number of points reported. Assuming all t points can �t in main memory
during preprocessing, a corner structure can be built in optimal O(t=B) I/O's. We
refer to [16] for more details. In a metablock tree, for each node U where a query
corner can possibly lie, a corner structure is built for the (� Bf �B = O(B2)) points
assigned to U (recall that Bf = �(B)). Since any query corner must lie on the line
x = y, each of the following nodes needs a corner structure: (1) the leaves, and (2)
the nodes in the rightmost root-to-leaf path, including the root (see Fig. 3(a)). It is
easy to see that the entire metablock tree has height O(logBf(N=B)) = O(logB N)
and uses optimal O(N=B) blocks of disk space [16]. Also, it can be seen that the
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corner structures are additional structures to the metablock tree; we can save some
storage space by not implementing the corner structures (at the cost of increasing
the worst-case query bound; see Section 2.1.2).

As we shall see in Section 2.1.3, we will slightly modify the de�nition of the
metablock tree to ease the task of preprocessing, while keeping the bounds of tree
height and tree storage space the same.

2.1.2. Query Algorithm. Now we review the query algorithm given in [16].
Given a query value q, we perform the following recursive procedure starting with
meta-query (q, the root of the metablock tree). Recall that we want to report all
dual points lying in x � q and y � q. We maintain the invariant that the current
node U being visited always has its x-range containing the vertical line x = q.

Procedure meta-query (query q, node U)

1. If U contains the corner of q, i.e., the bottom of the horizontal list of U is
lower than the horizontal line y = q, then use the corner structure of U to
answer the query and stop.

2. Otherwise (y(bottom(U)) � q), all points of U are above or on the horizontal
line y = q. Report all points of U that are on or to the left of the vertical
line x = q, using the vertical list of U .

3. Find the child Uc (of U) whose x-range contains the vertical line x = q. The
node Uc will be the next node to be recursively visited by meta-query.

4. Before recursively visiting Uc, take care of the left-sibling subtrees of Uc �rst
(points in all these subtrees are on or to the left of the vertical line x = q,
and thus it su�ces to just check their heights):
(a) If the bottom of TS(Uc) is lower than the horizontal line y = q, then
report the points in TS(Uc) that lie inside the query range. Go to step 5.
(b) Else, for each left sibling W of Uc, repeatedly call procedure H-report
(query q, node W ). (H-report is another recursive procedure given below.)

5. Recursively call meta-query (query q, node Uc).

H-report is another recursive procedure for which we maintain the invariant
that the current node W being visited have all its points lying on or to the left of
the vertical line x = q, and thus we only need to consider the condition y � q.

Procedure H-report (query q, node W )

1. Use the horizontal list of W to report all points of W lying on or above the
horizontal line y = q.

2. If the bottom of W is lower than the line y = q then stop.
Otherwise, for each child V of W , repeatedly call H-report (query q, node
V ) recursively.

It can be shown that the queries are performed in optimal O(logB N + K
B )

I/O's [16]. We remark that only one node in the search path would possibly use its
corner structure to report its points lying in the query range since there is at most
one node containing the query corner (q; q). If we do not implement the corner
structure, then step 1 of Procedure meta-query can still be performed by checking
the vertical list of U up to the point where the current point lies to the right of the
vertical line x = q and reporting all points thus checked with y � q. This might
perform extra Bf I/O's to examine the entire vertical list without reporting any
point, and hence is not optimal. However, if K � � � (Bf � B) for some constant
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� < 1 then this is still worst-case I/O-optimal since we need to perform 
(Bf) I/O's
to just report the answer.

2.1.3. Preprocessing Algorithms. Now we describe a preprocessing algorithm
proposed in [9] to build the metablock tree. It is based on a paradigm we call
scan and distribute, inspired by the distribution sweep I/O technique [6, 13]. The
algorithm relies on a slight modi�cation of the de�nition of the tree.

In the original de�nition of the metablock tree, the vertical slabs for the subtrees
of the current node are de�ned by dividing the remaining points not assigned to the
current node into Bf groups. This makes the distribution of the points into the slabs
more di�cult, since in order to assign the topmost Bf blocks to the current node
we have to sort the points by y-values, and yet the slab boundaries (x-values) from
the remaining points cannot be directly decided. There is a simple way around it:
we �rst sort all N points by increasing x-values into a �xed set X . Now X is used
to decide the slab boundaries: the root corresponds to the entire x-range of X , and
each child of the root corresponds to an x-range spanned by consecutive jX j=Bf
points in X , and so on. In this way, the slab boundaries of the entire metablock
tree is pre-�xed, and the tree height is still O(logB N).

With this modi�cation, it is easy to apply the scan and distribute paradigm.
In the �rst phase, we sort all points into the set X as above and also sort all points
by decreasing y-values into a set Y . Now the second phase is a recursive procedure.
We assign the �rst Bf blocks in the set Y to the root (and build its horizontal and
vertical lists), and scan the remaining points to distribute them to the vertical slabs
of the root. For each vertical slab we maintain a temporary list, which keeps one
block in main memory as a bu�er and the remaining blocks in disk. Each time a
point is distributed to a slab, we put that point into the corresponding bu�er; when
the bu�er is full, it is written to the corresponding list in disk. When all points
are scanned and distributed, each temporary list has all its points, automatically
sorted by decreasing y. Now we build the TS lists for child nodes U0, U1; � � �
numbered left to right. Starting from U1, TS(Ui) is computed by merging two
sorted lists in decreasing y and taking the �rst Bf blocks, where the two lists are
TS(Ui�1) and the temporary list for slab i� 1, both sorted in decreasing y. Note
that for the initial condition TS(U0) = ;. (It su�ces to consider TS(Ui�1) to take
care of all points in slabs 0; 1; � � � ; i� 2 that can possibly enter TS(Ui), since each
TS list contains up to Bf blocks of points.) After this, we apply the procedure
recursively to each slab. When the current slab contains no more than Bf blocks of
points, the current node is a leaf and we stop. The corner structures can be built
for appropriate nodes as the recursive procedure goes. It is easy to see that the
entire process uses O(NB logB N) I/O's. Using the same technique that turns the

nearly-optimal O(NB logB N) bound to optimal in building the static I/O interval

tree [1], we can turn this nearly-optimal bound to optimal O(NB logM
B

N
B ). (For the

metablock tree, this technique basically builds a �(M=B)-fan-out tree and converts
it into a �(B)-fan-out tree during the tree construction; we omit the details here.)
Another I/O-optimal preprocessing algorithm is described in [9].

2.2. I/O Interval Tree. In this section we describe the I/O interval tree [2].
Since the I/O interval tree and the binary-blocked I/O interval tree [10] (see Sec-
tion 2.3) are both external-memory versions of the (main memory) binary interval
tree [12], we �rst review the binary interval tree T .
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Given a set of N intervals, such interval tree T is de�ned recursively as follows.
If there is only one interval, then the current node r is a leaf containing that
interval. Otherwise, r stores as a key the median value m that partitions the
interval endpoints into two slabs, each having the same number of endpoints that
are smaller (resp. larger) than m. The intervals that contain m are assigned to
the node r. The intervals with both endpoints smaller than m are assigned to the
left slab; similarly, the intervals with both endpoints larger than m are assigned
to the right slab. The left and right subtrees of r are recursively de�ned as the
interval trees on the intervals in the left and right slabs, respectively. In addition,
each internal node u of T has two secondary lists: the left list, which stores the
intervals assigned to u, sorted in increasing left endpoint values, and the right list,
which stores the same set of intervals, sorted in decreasing right endpoint values. It
is easy to see that the tree height is O(log2N). Also, each interval is assigned to
exactly one node, and is stored either twice (when assigned to an internal node) or
once (when assigned to a leaf), and thus the overall space is O(N).

To perform a query for a query point q, we apply the following recursive process
starting from the root of T . For the current node u, if q lies in the left slab of u, we
check the left list of u, reporting the intervals sequentially from the list until the
�rst interval is reached whose left endpoint value is larger than q. At this point we
stop checking the left list since the remaining intervals are all to the right of q and
cannot contain q. We then visit the left child of u and perform the same process
recursively. If q lies in the right slab of u then we check the right list in a similar
way and then visit the right child of u recursively. It is easy to see that the query
time is optimal O(log2N +K).

