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Abstract: We review the cell projection method of volume rendering, discussing back-to-front
cell sorting, and approximations involved in hardware color computation and interpolation. We
describe how the method accommodates cells with non-planar faces using view dependent sub-
division into tetrahedra.

1. Introduction

Volume rendering converts a scalar function on a 3D volume into varying
colors and opacities, and creates an image by integrating the color and opacity
effects along viewing rays through each pixel [1]. For data specified on a reg-
ular grid, the ray tracing is straightforward [2, 3, 4, 5], and similar effects can
be obtained with 3D textures [6]. For curvilinear or irregular grids, these
methods are only applicable after the data has been resampled.

An alternative, which works directly on these more general grids, is cell
projection [7, 8, 9]. The cells are composited onto the image in back to front
sorted order. The projections of the edges of a single cell divide the image
plane into polygons, which can be scan converted and composited by standard
graphics hardware.

In references [9, 10, 11], we assumed that the cells were polyhedra with
planar faces, but this is not always the case. A curvilinear grid is a mapping of
a rectangular grid onto a curved volume, for example, to fit next to an airplane
wing or ship hull, and quadrilateral faces may map to non-planar surfaces.
Irregular grids are fitted to complex geometries, for example mechanical
parts, and even faces that are initially flat may become non-planar as the grid
elements deform, for example, in a car crash simulation.

Non-planar faces cause problems in the sorting and compositing when a



viewing ray intersects the same face twice. We call such a face a “problem
face”. For example, the ray may leave cell A through face F, enter cell B, and
then enter cell A again through the same face F. If a viewing ray intersects a
cell like A in two disjoint segments, we call the cell a “problem cell”. This
makes it impossible to sort cells A and B in back-to-front compositing order.

Our solution is to divide problem cells into tetrahedra, which have planar
faces. A single hexahedron can be projected and composited more quickly
than the five or six tetrahedra into which it is subdivided, so we subdivide only
the problem cells. In the example above, cell B might not turn out to be a
problem cell, so it might not be subdivided. However, the face F must still be
subdivided into two triangles when rendering cell B, in order not to create a
gap or overlap between cells A and B. The decision whether a face or a cell is
a problem depends on the viewing rays, so the subdivision is view dependent.
Therefore our data structure is designed to efficiently replace faces or cells by
their subdivisions, and restore them when subdivision is no longer necessary.

A preliminary description of our system appeared in [12], which is a
good introduction to back-to-front sorting algorithms. Here, after sketching
the subdivision and sorting algorithms in sections 2 and 3 respectively, we
give more detail in section 4 on the cell projection and how it is affected by
non-planar faces. In sections 5 we describe the data structures designed to
handle the view-dependent subdivision, and section 6 gives results.

2. Subdivision

Our HIAC system [11] currently renders “zoo” elements, with the topol-
ogy, but not the geometry, of tetrahedra, square pyramids, triangular prisms,
and cubes, as read from files in the SILO format [13]. The SILO files have an
array of vertex positions, and for each of the four cell types, an array of cells,
each defined by a list of indices into the vertex array. Thus elements are spec-
ified only by their vertex positions, and the cube topology may correspond to
a hexahedron with non-planar quadrilateral faces. There is no information
about the interpolation function used to define the element shape, so we do
not know the shape of the non-planar faces. A natural assumption is that they
are hyperbolic paraboloids, resulting from bilinear interpolation between the
four vertex positions. But volume rendering using such faces would require
tracing rays to intersect the parametrized face surfaces, which is not compati-
ble with hardware-based cell projection of a single face. It could be accom-
plished by subdivision, for example, using the NVidia GeForce3 tesselation
engine [14], but this would require many more polygons to be set up for raster
scan conversion.

Instead, we approximate the unknown shapes by piecewise linear inter-
polation. We divide the problem quadrilateral faces into two planar triangles,



and extend this to the problem cells by slicing them into tetrahedra. If a quad-
rilateral face F separates cells A and B, we must make sure that it is divided by
the same diagonal when considered as a face of each. We do this by starting
the diagonal from the quadrilateral vertex which has the lowest index in the
vertex list. In [12] (and earlier in another context in [15]) is a proof that if the
face diagonals are chosen this way, each of the zoo elements can be subdi-
vided into tetrahedra whose edges include the chosen diagonals. The proof
starts with the pyramids, which are trivial, observes that a prism can be sliced
into a tetrahedron plus a pyramid, and then shows that a cube can be sliced
either into five tetrahedra or else into two prisms. We have recently general-
ized this process to grids of arbitrary convex polyhedra [16].

