
“book” — 2007/9/6 — 10:19 — page 19 — #25

4

Data Modelling for
Visualization

In this chapter, we discuss issues that arise when generating data that is suitable
for scientific visualization. There are two scenarios that represent the majority
of the cases we encounter in this book. The first is measurement: data is be-
ing acquired from a sensor that is examining properties of the physical world.
The second is simulation: after a mathematical model of an entity is defined, a
computer simulation generates data that respects this model (typically integrating
differential equations or approximations thereof).

We start presenting the types of data that are popular in scientific visualiza-
tion. We then discuss the fundamental tension between the physical world and
any representation in a digital computer that arises from finite storage and pro-
cessing. This discussion brings us to the subjects of sampling and interpolation.
Then, we discuss the assumptions of sampling the physical world uniformly, and
describe data types that avoid that and the consequences of these choices. These
are sometimes called irregular grids or unstructured grids (as opposed to regular
or structured grids).

4.1 Data Types

We are interested in visualizing many different aspects of the physical world,
and these are represented by different types of data. Sometimes we can assign a
single number to every point in space (we call these “scalar fields”, §4.1.3); often,
we need direction and magnitude information (“vector fields”, §4.1.4); somewhat
more rarely, we can associate with every point in space a linear transformation
(§4.1.5. Most of the data types we will describe here can adequately be described
as mappings between two sets: the domain and the range. The type of range of
the mapping encodes what type of data will be available (for example, scalars,
vectors and tensors). The domain, on the other hand, defines the shape of the
space we’re examining. If we measure temperature data throughout a city, we
will typically use a rectangular domain, giving rise to a 2D scalar field. If we
want to examine global temperatures, however, our domain will be the surface of
a sphere, which is better characterized by latitude and longitude than a rectangular

19

“book” — 2007/9/6 — 10:19 — page 20 — #26

20 4. Data Modelling for Visualization

Figure 4.1. An overview of datatypes that will are used in scientific visualization,
organized by domain and range distinctions.

coordinate system. Figure 4.1 illustrates the main data types.

4.1.1 The real number field vs the floating point “field”

Throughout this text, we will largely ignore one very important aspect of compu-
tational science: that a single arbitrary real number cannot be represented accu-
rately in a computer. Instead, computers use a number system that is an approx-
imation of the real number field (the floating point system), roughly equivalent
to the standard scientific notation for numbers, with a fixed number of digits for
the mantissa. There is an entire scientific area between applied mathematics and
computer science called numerical analysis that is concerned exactly with the
many and very important consequences of this assumption (for example, addition
in this number system is not even associative).

In this book, we will assume that each storage unit of memory is capable
of storing a single real number. In the cases where numerical issues become
important for the quality or performance of results in scientific visualization (for
example, the volume rendering integral can be quite sensitive to precision issues),
we will make it clear.

“book” — 2007/9/6 — 10:19 — page 21 — #27

4.1. Data Types 21

4.1.2 Functions

We start describing “regular” functions R → R. They might seem trivial and
uninteresting, but some issues we encounter on more complicated data types can
be traced back to fundamental issues in one-dimensional data, so we describe
them first.

Given a function f , we are obviously interested in its function values f (x) at
a set of points P ⊂ R. However, we also want more information, in the form of
function derivatives, integrals and others. We will assume most of the time that
functions are sufficiently differentiable:

∀ f ,∃ f ′(x) = lim
h→0

f (x+h)− f (x)
h

.
Function values are scalars, and its derivatives and integrals are again regular

R → R functions, so the behavior is fairly simple. Other data types, however, do
not share this simplicity, as we will see.

4.1.3 Scalar Fields

The simplest scalar fields are defined by a mapping from Rn →R. For every point
p ∈Rn, a scalar field f gives a real f (p). Unlike functions, the behavior of vector
scalar under differentiation is quite different. There are now n dimensions in the
domain, so the limit definition of derivatives needs to be extended: there will have
n different limits, one for each dimension. The derivative of a scalar field, then,
is not a scalar field. Let us look at a simple scalar field: f (x,y) = x2 + y2, and
let’s examine its behavior around x = 1,y = 1. We can take derivatives in x and y:
∂ f /∂y(1) = 1, ∂ f /∂y(1) = 1. We then say ∇ f (1,1) = (2,2). We need, however,
a good geometrical interpretation of this value. It turns out that the best way to
look at that pair of values as a direction: it is the direction in which f changes the
fastest around x = 1,y = 1. The derivative of f is typically called the gradient of
f , and it is the simpelst example of a vector field.