2.2.1. Data Structure. Now we review the I/O interval tree data structure [2].
Each node of the tree is one block in disk, capable of holding �(B) items. The main
goal is to increase the tree fan-out Bf so that the tree height is O(logB N) rather
than O(log2N). In addition to having left and right lists, a new kind of secondary
lists, the multi lists, is introduced, to store the intervals assigned to an internal
node u that completely span one or more vertical slabs associated with u. Notice
that when Bf = 2 (i.e., in the binary interval tree) there are only two vertical slabs
associated with u and thus no slab is completely spanned by any interval. As we
shall see below, there are �(Bf 2) multi lists associated with u, requiring �(Bf 2)

pointers from u to the secondary lists, therefore Bf is taken to be �(
p
B).

We describe the I/O interval tree in more details. Let E be the set of 2N
endpoints of all N intervals, sorted from left to right in increasing values; E is
pre-�xed and will be used to de�ne the slab boundaries for each internal node of
the tree. Let S be the set of all N intervals. The I/O interval tree on S and E
is de�ned recursively as follows. The root u is associated with the entire range of
E and with all intervals in S. If S has no more than B intervals, then u is a leaf
storing all intervals of S. Otherwise u is an internal node. We evenly divide E into
Bf slabs E0; E1; � � � ; EBf�1, each containing the same number of endpoints. The
Bf�1 slab boundaries are the �rst endpoints of slabs E1; � � � ; EBf�1; we store these
slab boundaries in u as keys. Now consider each interval I in S (see Fig. 4). If
I crosses one or more slab boundaries of u, then I is assigned to u and is stored
in the secondary lists of u. Otherwise I completely lies inside some slab Ei and is
assigned to the subset Si of S. We associate each child ui of u with the slab Ei and
with the set Si of intervals. The subtree rooted at ui is recursively de�ned as the
I/O interval tree on Ei and Si.
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E0 E1 E2 E3 E4

S0 S1 S2 S3 S4

I4
I5

I0 I1
I2

I3 I6
I7

u0 u1 u2 u3 u4

u

slabs:

multi-slabs:
[1, 1]
[1, 2]
[1, 3]
[2, 2]
[2, 3]
[3, 3]

E0 ~ E4

Figure 4. A schematic example of the I/O interval tree for the
branching factor Bf = 5. Note that this is not a complete ex-
ample and some intervals are not shown. Consider only the in-
tervals shown here and node u. The interval sets for its children
are: S0 = fI0g, and S1 = S2 = S3 = S4 = ;. Its left lists are:
left(0) = (I2; I7), left(1) = (I1; I3), left(2) = (I4; I5; I6), and
left(3) = left(4) = ; (each list is an ordered list as shown). Its
right lists are: right(0) = right(1) = ;, right(2) = (I1; I2; I3),
right(3) = (I5; I7), and right(4) = (I4; I6) (again each list is an
ordered list as shown). Its multi lists are: multi([1; 1]) = fI2g,
multi([1; 2]) = fI7g, multi([1; 3]) = multi([2; 2]) = multi([2; 3]) =
;, and multi([3; 3]) = fI4; I6g.

For each internal node u, we use three kinds of secondary lists for storing the
intervals assigned to u: the left, right and multi lists, described as follows.

For each of the Bf slabs associated with u, there is a left list and a right list;
the left list stores all intervals belonging to u whose left endpoints lie in that slab,
sorted in increasing left endpoint values. The right list is symmetric, storing all
intervals belonging to u whose right endpoints lie in that slab, sorted in decreasing
right endpoint values (see Fig. 4).

Now we describe the third kind of secondary lists, the multi lists. There are
(Bf � 1)(Bf � 2)=2 multi lists for u, each corresponding to a multi-slab of u. A
multi-slab [i; j], 0 � i � j � Bf � 1, is de�ned to be the union of slabs Ei; � � � ; Ej .
The multi list for the multi-slab [i; j] stores all intervals of u that completely span
Ei [ � � � [ Ej , i.e., all intervals of u whose left endpoints lie in Ei�1 and whose
right endpoints lie in Ej+1. Since the multi lists [0; k] for any k and the multi lists
[`;Bf�1] for any ` are always empty by the de�nition, we only care about multi-slabs
[1; 1]; � � � ; [1;Bf�2]; [2; 2]; � � � ; [2;Bf�2]; � � � ; [i; i]; � � � ; [i;Bf�2]; � � � ; [Bf�2;Bf�2].
Thus there are (Bf � 1)(Bf � 2)=2 such multi-slabs and the associated multi lists
(see Fig. 4).

For each left, right, or multi list, we store the entire list in consecutive blocks in
disk, and in the node u (occupying one disk block) we store a pointer to the starting
position of the list in disk. Since in u there are O(Bf 2) = O(B) such pointers, they
can all �t into one disk block, as desired.
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It is easy to see that the tree height is O(logBf(N=B)) = O(logB N). Also,
each interval I belongs to exactly one node, and is stored at most three times. If
I belongs to a leaf node, then it is stored only once; if it belongs to an internal
node, then it is stored once in some left list, once in some right list, and possibly
one more time in some multi list. Therefore we need roughly O(N=B) disk blocks
to store the entire data structure.

Theoretically, however, we may need more disk blocks. The problem is because
of the multi lists. In the worst case, a multi list may have only very few (<< B)
intervals in it, but still requires one disk block for storage. The same situation may
occur also for the left and right lists, but since each internal node has Bf left/right
lists and the same number of children, these underow blocks can be charged to
the child nodes. But since there are O(Bf 2) multi lists for an internal node, this
charging argument does not work for the multi lists. In [2], the problem is solved
by using the corner structure of [16] that we mentioned at the end of Section 2.1.1.

The usage of the corner structure in the I/O interval tree is as follows. For each
of the O(Bf 2) multi lists of an internal node, if there are at least B=2 intervals,
we directly store the list in disk as before; otherwise, the (< B=2) intervals are
maintained in a corner structure associated with the internal node. Observe that
there are O(B2) intervals maintained in a corner structure. Assuming that all such
O(B2) intervals can �t in main memory, the corner structure can be built with
optimal I/O's (see Section 2.1.1). In summary, the height of the I/O interval tree
is O(logB N), and using the corner structure, the space needed is O(N=B) blocks
in disk, which is worst-case optimal.

2.2.2. Query Algorithm. We now review the query algorithm given in [2], which
is very simple. Given a query value q, we perform the following recursive process
starting from the root of the interval tree. For the current node u that we want to
visit, we read it from disk. If u is a leaf, we just check the O(B) intervals stored in
u, report those intervals containing q and stop. If u is an internal node, we perform
a binary search for q on the keys (slab boundaries) stored in u to identify the slab
Ei containing q. Now we want to report all intervals belonging to u that contain q.
We check the left list associated with Ei, report the intervals sequentially until we
reach some interval whose left endpoint value is larger than q. Recall that each left
list is sorted by increasing left endpoint values. Similarly, we check the right list
associated with Ei. This takes care of all intervals belonging to u whose endpoints
lie in Ei. Now we also need to report all intervals that completely span Ei. We
carry out this task by reporting the intervals in the multi lists multi([`; r]), where
1 � ` � i and i � r � Bf�2. Finally, we visit the i-th child ui of u, and recursively
perform the same process on ui.

Since the height of the tree is O(logB N), we only visit O(logB N) nodes of
the tree. We also visit the left, right, and multi lists for reporting intervals. Let
us discuss the theoretically worst-case situations about the underow blocks in the
lists. An underow block in the left or right list is �ne. Since we only visit one left
list and one right list per internal node, we can charge this O(1) I/O cost to that
internal node. But this charging argument does not work for the multi lists, since
we may visit �(B) multi lists for an internal node. This problem is again solved
in [2] by using the corner structure of [16] as mentioned at the end of Section 2.2.1.
The underow multi lists of an internal node u are not accessed, but are collectively
taken care of by performing a query on the corner structure of u. Thus the query
algorithm achieves O(logB N +K=B) I/O operations, which is worst-case optimal.
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Figure 5. Intuition of a binary-blocked I/O interval tree T : each
circle is a node in the binary interval tree T , and each rectangle,
which blocks a subtree of T , is a node of T .

2.2.3. Preprocessing Algorithms. In [8] we used the scan and distribute par-
adigm to build the I/O interval tree. Since the algorithmic and implementation
issues of the method are similar to those of the preprocessing method for the
binary-blocked I/O interval tree [10], we omit the description here and refer to
Section 2.3.4. Other I/O-optimal preprocessing algorithms for the I/O interval tree
are described in [8].