3. Sorting

For a convex volume filled with convex polyhedral cells, the simple O(n)
MPVO algorithm [17] can sort in back-to-front order, using a directed graph.
The graph has an edge between every pair of cells sharing a common face F,
directed towards the cell on the side of the plane of F containing the view-
point. A first pass through the grid counts the incoming directed graph edges
for each cell. Cells with zero incoming edges are put on a queue to be output.
While this queue is non-empty, the next cell from the queue is added to the
end of sorted output list, and its outgoing directed edges are followed to dec-
rement the incoming counts of the cells to which they point. If such a count
decrements to zero, the corresponding cell is put on the queue. When the
queue becomes empty, all of the cells should have been output. If not, there is
a visibility cycle, with each cell partially occluding of the next one, and no
sort is possible unless one of the cells in the cycle is subdivided.

If the data volume is convex and a viewing ray passes through cell A and
later through cell B, there is a sequence of cells A = C0, C1, C2, ... , Cn = B
between them along the ray, each sharing a face with the next, so the directed
graph enforces the correct sorting order. This will not be the case if the data
volume has concavities or holes which a viewing ray can cross without pass-
ing through cells. To deal with such gaps in the viewing rays, extra edges in
the directed graph must be added between the cells on the opposite sides of
the gaps. In [12], several methods of doing this or its equivalent are discussed.
Their input consists of a list of the b exterior faces which bound only one cell
instead of two, each with a pointer to the single cell it bounds. If each pair of
exterior faces must be considered, to see if they are visible to each other
across a gap, this could take time O(b2).

Our system has been under development for over ten years, and we have
used a variety of sorting techniques, including the topological sort of the
directed graph [9, 17], special sorts for particular application geometries [18],
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the Newell, Newell, and Sancha sort (see [19] for the polyhedral cell version,
and also [10, 11]), the XMPVO sort [20], and the BSP-XMPVO sort [21].

A faster MPVONC sort [17] starts with an O(b log b) sort on the cells
with exterior faces, keyed on the distance to the viewpoint of the cells’ centers
of gravity. For fast rendering, we use this approximate MPVONC sort, instead
of one of the slower correct sorts. Recently we have developed the SXMPVO
algorithm [22] which scan-converts the exterior faces into an A-buffer, accu-
mulating a sorted list of the exterior faces pierced by the viewing ray through
each pixel. The necessary extra edges in the directed graph can then be found
because pairs of consecutive entries in these lists bound the empty gaps along
the rays. This proved to be the fastest guaranteed correct sort for our purposes.

4. Cell Projection

In the discussion below, the opacity τ refers to the extinction coefficient,
or differential opacity, as specified by the scalar value at a 3D point, while the
opacity α refers to the total integrated opacity along a ray segment, as used in
the compositing. For τ constant on a ray segment of length l, α = 1 - e-τl (see
[1]).

The RGB color and opacity τ are determined by “transfer functions”
which specify how they depend on the scalar variable s being visualized. In
this section, we will assume that the transfer functions are linear in s. In fact,
our system supports piecewise linear transfer functions, by slicing cells into
subcells inside which the transfer functions are linear (see [11, 12]).

The hardware-based method discussed below will be mathematically
equivalent to analytic integration along viewing rays when:

(a) The projection is orthogonal rather than perspective.
(b) The faces of the cells are planar.
(c) The scalar s varies linearly across cells, so that R, G, B, and τ are linear.
(d) The color is constant per cell, and only τ varies linearly.

Condition (d) is a specially strict version of condition (c), because the hard-
ware interpolation of colors is not consistent with the analytic integration. As
the discussion proceeds, we will explain the approximations we must make
when one of these conditions is violated.

Figure 1 shows a hexahedral cell, projected onto the image plane. When
we refer to a vertex label like F in this figure, we mean either the 3D vertex
position or its 2D projection, depending on the context. The projected edges
of the cell divide the image plane up into several polygons, in this case the
two triangles EIH and BCJ, and five quadrilaterals like FJCG. These polygons
are scan converted and composited into the image by the graphics hardware.

Consider the segment in which the viewing ray through F intersects the
cell. The RGBτ values at the front segment endpoint are the ones determined



by the data value s at F, but the values at the back endpoint must be interpo-
lated across the face HDCG. The integrated opacity for the vertex F is α = 1 -
e-τl where l is the length of the ray segment, and τ is the average of the differ-
ential opacities τf and τb at the front and back segment endpoints, respectively.
To compute l, we must interpolate the depth z across the polygon HDCG to
get the back segment endpoint, and then l can be found. Similar computations
are used at vertex D, with interpolation across polygon ABFE used for the
front segment endpoint.

