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Abstract— Marching Cubes is the most popular isosurface extraction algorithm due to its simplicity, efficiency and robustness. It has
been widely studied, improved, and extended. While a lot of early work was concerned with efficiency and correctness issues, lately
there is a push to improve the quality of Marching Cubes meshes so that they can be used for computational experiments. In this
work we present a new classification of MC cases that we call Edge Groups, which helps elucidate the issues that impact the triangle
quality of the meshes that the method generates. This formulation allows a more systematic way to bound the triangle quality, and
is general enough to extend to other polyhedral cell shapes used in other polygonization algorithms. Using this analysis, we also
discuss ways to improve the quality of the resulting triangle mesh, including some that require only minor modifications of the original
algorithm.
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1 INTRODUCTION

Marching Cubes (MC) [20] became the most popular algorithm for
isosurface extraction due to a powerful combination of simplicity, effi-
ciency and robustness of implementation. There has been much work
on improving the original proposal, from understanding the underly-
ing mathematics to improving its performance and extending it to more
general settings. With ever-increasing computing power, simulations
are now complex enough that mesh generation is an intermediate step
in many numerical codes. Because of this, there is a pressing need
for algorithms that are fast and generate good meshes. Since good
meshes make numerical processing faster and more accurate [34], im-
proving the quality of the meshes generated by Marching Cubes has
become an important problem. Although much of the published work
has involved post-processing and remeshing, there is also interest in
modifying the core Marching Cubes routine as well. Our work falls in
this category.

In this paper we introduce the concept of Edge Groups, which sheds
light on the triangle quality generated by MC and other marching
methods. The underlying motivation behind our formulation is very
simple. MC approximates a scalar field inside each cell by a collection
of triangles, with each triangle being formed by intersection points lo-
cated across cell edges. Considering that the quality of the generated
mesh can be found by looking individually at each triangle, we fo-
cus on the different ways edges can be combined to form a triangle.
Each of these different configurations is a different edge group. Since
there is a finite number of edges in a cubic cell, there are only finitely
many ways three edges contribute to make a triangle. Even though
infinitely many triangles can be formed for each configuration, inter-
section points are forced to lie on edges, so we can bound the triangle
quality for each configuration. We call each of these edge configura-
tions an Edge Group.

Using this framework, we revisit marching methods to identify the
edge groups in each case. For instance, we show that in MC there are
only 8 edge groups (Figure 1), and that each group has a very distinct
behavior in regard to their triangle quality bounds. The same idea can
be applied to marching methods that use tetrahedral cells.
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While the identification of edge groups is by itself interesting, we use
them to derive ways to improve the triangle quality generated by these
algorithms. By evaluating the histograms of triangle quality associ-
ated to each edge group of MC, we observe that one case in particular
generates a large number of bad triangles. We also show that this par-
ticular edge group is responsible for the majority of the worst triangles
in MC meshes. From this observation, we changed the connectivity of
the triangulation in some entries in the MC table, replacing a triangle
defined by this edge group by another edge group. This improves the
triangle quality of the mesh by an order of magnitude in most cases
we tested.

We also apply a similar analysis to revisit Macet, a method that im-
proves triangle quality by warping the locations of the MC grid before
generating the mesh [13]. Edge groups help explain why that method
performs well.

In addition, edge groups naturally suggest a modification of the tech-
nique that further improves triangle quality in almost all datasets
tested. In summary, our main contributions are as follows:

• A new interpretation of marching methods case tables called
edge groups that helps explain and bound the triangle quality
generated by Marching Cubes and its variants.

• A modified MC table based on the edge group formulation that
improves the triangle quality of the original MC.

• An improved warping technique that generates triangle meshes
with competitive quality to the state of the art while retaining the
attractive performance and simplicity of MC.

The paper is organized as follows. In Section 2 we discuss related
work in the area. We present the edge groups in Section 3, with a
discussion on how it applies to cubic cells. This formulation sets the
ground for discussing two ways to improve triangle quality in Sec-
tion 4. Results of these approaches are listed in Section 5. In Sec-
tion 6 we discuss our results and evaluate the edge groups on tetrahe-
dral cells. Our conclusions are presented in Section 7. The appendix
gives a formal proof on the existence of eight edge groups for MC.