2.3. Binary-Blocked I/O Interval Tree. Now we present our binary-blocked
I/O interval tree [10]. It is an external-memory extension of the (main memory)
binary interval tree [12]. Similar to the I/O interval tree [2] (see Section 2.2), the
tree height is reduced from O(log2N) to O(logB N), but the branching factor Bf

is �(B) rather than �(
p
B). Also, the tree does not introduce any multi lists, so

it is simpler to implement and also is more space-e�cient (by a factor of 2/3) in
practice.

2.3.1. Data Structure. Recall the binary interval tree [12], denoted by T , de-
scribed at the beginning of Section 2.2. We use T to denote our binary-blocked
I/O interval tree. Each node in T is one disk block, capable of holding B items.
We want to increase the branching factor Bf so that the tree height is O(logB N).
The intuition of our method is extremely simple | we block a subtree of the binary
interval tree T into one node of T (see Fig. 5). In the following, we refer to the
nodes of T as small nodes. We take Bf to be �(B). Then in an internal node of
T , there are Bf � 1 small nodes, each having a key, a pointer to its left list and a
pointer to its right list, where all left and right lists are stored in disk.

Now we give a more formal de�nition of the tree T . First, we sort all left
endpoints of the N intervals in increasing order from left to right, into a set E. We
use interval ID's to break ties. The set E is used to de�ne the keys in small nodes.
Then T is recursively de�ned as follows. If there are no more than B intervals, then
the current node u is a leaf node storing all intervals. Otherwise, u is an internal
node. We take Bf� 1 median values from E, which partition E into Bf slabs, each
with the same number of endpoints. We store sorted, in non-decreasing order, these
Bf � 1 median values in the node u, which serve as the keys of the Bf � 1 small
nodes in u. We implicitly build a subtree of T on these Bf � 1 small nodes, by a
binary-search scheme as follows. The root key is the median of the Bf � 1 sorted
keys, the key of the left child of the root is the median of the lower half keys, and
the right-child key is the median of the upper half keys, and so on. Now consider
the intervals. The intervals that contain one or more keys of u are assigned to u.
In fact, each such interval I is assigned to the highest small node (in the subtree in
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u) whose key is contained in I ; we store I in the corresponding left and right lists
of that small node in u. For the remaining intervals, each has both endpoints in
the same slab and is assigned to that slab. We recursively de�ne the Bf subtrees of
the node u as the binary-blocked I/O interval trees on the intervals in the Bf slabs.

Notice that with the above binary-search scheme for implicitly building a
(sub)tree on the keys stored in an internal node u, Bf does not need to be a power
of 2 | we can make Bf as large as possible, as long as the Bf�1 keys, the 2(Bf�1)
pointers to the left and right lists, and the Bf pointers to the children, etc., can all
�t into one disk block.

It is easy to see that T has height O(logB N): T is de�ned on the set E with
N left endpoints, and is perfectly balanced with Bf = �(B). To analyze the space
complexity, observe that there are no more than N=B leaves and thus O(N=B) disk
blocks for the tree nodes of T . For the secondary lists, as in the binary interval tree
T , each interval is stored either once or twice. The only issue is that a left (right)
list may have very few (<< B) intervals but still needs one disk block for storage.
We observe that an internal node u has 2(Bf� 1) left plus right lists, i.e., at most
O(Bf) such underfull blocks. But u also has Bf children, and thus we can charge
the underfull blocks to the child blocks. Therefore the overall space complexity is
optimal O(N=B) disk blocks.

As we shall see in Section 2.3.2, the above data structure supports queries in
non-optimalO(log2

N
B+K=B) I/O's, and we can use the corner structures to achieve

optimal O(logB N +K=B) I/O's while keeping the space complexity optimal.
2.3.2. Query Algorithm. The query algorithm for the binary-blocked I/O in-

terval tree T is very simple and mimics the query algorithm for the binary interval
tree T . Given a query point q, we perform the following recursive process starting
from the root of T . For the current node u, we read u from disk. Now consider the
subtree Tu implicitly built on the small nodes in u by the binary-search scheme.
Using the same binary-search scheme, we follow a root-to-leaf path in Tu. Let r be
the current small node of Tu being visited, with key value m. If q = m, then we
report all intervals in the left (or equivalently, right) list of r and stop. (We can
stop here for the following reasons. (1) Even some descendent of r has the same
key value m, such descendent must have empty left and right lists, since if there are
intervals containing m, they must be assigned to r (or some small node higher than
r) before being assigned to that descendent. (2) For any non-empty descendent of
r, the stored intervals are either entirely to the left or entirely to the right of m = q,
and thus cannot contain q.) If q < m, we scan and report the intervals in the left
list of r, until the �rst interval with the left endpoint larger than q is encountered.
Recall that the left lists are sorted by increasing left endpoint values. After that,
we proceed to the left child of r in Tu. Similarly, if q > m, we scan and report the
intervals in the right list of r, until the �rst interval with the right endpoint smaller
than q is encountered. Then we proceed to the right child of r in Tu. At the end,
if q is not equal to any key in Tu, the binary search on the Bf � 1 keys locates q
in one of the Bf slabs. We then visit the child node of u in T which corresponds
to that slab, and apply the same process recursively. Finally, when we reach a leaf
node of T , we check the O(B) intervals stored to report those that contain q, and
stop.

Since the height of the tree T is O(logB N), we only visit O(logBN) nodes of T .
We also visit the left and right lists for reporting intervals. Since we always report
the intervals in an output-sensitive way, this reporting cost is roughly O(K=B).
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However, it is possible that we spend one I/O to read the �rst block of a left/right
list but only very few (<< B) intervals are reported. In the worst case, all left/right
lists visited result in such underfull reported blocks and this I/O cost is O(log2

N
B ),

because we visit one left or right list per small node and the total number of small
nodes visited is O(log2

N
B ) (this is the height of the balanced binary interval tree T

obtained by \concatenating" the small-node subtrees Tu's in all internal nodes u's
of T ). Therefore the overall worst-case I/O cost is O(log2

N
B +K=B).

We can improve the worst-case I/O query bound by using the corner struc-
ture [16] mentioned at the end of Section 2.1.1. The idea is to check a left/right
list from disk only when at least one full block is reported; the underfull reported
blocks are collectively taken care of by the corner structure.

For each internal node u of T , we remove the �rst block from each left and right
lists of each small node in u, and collect all these removed intervals (with dupli-
cations eliminated) into a single corner structure associated with u (if a left/right
list has no more than B intervals then the list becomes empty). We also store in u
a \guarding value" for each left/right list of u. For a left list, this guarding value
is the smallest left endpoint value among the remaining intervals still kept in the
left list (i.e., the (B + 1)-st smallest left endpoint value in the original left list);
for a right list, this value is the largest right endpoint value among the remain-
ing intervals kept (i.e., the (B + 1)-st largest right endpoint value in the original
right list). Recall that each left list is sorted by increasing left endpoint values
and symmetrically for each right list. Observe that u has 2(Bf � 1) left and right
lists and Bf = �(B), so the corner structure of u has O(B2) intervals, satisfying
the restriction for the corner structure (see Section 2.1.1). Also, the overall space
needed is still optimal O(N=B) disk blocks.

The query algorithm is basically the same as before, with the following modi�-
cation. If the current node u of T is an internal node, then we �rst query the corner
structure of u. A left list of u is checked from disk only when the query value q is
larger than or equal to the guarding value of that list; similarly for the right list. In
this way, although a left/right list might be checked using one I/O to report very
few (<< B) intervals, it is ensured that in this case the original �rst block of that
list is also reported, from the corner structure of u. Therefore we can charge this
one underow I/O cost to the one I/O cost needed to report such �rst full block.
This means that the overall underow I/O cost can be charged to the K=B term of
the reporting cost, so that the overall query I/O cost is optimal O(logB N +K=B).

2.3.3. Dynamization. As a detour from our application of isosurface extraction
which only needs the static version of the tree, we now discuss the ideas on how
to apply the dynamization techniques of [2] to the binary-blocked I/O interval tree
T so that it also supports insertions and deletions of intervals each in optimal
O(logB N) I/O's amortized (we believe that the bounds can further be turned into
worst-case, as discussed in [2], but we did not verify the details).

