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In this chapter, we present a high performance sorting function on GPUs
that is able to exploit the parallel processing power and memory bandwidth
of modern GPUs to sort large quantities of data at a very high speed. We
revisit the traditional radix sorting framework, analyze the weaknesses, and
then propose a solution based on the implicit counting data presentation and
its associated operations. We also improve the bandwidth utilization with
our hybrid data structure and redefine the concept of arithmetic intensity
as a guidance for GPU optimization process.

1 Introduction, Problem Statement and Context

1.1 Motivation

Sorting is undeniably one of the most fundamental algorithmic building
blocks and one of the most widely-studied problem in computer science
literature. There are numerous algorithms in which sorting is an essential
component. Improving this core algorithm can significantly improve the
performance of many applications. Not only real time systems benefit from
a fast sorting algorithm, but also many execution-time limited applications
become feasible with its use. Hence, the results of this work are of interest
for general research and development in HPC and GPGPU communities. A
number of applications will directly benefit from a fast sorting framework,
including data querying, exploration, classification, visualization, physical-
based simulation, computer games, and more.
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Modern GPUs offer massive parallel computational power and extreme mem-
ory bandwidth, the foundations for fast sorting algorithms. Previous GPU
sorting approaches, however, were not able to exploit these computational
powers. In particular, scattered write operations prevent coalesced data
movement, a key component for efficient GPU programming. Consequently,
GPU sorters were memory bounded and had low compute-memory efficiency.
In this chapter, we analyze these issues and propose two major improve-
ments: First, an implicit counting structure with associated operations, and
second a hybrid Structure of Arrays (SoA) and Array of Structures (AoS)
data presentation.

1.2 GPU sorting overview

The dramatic changes of the GPU architecture over the past decade has led
to two trends in GPU sorting algorithm: GPU-based sorting implementation
based on the graphical pipeline, and parallel sorting on General Processing
GPUs based on GPGPU APIs.

Parallel sorting network - Comparison-based sorters. Most tradi-
tional GPU sorting implementations have been based on sorting networks,
in particular, the bitonic sorting network. The main idea is that a given
network configuration will sort the data in a fixed number of steps using
static communication paths. This property suits the traditional GPU ar-
chitectures well, because sorting algorithms can be expressed in terms of
shader functions, which have very limited branching and no scattering sup-
port. The complexity of such sorting networks, however, is 0(n log2

n), which
is higher than that of the optimal comparison-based sorting, 0(n logn).

The complexity drawback was tackled by Gres et al. [5], who employed an
adaptive bitonic sorting strategy to lower the complexity to the optimal
bound of O(n log n). Cache strategies were also considered to improve the
performance, Govindaraju et al. [3] presented an improved bitonic sorting
network with more cache-efficient data access and data layout to speed up
GPU based sorting by about a factor of 1.5.

The introduction of general parallel processing architectures and high level
GPU programming languages such as CUDA, Direct Compute and OpenCL
gave developers full access to the computational power and memory band-
width of modern GPUs. These programming features offered developers
more control of the memory cache, the parallel thread execution, and the
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efficient branching and fine grain hierarchical memory-execution structure.

Peters et al. [10] implemented a fast bitonic sorting algorithm in CUDA
which reached 60M pairs per second on the GTX 280. A competitive per-
formance is achieved by the parallel merge sort of Satish et al. [11], which
becomes part of the Thrust library. So far the fastest comparison-based
sorter, however, is the GPU Sample Sort by Leischner et al. [9], which is
about 30 percent faster than the parallel merge sort.

Despite achieving considerable improvement over CPU sorters, the log-factor
of comparison-based approaches is costly, especially when dealing with a
large number of inputs. Comparison-based sorters are only considered when
inputs are non-integer or have variable length, and when in-placed sorting
is the main concern. Otherwise, a more efficient approach is the counting-
based sorting scheme with a linear bound complexity.