2 RELATED WORK

Several researchers have focused on understanding and describing
combinatorial aspects of MC and related techniques. The original MC
paper by Lorensen and Cline [20] enumerates the 15 cases by inspec-
tion of the possible 256 cases, without a formal proof. Nielson [28]
demonstrates the existence of 23 cases by rotation only, despite mir-
roring and complementary operations, which can produce erroneous
results. Banks et al. [2] present a formal proof based on group theory
that also generalizes to higher dimensions and other polytopes. Other
related papers include the follow-up to this work [3] that uses Pólya
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Fig. 1. The eight edge groups observed in MC. All triangles generated by MC
come from one of these groups (which include symmetric or rotationally equivalent
configurations).

theory, and counting-cases for four-dimensional cases [4]. While they
count cases that occur based on the sign of the vertices of the cell,
we classify triangles inside each case by looking at the relative con-
nectivity of the edges that generate the vertices. A survey of MC was
recently presented by Newman and Yi [24].

Isosurface extraction methods are usually categorized by the general
approach they use in computing the isosurface [29]. Spatial decom-
position methods (introduced by [16]) subdivide the domain of the
function f into smaller parts, often called cells, and generate local
approximations to the isosurface inside each cell [1, 8, 17, 20, 27, 35].
Surface tracking methods place seed sampling points on the isosurface
and trigger region growing-like algorithms from the seeds, iteratively
searching for optimal positions for new sampling points. These algo-
rithms trace their roots to work of Wyvill et al. [38] and have been
recently extended [33] to generate higher quality triangulations.

The divide-and-conquer nature of spatial decomposition methods of-
ten leads to robust and efficient methods, like MC [20], while the opti-
mal placing of each sample performed in the surface tracking methods
results in higher-quality meshes. In the past, efficiency and quality
have been treated as orthogonal features, but a recent trend is to con-
sider both aspects when designing an algorithm to improve mesh qual-
ity [13, 18]. Gibson [14] proposes a method based on MC that places
sampling points at the center of each active cell (a cell crossed by the
isosurface), and connects them to sampling points in adjacent cells.
This procedure resembles the Cuberille method [15] and generates a
dual of the MC mesh. A related technique is dual-contouring [17]
which has been shown to generate higher quality meshes than MC.
Bruin et al. [11] extended Gibson’s technique to couple a gradient de-
scent iteration to the mesh post-processing step, which reduces the dis-
tance between the mesh and the real isosurface. Dual MC techniques
are also studied by Nielson [27] who proposes a method that leads to
a polygon mesh surface which is the mathematical dual of a modified
form of the MC surface called the “MC Patch” surface.

Tzeng [36] proposes a post-processing step in which small edges are
collapsed to eliminate poorly shaped triangles. Labelle and Shewchuk
[18] propose warping of the sampling grid to eliminate poorly-shaped
tetrahedra before their construction. By carefully chosing the amount
and direction of warping, together with the lattice in which the surface
is extracted, they are able to prove lower bounds on tetrahedra qual-
ity. Raman and Wenger [32] propose an extended MC lookup table
and a snapping technique that modifies scalar values at grid vertices to
improve triangle quality. The Macet algorithm [13] transforms active
edges to places that improve the quality of the output mesh. Common
to the solutions described above is the idea that moving the sampling
grid points [13, 18, 36] or the generated cut points [11, 14, 32] results
in a significant improvement of triangle quality. Most of these ap-
proaches, however, are guided by intuition. The framework of edge
groups introduced in this work provides evidence as to the reason that

Fig. 2. The quality of each triangle generated by Marching Cubes depends on
the combination of edges that generate the triangle.

these methods work.