The �rst step is to assume that all intervals have left endpoints in a �xed set
E of N points. (This assumption will be removed later.) Each left/right list is now
stored in a B-tree so that each insertion/deletion of an interval on a secondary list
can be done in O(logB N) I/O's. We slightly modify the way we use the guarding
values and the corner structure of an internal node u of T mentioned at the end
of Section 2.3.2: instead of putting the �rst B intervals of each left/right list into
the corner structure, we put between B=4 and B intervals. For each left/right list
L, we keep track of how many of its intervals are actually stored in the corner



16 YI-JEN CHIANG AND CL�AUDIO T. SILVA

structure; we denote this number by C(L). When an interval I is to be inserted to
a node u of T , we insert I to its destination left and right lists in u, by checking
the corresponding guarding values to actually insert I to the corner structure or
to the list(s). Some care must be taken to make sure that no interval is inserted
twice to the corner structure. Notice that each insertion/deletion on the corner
structure needs amortized O(1) I/O's [16]. When a left/right list L has B intervals
stored in the corner structure (i.e., C(L) = B), we update the corner structure, the
list L and its guarding value so that only the �rst B=2 intervals of L are actually
placed in the corner structure. The update to the corner structure is performed by
rebuilding it, in O(B) I/O's; the update to the list L is done by inserting the extra
B=2 intervals (coming from the corner structure) to L, in O(B logB N) I/O's. We
perform deletions in a similar way, where an adjustment of the guarding value of L
occurs when L has only B=4 intervals in the corner structure (i.e., C(L) = B=4),
in which case we delete the �rst B=4 intervals from L and insert them to the
corner structure to make C(L) = B=2 (C(L) < B=2 if L stores less than B=4
intervals before the adjustment), using O(B logB N) I/O's. Observe that between
two O(B logB N)-cost updates there must be already 
(B) updates, so each update
needs amortized O(logB N) I/O's.

Now we show how to remove the assumption that all intervals have left end-
points in a �xed set E, by using the weight-balanced B-tree developed in [2]. This
is basically the same as the dynamization step of the I/O interval tree [2]; only the
details for the rebalancing operations di�er.

A weight-balanced B-tree has a branching parameter a and a leaf parameter
k, such that all leaves have the same depth and have weight �(k), and that each
internal node on level l (leaves are on level 0) has weight �(alk), where the weight
of a leaf is the number of items stored in the leaf and the weight of an internal node
u is the sum of the weights of the leaves in the subtree rooted at u (items de�ning
the weights are stored only in the leaves). For our application on the binary-blocked
I/O interval tree, we choose the maximum number of children of an internal node,
4a, to be Bf (= �(B)), and the maximum number of items stored in a leaf, 2k, to
be B. The leaves collectively store all N left endpoints of the intervals to de�ne
the weight of each node, and each node is one disk block. With these parameter
values, the tree uses O(N=B) disk blocks, and supports searches and insertions
each in O(logB N) worst-case I/O's [2]. As used in [2], this weight-balanced B-tree
serves as the base tree of our binary-blocked I/O interval tree. Rebalancing of the
base tree during an insertion is carried out by splitting nodes, where each split
takes O(1) I/O's and there are O(logB N) splits (on the nodes along a leaf-to-root
path). A key property is that after a node of weight w splits, it will split again only
after another 
(w) insertions [2]. Therefore, our goal is to split a node of weight
w, including updating the secondary lists involved, in O(w) I/O's, so that each
split uses amortized O(1) I/O's and thus the overall insertion cost is O(logB N)
amortized I/O's.

Suppose we want to split a node u on level l. Its weight w = �(alk) = �(Bl+1).
As considered in [2], we split u into two new nodes u0 and u00 along a slab boundary
b of u, such that all children of u to the left of b belong to u0 and the remaining
children of u, which are to the right of b, belong to u00. The node u is replaced by u0

and u00, and b becomes a new slab boundary in parent(u), separating the two new
adjacent slabs corresponding to u0 and u00. To update the corresponding secondary
lists, recall that the intervals belonging to u are distributed to the left/right lists of
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the small nodes of u by a binary-search scheme, where the keys of the small nodes
are the slab boundaries of u, and the small-node tree Tu of u is implicitly de�ned
by the binary-search scheme. Here we slightly modify this, by just specifying the
small-node tree Tu, which then guides the search scheme (so if Tu is not perfectly
balanced, the search on the keys is not a usual binary search). Now, we have to re-
distribute the intervals of u, so that those containing b are �rst put to parent(u),
and those to the left of b are put to u0 and the rest put to u00. To do so, we
�rst merge all left lists of u to get all intervals of u sorted by the left endpoints.
Actually, we need one more list to participate in the merging, namely the list of
those intervals stored in the corner structure of u, sorted by the left endpoints.
This corner-structure list is easily produced by reading the intervals of the corner
structure into main memory and performing an internal sorting. After the merging
is done, we scan through the sorted list and re-distribute the intervals of u by using
a new small-node tree Tu of u where b is the root key and the left and right subtrees
of b are the small-node trees Tu0 and Tu00 inside the nodes u0 and u00. This takes
care of all left lists of u0 and u00, each automatically sorted by the left endpoints,
and also decides the set Sb of intervals that have to be moved to parent(u). We
construct the right lists in u0 and u00 in a similar way. We build the corner structures
of u0 and u00 appropriately, by putting the �rst B=2 intervals of each left/right list
(or the entire list if its size is less than B=2) to the related corner structure. Since
each interval belonging to u has its left endpoint inside the slab associated with
u, the total number of such intervals is O(w), and thus we perform O(w=B) I/O's
in this step. Note that during the merging, we may have to spend one I/O to
read an underfull left/right list (i.e., a list storing << B intervals), resulting in a
total of O(B) I/O's for the underfull lists. But for an internal node u, its weight
w = �(Bl+1) with l � 1, so the O(B) term is dominated by the O(w=B) term. (If
u is a leaf then there are no left/right lists.) This completes the operations on the
nodes u0 and u00.

We also need to update parent(u). First, the intervals in Sb have to be moved
to parent(u). Also, b becomes a new slab boundary in parent(u), and we have to
re-distribute the intervals of parent(u), including those in Sb, against a new small-
node tree Tparent(u) in which b is the key of some small node. We again consider
the left lists and the right lists separately as before. Notice that we get two lists for
Sb from the previous step, sorted respectively by the left and the right endpoints.
Since parent(u) has weight �(al+1k) = �(Bw), updating parent(u) takes O(w)
I/O's. The overall update cost for splitting u is thus O(w) I/O's, as desired.

We remark that in the case of the I/O interval tree [2], updating parent(u) only
needs O(w=B) I/O's, which is better than needed. Alternatively, we can simplify
our task of updating parent(u) by always putting the new slab boundary b as a leaf
of the small-node tree Tparent(u). In this way, the original intervals of parent(u) do
not need to be re-distributed, and we only need to attach the left and right lists of
Sb into parent(u). Again, we need to insert the �rst B=2 intervals of the two lists
(removing duplications) to the corner structure of parent(u), using O(B) I/O's by
simply rebuilding the corner structure. For u being a leaf, the overall I/O cost for
splitting u is O(1+B) = O(w) (recall that w = �(Bl+1)), and for u being an internal
node, such I/O cost is O(w=B+B) = O(w=B). We remark that although the small-
node trees (e.g., Tparent(u)) may become very unbalanced, our optimal query I/O
bound and all other performance bounds are not a�ected, since they do not depend
on the small-node trees being balanced. Finally, the deletions are performed by
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lazy deletions, with the rebalancing carried out by a global rebuilding, as described
in [2]. The same amortized bound carries over. In summary, our binary-blocked
I/O interval tree can support insertions and deletions of intervals each in optimal
O(logB N) I/O's amortized, with all the other performance bounds unchanged.

2.3.4. Preprocessing Algorithm. Now we return to the static version of the tree
T . In [10] we again use the scan and distribute preprocessing algorithm to build
the tree. The algorithm follows the de�nition of T given in Section 2.3.1.

In the �rst phase, we sort (using external sorting) all N input intervals in
increasing left endpoint values from left to right, into a set S. We use interval ID's
to break a tie. We also copy the left endpoints, in the same sorted order, from S
to a set E. The set E is used to de�ne the median values to partition E into slabs
throughout the process.