4.1.4 Vector Fields

The only difference between scalar and vector fields is the range of the mapping.
Vector fields are mappings Rn →Rn: the range has extra dimensions. Vector fields
are used in situations where each point needs to store a quantity with magnitude
and direction. Each of these vectors is best imagined as an arrow. Vector fields,
have much richer structure than scalar fields, specially in higher dimensions. As
we will see in Chapter 8, there are different quantities we can calculate from a
vector field such as the divergence and the curl that give great quantitative and
qualitative insight into the nature of the vector field.

As with scalar fields, the derivative of a vector field is not a vector field either.
Each partial derivative of the domain yields a vector, so the derivative at a point

“book” — 2007/9/6 — 10:19 — page 22 — #28

22 4. Data Modelling for Visualization

Figure 4.2. A temperature map is an example of a two-dimensional scalar field.

Figure 4.3. A wind map is an example of a two-dimensional vector field.

gives us an entity with n2 values. As you have probably guessed, this turns out to
be a tensor.

“book” — 2007/9/6 — 10:19 — page 23 — #29

4.1. Data Types 23

Figure 4.4. A slice through a DTI dataset that shows how water diffuses differently
throughout the brain. More directional glyphs represent stronger preference towards
that particular direction.

4.1.5 Tensor Fields

The most complicated range type we will see in this book are tensors. More
specifically, we will be dealing with rank-2 tensors, which are essentially ma-
trices. In scientific visualization, tensors became a popular data modality with
the advent of diffusion tensor magnetic resonance imaging: DT-MRI, or DTI for
short. Just as vectors encode signficantly more information than scalars, tensors
also encode more information. As we will see, in scientific visualization tensors
are particularly useful to encode anisotropy: behavior that is stronger in some
directions. In DTI image, each tensor stores the difference in water diffusivity:
water tends to travel faster through neurological pathways than across them. Ten-
sors have also been recently used in visualizing liquid crystal alignment. Both of
these are a particularly simple type of tensor: they are symmetric. As we will see
in chapter 8, this makes visualization and processing significantly easier.

4.1.6 More complicated domains: circles, spheres, etc.

All of the domains which we will see in this book are either Cartesian (Rn for
some n), or the result of a simple coordinate transformation. For example, func-

“book” — 2007/9/6 — 10:19 — page 24 — #30

24 4. Data Modelling for Visualization

tions on circles are easiest seen as functions on an angle parameterization of the
circle. This way, instead of thinking as functions on circles as a function with a
limited domain D ⊂ R2, we define a new parameter t, define the function on t,
and remember that to go back to our circle in two-dimensional space, we need to
apply the transformations x(t) = cos t,y(t) = sin t.

These coordinate changes need to be watched out for. gradients of functions
defined on circles are vectors whose coordinates are parameters in the domain.
Imagine a temperature function defined on the earth. The direction of biggest
change can be seen of as a 2D-vector in the latitude-longitude basis, but it can
also be seen as a 3D-vector in a cartesian domain.

4.2 Continuous vs. Discrete: Sampling and Recon-
struction

The real world is continuous, and so are the things we want to visualize and sim-
ulate in a computer. A computer, however, can only deal with a finite amount of
data. It is very important, then, to be able to switch back and forth between these
two world-views. Most of the data modelling problems and solutions we will see
address this directly. We will discuss the mathematics of one-dimensional sam-
pling and reconstruction, since most of the n-dimensional techniques are direct
extensions of 1-D methods, and these are much simpler to illustrate.

4.2.1 Sampling

The easiest way to store a finite representation of a continous function is to sample
the function values in regular intervals, and store these. To store and manipula-
tion a function f (x) in an interval [a,b] ⊂ R, we define a certain sampling den-
sity δ , and store in a computer an indexed array of values fi = f (a + δ (b−a)i),
0 ≤ i ≤ δ−1. From then on, we forget about f (x), and manipulate the values fi
exclusively, as shown in Figure 4.7. We will clearly have lost information about
the behavior of the function outside the sampled values.