3 EDGE GROUPS

In this section we introduce edge groups to understand and analyze the
triangle quality generated by MC. The connectivity of cut points of a
given cell in MC is determined by the sign of the function f at cell
vertices, and is used to define a piecewise triangular surface within
each cell. We call the point in which the isosurface crosses the cell
edges a cut point, and the associated edge an active edge. In this work
we are interested in the quality of each triangle. We chose as quality
metric the radii-ratio, which computes the ratio of incircle to circum-
circle, normalized to lie between zero and one; an equilateral triangle
has maximum quality one [30].

The quality of triangles generated inside a cubic cell is hard to ana-
lyze. Each cell generates a set of triangles (up to five in MC), and the
quality of each triangle is dictated by the position of its vertices, some
of which are shared among adjacent triangles. Our analysis is based
on the fact that the triangles MC generates are not arbitrary: their
endpoints are necessarily on edges of a fixed-size cubic cell. This led
us to look at the different ways that three edges can define a triangle
in MC. In Figure 2 we show a case that produces three triangles. The
shape of each triangle is directly related to the edge configuration of
each triangle: the three active edges that define a triangle in a MC case.

We represent the position of each cut point ci along the active edge
by a single parameter, ti ∈ [0,1]. The quality of the triangle set for a
given MC case can be given by a function q : Rn → R, which takes
n parameters (positions of cut points) to calculate the mesh quality,
where n varies from three to twelve (the number of active edges in a
cubic cell, which changes from case to case). As previously observed,
the behavior of this high-dimensional parameter space can be quite
complicated [18].

3.1 Edge Groups for Cubic Cells

Because of the many symmetries of the cubic cell, different edge con-
figurations can define the same triangle. Such symmetries are easy to
consider in the cube where all edges have same size and right angles
between adjacent edges. We combine symmetric configurations into a
group by partitioning the configurations under the equivalence classes:
two edge configurations are equivalent if their representation can be
transformed into each other by the symmetries of the cubic cell.

An edge group represents a set of equiva-
lent edge configurations that can be formed.
The quality of an edge group is defined by
the quality of the worst triangle generated in
this group. For example, if the edge group
is formed by edges A, B and C, then the cut
points along the edges are defined as:

cA = p0 + tA(p3− p0)
cB = p0 + tB(p1− p0)
cC = p4 + tC(p5− p4)

(1)



Table 1. Quality bounds, quality histograms and volume renderings of triangle quality for each edge group of the cubic cell. The quality is measured as the radii-ratio
of the triangle. Even though the minimum quality of edge groups 0, 1, 2, 3, and 6 indicates that the cubic cell can produce degenerate triangles, the quality histograms
show that most of the triangles generated by each edge group have good radii-ratios. Each point in the volume represents a triangle, with red triangles approaching
degenerate ones. Volume renderings for edge groups 4, 5 and 7 appear empty because they generate no bad triangles.

By definition, tA, tB and tC vary in the interval [0,1]. Each vector~v =
(i, j,k) in the parameter space Θ spanned by tA, tB and tC corresponds
to a triangle defined by vertices ci, c j and ck, respectively (see inset).
We associate a quality measurement to each vector ~v by generating
the cut points ci, c j and ck and computing the quality (radii-ratio) of
the resulting triangle. Any vector ~v inside Θ can be mapped to cut
points along the edges A, B and C, which guarantees a continuous
mapping between the parameters i, j, and k and a quality value. This
mapping allows searching for minimum and maximum values of q,
which indicate the worst and best triangles of each edge group.