The second phase is a recursive process. If there are no more than B intervals,
then we make the current node u a leaf, store all intervals in u and stop. Otherwise,
u is an internal node. We �rst take the Bf� 1 median values from E that partition
E into Bf slabs, each containing the same number of endpoints. We store sorted
in u, in non-decreasing order from left to right, these median values as the keys
in the small nodes of u. We now scan all intervals (from S) to distribute them to
the node u or to one of the Bf slabs. We maintain a temporary list for u, and also
a temporary list for each of the Bf slabs. For each temporary list, we keep one
block in main memory as a bu�er, and keep the remaining blocks in disk. Each
time an interval is distribute to the node u or to a slab, we put that interval to the
corresponding bu�er; when a bu�er is full, it is written to the corresponding list in
disk. The distribution of each interval I is carried out by the binary-search scheme
described in Section 2.3.1, which implicitly de�nes a balanced binary tree Tu on the
Bf� 1 keys and the corresponding small nodes in u. We perform this binary search
on these keys to �nd the highest small node r whose key is contained in I , in which
case we assign I to small node r (and also to the current node u), by appending the
small node ID of r to I and putting it to the temporary list for the node u, or to
�nd that no such small node exists and both endpoints of I lie in the same slab, in
which case we distribute I to that slab by putting I to the corresponding temporary
list. When all intervals in S are scanned and distributed, each temporary list has
all its intervals, automatically sorted in increasing left endpoint values. Now we
sort the intervals belonging to the node u by the small node ID as the �rst key
and the left endpoint value as the second key, in increasing order, so that intervals
assigned to the same small node are put together, sorted in increasing left endpoint
values. We read o� these intervals to set up the left lists of all small nodes in u.
Then we copy each such left list to its corresponding right list, and sort the right
list by decreasing right endpoint values. The corner structure of u, if we want to
construct, can be built at this point. This completes the construction of u. Finally,
we perform the process recursively on each of the Bf slabs, using the intervals in
the corresponding temporary list as input, to build each subtree of the node u.

We remark that in the above scan and distribute process, instead of keeping all
intervals assigned to the current node u in one temporary list, we could maintain
Bf � 1 temporary lists for the Bf � 1 small nodes of u. This would eliminate
the subsequent sorting by the small node ID's, which is used to re-distribute the
intervals of u into individual small nodes. But as we shall see in Section 2.4, our
method is used to address the system issue that a process cannot open too many
�les simultaneously, while avoiding a blow-up in disk scratch space.
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It is easy to see that the entire process uses O(NB logB N) I/O's, which is nearly
optimal. To make a theoretical improvement, we can view the above algorithm as
processing �(log2B) levels of the binary interval tree T at a time. By process-
ing �(log2

M
B ) levels at a time, we achieve the theoretically optimal I/O bound

O(NB logM
B

N
B ). This is similar to the tree-height conversion method of [1] that

turns the nearly-optimal I/O bound to optimal for the scan and distribute algo-
rithm that builds the I/O interval tree of [2].

2.4. Implementing the Scan and Distribute Preprocessing Algorithms.
There is an interesting issue associated with the implementation of the scan and
distribute preprocessing algorithms. We use the binary-blocked I/O interval tree as
an illustrating example. Recall from Section 2.3.4 that during one pass of scan and
distribute, there are Bf temporary lists for the Bf child slabs and one additional
temporary list for the current node u; all these lists grow simultaneously while
we distribute intervals to them. If we use one �le for each temporary list, then
all these Bf + 1 �les (where Bf = 170 in our implementation) have to be open at
the same time. Unfortunately, there is a hard limit, imposed by the OS, on the
number of �les a process can open at the same time. This number is given by the
system parameter OPEN MAX, which in older versions of UNIX was 20 and in many
systems was increased to 64. Certainly we can not simultaneously open a �le for
each temporary list.

We solve this problem by using a single scratch �le dataset.intvl temp to
collect all child-slab temporary lists, and a �le dataset.current for the temporary
list of the current node u. We use a �le dataset.intvl for the set S of input
intervals. Recall that we have a set E of the left endpoints of all intervals; this
set is used to de�ne the Bf � 1 median values that partition E into Bf slabs of
dn=Bfe blocks each, where n is the size of E in terms of integral blocks. We use an
interval to represent its left endpoint, so that E is of the same size as S. Since an
interval belongs to a slab if both endpoints lie in that slab, the size of each child-slab
temporary list is no more than dn=Bfe blocks. Therefore we let the i-th such list
start from the block i �dn=Bfe in the �le dataset.intvl temp, for i = 0; � � � ;Bf�1.
After the construction of all such lists is over, we copy them to the corresponding
positions in the �le dataset.intvl, and the scratch �le dataset.intvl temp is
available for use again. Note that this scratch �le is of size n blocks. Recall from
Section 2.3.4 that the temporary list for the current node u is used to keep the
intervals assigned to u. Thus the size of the scratch �le dataset.current is also
no more than n blocks. After constructing the left and right lists of u, this scratch
�le is again available for use. To recursively perform the process for each child slab
i, we use the portion of the �le dataset.intvl starting from the block i � dn=Bfe
with no more than dn=Bfe blocks as the new set S of input intervals.

As mentioned in Section 2.3.4, our algorithm of collecting all intervals assigned
to the current node u in a single temporary list is crucial for keeping the disk scratch
space small. If we were to maintain Bf� 1 temporary lists for the individual small
nodes in u and collect all such lists into a scratch �le as we do above for child slabs,
then we would have a disk space blow-up. Observe that the potential size of each
small-node list can be much larger than the actual size; in fact, all input intervals
can belong to the topmost small node, or to the two small nodes one level below, or
to any of the dlog2 Bfe levels in the subtree on the small nodes of u. Therefore to
reserve enough space for each small-node list, the disk scratch space would blow up
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by a factor of dlog2 Bfe. In addition, the varying sizes of the temporary lists inside
the scratch �le would complicate the coding. (Using a uniform list size instead in
this method, then, would increase the blow-up factor to Bf� 1!) On the contrary,
our method is both simple and e�cient in solving the problem.

3. The I/O-Filter Technique

In this section we describe our I/O-�lter technique [8, 9]. As mentioned in
Section 1.3, we �rst produce an interval I = [min;max] for each cell of the dataset
so that searching active cells amounts to performing stabbing queries. We then use
the I/O interval tree or the metablock tree as the indexing structure to solve the
stabbing queries, together with the isosurface engine of Vtk [25].

It is well known that random accesses in disk following pointer references are
very ine�cient. If we keep the dataset and build a separate indexing structure
where each interval has a pointer to its corresponding cell record in disk, then
during queries we have to perform pointer references in disk to obtain the cell
information, possibly reading one disk block per active cell, i.e., the reporting I/O
cost becomes O(K) rather than O(K=B), which is certainly undesirable. In the
I/O-�lter technique [8, 9], we store the cell information together with its interval
in the indexing data structure, so that this kind of pointer references are avoided.
Also, the cell information we store is the direct cell information, i.e., the x-, y-, z-
and the scalar values of the vertices of the cell, rather than pointers to the vertices in
the vertex information list. (In addition to the direct cell information, we also store
the cell ID and the left and right endpoint values for each interval.) In this way,
the dataset is combined with the indexing structure, and the original dataset can be
thrown away. Ine�cient pointer references in disk are completely avoided, at the
cost of increasing the disk space needed to hold the combined indexing structure.
We will address this issue in Section 4 when we describe our two-level indexing
scheme [10].

3.1. Normalization. If the input dataset is given in a format that provides
direct cell information, then we can build the interval/metablock tree directly. Un-
fortunately, the datasets are often given in a format that contains indices to ver-
tices1. In the I/O �lter technique, we �rst de-reference the indices before actually
building the interval tree or the metablock tree. We call this de-referencing process
normalization.

Using the technique of [5, 7], we can e�ciently perform normalization as fol-
lows. We make one �le (the vertex �le) containing the direct information of the
vertices (the 3D coordinates and the scalar values), and another �le (the cell �le)
of the cell records with the vertex indices. In the �rst pass, we externally sort the
cell �le by the indices (pointers) to the �rst vertex, so that the �rst group in the
�le contains the cells whose �rst vertices are vertex 1, the second group contains
the cells whose �rst vertices are vertex 2, and so on. Then by scanning through
the vertex �le and the cell �le simultaneously, we �ll in the direct information of
the �rst vertex of each cell in the cell �le. In the next pass, we sort the cell �le
by the indices to the second vertices, and �ll in the direct information of the sec-
ond vertex of each cell in the same way. Actually, each pass is a joint operation

1The input is usually a To� �le, which is analogous to the Geomview \o�" �le. It has the
number of vertices and tetrahedra, followed by a list of the vertices and a list of the tetrahedra,
each of which is speci�ed using the vertex location in the �le as an index. See [29].
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Figure 6. Isosurface extraction phase. Given the data struc-
ture �les of the metablock/interval tree and an isovalue,
metaQuery/ioQuery �lters the dataset and passes to Vtk only
those active cells of the isosurface. Several Vtk routines are used
to generate the isosurface.