It is important to realize that most real-life sensors do not work in such a
simple way. For example, Computed Tomography scanners use the Fourier Slice
Theorem [Bracewell 99] to reconstruct a density value on each point in space
while examining only the density integral along rays through the sensed object.
However, this is a reasonable model to understand and analyze, so we will use it.

4.2.2 Reconstruction: Interpolation and Approximation

Now that we have a finite representation of a function, we need to go back to
having a continous function. This is important not only because our visual system
is highly sensitive to continuity — presenting the samples by themselves would

“book” — 2007/9/6 — 10:19 — page 25 — #31

4.2. Continuous vs. Discrete: Sampling and Reconstruction 25

Figure 4.5. Sampling a function in regular intervals.

be inneffective — but because most visualization techniques require a continuous
(and usually almost everywhere smooth) function.

Such a reconstruction is achieved by introducing assumptions about the data
between the samples. There are naturally many different kinds of assumptions we
can make, and each of these will lead to a different reconstruction scheme. Given
the samples fi from an original function f (x), we will call the new reconstructed
function f̃ (x). If we require that f̃ (x) = f (x) at the fi sample points, we call this
an interpolation function. If we are willing to relax the restriction and settle for
f̃ (x)≈ f (x), we call it an approximation function. We will start with interpolation
schemes, moving from simpler to more complex ones, and then discuss how the
notion of convolution shows that all these reconstruction schemes are all deeply
connected.

The simplest reconstruction technique of all is known as nearest-neighbor
interpolation. As the name suggests, we fill out the unknown values by simply
picking the value of the closest sample available. This is very simple to implement
and very efficient. However, f̃ (x) will never be continous, regardless of how
densely we sample f (x). This makes nearest-neighbor reconstruction useful only
in limited situations.

The next step is to enforce function continuity. The simplest way we can
expect a function to be continous and respect given function values is to set its
derivative to be constant between sample points. In other words, between every
sample pair, we want f̃ (x) to be linear between fk and fk+1. To find out an explicit
formula for the linear segments, we simply start with a model of what we assume
one function segment to obey, and fill it in with our known values.

When working out these calculations, it will be convenient to change the pa-
rameterization. We will create a new function where the known values are at

“book” — 2007/9/6 — 10:19 — page 26 — #32

26 4. Data Modelling for Visualization

Figure 4.6. Nearest-neighbor reconstruction.

Figure 4.7. Linear interpolation.

[0,1,2, . . .], and simply transform this back when implementing the techniques in
code. In our case, we only care about the samples directly to the left and right
of the unknown value, so we start with g(0) = k0, and g(1) = k1. g(x) is simply
a coordinate transformation of f̃ that makes it more convenient to manipulation.
Since we said the function should be linear, we make g(x) = ax + b, and now
simply solve for the unknown parameters a and b, which is trivial:

g(x) = ax+b

g(0) = a.0+b = fi

g(1) = a+b = fi+1

g(x) = (fi+1− fi)a+ fi

The resulting function is now continous, which is desirable for many scenar-
ios. However, in some cases we need some level of smoothness in the derivatives
that is not present in this reconstruction. We can naturally do better, and we show
here a simple technique, known as cubic interpolation. The idea is exactly the
same as linear interpolation, but instead of forcing the function to be piecewise
linear, we force g to be a cubic: g(x) = a+bx+ cx2 +dx3. This function has two
more parameters than the linear one, so we need to constrain our reconstruction
somehow. Here, we will constrain g(x) by prescribing values to its derivative.
Specifically, we set g′(0) based on the values of g(1) and g(−1), and set g′(1)

“book” — 2007/9/6 — 10:19 — page 27 — #33

4.2. Continuous vs. Discrete: Sampling and Reconstruction 27

Figure 4.8. Cubic interpolation for a single segment.

based on g(0) and g(2). We will set them to be the slope of the line that would go
between the points at −1 and 1, and 0 and 2 respectively.