Any triangle generated by MC can be categorized into one of eight
edge groups. Figure 1 shows the complete list of edge groups, since the
triangles generated by any table (no matter how connections are per-
formed inside each cell) will fall in one of these cases. Edge groups
5 and 6, for example, do not occur in the original MC table, since
they only appear as components of the complement of case 6 (see Fig-
ure 4). Quality statistics for each edge group is obtained by numeri-
cally evaluating the function q along several domain points. Minimum
and maximum values are validated with a non-linear optimization rou-
tine implemented in MATLAB. Results obtained for all edge groups
are in Table 1. Five edge groups on the cubic cell (groups 0,1,2,3
and 6) can produce degenerate triangles. However, quality histograms
show that most groups generally create good triangles. In Section 4,
we exploit this property to improve triangle quality. Table 1 also shows
distinct behavior across edge groups. Edge groups 4, 5 and 7 do not
produce degenerate triangles and have the same lower bound quality
– which is resultant from three triangles (one per case) with the same
geometry. Group 2, in particular, cannot generate equilateral triangles.
Most importantly, it is the only group with non-zero density of degen-
erate triangles. This is clearly illustrated by the volume renderings in
the third row of Table 1. All other groups produce degenerate triangles
only on edges or corners of the parameter space, while edge group 2
seems to have a non-zero volume of the parameter space producing
degenerate triangles. This means that simply removing edge group 2
from Marching Cubes cases will significantly reduce the probability
of generating bad triangles. The relationship between the geometric
configurations of edges and the resulting quality is discussed below.

4 IMPROVING TRIANGLE QUALITY BASED ON EDGE GROUPS

The insight provided by edge groups can be used to improve the qual-
ity of the extracted mesh. Some observations that motivate our ap-
proach include:

• Each edge group has a different probability to generate bad tri-
angles, as illustrated by the histograms of Table 1.

• All edge groups generate well-shaped triangles. The combina-
tion of parameters (~v) which results in good triangles, however,
differs significantly among edge groups.

• Most edge groups can generate bad triangles. This seems to be
related to the number of shared vertices in each edge group, since
the proximity of the isosurface to a shared vertex may result in
cut points close to each other.

With these in mind, we describe the design of two methods to improve
triangle quality. The first method tries to reduce the probability of
generating a bad triangle by eliminating particular edge groups from
MC cases, noting that most MC cases admit different triangulations.

The second method is based on reducing the number of shared vertices
among edges, since they seem to be directly related to the overall qual-
ity of an edge group. This was observed in [13], where a method to
transform active edges and increase the distance among cut points was
proposed. Although their claim was supported solely by experimental
results, there is no formal evidence that the method in fact improves
triangle quality, or the quality bounds of the resulting mesh. In Sec-
tion 4.2, we use edge groups to explain the effectiveness of the method.
In addition, we present an improved version of the algorithm that in-
creases significantly the quality of the extracted mesh. As we discuss,
this improvement was largely informed by the analysis of edge groups.

4.1 Changing the MC Table

In MC, a triangle is exactly defined when only three cut points are
found inside each cell. When more than three cut points occur (in a
single connected component), there is more than one way to connect
these points to form a triangulation. The decision on how to connect
the cut points impacts which edge groups are associated to the tri-
angles generated. By changing the connectivity of the triangulation
stored in the original MC table, and replacing edge groups associated
to the triangles of some table entries, we can try to remove from the
table groups that have a higher probability of generating low-quality
triangles, as the edge group 2 of Table 1. In Figure 3, we show a box
plot of the occurrences of edge groups across isosurfaces. We also
show the plot for the 1000 worst triangles of these isosurfaces. Notice
that edge group 2 dominates the bottom end of the quality distribution,
experimentally confirming our intuition.

These results suggest the removal of edge case 2 in each entry of the



Fig. 3. Box plots show the edge group distribution for 30 different datasets collected by [7]. The left plot shows the overall distribution of edge cases for the datasets,
and the right plot shows the distribution of the worst 1000 triangles. Notice that case 2 dominates the bad triangles.

MC table. Obviously, removing this edge group will cause the edge
groups of the other triangles in that particular entry to change. Even
though the edge groups of adjacent triangles may be replaced by an
edge group with a higher probability of generating bad triangles, edge
case 2 is responsible for the majority of the worst cases. Exchanging
edge group 2 out for a better one in expense of exchanging a group
with good quality for a slightly worse one has a positive impact on the
overall quality of the entry in the case table. This simple modification
results in a significant improvement in the mesh quality, reported in
Section 5. An example of removing edge case 2 is illustrated in Figure
4 for three MC cases.

