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Abstract

The explosive growth in integration technology and the parallel nature of rasterization-based graphics APIs
changed the panorama of consumer-level graphics: today, GPUs are cheap, fast and ubiquitous. We show how
to harness the computational power of GPUs and solve the incompressible Navier-Stokes fluid equations signifi-
cantly faster (more than one order of magnitude in average) than on CPU solvers of comparable cost. While past
approaches typically used Stam’s implicit solver, we use a variation of SMAC (Simplified Marker and Cell). SMAC
is widely used in engineering applications, where experimental reproducibility is essential. Thus, we show that the
GPU is a viable and affordable processor for scientific applications. Our solver works with general rectangular
domains (possibly with obstacles), implements a variety of boundary conditions and incorporates energy trans-
port through the traditional Boussinesq approximation. Finally, we discuss the implications of our solver in light
of future GPU features, and possible extensions such as three-dimensional domains and free-boundary problems.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Using the modern programmable graphics hardware pro-
cessing power for general computation is a very active area
of research [?] [?] [?]. Although this is not a new idea [?] [?],
only recently has the graphics hardware used in consumer-
level personal computers become powerful enough for sci-
entific applications, in terms of data representation, raw per-
formance and programmability.

Nowadays, modern GPUs have IEEE 754 numbers
throughout the pipeline, with highly programmable vertex
and fragment units. The GPUs have been described as stream
processors [?] [?], where streams are defined as sets of inde-
pendent uniform data. This is mostly why GPUs are so fast:
since computations on pieces of the stream are independent
from each other, it is possible to use multiple functional units
to process the data efficiently, in parallel.

Obviously, some problems are not easily decomposable
in independent pieces. A GPU algorithm is, in most cases,
a carefully constructed sequence of graphics API calls, with

Figure 1: A 1024×128 Navier-Stokes simulation running at
interactive rates, Re = 10000.

textures serving as storage for data structures, and vertex and
fragment programs serving as computational engines. Often,
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the algorithm must be significantly changed to be amenable
to GPU implementation [?]. For our solver, we use the NV35
and NV40 architectures from NVIDIA. An implementation
of this kind requires a thorough understanding of the inter-
play between the different parts of the graphics system, as,
for example, the different pipeline stages and respective ca-
pabilities, CPU/GPU communication issues and driver and
API quirks.

We show that SMAC [?], a CFD algorithm used in en-
gineering applications, can be implemented as one appropri-
ately constructed sequence of graphics API calls. We will see
that in some cases, this GPU version outperforms a single-
CPU reference implementation by as much as 21 times; on
average, it runs about sixteen times faster. We use OpenGL
and Cg for our implementation, and include most vertex and
fragment programs in the appendix.

2. Related Work

Stam’s stable fluids [?] are a standard computer graphics
technique for the simulation of fluid dynamics. Stam’s solver
relies on the Hodge decomposition principle and a projection
operator based on a Poisson equation. Being an uncondi-
tionally stable solver, it is able to use much larger timesteps
than explicit solvers, that typically are stable only under cer-
tain conditions. Although Stam’s solution to the Navier-Sto-
kes equations produce visually pleasing fluids, the implicit
solver creates too much numerical dissipation. This deterio-
rates the solution to the point where it has no more relation
to fluids in real life. We want to show that GPUs are suitable
for numerical processing in engineering situations, we must
not allow experimental discrepancies in the simulations.

Stable fluids running on graphics hardware are abundant
in the literature [?] [?]. Also related is Goodnight et al.’s
multigrid solver [?], which is used to solve the stream por-
tion of a stream-vorticity formulation of the Navier-Stokes
equations. Harris et al. [?] show a variety of natural phe-
nomena can be visually reproduced on graphics hardware.
Stam’s stable fluids were also used as the dynamics engine
for a cloud simulation system [?].

Recently, Buck et al. [?] developed a data-parallel pro-
gramming language that uses the GPU as an execution back-
end. The Brook compiler converts high-level code to spe-
cific data-parallel backends, from CPU SIMD instructions
to APIs such as DirectX as OpenGL. This is a notable ex-
ception in GPU programming, and a major step towards its
perception as a viable computing platform by the general de-
veloper.