(commonly used in database), using the vertex ID's (the vertex indices) as the key
on both the cell �le and the vertex �le. By repeating the joint process for each
vertex of the cells, we obtain the direct information for each cell; this completes
the normalization process.

3.2. Interfacing with Vtk. A full isosurface extraction pipeline should in-
clude several steps in addition to �nding active cells (see Fig. 2). In particular, (1)
the intersection points and triangles have to be computed; (2) the triangles need to
be decimated [26]; and (3) the triangle strips have to be generated. Steps (1){(3)
can be carried out by the existing code in Vtk [25].

Our two pieces of isosurface querying code, metaQuery (for querying the metablock
tree) and ioQuery (for querying the I/O interval tree), are implemented by linking
the respective I/O querying code with Vtk's isosurface generation code, as shown
in Fig. 6. Given an isovalue q, we use metaQuery or ioQuery to query the indexing
structure in disk, and bring only the active cells to main memory; this much smaller
set of active cells is treated as an input to Vtk, whose usual routines are then used
to generate the isosurface. Thus we �lter out those portions of the dataset that are
not needed by Vtk. More speci�cally, given an isovalue, (1) all active cells are col-
lected from disk; (2) a vtkUnstructuredGrid object is generated; (3) the isosurface
is extracted with vtkContourFilter; and (4) the isosurface is saved in a �le with
vtkPolyMapper. At this point, memory is deallocated. If multiple isosurfaces are
needed, this process is repeated. Note that this approach requires double bu�ering
of the active cells during the creation of the vtkUnstructuredGrid data structure.
A more sophisticated implementation would be to incorporate the functionality of
metaQuery (resp. ioQuery) inside the Vtk data structures and make the methods
I/O aware. This should be possible due to Vtk's pipeline evaluation scheme (see
Chapter 4 of [25]).

3.3. Experimental Results. Now we present some experimental results of
running the two implementations of I/O-�lter and also Vtk's native isosurface im-
plementation on real datasets. We have run our experiments on four di�erent
datasets. All of these are tetrahedralized versions of well-known datasets. The
Blunt Fin, the Liquid Oxygen Post, and the Delta Wing datasets are courtesy of
NASA. The Combustion Chamber dataset is from Vtk [25]. Some representative
isosurfaces generated from our experiments are shown in Fig. 1.

Our benchmark machine was an o�-the-shelf PC: a Pentium Pro, 200MHz with
128M of RAM, and two EIDE Western Digital 2.5Gb hard disk (5400 RPM, 128Kb
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Blunt Chamber Post Delta

metaQuery { 128M 9s 17s 19s 26s
ioQuery { 128M 7s 16s 18s 31s
vtkiso { 128M 15s 22s 44s 182s
vtkiso I/O { 128M 3s 2s 12s 40s

metaQuery { 32M 9s 19s 21s 31s
ioQuery { 32M 10s 19s 22s 32s
vtkiso { 32M 21s 54s 1563s 3188s
vtkiso I/O { 32M 8s 28s 123s 249s

Table 1. Overall running times for the extraction of the 10 iso-
surfaces using metaQuery, ioQuery, and vtkiso with di�erent
amounts of main memory. These include the time to read the
datasets and write the isosurfaces to �les. vtkiso I/O is the frac-
tional amount of time of vtkiso for reading the dataset and gen-
erating a vtkUnstructuredGrid object.

cache, 12ms seek time). Each disk block size is 4,096 bytes. We ran Linux (kernels
2.0.27, and 2.0.30) on this machine. One interesting property of Linux is that it
allows during booting the speci�cation of the exact amount of main memory to use.
This allows us to fake for the isosurface code a given amount of main memory to
use (after this memory is completely used, the system will start to use disk swap
space and have page faults). This has the exact same e�ect as removing physical
main memory from the machine.

In the following we use metaQuery and ioQuery to denote the entire isosurface
extraction codes shown in Fig. 6, and vtkiso to denote the Vtk-only isosurface
code. There are two batteries of tests, each with di�erent amount of main memory
(128M and 32M). Each test consists of calculating 10 isosurfaces with isovalues in
the range of the scalar values of each dataset, by using metaQuery, ioQuery, and
vtkiso. We did not run X-windows during the isosurface extraction time, and the
output of vtkPolyMapper was saved in a �le instead.

We summarize in Table 1 the total running times for the extraction of the 10
isosurfaces using metaQuery, ioQuery, and vtkiso with di�erent amounts of main
memory. Observe that both metaQuery and ioQuery have signi�cant advantages
over vtkiso, especially for large datasets and/or small main memory. In particular,
from the Delta entries in 32M, we see that both metaQuery and ioQuery are about
100 times faster than vtkiso!

In Fig. 7, we show representative benchmarks of calculating 10 isosurfaces from
the Delta dataset with 32M of main memory, using ioQuery (left column) and
vtkiso (right column). For each isosurface calculated using ioQuery, we break the
running time into four categories. In particular, the bottommost part is the time
to perform I/O search in the I/O interval tree to �nd the active cells (the search
phase), and the third part from the bottom is the time for Vtk to actually generate
the isosurface from the active cells (the generation phase). It can be seen that the
search phase always takes less time than the generation phase, i.e., the search phase
is no longer a bottleneck. Moreover, the cost of the search phase can be hidden by
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Figure 7. Running times for extracting isosurfaces from the Delta
dataset, using ioQuery (left column) and vtkiso (right column)
with 32M of main memory. Note that for vtkiso the cost of read-
ing the entire dataset into main memory is not shown.

overlapping this I/O time with the CPU (generation phase) time. The isosurface
query performance of metaQuery is similar to that of ioQuery.

In Table 2, we show the performance of querying the metablock tree and the I/O
interval tree on the Delta dataset. In general, the query times of the two trees are
comparable. We are surprised to see that sometimes the metablock tree performs
much more disk reads but the running time is faster. This can be explained by a
better locality of disk accesses of the metablock tree. In the metablock tree, the
horizontal, vertical, and TS lists are always read sequentially during queries, but in
the I/O interval tree, although the left and right lists are always read sequentially,
the multi lists reported may cause scattered disk accesses. Recall from Section 2.2.2
that for a query value q lying in the slab i, all multi lists of the multi-slabs spanning
the slab i are reported; these include the multi-slabs [1; i]; [1; i+ 1]; � � � ; [1;Bf� 2],
[2; i]; [2; i+ 1]; � � � ; [2;Bf � 2]; � � � ; [i; i]; [i; i+ 1]; � � � ; [i;Bf � 2]. While [`; �]'s are in
consecutive places of a �le and can be sequentially accessed, changing from [`;Bf�2]
to [`+1; i] causes non-sequential disk reads (since [`+1; `+1]; � � � ; [`+1; i� 1] are
skipped) | we store the multi lists in a \row-wise" manner in our implementation,
but a \column-wise" implementation would also encounter a similar situation. This

Delta (1,005K cells)
Isosurface ID 1 2 3 4 5 6 7 8 9 10
Active Cells 32 296 1150 1932 5238 24788 36738 55205 32677 8902

metaQuery Page Ins 3 8 506 503 471 617 705 1270 1088 440
Time (sec) 0.05 0 0.31 0.02 0.02 0.89 0.59 1.24 1.88 0.29

ioQuery Page Ins 6 31 35 46 158 578 888 1171 765 271
Time (sec) 0.1 0.05 0.05 0.09 0.2 0.67 0.85 1.44 1.43 0.35

Table 2. Searching active cells on the metablock tree (using
metaQuery) and on the I/O interval tree (using ioQuery) in a
machine with 32M of main memory. This shows the performance
of the query operations of the two trees. (A \0" entry means \less
than 0.01 before rounding".)



24 YI-JEN CHIANG AND CL�AUDIO T. SILVA

leads us to believe that in order to correctly model I/O algorithms, some cost should
be associated with the disk-head movements, since this is one of the major costs
involved in disk accesses.

Finally, without showing the detailed tables, we remark that our metablock-tree
implementation of I/O-�lter improves the practical performance of our I/O-interval-
tree implementation of I/O-�lter as follows: the tree construction time is twice as
fast, the average disk space is reduced from 7.7 times the original dataset size to
7.2 times, and the disk scratch space needed during preprocessing is reduced from
16 times the original dataset size to 10 times. In each implementation of I/O-�lter,
the running time of preprocessing is the same as running external sorting a few
times, and is linear in the dataset size even when it exceeds the main memory size,
showing the scalability of the preprocessing algorithms.