Watch out for now for
the notation mismatch
on the figure. v0 = fi−1,
v1 = fi, etc.g(x) = a+bx+ cx2 +dx3

g′(x) = b+2cx+3dx2

g(0) = fi

g(1) = fi+1

g′(0) = (fi+1− fi−1)/2
g′(1) = (fi+2− fi)/2

...
g(x) = fi+1 +(fi+1/2− fi−1/2)x+

(fi−1−5/2 fi +2 fi+1− fi+2/2)x2 +
(− fi−1/2+3/2 fi−3/2 fi+1 + fi+2/2)x3

4.2.3 Accuracy

We would like to know whether f̃ is in any way similar to f away from its sample
points. This is in general only possible if we have extra information about the
global behavior of f . For example: if we know the largest magnitude of the
derivatives (first or higher) of f , we can use repeated applications of the mean
value theorem of integral calculus [Courant and John 90] to bound the difference
between f and f̃ as a function of δ and the derivative magnitudes (one application
for each derivative order).

“book” — 2007/9/6 — 10:19 — page 28 — #34

28 4. Data Modelling for Visualization

Figure 4.9. A convolution between two functions. The right column shows the
product between f and several shifted instances of g. The shifted functions are
showed ghosted out, and the product is shown in yellow. The integral of those
products becomes the value of f ? g in those three points. The functions and the
convolution is shown in the left column.

4.2.4 Convolution

Even though this section is not strictly necessary to the rest of the text, the notion
of convolution is so central to signal processing, that it is likely that you are going
to encounter some instance of it in the scientific visualization literature. It is
important, then, to have at least a certain amount of familiarity with it.

Convolution is a mathematical operator that takes two functions and produces
a third function. Even though the definition of a convolution is completely sym-
metric, it is usually the case that one of the functions is called the input, and the
other is called the kernel. The reason for this will become clear soon. The con-
volution between two functions f and g is denoted f ? g, and the formula for the
convolution between two functions is:

(f ?g)(t) =
∫

∞

−∞

f (x)g(t− x) dx (4.1)

Let us try to understand what the formula means. Every evaluation of f ? g
involves computing an entireintegral over the entire domain of f and g. Notice,
however, that g is reflected about the origin, and then shifted by t. The two func-
tions are then multiplied together and integrated. Figure 4.9 illustrates the idea.

As you can see, the convolution of f and g in Figure 4.9 looks like a smoothed
version of f . In fact, if we think about the integral of the product in terms of
Riemann sums, as long as

∫
∞

−∞
g(x) dx = 1, the convolution will replace each

point of f with an analog of a weighted sum of its neighborhood, with the relative
weights given by the values of g.

It turns out that most reconstruction techniques can be seen instances of the
same procedure. As we will see, this idea of convolving one function with an-
other will provide a framework under which we can create different reconstruc-
tion techniques much more conveniently. It also provides us with a systematic

“book” — 2007/9/6 — 10:19 — page 29 — #35

4.2. Continuous vs. Discrete: Sampling and Reconstruction 29

way to create reconstruction filters of progressively higher order. To get there, we
first need to look at Dirac deltas.

The Dirac delta “function” The Dirac delta “function” is a very convenient
mathematical tool to use when we need to mix discrete and continuous mathemat-
ics. In particular, it will be a way to represent discrete sets of function samples in
a way that we can do calculus with it. The Dirac delta is defined by the following
identity: ∫

∞

−∞

f (x)δ (x− τ) dx = f (τ) (4.2)

The first thing to notice is that there is no explicit definition of δ (x). We will
not worry about it too much, because we will never need to know the values of
δ (x) directly. We will only use it through its defining identity. To get an intuition
of what δ (x) looks like, however, let us examine the identity more carefully. δ (x)
appears in a product with a function that is integrated over the entire real line. The
result of that integral, however, is not a definite integral of f . Instead, it is simply
f (τ).

For this identity to be true for any f , it must the case that for any x 6= 0,
δ (x) = 0. But then, if δ (0) is finite, the integral will be simply zero. For this
reason, the Dirac delta is typically defined as a limit of gaussian functions:

Other definitions for δ (x)
are also possible.

δ (x) = gk(x) = lim
k→∞

√
k/πe−kx2

As k increases, the gaussian becomes narrower. In the limit, two important
things happen: limk→∞ gk(x) = 0 for x 6= 0, and limk→∞ gk(0) = ∞. However, you
should convince yourself that

∫
∞

−∞
gk(x)dx = 1, for k > 0. So a Dirac delta is,

essentially, an infinitely narrow gaussian that integrates to one. A Dirac delta
is represented in a graph by a pointed arrow, whose position denotes shift, and
length denotes scale, as Figure 4.10 illustrates.