After a perspective projection, the zs coordinate in screen space is a func-
tion of the ze coordinate in eye space, of the form zs = a + b/ze. This transfor-
mation has the important property that planar surfaces in eye space are
transformed to planar surfaces in screen space. Thus the depth zs for the back
endpoint of the ray segment through F can be determined by screen space
interpolation on the planar polygon HDCG, and then l can be found by revers-
ing the eye to screen coordinate transformation. In perspective, l varies non-
linearly with pixel position, so it should be computed this way at each pixel in
polygon FJCG, using the zs values from polygons FBCG and HDCG. This
requires a square root and two divides per pixel. In our implementation, we
approximate this by computing l at each vertex, and interpolating linearly
across the polygon. We interpolate R, G, B, τ and l linearly across these poly-
gons in screen space, using the standard Gouraud shading and texture coordi-
nate interpolation hardware.

The computations for vertices I and J are simpler, because the necessary
R, G, B, τ, and z values are interpolated linearly along the polygon edges.
Again, we interpolate these values linearly in screen space, instead of in eye
space, but in this case, the correct eye space interpolation is not difficult,
because it is only done once per crossing of projected edges.

In the original Shirley and Tuchman method [7], the color assigned to a
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Figure 1. Projection of a hexahedron. Figure 2. Hexahedron with all faces
divided into triangles.
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“thick” vertex, like F, D, I, or J in figure 1, is the average of the colors at the
front and back endpoints of the viewing ray through F, and the integrated
opacity at F is α = 1 - e-τl where τ = (τf + τb)/2. The colors at the profile verti-
ces like A come directly from the scalar values s at these vertices, and the inte-
grated opacities are set to zero. The hardware then interpolates the colors and
opacities across the image plane polygons like FJCG, and composites them
onto the image, using

. (1)

As pointed out in [10, 11], linear interpolation of integrated opacity α across
the polygon is not mathematically equivalent to doing the correct calculation,
which requires an exponential per pixel. This can cause unwanted Mach
bands in the volume rendered image. Correct values of α can be generated
using texture mapping hardware. In an orthogonal view, τf and τb vary linearly
across the polygon in screen space, and therefore so does τ = (τf + τb)/2. If
faces FBCG and HDCG are planar, l will also vary linearly across polygon
FJCG. Thus τ and l can be specified as texture coordinates, and linearly inter-
polated by the hardware. The correct α is then extracted from a 2D texture
map, which is preloaded with the values 1 - e-τl.

For a perspective view, τf and τb should actually be interpolated in eye
space. OpenGL can give a correct perspective of a textured surface, with tex-
ture coordinates interpolated in eye space, by using appropriately specified s,
t, and q texture coordinates [23]. However, τ is the average of τf on the front
face and τb on the back face, and the perspective distortion is different on
these two faces, so this feature will not help us. In addition, the correct com-
putation of l in perspective would require a square root per pixel. Therefore
our texture mapping technique is only an approximation in perspective. We
similarly make approximations in the perspective case by interpolating the
color components R, G, and B in screen space.

Regarding requirement (d) above, the color integrated along the ray is
not the average of the front and back colors, weighted by α as in equation (1),
because the opacity near the front of the ray segment hides more of the back
color. For precise color, the analytic integration described in [11, 24] should
be performed once per pixel. However, it requires exponentials, square roots,
and evaluations of special functions (the Error function or the Dawson inte-
gral), and is thus beyond the per-pixel capabilities of current hardware pipe-
lines. Therefore, we instead compute the correct integrated color only at the
thick vertices, and divide by the integrated α value to get the polygon color.
Even this can be slow, so we also provide the option to use simply the average
of the front and back colors, as in [7].

Another solution is to use 3D textures. Röttger et al. [25] interpolate
across each subdivision polygon (1) the scalar function sf on the front face, (2)
the scalar function sb on the back face, and (3) the ray segment length l. They
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use the three interpolated values as addresses into a 3D texture containing the
integrated color. The discussion here on the interpolation of color and opacity
across cell projections then applies to the interpolation of the scalar function.

So far we have discussed the approximations resulting when conditions
(a) and (d) are violated, and we now turn to conditions (b) and (c). They are
related, since (b) concerns the interpolation of z across the faces, and (c) con-
cerns the interpolation of R, G, B, and τ across the faces as well as inside the
volume. There are standard “linear” finite element interpolation functions for
the zoo elements, which are linear on edges and triangular faces, bilinear on
quadrilateral faces, and linear (for the tetrahedra only) or trilinear inside the
volume. For example, inside a hexahedron, the interpolation is trilinear.