3. The SMAC Method

In the following, we’ll briefly explain how the SMAC algo-
rithm solves the Navier-Stokes equations numerically, with-
out going into our GPU implementation. The following
pseudocode shows the basic operation:

SMAC-UV()

t← 0, n← 0
while t < tend

do Set boundary conditions for u and v
Compute F(n) and G(n) according to Eqs. (6) and (7)
Solve discrete Poisson equation (Eq.(9))
Compute u(n+1) and v(n+1) according to (Eq.8)
t← t+δt, n← n+1
Select δt based on stability conditions (Eqs (10) and (11))

3.1. The Navier-Stokes Equations

The Navier-Stokes equations are a standard tool for dealing
with fluid dynamics, and the SMAC method relies on a dis-
cretization of these equations. The incompressible Navier-
Stokes equations, in their vector form, are:

∂u
∂t

+u ·∇u =− 1
ρ
∇p+ν∇2u+g, (1)

∇·u = 0 (2)

where u is the velocity vector field and p is the pressure
scalar field. ν and ρ are the viscosity and the density of the
fluid, and g represents external forces acting on all of the
fluid (gravity, for example). Our implementation uses the
adimensional, two-component cartesian version of the equa-
tions:

∂u
∂t

+
∂p
∂x

=
1

Re

(
∂2u
∂x2

+
∂2u
∂y2

)
−

∂(u2)
∂x
−

∂(uv)
∂y

+ gx, (3)

∂v
∂t

+
∂p
∂y

=
1

Re

(
∂2v
∂x2

+
∂2v
∂y2

)
−

∂(uv)
∂x
−

∂(v2)
∂y

+ gy, (4)

∂u
∂x

+
∂v
∂y

= 0 (5)

where Re is the Reynolds number, relating viscous and dy-
namic forces.

3.2. Boundary Conditions and Domain Discretization

We assume a rectangular domain [0,w]× [0,h] ⊂ R2 in
which we restrict the simulation. This means we have to
deal with the appropriate boundary conditions along the bor-
ders of the domain. We implemented boundary conditions to
model walls, fluid entry and exit — these allow a variety of
real-life problems to be modeled. The walls and fluid entry
are Dirichlet boundary conditions: the velocity field has a
certain fixed value at the boundary. The outflow condition is
different. The exit of fluid from a flow is modeled to mean
that we essentially do not care about what happens to fluid
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Figure 2: In a staggered grid discretization, different vari-
ables are sampled at different places.

parcels that leave the domain through this boundary. This
is obviously not physically realizable, but it’s still usable in
practice to implement situations like a part of a riverbank.
We only need to assure the boundary is placed in “uninter-
esting” parts of the domain, because we essentially lose in-
formation. We approximate such a boundary condition by
assuming that the fluid that leaves the domain is uninterest-
ing and behaves exactly as the neighborhood of the boundary
that is inside the domain. This gives us Neumann conditions:
the derivative of the velocity field is fixed across the bound-
ary (in our case, at zero).

To solve the equations numerically, we approximate the
rectangular subset of R2 with a regular grid, ie. the velocity
and pressure scalar fields are sampled at regular intervals.
We discretized the domain using a staggered grid, which
means that different variables are sampled in different po-
sitions. This representation is used because of its better nu-
merical properties [?]. The grid layout for our simulation is
shown in Figure 2.

The boundary conditions in the grid are simulated by
adding a boundary strip. The boundary strip is a line sur-
rounding the grid cells that will be used to ensure that the
desired boundary condition holds. In Figure 3, we show one
corner of the boundary strip. We discretize the boundary
conditions by making appropriate use of the boundary strip.
Consider, for example, the wall boundary condition, where
the velocity components must all become zero. Some of the
values on our grid are sampled directly on the boundary —
these can be simply set to zero. For the values that aren’t,
we assume that the underlying continuous fields are simply
a linear interpolation of the sampled values, and we then set
the boundary strip variables so that the interpolated value in
the boundary is zero. This idea can be applied to all bound-
ary conditions, as will be described later.