Dirac deltas are extremely useful because we can represent a discrete set of
samples as a set of shifted Dirac deltas. Each point sample will be a single Dirac
delta centered at the position the sample was taken, and scaled by the intensity
of the measurement, as shown in Figure 4.11. We will assume from now on that

This representation is
sometimes known as a
spike train.

spike train deltas are spaced exactly 1 unit apart from each other.
Now we are ready to appreciate the power of convolution. You might have

realized how similar Equations ?? and 4.2 are. The really important insight is
that we can use convolutions to compute weighted sums of Dirac delta heights. In
particular, Nearest-neighbor, linear, cubic and most reconstruction techniques can
all be expressed as convolutions with spike trains. For example, we start defining
a kernel as follows:

gu =
{

0, |x|> 0.5
1, otherwise

“book” — 2007/9/6 — 10:19 — page 30 — #36

30 4. Data Modelling for Visualization

Figure 4.10. A Dirac delta is the limit of progressively narrower gaussians, and is
denoted by an upward pointing arrow. Scaled Dirac deltas are shown with taller
arrows.

Figure 4.11. Representing a function as a set of Dirac deltas. (The irregular spacing
is an artifact of the instructor’s lack of drawing ability)

If use the spike train representation and call it f , it should be easy to see that
f ?gu is exactly a nearest-neighbor interpolation. This is because gu is only wide
enough to “reach” a single delta spike at a time, and always equals to one, so the
convolution will always exactly reproduce the height of the spike. We can define
a different kernel:

g∧ =
{

0, |x|> 1
1−|x|, otherwise

FIXME: Add figures to all of this
as you might have guessed, f ? g∧ is simply linear interpolation. This might

seem uninteresting until you notice that g∧ = gu ? gu! So not only convolution
gives us a unified way to analyze these reconstructions, it shows us that they are
deeply connected to one another. It should come as no surprise that arbitrar-
ily smooth reconstructions are possible, by convolving the reconstruction kernels
with themselves repeatedly. These kernels are called b-spline reconstruction ker-

“book” — 2007/9/6 — 10:19 — page 31 — #37

4.2. Continuous vs. Discrete: Sampling and Reconstruction 31

Figure 4.12. 2D separable reconstruction of g(0.6,0.4). Any 1-D reconstruction
scheme can be used to reconstruct a n-dimensional field

.

nels, and are widely used in practice. The cubic interpolation we have seen before
can also be recreated using a convolution with a kernel we call gCR, the Catmull-
Rom spline:

gCR =


0, |x|> 2
−1/2|x|3 +5/2|x|2−4|x|+2, 1 ≤ |x|< 2
3/2|x|3−5/2|x|2 +1, 0 ≤ |x|< 1

4.2.5 From 1-D to n-D reconstruction

All the techniques we have discussed so far involve one-dimensional signal re-
construction. In scientific visualization, however, we are seldom interested in 1D
signals. We need to extend our methods to deal with general n-dimensional re-
construction. Even though there are many different techniques to do so, we only
present a very simple and general way, based on the notion of separability.

Sometimes, the phrase
tensor-product recon-
struction is used in place
of separable reconstruc-
tion, not to be confused
with the tensors in
diffusion tensor imaging.

The idea in separable reconstruction is to realize that the n-dimensional prob-
lem can be broken down in several instances of 1-dimensional reconstruction.
At each step i, we will have computed one-dimensional reconstructions for all
the 0,1, · · · , i− 1 coordinates of the original point, and will use these to find a
one-dimensional reconstruction using the i-th coordinate. Figure 4.12 illustrates
two-dimensional separable reconstruction:

Separable reconstruction is very simple to understand and to implement. It
works well enough in practice to be the predominant technique for n-dimensional
reconstruction. There are issues, however, that should be noted, the most im-
portant to us being of performance. As the dimension of the field increases, the
number of calls to the one-dimensional reconstruction function increases expo-
nentially (can you see why?). This means that if a separable reconstruction is at
the core of a scientific visualization algorithm (and as we will see later, this is
often the case), the type of reconstruction might critically affect the performance
of the entire visualization. In passing, we note that all the nice things that applied
about 1D convolution translate directly to the n-dimensional separable convolu-
tion, the only difference being that the single integral is replaced by a multiple

“book” — 2007/9/6 — 10:19 — page 32 — #38

32 4. Data Modelling for Visualization

Figure 4.13. An example scalar field to be sampled.

integral.