Fig. 4. Replacing cases in MC. The top row shows the original triangulation in 3
MC cases (case 5, complement of case 6 and case 11, respectively [20]), while
the bottom row shows the modified connectivity. The reconnection of the cut points
removes the edge group 2 from these cells, reducing the probability of generating
low quality triangles.

4.2 Improving Macet

Macet [13] is a technique that improves triangle quality by modifying
the inner computation of MC. It is based on the observation that, by
moving the location of grid points in MC, they separate cut points that
are too close to each other. If done carefully, this can improve trian-
gle quality. They observed that MC generates better triangles when

Fig. 5. Intuition behind Macet: small changes to grid vertices positions (left)
may improve triangle quality. Moving vertices along the gradient (center) or along
tangential paths (right) improve triangle quality.

(a) (b)

Fig. 6. Edge transformations are redefined as a projection of the edge midpoint
onto the plane P tagent to the isosurface. This allows the use of edge group
analysis to measure the quality bounds of the transformed edges.

active edges are locally perpendicular to the isosurface, and proposed
two ways to move edges defined between grid points (see Figure 5).
Similar conclusion is obtained by looking where edge groups generate
bad triangles. Tables 1 and 5 show that most edge groups can produce
degenerate triangles. This happens because an edge group generates
badly-shaped triangles when they have two edges incident to a com-
mon grid point, which leads to cut points very close to each other.

Although effective, Macet lacks theoretical guarantees on the improve-
ment of the triangle quality. Edge group analysis helps validate the in-
tuition behind Macet. By applying the edge transformations discussed
in Macet over edge groups, we can measure the quality of the resulting
triangles. We redefine Macet as a projection pro jP(e), which corre-
sponds to the projection of the midpoint of the edge e onto the plane
P tangent to the isosurface. The projection results in the closest point
ċ in P to the midpoint of e, as illustrated in Figure 6. The projection
pro jP(e) is equivalent to the transformation of the edge e when P is a
good approximation to the isosurface around e.

The main conclusion derived from the anal-
ysis of the quality histograms of edge groups
is the need to move cut points away from
the corners of shared vertices. This creates
a tradeoff between triangle quality and iso-
surface fidelity: by moving the intersection
points from their actual position we are po-
tentially increasing its distance to the isosur-
face. On the left side of Figure 7 we illus-
trate the suggested movement for cut points
in edge groups 0, 1 (first row), 2 and 3 (second row). Observe that in
edge group 2 we have one edge that has two suggested movements,
but in opposite directions. Such opposite movements become even
more common when we consider the several edge groups that a given
edge may belong (right side of Figure 7). In this figure, we show a cut
vertex that belongs to 7 different triangles and consequently different
edge groups. The opposing movements suggest that cut points are to
be moved towards the center of each edge. (A similar movement, but
for a different goal, was proposed in the Discretized Marching Cubes



Dataset Original MC Table Modified MC Table
(original) + Macet + Displ. + Macet (original) + Macet + Displ. + Macet

+ Displ. + Displ.
Silicium 0.00157 0.19913 0.03329 0.26031 0.01792 0.33889 0.09806 0.34459

(1.14462) (1.75566) (1.14462) (1.75566) (1.14462) (1.75566) (1.14462) (1.75566)
Engine 0.00042 0.23566 0.01778 0.29275 0.0008 0.24611 0.02443 0.29275

(0.84591) (1.62972) (0.84591) (1.62972) (0.84591) (1.62972) (0.84591) (1.62972)
Bonsai 0.00013 0.1029 0.01017 0.16867 0.00152 0.1029 0.03138 0.19497

(0.54739) (1.09751) (0.54739) (1.09751) (0.54739) (1.09751) (0.54739) (1.09751)
Lobster 0.00088 0.11659 0.026 0.22984 0.00153 0.18981 0.03416 0.24716

(0.42495) (0.83487) (0.42495) (0.83487) (0.42495) (0.83487) (0.42495) (0.83487)

Table 2. Results comparing the worst triangle quality in four datasets using the original and our modified MC table. For each table we list in the first line, the worst
triangle obtained using MC, Macet, MC and the Displacement edge transformation, and Macet with the Displacement edge transformation. The second line reports
the maximum difference in absolute isovalue between the mesh and the actual isosurface. Observe the improvement in triangle quality between columns with red text
(change in the MC table), and in the blue columns (improvements in the Macet algorithm.