Figure 3: The thick red line represents the boundary, and
the light red cells are the boundary strip. The red circles
show the boundary points that aren’t sampled directly (for
which we need interpolation assumptions), and the remain-
ing circles show the field sampling positions for different
fields near the boundary. The points that are sampled inside
the boundary strip are manipulated to enforce the boundary
conditions.

3.3. Discretization of the Equations

The Navier-Stokes equations will be numerically solved by
time-stepping: from known velocities at time t, we compute
new values at time t +∆t. The values in the varying timesteps
will be called u(0),u(1), . . .. To discretize the Navier-Stokes
equations, we first introduce the following equations:

F = u(n) + δt

[
1

Re

(
∂

2u

∂x2
+

∂
2u

∂y2

)
−

∂(u2)

∂x
−

∂(uv)

∂y
+ gx

]
(6)

G = v(n) + δt

[
1

Re

(
∂

2v

∂x2
+

∂
2v

∂y2

)
−

∂(uv)

∂x
−

∂(v2)

∂y
+ gy

]
(7)

Rearranging (3) and (4) and discretizing the time variable
using forward differences, we have

u(n+1) = F −δt
∂p
∂x

,v(n+1) = G−δt
∂p
∂y

(8)

This gives us a way to find the values for the velocity field
in the next step. F and G, when discretized, will depend only
on known values of u and v and can be computed directly. We
use central differences and a hybrid donor cell scheme for
the discretization of the quadratic terms, following the refer-
ence CPU solution [?]. We are left to determine the pressure
values. To this end, we substitute the continuous version of
Equations (8) into Equation (5) to obtain a Poisson equation:

∂
2 p(n+1)

∂x2 +
∂

2 p(n+1)

∂y2 =
1
∂t

(
∂F(n)

∂x
+

∂G(n)

∂y

)
(9)
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When discretizing the pressure values, we notice that we
cannot compute them directly: each pressure value p(n+1)

depends linearly on other pressure values p(n+1) from the
same timestep. In other words, the discretization of the Pois-
son equation results in a linear system of equations, with as
many unknowns as there are pressure samples in the grid.
This system can be solved with many different methods,
such as Jacobi relaxation, SOR, conjugate gradients, multi-
grids, etc. With the pressure values, we can determine the
velocity values for the next timestep, using Equations 8. We
then repeat the process for the next timestep.

3.4. Stability Conditions

SMAC is an explicit method, and, as most such methods, is
not unconditionally stable. To guarantee stability, we have to
make sure that these inequalities hold:

2δt
Re

<

(
1

δx2 +
1

δy2

)−1

(10)

|umax|δt < δx , |vmax|δt < δy (11)

Here, δt, δx and δy refer to the timestep sizes, and distance
between horizontal and vertical grid lines, and umax and vmax
are the highest velocity components in the domain. During
the course of the simulation, δx and δy are fixed, so we must
change δt accordingly. In practice, one wants to use a safety
multiplier 0 < s < 1 to scale down δt.

4. Energy Transport

We have augmented our original SMAC solver with energy
transport to give an example of the flexibility of the ap-
proach. We introduce an additional scalar field, accompanied
by suitable differential equations that govern its evolution,
discretize both the field and the equations, and incorporate
them in our original solver with very small changes in data
structures.

4.1. The Energy Equation

In CFD simulations it is often necessary to take into account
the effects of temperature on the flow. Effects of temperature
on a fluid include density and volume changes, which may
lead to additional buoyancy forces. In order to augment the
SMAC base model proposed in section 3 so that it accounts
for such effects, we need to include the fluid temperature
T in our model. From the principle of conservation of en-
ergy we obtain the energy equation for a constant thermal
diffusivity α, with negligible viscous dissipation and a heat
source q′′′:

∂T
∂t

+~u ·∇T = α∇2T +q′′′ (12)

We make additional assumptions, known collectively as
the Boussinesq approximation. Basically, we assume that the
density difference due to temperature is negligible except in
the buoyancy terms (so that we can still solve the incom-
pressible version of the Navier-Stokes equations), and that
most other fluid properties are temperature-invariant. We in-
corporate these assumptions and make the energy equation
adimensional by adding a new dimensionless quantity Pr
(the Prandtl number) which relates the relative strensth of
the diffusion of momentum to that of heat. The energy equa-
tion then becomes:

∂T
∂t

+~u ·∇T =
1

Pr
1

Re
∆T +q′′′ (13)

Both Dirichlet and Neumann boundary conditions are
supported, and we use the same linear interpolation assump-
tion to compute the boundary strip values for the flow. When
otherwiser unspecified, walls implement adiabatic boundary
conditions — no transfer of energy.