Counting sorters. Though counting-based sorters were introduced later
to the GPU, they have achieved remarkably performance improvement and
have proved to be the more GPU friendly and scalable approaches. In
2007, the hybrid sorting algorithm by Sintorn and Assarsson [13] based
on a vectorized mergesort in combination with a bucket-sort using atomic
GPU operations, was twice as fast as the previous fastest GPU-based bitonic
sorting algorithm [3]. The most preferred and efficient GPU counting-based
scheme, however, is the radix sorting. The GPU radix-16 by Satish et al.
[11] is the first single-device sorter that is capable of sorting more than a
hundred million key-index pairs in a second.

Radix-sorting algorithm is often referred as radix-r, where r is the number
of radix buckets. In practice, the key is 32-bit length, hence it requires
[32/log2(r)] passes, each performs a radix step on log2(r)-bit of the key
from the right most bit to the left most bit (Least Significant Bits strategy
- LSB). The radix sorting can be used for arbitrary number-typed inputs:
float and integer, and with arbitrary key-length [6].

In a single pass, each key is placed into one of r buckets. The position of
the r-sorted output element, called global rank, is equal to the total number
of elements in lower buckets and those preceding of the same bucket. For
parallel efficiency, the global rank is computed using a fine grain approach
by adding a local rank, the rank of the element in its block with the number
of the same radix value on previous blocks, then with the total number of
elements in lower radix buckets. When the global ranks are computed for
all input elements, the final step shuffles inputs onto locations determined
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by their ranks. Then the attention is moved to the next higher bit group
and the process continues until all the input bits are sorted.

The performance of GPU radix-sorting depends on how fast the global rank-
ing computation is and how friendly to the memory cache the shuffle step
can be implemented. There are two main schemes to compute global rank:
histogram-based methods [4, 13] and scan-based methods [6, 11].

Histogram-based methods explicitly compute a histogram for all radix buck-
ets. Sintorn and Assarsson [13] exploited CUDA atomic functions on CUDA
1.1 hardware to count the number of elements in each bucket. Therefore,
their performance depends heavily on the input distribution, and suffers
from parallel resource fighting. To tackle this drawback, Le Grand [4] ex-
ploited the on-chip fast-access explicit cache, the shared memory, for radix
counters, and divided parallel threads onto thread groups. Each thread
group has different radix counters; hence, resource fighting between groups
was eliminated. However, the method serializes the increment of radix coun-
ters sharing between threads of the same group.

Scan-based methods depend on prefix sum operation to implicitly compute
the histogram. First presented by Harris et al. [8], the GPU scan operator
can achieve optimal bandwidth of streaming operations on the GPUs. As a
direct result, Sengupta et al. [12] implemented a binary-radix sorting which
requires n radix passes with n being the key-length in bits. The method
is bandwidth-bounded and under-utilized GPU power, resulting in similar
performance as the hybrid sort but slower than Le Grand’s radix-16.

To exploit the parallel processing power of the GPUs and to reduce the
number of radix passes, Ha et al. [6] proposed a fast 4-way radix sorting
that took advantages of the instructional parallelism to perform four scan
counting paths at the same time. Satish et al. [11] exploits the simplicity
and efficiency of the implicit binary-radix sorting to perform multiple radix
passes on the GPU’s shared memory. Both methods were based on the
modified radix sorting with local pre-sorting step to handle non-coalesced
pattern of the final mapping step. As a result, Satish’s radix sorting is
almost six-times faster than Le Grand’ radix-16 with the capability to sort
140 millions input pairs per second on the NVIDIA GTX 280, the fastest
published results with both GPU and CPU sorting on a single desktop.
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2 Core sorting frameworks

To further improve the efficiency of ranking computation and the cache
coherency of the mapping step, Satish et al. [11], and Ha et al. [6] proposed
an improved framework that performs sorting in 3 main steps:

• Parallel local radix counting and pre-sorting

• Global radix ranking

• Coalesced global shuffling

The basic difference of the improved framework from the traditional one is
the local pre-sorting step, which happens inside the shared memory and is
incorporated into the regular local counting step. The pre-sorter divides
data into radix blocks, which then move together in the final mapping.
This strategy greatly increases the cache coherency of the data. To further
improve the performance, a coalesced mapping step was proposed [6, 11]
that assigns each thread to the data based on its output location to satisfy
the coalesced mapping condition.