4.2.6 Aliasing and Sampling

Interpolation and reconstruction kernels become very important when performing
a fundamental operation on regular datasets: resampling. Often, the dataset we
want to visualize is too large for the workstation we are using. Other times, some
downstream algorithm takes too long to execute, so we want to replace the original
data with a smaller version of it. Imagine we have a scalar field such as the one
in Figure ??. This scalar field is described by the following equations: f (r) =
cos(r2),x2 + y2 = r2. It is, in essence, a signal whose frequency increases as we
move away from the origin.

If you are reading this
electronically, zoom in as
far as you can to see the
field without artifacts.

If you are reading this
electronically, zoom in
and out to see even worse
problems.

4.2.7 Picking a reconstruction technique

What are the tradeoffs between the different reconstruction techniques? As we
just argued, there might be a significant performance overhead between different
reconstruction techniques, simply because they’re called so often. When, then,
should we pick one technique over another. If the reconstruction needs to be ana-
lytically smooth, then there is no way to avoid a higher-order reconstruction like
the cubic or higher-order b-splines we have seen before. On the other hand, if

“book” — 2007/9/6 — 10:19 — page 33 — #39

4.3. Explicit vs. implicit representations 33

Figure 4.14. Sampling the scalar field in progressively coarser density shows jarring
artifacts caused by aliasing.

visual quality is all we are interested in, linear or even nearest-neighbor interpo-
lation might be sufficient, as can be seen on Figure 4.15.

There are no fixed set of rules regarding these decisions. It is important, then,
as you are constructing your visualizations, to remember that they have an impact
on the resulting quality and performance of your result.

4.3 Explicit vs. implicit representations

So far, we have only discusses explicit data representations. These are represen-
tations where there’s an explicit representation of the domain and range of the
object we are interested in. This typically involves finding an appropriate co-
ordinate system and parameterization of the domain (which is the reason these
representations are sometimes known as parametric).

Explicit representations have a distinct disadvantage when finding such a pa-
rameterization is complicated. For objects with complex topologies involving
holes and handles, it is impossible to find a coordinate system that is continuous
and covers the entire surface.

Implicit representations take a different perspective, and give up a parame-
terization for the simplicity of defining more complicated domains. In implicit
representations, we store the domain as the zero-set of some other, explicit do-
main. For example, we can represent a unit circle parametrically as we have seen
before, but we can also represent it by storing a function f (x,y) = x2 +y2−1 and
claiming our domain is the set of points such as f (x,y) = 0. This set of points is
typically referred to as the implicit surface, and the function is referred to as the
implicit equation.

“book” — 2007/9/6 — 10:19 — page 34 — #40

34 4. Data Modelling for Visualization

Figure 4.15. Exploring the space of interpolation techniques and sample spacing.
The denser the sampling is, the less likely cubic interpolation will be noticeably better.
The rows show, respectively, nearest-neighbor, linear and cubic reconstruction, while
the columns show progressively coarser sampling.

The largest advantage of implicit representations is their flexibility. Implicit
surfaces are largely indifferent to topology, since they are all defined on simple
domains. Often, properties of the implicit surface can be inferred directly by the
implicit equation. More importantly, it is possible to conveniently transform and
process the implicit surface by manipulating the implicit equation. The biggest
disadvantage, obviously, are the increased storage requirements. and not having
an explicit parameterization.

4.4 Regular vs. Irregular Data

When modelling the physical world as a regularly spaced set of samples, we are
implicitly assuming that every point in the world holds the same degree of im-

“book” — 2007/9/6 — 10:19 — page 35 — #41

4.4. Regular vs. Irregular Data 35

portance as any other point. Also, since the processing in these regular data sets
tend to be uniform across the grid, we are then also assuming equal interest in the
approximation quality across the entire domain. In many cases, this assumption
is inappropriate, and we use alternative representations. The main difference of
these representations is they allow greater flexibility in the density of the samples
we place in the physical world. In this section, we will examine these, starting
with small changes to regular sampling and ending with models that have com-
pletely scattered data.