4.2. Discretization of the Energy Equation

In order to compute the temperatures numerically, we need
to discretize the Equation (13) (given here in component
form):

∂T
∂t

+
∂(uT )

∂x
+

∂(vT )
∂y

=
1

Re
1

Pr

(
∂2T
∂x2

+
∂2T
∂y2

)
+ q′′′ (14)

We put the temperature samples in the center of the grid
cells, just like the pressure values. For the actual discretiza-
tion, we use the same donor cell scheme as we did before for
the momentum equations. The time variable is discretized
using forward differences, and so we compute the sequence
of temperature values by explicit Euler integration.

We need to rewrite the quantities F and G to take into
account the bouyancy forces described by the Boussinesq
term:

F̃(n)
i, j = F(n)

i, j −β
∂t
2

(
T (n+1)

i, j +T (n+1)
i+1, j

)
gx (15)

G̃(n)
i, j = G(n)

i, j −β
∂t
2

(
T (n+1)

i, j +T (n+1)
i, j+1

)
gx (16)

The discretized momentum equations are rewritten as:

u(n+1) = F̃ −δt
∂p
∂x

,v(n+1) = G̃−δt
∂p
∂y

(17)
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4.3. Stability Conditions

The transport equation discretization is also only condition-
ally stable, and because of that we need an additional stabil-
ity condition to hold:

2δt
RePr

<

(
1

δx2 +
1

δy2

)−1

(18)

This inequality is added to the previously described ones
(Equations (10) and (11)). The stepsize δt is then chosen ap-
propriately.

4.4. Algorithm

We list below the SMAC algorithm incorporating energy
transport:

SMAC-UVT()

t← 0, n← 0
while t < tend

do Set boundary conditions for u, v and T
Compute T(n+1) (14)
Compute F̃(n) and G̃(n) according to Eqs. 6 and 7
Solve Poisson Equation using numerical solver (Eq. 9)
Compute u(n+1) and v(n+1) according to

Eq. 17 using F̃(n) and G̃(n)

t← t+δt, n← n+1
Select δt based on stability conditions (Eqs (10), (11), (18))

5. The Implementation in a GPU

In this section we show the GPU implementation of the
SMAC method using NVIDIA’s NV35 and NV40 architec-
tures. First we show how the data structures are stored into
texture memory, followed by the presentation of all pro-
grams used to implement the algorithm.

5.1. Representation

We use a set of floating-point p to store the values of the
velocity fields and intermediate variables. All tests were per-
formed using 32-bit precision floating-point representations.
The textures used to store data are more precisely called
pbuffers, or pixel buffers, because they can be also the tar-
get of a rendering primitive, similar to writing to the frame
buffer. Each pbuffer can have multiple surfaces. Each sur-
face is basically a separate physical copy of the data. The
important thing to notice is that switching the write target
between surfaces from the same pbuffer is much faster than
switching between different pbuffers. In our current version,
we have five pbuffers:

• uvt: This will store the velocity field, together with the
temperature. Each of the three channels will respectively
store u, v, and T . This is a double-surface pbuffer, so that
we can write the boundary conditions in one surface while
reading from the other.

• FG: This pbuffer will be used to store the intermediate F
and G values, each on one channel.

• p: This pbuffer will store the pressure values. This is also
a double-surface pbuffer, so that we can use ping-pong
rendering (which will be described shortly)

• ink: This pbuffer will store ink values, not used in the sim-
ulation but used for the visualization of the velocity field.
This is also double-surfaced so that ink boundary condi-
tions can be applied.