algorithm [22].) Forcing intersection points to be placed at the middle
of the edges is unnecessary in some situations. Therefore, we apply a
symmetric non-linear displacement using a modulation function. On
the x axis we describe the original position of the intersection (nor-
malized between 0 and 1, from start to end of the edge), and on the y
axis the normalized position of the displaced cut point. We chose the
popular gain function described in [31] to modulate the intersection
value. This allows us to apply non-linear displacements, and specially
to apply a greater displacement to places they are more needed: closer
to the endpoints of the edge. The current gain function we used has
parameter value equal to 0.3 which we found experimentally to per-
form well. We evaluated our displacement modulation function using
both MC and Macet, and report results in next section.

5 RESULTS

Table 2 contains the main results we obtained, including both the
changes to the MC table and the modifications to the Macet algorithm.
Additionally, Figure 8 visually compares enlarged sections of Sili-
cium, Engine, Bonsai, and Lobster datasets obtained with the original
MC table, Macet using the original table, and Macet using displace-
ments and the new MC table proposed. We separate the discussion of
these results in different sections to better present the impact of each
modification.

5.1 Changing the MC Table

The impact that the simple change in the MC table can be verified
by looking at the two red columns in Table 2. Observe that in three
of the datasets the improvement of the quality of the worst triangle
is at least of an order of magnitude. This modification improves the
quality of the worst triangles at the expense of reducing the quality
of triangles with good-aspect ratio, which represents a good trade-off.
Since the new and old MC tables generated different triangulations,
it is instructive to estimate how each triangulation is distant from the

Fig. 7. Suggested movement of vertices for edge groups 0, 1, 2 and 3 (left). Since
an edge is shared across several cells (right), a conflict occurs that suggests that
a cut point should be moved to the center of an edge.

Dataset Isolevel MC MC (new table)
Silicium 140.5 -14.508/30.783 -10.667/30.077
Engine 49.5 -24.611/33.988 -24.611/33.988
Bonsai 49.5 -31.737/23.050 -31.737/23.050
Lobster 30.5 -21.967/21.308 -21.967/21.345

Table 3. Minimum and maximum isovalue differences obtained using the old and
new MC tables.

actual isosurface. We implemented a procedure that distributes a fixed
number of sample locations over each triangle of the mesh, samples
the volume at these locations and accumulate the maximum difference
(negative and positive). These results are reported in Table 3. Results
show that the difference is nearly the same using both tables.

5.2 Improving Macet

Table 4 shows that the edge transformations indeed improve triangle
quality. Macet imposes conditions that limit the application of edge
transformations based on the neighborhood of the scalar field. Here
such constraints are not being taking into consideration, since we are
considering each edge case individually. The bounds presented as-
sume that the function can be approximated by a linear function inside
a cell, which might require an adaptive variation of MC. This edge
group analysis shows that the minimum quality of the transformed
edge groups is 0.272 in edge group 2, which corresponds to a trian-
gle with minimal internal angle of 18◦.

The results displayed in Table 2 allow for several considerations on
the improved Macet algorithm. Here we include several combinations
that span the alternatives introduced by this work. Results were sep-
arated by which MC table was used (original or modified). For each
dataset, we list in the first row the triangle quality of the worst triangle
for the original MC and Macet algorithms, the MC algorithm using
only the new displacement edge transform, and the improved Macet
algorithm using the new transform as well. The second row contains
the maximum absolute distance to the isosurface. We highlight the
improvement we obtain comparing the old Macet using the old MC
table, with the Improved Macet using the new table (blue columns).
The improvement on the quality of the worst triangle is substantial
in the Bonsai, Lobster and Silicium datasets, being closer to twice
as better. The Engine dataset shows also an improvement but not as
substantial due to its noisy nature. The second line of results display
the maximum distance between the mesh and the isosurface. Observe
that, unlike our point raised when introducing the displacement mod-
ulation of cut points, it does not change this maximum distance. In
other words, although locally the distance to the mesh may increase
due to this displacement, the cut point involved in the maximum dis-
tance value is not affected by this operation.