Revision of the arithmetic intensity concept. An analysis of the com-
putational characteristics of existing sorting algorithms shows that few arith-
metic operations are involved, i.e. the counting with radix-based solutions
and simple comparisons with other sorting solutions. Data movement is
the most common operation. Consequently, sorting algorithms are memory-
bounded, low-compute efficient, and rarely able to benefit from the huge
computational power of GPUs.

Though the improved framework tried to tackle the non-coalesced effect, the
memory bandwidth efficiency of the global mapping step is still a fraction
of the full memory bandwidth. Together with low-compute efficiency of pre-
sorting step, they are the two major performance bottlenecks. We see these
issues as the problem of low arithmetic intensity of existing approaches.

There are two typical views about arithmetic intensity: Dally et al. [2] de-
fined “arithmetic intensity” as “math operation per memory op”, Buck et
al. [1] defined “computational intensity” as “time spent on computation over
data transfer”. We believe that these definitions, do not reflect the actual
efficiency of a kernel and insufficiently capture the goal of optimization. We
rather consider efficiency as “the overall amount of work done over the data”
i.e. work per time so that a more efficient kernel will do more effective work
per data unit (i.e. implicit binary vs binary sorting) and spend less time to
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complete the same amount of work, i.e. sorting task. Our definition con-
siders both computational and memory usage efficiency in the optimization
process.

Algorithmic improvements. Use the new concept as a guidance, we pro-
posed two major algorithmic improvements: an implicit parallel counting
and a mixed-data structure. The implicit counting exploits GPU instruc-
tional parallelism to reduce the number of passes inside the shared memory
in comparison with Satish’s method by a factor of two. The mixed-data
structure allows a more efficient mapping step which is immune to the non-
ideally coalesced effect. Both strategies successfully address the efficiency
issues, leading to a significant improvement over highly optimized solution
of Satish et al.. In the next section, we will go further into the details of our
sorting method.

3 Algorithms, Implementations, and Evaluations

3.1 Implicit counting - Improving compute efficiency

Two major components of this arithmetic improvement are the implicit
counting number and its associated operations. An implicit counting num-
ber encodes three counters in one 32-bit register, each counter is assigned
10 bits, in particular

implcnt = cnt0 + (cnt1 � 10) + (cnt2 � 20)

where cnt0, cnt1, cnt2 are the counting values of radix value 0,1, and 2.

For a single radix value, the corresponding implicit counting value (Figure 1
b) is computed

implval = (val < 3) � (10 ∗ val)

Note that the implicit counting value of the radix mask 3 is 0 in the example
given in Figure 1b.

The radix counting operation for a radix value is computed implicitly by
adding implval to the common counter implcnt (as shown on Figure 1b,c)

implcnt = implcnt + implval
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Figure 1: Illustration of our implicit radix sorting (intermediate steps) a) Inputs b)
Implicit-presentation of the input c) The local-prefix sum d) Number of each radix bucket
e) Number of previous same bucket elements f) local rank g) pre-sorted result h) Number
of radix values in each block i) Start offset j) Sorted output

The counting values of three first radix buckets are easily restored from the
common counter using shift operations (Figure 1d)

cnt[val] = implcnt � (10 ∗ val)

The fourth counting value - radix bucket 3, can be computed based on the
three others using

cnt[3] = id− cnt[0]− cnt[1]− cnt[2]

because the total number of preceding elements in the four radix buckets to
an element index id is exactly id.

We apply the idea of implicit counting twice: First to compute the fourth
counting value from the common counting values of the three other buckets,
and second to reduce number of scan paths from four to one. The implicit
counting function allows us to compute the four radix buckets with only a
single sweep. This is twice as efficient as the implicit binary approach of
Satish et al..