The corresponding interpolation produced by our hardware scheme is
hard to determine, because interpolation across polygons is not completely
determined in the OpenGL specifications [26]. Instead two possibilities are
suggested there: (1) divide the polygon into triangles, and interpolate linearly
across the triangles, or (2) divide the polygon into trapezoids by horizontal
lines through the vertices, and interpolate bilinearly in the trapezoids, or lin-
early in the case the trapezoid degenerates into a triangle. Our hardware
approximation to the integration along the ray segments assumes a further lin-
ear interpolation along the ray segments. Thus it is equivalent to piecewise
bilinear interpolation in case (1), and piecewise trilinear interpolation in case
(2). This piecewise interpolation is view dependent, since the subdivision into
pieces depends on the subdivision of the view plane into polygons, in addition
to any further subdivision produced by the hardware. Only in very special
viewing situations will it correspond to the interpolation used by the finite ele-
ment interpolation functions.

Now consider the effect of non-planar faces. If we subdivide each quad-
rilateral face by the diagonal from its lowest index vertex, the resulting cell
will have more edges and faces, so polygonal subdivision of the image plane
by the projections of its edges will be more complex, and take longer to com-
pute. For example, figure 2 has 25 polygons, instead of the 7 polygons in fig-
ure 1. This will require OpenGL to output more data, and require the
hardware to transform more vertices and set up more polygons. However the
number of fragments (pixels rendered, see [23]) is still the same, because each
pixel in the projection still belongs to exactly one polygon. If the cell were
instead subdivided into tetrahedra, the fragment count would also increase,
because most pixels would lie inside the projections of several tetrahedra.

If only the problem faces are subdivided, the hardware rendering is
equivalent to rendering a cell whose faces are piecewise linear or bilinear.
This interpolation is determined partly by the hardware interpolation of cases
(1) and (2) above, and partly by the depth values interpolated in software at
the other endpoint of a the ray segment through a thick vertex like F. In figure
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1, the back endpoint F′ of the ray through F lies in the interior of the face
HDCG. We currently choose the z, color, and τ values at F′ by subdividing the
face HDCG with the diagonal from its vertex of lowest index, and then inter-
polating linearly in screen space across one of the two resulting triangles.
Another possibility would be bilinear interpolation, but doing this correctly
would require intersecting the viewing ray with the parametrized bilinear sur-
face for the face. This would still not produce the completely correct results
for bilinear faces, because the hardware interpolation of the texture parameter
l is not the same as doing a ray/surface intersection per pixel.

Similarly, our current method is not consistent with subdividing all the
quadrilateral faces into triangles and rendering the polygons in figure 2,
because a single polygon from figure 1 will usually overlap several polygons
from figure 2. The projection of an interior face will be subdivided differently
by the projected edges of each of the two cells it bounds, resulting in two dif-
ferent interpolations of z. This can produce a gap or overlap between the ray
segments for these two adjacent cells, causing errors in the volume rendering.
In most of our applications, the quadrilaterals are almost planar, and the errors
introduced are not large. We also have a slower face subdivision alternative
which divides all quadrilaterals into two triangles, and renders all the poly-
gons of figure 2, eliminating these particular z interpolation inconsistencies.

5. Data Structures

As mentioned above, the vertices are stored in a large array. The SILO
data has no information on the connectivity of cells across common faces, so
this must be reconstructed after the data is input. The data structure for each
cell is as follows.

struct NewCell {
char subdivided; /*currently subdivided */
char oldsubdivided; /*subdivided in last frame */
char numbInbound; /*for directed graph sort */
char type; /*zoo element or new tetrahedron */
char actual; /*actual, virtual, or degenerate */
char cycleTestBit; /*for detecting visibility cycles */
char notVisited; /*for MPVONC sort */
char nverts; /*number of vertices */
int UsedTIndex; /*into list of cells actually used */
struct Newcell parent; /*parent of tetrahedron in block or

pointer to a block of tetrahedra for subdivided cell */
struct NewFace **face; /*head of face list */
int vertex[4]; } /*vertex pointers */

Extra space for more vertices is allocated if nverts is more than four.
The list of face pointers is actually an array stored after the array of vertex
pointers, but because nverts is variable, it must be accessed via a pointer.