We should point out that our I/O interval tree implementation did not imple-
ment the corner structure for the sake of simplicity of the coding. This may result
in non-optimal disk space and non-optimal I/O query cost in the worst case. Our
metablock tree implementation did not implement its corner structure either; this is
to reduce the disk space overhead (unlike the I/O interval tree, the corner structure
is not needed to achieve the worst-case optimal space bound; implementing the cor-
ner structure in the metablock tree would only increase the space overhead by some
constant factor), but may also result in non-optimal query I/O cost in the worst
case. Since the I/O query time already took less time than the CPU generation
time, our main interest for implementing the metablock tree was in reducing the
disk space overhead and hence there was no need to implement the corner structure.
However, from the view point of data-structure experimentation, it is an interesting
open question to investigate the e�ects of the corner structure into the practical
performance measures of the two trees.

4. The Two-Level Indexing Scheme

In this section we survey our two-level indexing scheme proposed in [10]. The
goal is to reduce the large disk space overhead of I/O-�lter, at the cost of possibly
increasing the query time. In particular, we would like to have a exible scheme
that can exhibit a smooth trade-o� between disk space and query time.

We observe that in the I/O-�lter technique [8, 9], to avoid ine�cient pointer
references in disk, the direct cell information is stored with its interval, in the
indexing data structure (see Section 3). This is very ine�cient in disk space, since
the vertex information (i.e., the x-, y-, z� and the scalar values of the vertex)
is duplicated many times, once for each cell sharing the vertex. Moreover, in the
indexing structures [2, 16] used, each interval is stored three times in practice,
increasing the duplications of vertex information by another factor of three. To
eliminate this ine�ciency, the new indexing scheme uses a two-level structure. First,
we partition the original dataset into clusters of cells, called meta-cells. Secondly,
we produce meta-intervals associated with the meta-cells, and build our indexing
data structure on the meta-intervals. We separate the cell information, kept only
in meta-cells in disk, from the indexing structure, which is also in disk and only
contains pointers to meta-cells. Isosurface queries are performed by �rst querying
the indexing structure, then using the reported meta-cell pointers to read from disk
the active meta-cells intersected by the isosurface, which can then be generated
from active meta-cells.
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Figure 8. The preprocessing pipeline of the two-level indexing
scheme isosurface technique.

While we need to perform pointer references in disk from the indexing struc-
ture to meta-cells, the spatial coherences of isosurfaces and of our meta-cells ensure
that each meta-cell being read contains many active cells, so such pointer references
are e�cient. Also, a meta-cell is always read as a whole, hence we can use point-
ers within a meta-cell to store each meta-cell compactly. In this way, we obtain
e�ciencies in both query time and disk space.

4.1. Main Techniques. We show the preprocessing pipeline of the overall
algorithm in Fig. 8. The main tasks are as follows.

1. Group spatially neighboring cells into meta-cells. The total number of ver-
tices in each meta-cell is roughly the same, so that during queries each
meta-cell can be retrieved from disk with approximately the same I/O cost.
Each cell is assigned to exactly one meta-cell.

2. Compute and store in disk the meta-cell information for each meta-cell.
3. Compute meta-intervals associated with each meta-cell. Each meta-interval

is an interval [min;max], to be de�ned later.
4. Build in disk a stabbing-query indexing structure on meta-intervals. For

each meta-interval, only its min and max values and the meta-cell ID are
stored in the indexing structure, where the meta-cell ID is a pointer to the
corresponding meta-cell record in disk.

We describe the representation of meta-cells. Each meta-cell has a list of ver-
tices, where each vertex entry contains its x-, y-, z- and scalar values, and a list of
cells, where each cell entry contains pointers to its vertices in the vertex list. In this
way, a vertex shared by many cells in the same meta-cell is stored just once in that
meta-cell. The only duplications of vertex information occur when a vertex belongs
to two cells in di�erent meta-cells; in this case we let both meta-cells include that
vertex in their vertex lists, so that each meta-cell has self-contained vertex and cell
lists. We store the meta-cells, one after another, in disk.

The purpose of the meta-intervals for a meta-cell is analogous to that of an
interval for a cell, i.e., a meta-cell is active (intersected by the isosurface of q) if
and only if one of its meta-intervals contains q. Intuitively, we could just take
the minimum and maximum scalar values among the vertices to de�ne the meta-
interval (as cell intervals), but such big range would contain \gaps" in which no
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Figure 9. The query pipeline of the two-level indexing scheme
isosurface technique.

cell interval lies. Therefore, we break such big range into pieces, each a meta-
interval, by the gaps. Formally, we de�ne the meta-intervals of a meta-cell as the
connected components among the intervals of the cells in that meta-cell. With this
de�nition, searching active meta-cells amounts to performing stabbing queries on
the meta-intervals.

The query pipeline of our overall algorithm is shown in Fig. 9. We have the
following steps.

1. Find all meta-intervals (and the corresponding meta-cell ID's) containing q,
by querying the stabbing-query indexing structure in disk.

2. (Internally) sort the reported meta-cell ID's. This makes the subsequent
disk reads for active meta-cells sequential (except for skipping inactive meta-
cells), and minimizes the disk-head movements.

3. For each active meta-cell, read it from disk to main memory, identify active
cells and compute isosurface triangles, throw away the current meta-cell
from main memory and repeat the process for the next active meta-cell. At
the end, patch the generated triangles and perform the remaining operations
in the generation phase to generate and display the isosurface.

Now we argue that in step 3 the pointer references in disk to read meta-cells
are e�cient. Intuitively, by the way we construct the meta-cells, we can think of
each meta-cell as a cube, with roughly the same number of cells in each dimension.
Also, by the spatial coherence of an isosurface, the isosurface usually cannot cut too
many meta-cells through corners only. Thus by a dimension argument, if an active
meta-cell has C cells, for most times the isosurface cuts through C2=3 cells. This
is similar to the argument that usually there are �(N2=3) active cells in an N -cell
volume dataset. This means that we read C cells (a whole meta-cell) for every C2=3

active cells, i.e., we traverse a \thickness" of C1=3 layers of cells, for one layer of
isosurface. Therefore we read C1=3 � (K=B) disk blocks for K active cells, which
is a factor of C1=3 from optimal. Notice that when the size of the meta-cells is
increased, the number of duplicated vertices is decreased (less vertices in meta-cell
boundaries), and the number of meta-intervals is also decreased (less meta-cells),
while the number C is increased. Hence we have a trade-o� between space and
query time, by varying the meta-cell size. Since the major cost in disk reads is in
disk-head movements (e.g., reading two disk blocks takes approximately the same
time as reading one block, after moving the disk head), we can increase meta-cell
sizes while keeping the e�ect of the factor C1=3 negligible.
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4.1.1. Stabbing Query Indexing Structure. In the two-level indexing scheme,
any stabbing-query indexing structure can be used. For the sake of simplicity
of coding and being more space-e�cient, we implemented the binary-blocked I/O
interval tree [10] (see Section 2.3) as the indexing structure. Since our goal is to
reduce the disk space overhead, we do not implement the corner structure (whose
only purpose is to improve the query I/O cost to optimal; see Section 2.3.2).

4.1.2. Meta-Cell Computation. The e�cient subdivision of the dataset into
meta-cells lies at the heart of the overall isosurface algorithm. The computation is
similar to the partition induced by a k-d-tree [4], but we do not need to compute the
multiple levels. The computation is essentially carried out by performing external
sorting a few times.

We assume that the input dataset is in a general \index cell set" (ICS) format,
i.e., there is a list of vertices, each containing its x-, y-, z- and scalar values, and
a list of cells, each containing pointers to its vertices in the vertex list. We want
to partition the dataset into H3 meta-cells, where H is a parameter that we can
adjust to vary the meta-cell sizes, which are usually several disk blocks. The �nal
output of the meta-cell computation is a single �le that contains all meta-cells, one
after another, each an independent ICS �le (i.e., the pointer references from the
cells of a meta-cell are within the meta-cell). We also produce meta-intervals for
each meta-cell. The meta-cell computation consists of the following steps.