3.2 Improving memory bandwidth

Hybrid data representation. To increase the memory bandwidth effi-
ciency in the global shuffling step we proposed a hybrid data representation
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AoS inputs
(key + index)

SoA pre-sorted 
intermediate result

0 1 n

0 1 n 0 1 n

n

AoS outputs 
(key + index)

Key-array Index-array

Global Shuffling

Blocked-radix presorting

Rank[0].x

Figure 2: The flow of our hybrid-data format. The conversion occurred implicitly inside
the global shuffling kernel and at the beginning of local counting kernel using texture
memory.

that uses SoA as the input and AoS as the output. The conversion is illus-
trated in Figure 2. The key observations is that though the proposed map-
ping methods [6, 11] are coalesced, the input of the mapping step still come in
fragments, we call this a non-ideal effect. When it happens, the longer data
format (i.e. int2, int4) suffers less performance downgrade than the sorter
one (int). Therefore, our AoS output data structure significantly reduces
the suboptimal coalesced scattering effect in comparison to SoA. Moreover,
the multi-fragments requires multiple coalesced shuffle passes which turns
out to be costly, we saw the improvement by applying only one pass on
the pre-sorting data. We also achieved the full memory bandwidth for the
thread input element, which is 4× int2 length, using the texture cache.

Shared memory bank conflict-free access. We applied a bank conflict-
free access pattern that stores a long format data structure, such as float4,
into separated arrays. This handles the bank conflict inherently to accessing
long format data on GPU shared memory. We then performs the operation
on each components and writes results back to the register. The bank con-
flict free mechanism is illustrated in Figure 3. A similar concept has been
applied by Satish et al., but without a deeper analysis. In contrast we pro-
pose the bank-free conflict mechanism as a general optimization technique
when working with long format data.

3.3 Performance tuning

Range limiter. While radix sorting time scales with the number of bits
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Figure 3: Resolve the 4-way memory conflict

used to represent the data, the actual number of sorting bits may substan-
tially lower than the full length of the sorting key. For example sorting of
the point-based simulation on the 2563 grid only require 24 bits of integer.

Our methods exploits this prior knowledge about input ranges to reduce the
number of radix passes. We use a simple scale and bias to map arbitrary
numbers from the range [a, b] to [0, b − a]. On the GPU we can quickly
determine the range of the inputs by applying a reduce operation, which is
as fast as a memory copy device operation [7].

While this works well with integers, such a simple mapping technique is
not very efficient with floating point numbers as the range in its integer-
converted format is likely to require as many as 32 bits, even for a small
data range. However, as floating point numbers in the range of [2n, 2n+1)
share the same leading exponential bits, we can reduce the range from full
32-bits to 24-bits of factional data using the normalized linear mapping from
[a, b] to [0.5, 1) range. This mapping yields a 30% performance improvement.
Table 4 illustrates the binary presentation of floating point numbers in the
normal range [0.5, 1).

While the mapping is linear, it certainly is not one-to-one due to the adaptive
range of floating point presentation, hence it is possible that two numbers
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Float number Binary presentation
0.5 0 01111110 00000000000000000000000
0.7 0 01111110 01100110011001100110011

0.99999997 0 01111110 11111111111111111111111

Figure 4: Binary presentation of floating point number between 0.5 and 1

may mapped to the same number in the normal range. This sorting result
is an approximate sorting of the input. For many real time applications—
especially in computer graphics and visualization—this approximation is
acceptable.

4 Final evaluation and validation of results, total
benefits, limitations

Our method extends and improves the fastest previously published imple-
mentation of Satish et al. [11] (CUDPP1.1) in both the pre-sorting and
global shuffling steps. In the following we take a closer look at those two
improvements.

We first focus on the pre-sorting step. Please note that all timings are given
in microseconds on an NVIDIA GTX 260 with 192 CUDA cores and 896MB
memory. The size of the input N(M) is the number of key-index input
pairs in millions. To demonstrate the consistently improved behavior of our
method we perform the pre-sorting step with different input sizes N:

N(M) 2 4 6 8 10 12 14 16
Satish et al 11 21 33 45 58 69 79 91
Impl radix 7 13 20 27 34 41 48 54

As can be seen in Figure 5, our pre-sorting step is about 1.5 to 1.8 times
faster than the CUDPP 1.1 implementation.