• r: This auxiliary buffer will be used in reduction opera-
tions described later. This, too, has two surfaces, and for
the same reason as the pressure pbuffer, which will be de-
scribed shortly.

We have a couple of read-only auxilliary data structures
to handle complex boundary conditions and domains, both
stored in textures. The first of these simply signals whether
the cells is an obstacle cell or a fluid one. The second and
more interesting one stores texture access offsets instead of
color intensities. These will be used in the computation of
boundary conditions, as will be described shortly.

It is important to mention that the NV35 and the NV40 do
not allow simultaneous reads and writes to the same same
surface [?], which are needed by many iterative algorithms.
To circumvent this problem, we use a standard GPU tech-
nique called ping-pong rendering. The idea of ping-pong
rendering is to successively alternate the roles of two sur-
faces of a pbuffer. We first write some data on surface 1
while reading values from surface 2, and then we switch
their roles, writing values on surface 2 while reading the
just-written values from surface 1. By carefully arranging
the order of computation, we can implement many of the al-
gorithms that simultaneously read and write the same mem-
ory portion. Because of this, the r, uvt and p pbuffers have
two surfaces, and take twice the amount of memory as would
be otherwise necessary.

Notice that there is a sharp distinction in GPU algorithms
between writable memory and purely constant data to be ac-
cessed. This is a legacy from previous graphics APIs, where
an application typically only wrote to the frame buffer. As
things become more complex and developers start using off-
screen buffers more commonly, we will see this difference
disappearing. For now, writable memory (specially when it
comes to floating-point buffers) is accessible through a lim-
ited interface (if compared to “constant” texture memory).

5.2. Setting the Boundary Conditions

The first step in the algorithm is to enforce the boundary
conditions. A fragment program reads the velocity values
and the status texture, gets the necessary texture offsets and
determines the correct velocity components for the bound-
aries. We use textures to store precomputed texture access
patterns for the boundary treatment because this decreases
immensely the complexity in the fragment program. A frag-
ment program without branching executes much faster than
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one with branching. We need to use the right offsets because
boundaries in different directions are determined from dif-
ferent neighbors. All of our boundary conditions can be cal-
culated with one fragment program when we notice that they
share a common structure: for each component (in the 2D
case, only u, v and T ), we only need to sample one direct
neighbor. Then, the boundary conditions are of the follow-
ing form:

ui j = αuui j +βuuneighbor + γu

vi j = αvvi j +βvvneighbor + γv

Ti j = αT Ti j +βT Tneighbor + γT

We store the appropriate α, β and γ values, along with
the offsets to determine the neighbor, in the status texture.
Packing operations allow us to put more than 4 values on the
RGBA channels, and some of the values can be determined
from the other ones. If the cell happens not to be a bound-
ary cell, we simply set α = 1,β = 0,γ = 0, so that we have
an identity operator for these cells. This fragment program
is used to render a domain-sized quadrilateral, and the end
effect is that the boundary conditions for temperature and
velocity will have been set for the entire domain.

5.3. Computing FG

The velocity field with enforced boundary conditions is used
to compute the FG buffer. The FG pbuffer is computed sim-
ply by rendering another domain-sized quad, using the uv
pbuffer as input, and a fragment program that represents the
discretization of Equations (6) and (7).

5.4. Determining Pressure Values

With the FG values, we can now determine the pressure
value. As mentioned above, we must solve the equation
system generated by the Poisson equation discretization. In
CPUs, SOR is the classical method used to solve these sys-
tems, because of the low memory requirements and the good
convergence properties. The main idea of SOR is to use, in
iteration it, not only the values of the pressure in the iteration
it−1, but the values in it that have just been calculated. In a
GPU, unfortunately, we cannot do that efficiently: it would
require reading and writing the same texture simultaneously.

The solution we adopted is to implement Jacobi relax-
ation as a fragment program. To check for convergence, we
must see if the norm of the residual has gone below a user-
specified threshold. The norm is a computation that com-
bines all of the values in a texture, differently from every
other fragment program described so far. We must find a spe-
cial way of doing the calculation, since data-parallel archi-
tectures don’t usually provide such a means of combination.