1. Partition vertices into clusters of equal size. This is the key step in construct-
ing meta-cells. We use each resulting cluster to de�ne a meta-cell, whose vertices
are those in the cluster, plus some duplicated vertices to be constructed later. Ob-
serve that meta-cells may di�er dramatically in their volumes, but their numbers
of vertices are roughly the same. The partitioning method is very simple. We �rst
externally sort all vertices by the x-values, and partition them into H consecutive
chunks. Then, for each such chunk, we externally sort its vertices by the y-values,
and partition them into H chunks. Finally, we repeat the process for each re�ned
chunk, except that we externally sort the vertices by the z-values. We take the �-
nal chunks as clusters. Clearly, each cluster has spatially neighboring vertices. The
computing cost is bounded by three passes of external sorting. This step actually
assigns vertices to meta-cells. We produce a vertex-assignment list with entries
(vid;mid), indicating that the vertex vid is assigned to the meta-cell mid.

2. Assign cells to meta-cells and duplicate vertices. Our assignment of cells to
meta-cells attempts to minimize the wasted space. The basic coverage criterion is
to see how a cell's vertices have been mapped to meta-cells. A cell whose vertices
all belong to the same meta-cell is assigned to that meta-cell. Otherwise, the
cell is in the boundary, and a simple voting scheme is used: the meta-cell that
contains the \most" vertices owns that cell, and the \missing" vertices of the cell
have to be duplicated and inserted to this meta-cell. We break ties arbitrarily. In
order to determine this assignment, we need to obtain for each cell, the destination
meta-cells of its vertices. This pointer de-referencing in disk is carried out by
performing the joint operation a few times as described in the normalization process
in Section 3.1. At the end, we have a list for assigning cells to meta-cells, and also
a vertex-duplication list with entries (vid;mid), indicating that the vertex vid has
to be duplicated and inserted to the meta-cell mid.

3. Compute the vertex and cell lists for each meta-cell. To actually duplicate
vertices and insert them to appropriate meta-cells, we �rst need to de-reference the
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vertex ID's (to obtain the complete vertex information) from the vertex-duplication
list. We can do this by using one join operation, using vertex ID as the key, on the
original input vertex list and the vertex-duplication list. Now the vertex-duplication
list contains for each entry the complete vertex information, together with the ID
of the meta-cell to which the vertex must be inserted. We also have a list for
assigning cells to meta-cells. To �nish the generation of meta-cells, we use a main
join operation on these lists, using the meta-cell ID's as the main key. To avoid
possible replications of the same vertex inside a meta-cell, we use vertex ID's as
the secondary key during the sorting for the join operation. Finally, we update the
vertex pointers for the cells within each meta-cell. This can be easily done since
each meta-cell can be kept in main memory.

4. Compute meta-intervals for each meta-cell. Since each meta-cell can �t in
main memory, this step only involves in-core computation. First, we compute the
interval for each cell in the meta-cell. Then we sort all interval endpoints. We scan
through the endpoints, with a counter initialized to 0. A left endpoint encountered
increases the counter by 1, and a right endpoint decreases the counter by 1. A
\0 ! 1" transition gives the beginning of a new meta-interval, and a \1 ! 0"
transition gives the end of the current meta-interval. We can easily see that the
computation is correct, and the computing time is bounded by that of internal
sorting.

4.2. Experimental Results. The experimental set up is similar to the one
described in Section 3.3. We considered �ve datasets in the experimental study;
four of them were used in [8, 9] as shown in Section 3.3. A new, larger dataset, Cyl3
with about 5.8 million cells has been added to our test set. This new dataset was
originally a smaller dataset (the Cylinder dataset) from Vtk [25] but was subdivided
to higher resolution by breaking the tetrahedra into smaller ones.

Tables 3 and 4 summarize some important statistics about the performance of
the preprocessing. In Table 3, a global view of the performance of the technique
can be seen on four di�erent datasets. Recall that the indexing structure used is
the binary-blocked I/O interval tree [10] (see Section 2.3), abbreviated the BBIO
tree here. It is interesting to note that the size of the BBIO tree is quite small. This
is because we separate the indexing structure from the dataset. Also, previously
we have one interval stored for each cell, but now we have only a few (usually no
more than 3) meta-intervals for a meta-cell, which typically contains more than 200
cells. We remark that if we replace the I/O interval tree or the metablock tree with
the BBIO tree in the I/O-�lter technique (described in Section 3), then the average
tree size (combining the direct cell information together) is about 5 times the orig-
inal dataset size, as opposed to 7.2{7.7 times, showing that the BBIO tree along
can improve the disk space by a factor of 2/3 (and much more improvements are
obtained by employing the two-level indexing scheme and the meta-cell technique).

In Table 4 we vary the number of meta-cells used for the Delta dataset. This
table shows that our algorithm scales well with increasing meta-cell sizes. The most
important feature is the linear dependency of the querying accuracy versus the disk
overhead. That is, using 146 meta-cells (at 7% disk space overhead), for a given
isosurface, we needed 3.34s to �nd the active cells. When using 30,628 meta-cells
(at 63% disk space overhead), we only need 1.18s to �nd the active cells. Basically,
the more meta-cells, the more accurate our active cell searchers, and less data we
need to fetch from disk. An interesting point is that the more data fetched, the
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Blunt Chamber Post Cyl3

# of meta-cells 737 1009 1870 27896
Const. Time 50s 60s 154.8s 3652s

Original Size 3.65M 4.19M 10M 152M
Meta-Cell Size 4.39M 5M 12.2M 271M
Size Increase 20% 21% 22% 78%
Avg # of Cells 254.2 213.1 274.5 208

BBIO Tree (size) 29K 28K 84K 1.7M
BBIO Tree (time) 0.35s 0.67s 1.23s 43s

Table 3. Statistics for the preprocessing on di�erent datasets.
First, we show the number of meta-cells used for partitioning the
dataset, followed by the total time for the meta-cell computation.
Secondly, the original dataset size and the size of the meta-cell �le
are shown. We also show the overall increase in storage, and the
average number of cells in a meta-cell. Next, we show the size (in
bytes) of the indexing structure, the binary-blocked I/O interval
tree (the BBIO tree) and its construction time.

# of meta-cells 146 361 1100 2364 3600 8400 30628
Size Increase 7% 10% 16% 22% 26.9% 37.9% 63%

Act. Meta-Cells 59% 52% 37% 31% 30% 23% 16%
Query Time 3.34s 2.76s 2.09s 1.82s 1.73s 1.5s 1.18s

Table 4. Statistics for preprocessing and querying isosurfaces on
the Delta dataset (original size 19.4M). We show the size increase
in the disk space overhead. Also, we show the performance of a
representative isosurface query: percentage of the meta-cells that
are active (intersected by the isosurface), and the time for �nding
the active cells (the time for actual isosurface generation is not
included here).

more work (and more main memory usage due to larger individual meta-cell sizes)
that the isosurface generation engine has to do. By paying 63% disk overhead,
we only need to fetch 16% of the dataset into main memory, which is clearly a
substantial saving.

In summary, we see that the disk space is reduced from 7.2{7.7 times the original
dataset size in the I/O-�lter technique to 1.1{1.5 times, and the disk scratch space
is reduced from 10{16 times to less than 2 times. The query time is still at least one
order of magnitude faster than Vtk. Also, rather than being a single-cost indexing
approach, the method exhibits a smooth trade-o� between disk space and query
time.

5. Conclusions and Future Directions

In this paper we survey our recent work on external memory techniques for iso-
surface extraction in scienti�c visualization. Our techniques provide cost-e�ective
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methods to speed up isosurface extraction from volume data. The actual code can
be made much faster by �ne tuning the disk I/O. This is an interesting but hard and
time-consuming task, and might often be non-portable across platforms, since the
interplay among the operating system, the algorithms, and the disk is non-trivial
to optimize. We believe that a substantial speed-up can be achieved by optimizing
the external sorting and the �le copying primitives.

The two-level indexing scheme is also suitable for dealing with time-varying
datasets, in which there are several scalar values at each sample point, one value
for each time step. By separating the indexing data structure from the meta-cells,
one can keep a single copy of the geometric data (in the meta-cells), and have
multiple indexing structures for indexing di�erent time steps.

The technique we use to compute the meta-cells has a wider applicability in
the preprocessing of general cell structures larger than main memory. For example,
one could use our technique to break polyhedral surfaces larger than main memory
into spatially coherent sections for simpli�cation, or to break large volumetric grids
into smaller ones for rendering purposes.

We believe the two-level indexing scheme [10] brings e�cient external-memory
isosurface techniques closer to practicality. One remaining challenge is to improve
the preprocessing times for large datasets, which, even though is much lower than
the ones presented in [8, 9], is still fairly costly.
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