Table 4. Quality bounds and histograms for the transformed edge groups (of Macet) of the cubic cell. We do not show density of bad triangles because there are no
degenerate triangles in these situations.

6 DISCUSSION

The state of the art in quality isosurface mesh generation, to the best
of our knowledge, are the works of Schreiner et al. [33] in advanc-
ing front triangulation, Dey and Levine [12] based on Delaunay re-
finements, and Meyer et al. [21], which combines techniques from
computational geometry with dynamic particle systems to sample an
isosurface appropriately and then reconstruct the triangulation. They
report worst triangle quality ranging from 0.02 to 0.4 in the generated
meshes, which is generally comparable to the results obtained with our
improved Marching Cubes variant reported in Section 5. Note, how-
ever, that in every experiment we performed, our minimum triangle
quality was above 0.19. More importantly, our method retains most
of the performance advantages and simplicity of Marching Cubes: in
particular, we could take advantage of acceleration structures such as
octrees [37], interval trees [10] or span space methods [19]. On the
other hand, our method is intrinsically based on Marching Cubes, and,
as it is, incapable of generating meshes that adapt to the features in the
surface such as curvature.

One limitation of the analysis we have per-
formed is that it is not always possible to re-
move undesirable edge groups from cases in
the MC table. In particular, there exist MC
cases that must always have at least one trian-
gle from edge group 2, such as the one shown in
the inset. One possible way to circumvent this
might be to dynamically decide which triangu-
lation to use in the case of such convex poly-
gons based on the barycentric coordinates of the cut points. This is
an exciting avenue of research. More generally, our analysis of edge
groups could be used to guide dynamically generated MC tables [5].

Edge groups can be identified for any spatial subdivision that define
cut points along edges of its cells, such as methods based on MC, like
Marching Tetrahedra [6,9] and Marching Octahedra [8]. As stated be-
fore, the analysis of edge groups provides quality bounds for the trian-
gles generated in each cell, and thus for the quality of the polygoniza-
tion method itself. For example, tetrahedral cells with different shapes
are obtained in the Delaunay triangulation of a BCC (body centered
cubic) grid and from the Coxeter-Freudenthal-Kuhn triangulation [23]
(or simply the Kuhn triangulation) subdivision scheme. The analysis
of edge groups in tetrahedral cells is more involved than in cubic cells
because we have edges with different sizes, and with varying internal
angles (as opposed to fixed-size edges and only right angle adjacencies
among edges in the cubic cell). Our case analysis here followed an ex-
haustive procedure to identify all different edge groups. We found
four different cases for the BCC cell, and nine for the Kuhn tetrahe-
dron. The quality of the triangles generated for these cells depends on
the shape of the tetrahedron that each scheme uses. Although this is an
intuitive conclusion, the analysis of the tetrahedron edge groups shows
quantitatively the effectiveness of each cell in generating well-shaped
triangles (see Table 5). Observe that the BCC edge groups have su-

perior quality if compared to the Kuhn counterparts. This is a direct
consequence of the elongated shape of the tetrahedron resulting from
Kuhn triangulation, which favors the generation of badly-shaped trian-
gles. These preliminary results indicate that edge groups can help un-
derstand the triangle quality generated by MC-like algorithms in more
general lattices, but further study is necessary to better understand the
tradeoffs involved.

One important issue we also have not pursued here is the influence
of the underlying interpolant in the generation of MC case tables and
their edge groups, and, consequently, on the quality of the generated
meshes. Nielson [26] provides one of the few MC tables in the liter-
ature that respect a particular interpolation kernel. Smoother kernels
will generate different reconstructions, and so we should use differ-
ent case tables. We believe a more careful study is necessary to fully
understand the issues involved, and leave that for future work.