The following data structure for the faces allows either one subface, for



triangles, or two subfaces, for quadrilaterals.
struct NewFace {

short concave; /*1 if a problem face; 0 if not */
short nsubfaces; /*1 for quadrilateral; 0 if not */
struct Subface[1];} /*more space allocated if needed */

Each subface is a triangle, and therefore has a linear plane equation, as
well as two shared pointers to the two cells that share it. The first entry points
to the cell with the lowest index; a tetrahedron from a subdivision gets its par-
ent’s index. For exterior subfaces, the second pointer is -1.

struct Subface {
struct Newcell *shared[2];
float A; /* The plane equation is: */
float B; /* Ax + By + Cz + D = 0. */
float C;
float D;
char arrow;} /* graph edge direction */

The arrow’s direction is with respect to the first shared cell, shared[0].
It indicates whether the viewpoint is on the same side of the plane of the trian-
gle as cell shared[0], on the opposite side, or exactly on the plane. The plane
equation is computed once when the geometry is determined, but the arrows
must be recomputed each time the viewpoint moves.

The plane equations and arrows for the two subfaces of a quadrilateral
face determine whether it is a problem face (setting concave) and which of
the cells it bounds is a problem cell (setting subdivided). See [12] for details.
If subdivided is true and oldsubdivided is false, the cell is subdivided by
taking a block from one of four pre-allocated arrays of such blocks, for pyra-
mids, prisms, hexahedra requiring five tetrahedra, and hexahedra requiring six
tetrahedra. (Actually, we currently use seven arrays instead of four, because of
an earlier attempt to save time by reusing preset face pointers that point to
internal faces inside the block, which required a separate list for each block
topology.) When a cell is subdivided, the shared pointers originally pointing
to the cell must be revised to point to the new tetrahedra. This is the reason for
including the shared pointers in the subfaces; a quadrilateral face pointing to
a single cell may later need to point to two subtetrahedra.

If subdivided is false, and oldsubdivided is true, the parent pointer in
the NewCell structure is used to restore the pointers to their state prior to sub-
division, and the block is placed on a free list for its topological type. Below is
the data structure for a block of cells.

struct BlockOfCells {
char type; /*inherited from parent type */
char used; /*1 if currently in use; else 0 */
short kind; /*which block topology */
struct BlockOfCells *next; /*lists of used & free blocks*/
struct NewCell tets[2];}/*more space allocated if needed */
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The internal faces are stored directly after the end of the tets array, in
the memory allocated for the block, to make memory reference more local.

The XMPVO [20] and BSP-XMPVO [21] sorting algorithms require a
list of planar exterior triangles, each pointing to the cell they bound. Thus we
divide all exterior quadrilateral faces into triangles, whether or not they are
problem faces. In the BSP-MPVO algorithm, the required BSP tree is con-
structed once per new geometry, independent of the viewpoint position. We
modified the algorithm so that each exterior triangle points to one of our sub-
face structures, instead of to a cell. Thus we can follow a shared pointer to
the correct cell, even after view dependent subdivision replaces a subdivided
cell by tetrahedra.

6. Results

Figure 3 shows a volume rendering of a curvilinear grid of 19,000 cells
on a half-cylindrical shell, twisted so that its faces are non-planar. The color
transfer function is piecewise linear, although the resulting colored bands are
not visible in this black and white figure. The cells containing contours for the
breakpoints of the transfer function are divided into tetrahedra, some of which
are further subdivided into slabs on which the transfer functions are linear. In
addition, 2589 problem cells were subdivided, giving a total of 31945 cells to
be projected and rendered. The subdivision took 0.12 seconds, and the quick
approximate MPVONC sort took 0.2 seconds. The total time to project and
render the 31945 cells was 14 seconds, using OpenGL and X, and coloring the
thick vertices by the simple average of the front and back interpolated colors
for their ray segment endpoints. The resolution is 641 by 465. The server was
an SGI ONYX with 48 250 MHZ R10000 processors, of which we only used
one. We have now parallelized the time consuming image plane subdivision
and color integration steps on these multiple processors, as reported in [27].

The client was an SGI Octane with one 250 MHZ R10000 processor, and
an ESI graphics board with texture option. When run on the Octane alone, the
sorting and projecting time added up to 0.42 seconds, and the total time was
15.4 seconds. The latter increased to 17 seconds when the more accurate color
integration was done on the thick vertices, to 31.6 seconds when all quadrilat-
eral faces were divided up into two triangles. When all cells, whether problem
cells or not, were divided up into a total of 114,000 tetrahedra, subdivision
and sorting time increased to 1.27 seconds and the total rendering time to 40.7
seconds. Software rendering [9, 11], without dividing non-problem cells into
tetrahedra, but with analytic integration of the correct color on each pixel’s
ray segments, took a total of 31.2 seconds. Our source code is available
through http://www.llnl.gov/graphics/software.html.
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