4.4.1 Semi-regular grids

Semi-regular grids (sometimes called curvilinear meshes) are the simplest exten-
sion to regular grids. If we think of the domain of regular grids as being a simple
n-dimensional cartesian space, then we can imagine each point in a regular grid
having a set of coordinates vi associated with it. In the case of semi-regular grids,
we sample the coordinate system uniformly, just like we did with regular data, but
the coordinate system does not regularly sample the domain.

This is simplest to see with an example. Imagine we want to run a stress
simulation on the profile of a hollow cylindrical bar. Figure ?? shows us what a
regular sampling might look like. There clearly is a representation issue with the
boundaries. Sampling the domain with enough density that the boundary becomes
well-represented might mean we will use more data than necessary. The solution
is to define the sampling on an appropriate coordinate system. In this case, polar
coordinates offer us exactly such a mapping. The same domain can be represented
much more accurately by circular ring sections, as seen in Figure ??. In these
figures, the samples are still represented a set of coordinates, but the coordinates
are

f (ρi,θ j),min < ρmax

ρ(x,y) =
√

x2 + y2

θ(x,y) = atan2(y,x)

Let us examine the resulting configuration. Across concentric rings, each cell
is markedly different from the other. Their difference in area is related directly
to the Jacobian of the coordinate transformation ρ(x,y),θ(x,y). In this case, the
larger the distance from the origin, the larger the distortion will be: the jacobian
is exactly ρ . This can be either a disadvantage of the method, or might actually
be put good use, if the jacobian corresponds roughly to the importance assigned
to each cell. Most importantly, in parameter space, each of these ring sections
has the same dimensions: the samples are equally spaced. This makes storing
semi-regular grids as efficient as storing regular grids. Besides the coordinate
transformations, no new information is necessary. The disadvantage is that it

“book” — 2007/9/6 — 10:19 — page 36 — #42

36 4. Data Modelling for Visualization

Figure 4.16. A semi-regular mesh samples the parameter space regularly, but uses a
curved coordinate system.

becomes necessary to find a coordinate system that parameterizes the entire do-
main correctly, which is essentially impossible in more domains with complicated
topology, with holes and handles.

4.4.2 Triangular and tetrahedral meshes

There are many situations where even semi-structured grids are not sufficiently
flexible enough for the application. Fluid simulations typically need quite com-
plex domains. The typical example is the simulation of air flowing around a
wing profile. Aerodynamic engineers are particularly interested in the small-
scale behavior just around the wing, but not far away from it. There is no natural
parametrization of the domain that provides the wanted sample density, so the
solution is to split it in a triangular mesh. For three dimensional fields, tetrahe-
dral meshes offer the same advantages as triangular meshes do in 2D. Figure 4.17
shows two examples.

Triangular and tetrahedral meshes present a completely new issue to data
modelling. Here, not only is density important, but the shape of the resulting
elements becomes critical. Notice that for any set of samples, there are many
different ways in which triangles can be generated. A complete discussion of the
issues involved in picking a correct set of triangles given a set of point samples
is beyond the scope of this book (there is an entire area of scientific computing
called meshing that is involved in answering this and related questions). However,
to give you an idea of how important these issues are, look at Figure 4.18, taken
from [Shewchuk 02]. All three triangulations use the same amount of points, but
the middle one has triangles very large angles. This is also the triangulation that
incurs the largest amount of error in function values and especially in function

“book” — 2007/9/6 — 10:19 — page 37 — #43

4.4. Regular vs. Irregular Data 37

Figure 4.17. A triangle mesh representing a complex 2D domain, and a tetrahedral
mesh representing a complex 3D domain.

gradients.
When discussing unstructured meshes, sometimes there is a distinction be-

tween node centered data and cell centered data. The distinction only refers to
how the field is actually stored. If there is a function value stored at every vertex,
and some sort of reconstruction is implied for the rest of the mesh, then we are
dealing with node centered data. If each triangle or tetrahedron has enough data
associated with it to completely determine the function inside its domain, then we
call this a cell centered dataset.

4.4.3 Quadrilateral and hexahedral meshes

4.4.4 Scattered Points

“book” — 2007/9/6 — 10:19 — page 38 — #44

38 4. Data Modelling for Visualization

Figure 4.18. Example taken from Shewchuk [Shewchuk 02]. All three triangle
meshes sample the exact same function. Notice, however, that the mesh in the
middle has large errors, in particular in the approximated gradient. The middle mesh
has with large angles, while the others don’t.