7 CONCLUSIONS

We introduced edge groups, which help explain the triangle quality of
meshes generated by MC and other marching methods. The formula-
tion shares the same combinatorial essence of MC case analysis, but
takes a different angle by examining how edges are combined to form
triangles. We identified that one edge group was responsible for most
of the worst triangles generated by MC. With a simple reformulation
of the entries to avoid that group, we produced a new MC table that
generates better triangle meshes. To our knowledge there has been no
discussion on a criteria to guide the way that the connectivity of the tri-
angulation should be defined to improve the quality of the mesh. Niel-
son [25] proposes a connection table which leads to isosurfaces that are
locally functions (each vertex star can be represented as a height field
relative to one of the coordinate planes). There are also many works
on extended tables to deal with ambiguity problems, but none of them
have focused on the triangle quality problem. Our work leads to MC
tables that produce better triangles than existing implementations.

Edge groups also serve as a convenient framework to study strategies
to improve mesh quality. In this paper, we revisited the edge transfor-
mations proposed in Macet and obtained improved quality bounds that
are competitive with the current state-of-the-art. The edge group for-
mulation helps understand algorithms that compute intersections on
fixed cell lattices. We expect improvements to be possible in other
algorithms through similar analyses.
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Fig. 8. From left to right, comparisons on enlarged sections of Silicium, Engine, Bonsai, Lobster. First row: MC using original table. Second row:
Macet using original MC table. Third Row: Macet using displacements and the new MC table. Green triangles are good, purple triangles are bad.
Observe that there is a clear improvement in the overall triangle quality in our proposal (bottom row images).

APPENDIX

The following lemma presents a proof on the number of different edge groups
that can define a triangle in a cubic cell.

Lemma 1: There are exactly 8 different edge groups in a cubic cell.
Proof: The proof follows a simple enumeration argument. We look at edge
configurations based on the number of shared vertices, which can be 0 (three
independent edges), 1 (two edges connected, 1 independent) or 2 (three edges
connected). Edge configurations are unchanged by rotations and reflections.
We assume that e0 < e1 < e2. Consider now each case individually, using the
value associated to each edge in the planar representation of the cell described
in Figure 9.

• case 0 (0 intersections): Assume that e0 = 0, which gives us a configuration
(0,e1,e2). Since e1 and e2 must not be connected, this rules out values 1, 2, 3
and 4. Consider the remaining values 5 through 11. Let e1 = 5, which gives
a configuration (0,5,e2). Similarly, this rules out e2 ∈ {6,7}. The remaining
configurations are all valid, (0,5,8),(0,5,9),(0,5,10) and (0,5,11), and are
described in the first row of Figure 9. The same argument is used to create the
remaining edge configurations in this case, and they are all displayed in Figure
9. Each configuration is associated to an edge group, which is displayed in a
yellow background in the center of each edge configuration. Eleven configura-
tions are identified, but due to symmetries they correspond to only three edge
groups of Table 1: 4, 5 and 7.

• case 1 (1 intersection): Assume that e0 = 0 and e1 = 1, which gives
us a start configuration (0,1,e2). Since e2 must be disconnected, edge
values 2 through 6 are discarded. The remaining values are all valid,
(0,1,7),(0,1,8),(0,1,9),(0,1,10) and (0,1,11), described in the case 1 box
of Figure 9. Five configurations are enumerated, but due to symmetries they
correspond to only three three edge groups of Table 1: 1, 3 and 6.

Fig. 9. Cases used to enumerate edge groups in a cubic cell.

• case 2 (2 intersections): Assume that e0 = 0 and e1 = 1, which gives us a start
configuration (0,1,e2). Since e2 must be connected to either e1 or e2, edge
values from 7 to 11 are discarded. Edge values 3 and 5 are discarded since they
create an invalid configurations (planar edges). The remaining configurations
are valid: (0,1,2),(0,1,4) and (0,1,6), described in the case 2 box of Figure
9. Three configurations are enumerated and reduce to symmetries to two edge
groups of Table 1: 0 and 2,

In total we have 8 edge groups (3 in case 0, 3 in case 1 and 2 in case 2), as
stated in the lemma.