Next, we take a look at the global shuffling improvements. We demonstrate
our global shuffling step on 100 random radix-16 pre-sorted arrays, which
are partially sorted with 16-bin radix in groups of 1024 elements, with sizes
ranging from 1 to 16M key-value input pairs. The results show that by
using an AoS structure instead of SoA as the output format we improve the
performance by 25%. At the same time, our one-pass implementation of SoA
shuffling is more efficient than CUDPP1.1 by an additional 15%. Overall,
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Figure 5: Total run-time of pre-sorting step (ms) with Implicit Radix and Satish
CUDPP1.1 radix-16

our global shuffling is 1.4 times faster than that of CUDPP as illustrated in
Figure 6. It is approximately 1.4 times more expensive than a fully-coalesced
memory copy operation, the upper bound.

N(M) 2 4 6 8 10 12 14 16
AOS 0.47 0.90 1.34 1.77 2.21 2.64 3.08 3.52
SOA 0.61 1.16 1.73 2.31 2.87 3.44 4.01 4.33
CUDPP 0.72 1.38 2.05 2.73 3.42 4.09 4.77 5.15
Memcpy 0.34 0.66 1.01 1.34 1.66 1.99 2.34 2.67

Finally, we compare the component runtime in one iteration of a 16M-pair
input between our implicit sorting and the Satish et al. (CUDPP1.1) im-
plementation (time is measured in milisecond)

16M pairs Pre-sort Glb rank Glb Shuff Total MemcpyDtoD

Satish et al 12.25 0.15 5.15 17.55
Impl radix 16 8.15 0.15 3.75 12.05 2.78

In Figure 7, we measure the sorting rate (million-pairs per second) for ran-
dom unsigned integer input arrays with size ranging from 1M to 16M. Both
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Figure 6: Global shuffling run-time comparison (ns) between our implementation of global
shuffling with AoS, SoA structures, and CUDPP1.1 in reference to the device to device
memcopy of the same input size:

our method and the Satish et al. implementation require eight iterations for
the 32-bit key.

N(M) 2 4 6 8 10 12 14 16
Satish et al 116 112 116 120 119 116 115 123
Impl radix 170 160 174 177 177 177 177 178

As can be seen, our method is able to sort about 180M key/value pairs per
second on the target hardware, making it a factor 1.5 times faster than the
the previous radix-16 implementation on the same hardware. When using
our approximate single precision floating point sorting scheme we achieve
another 30% speedup as we need only sort 24 bits of the 32 bits key.

We also observe significant performance improvements with integers when
the dynamic range does not cover the full 32 bit range.
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Figure 7: The sorting rate comparison of random 32-bit unsigned inputs

5 Future directions

In this chapter, we propose a new sorting algorithm to improve the perfor-
mance of GPGPU implementations on modern GPU architectures including:

• A revision of the arithmetic intensity concept to evaluate the efficiency
of GPU algorithms, which can be used as a guideline for optimization

• A new data structure and operations to exploit instructional paral-
lelism, reducing significantly the amount of computation

• An adaptive data structure concept to tune performance at each algo-
rithm stage

Our sorting framework efficiently address performance issues of existing ap-
proach and successfully exploit both the compute power and memory band-
width of modern GPUs.

While constraint of 1024 elements block size seems to affect the scalability
of the method in the future device, we believe it is not the case since the
number of thread in one block 256 sufficiently hide the memory latency.
Moreover, with a minor change in the algorithm, we could increase the
block size to 2048 elements with one implicit counting bit to achieve 33-bits
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implicit counter. However, on the current architecture the 1024 elements is
the optimal size.

Although our approach increases the arithmetic intensity of sorting problem,
the full power of the GPU has not yet been exploited, one possible solution
is to combine our implicit counting and multiple parallel scan path of Ha et
al. [6], this method also overcomes the 1024 block size limitation.

When the input of the radix sorting is a number, the algorithm could easily
be extented to segmented sorting, that sorts multiple segments of input at
the same time. Segmented sorting has applications in visual sorting when
fragments are sorted per rays.

For future work, we want to combine GPU and CPU sorting to exploit both
memory bandwidth and processing power of GPUs and CPUs to achieve
the highest performance and to handle extremely large data set on the GPU
cluster.
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