Figure 4: Combining all elements in a SIMD architecture
through reductions.

We implement what is called a reduction. In each reduc-
tion pass, we combine values of a local neighborhood into
a single cell, and recursively do this until we have but one
cell. This cell will hold the result of the combination of all
original cells. Figure 4 illustrates the process. Not only this
computation is significantly more expensive than the relax-
ation step, there is a measurable overhead in switching be-
tween fragment programs and pbuffers. We use a more clever
scheme to reduce the number of switches: instead of com-
puting the residual at each relaxation step, we adaptively de-
termine whether a residual calculation is necessary, based
on previous results using an exponential backoff algorithm.
That is, we calculate the residual for the ith time only after
2i relaxation steps. After the first pressure solution is deter-
mined, we use the number of relaxation steps that were nec-
essary in the previous timestep as an estimate for the current
one. This results in significantly better performance.

5.5. Computing the t(n+1) Velocity Field

After computing the pressure values, we can determine the
velocity field for the next timestep using Equation (8). This
is done by another fragment program that takes the appro-
priate textures and renders, again, a domain-sized quad. The
final step is ensuring that the stability conditions (10) and
(11) hold.

The first condition is easy to determine, since it is constant
for all timesteps and can be pre-calculated. The other ones,
though, require the computation of the maximum velocity
components. This is an operation that requires a combination
of all the grid values, and again a reduction is needed. This
time, though, we use the maximum of the neighbors instead
of the sum as the reduction operation.

5.6. Obstacles

To implement the obstacles, we simply extend the idea used
in the wall boundary condition to work inside the domain.
Our status and obstacle textures will hold special value
denoting a wall for visualization purposes, but the origi-
nal fragment program that deals with boundary conditions
works without changes.

One must take into account, however, that not all obstacle
configurations are valid. Remember from Section 3.2 and
Figure 3 that a boundary condition is specified by relating
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Figure 5: While the boundary strip always specifies a valid
boundary condition, obstacles can be ambiguous: Should
the vertical obstacle cell enforce the boundary conditions
of the left or the right fluid portion?

a cell of the boundary strip to a given cell in the fluid in
a special way, so that we can say things about the values
of the fields at the domain boundary. In the simple case of
actual domain boundaries, each cell on the boundary strip
will only ever “see” one specific cell inside the domain. The
same role is played by the “crust” of the domain obstacles
(their one-cell border). There are some obstacles, however,
whose “crust” is too thin, and it can see more than one fluid
cell. In these cases, the boundary conditions are underspeci-
fied, as can be seen in Figure 5. There is an ambiguity (com-
pare to Figure 3), as we would have to use the obstacle crust
to specify boundary conditions for two different fluid cells.
Fortunately, this can be easily fixed with a finer subdivision
or with a thicker boundary, so it is not a critical issue. In our
system, we detect such invalid domains and pad them with
obstacle cells to ensure simulation validity.

5.7. Visualization

Usually, the simulation of Navier-Stokes is not fast enough
to allow interactivity, and so the results are simply stored
in a file to be interpreted later. We instead take advantage
of the fact that the simulation runs at interactive rates, and
that the data is already in the graphics memory to implement
interactive visualization tools.

For our original system, we developed a visualization tool
inspired on the use of colored smoke in real-life airflow vi-
sualization. We store, in addition to the velocity fields, an
ink field, which is a passive field that does not affect the ve-
locity in any way. The ink field is advected by the velocity
field, and the motion of the ink is used to visualize features
such as vortices. Ink emitters of different colors can be arbi-
trarily placed and moved around in the domain, allowing to
investigate areas of flow mixture or separation.

The advection step occurs right after the boundary condi-
tions are enforced. A first shot in an algorithm for the advec-

tion would be to get the current velocity at the center of the
cell, and, using the timestep value, determine the position for
this parcel of fluid. This approach has two problems: first, we
would have to write to different cells, because the timestep
never takes an ink particle more than a grid width or height
(consider the stability conditions for the discretization). Sec-
ond, and more seriously, we don’t know, prior to running the
fragment program, what are the cells in which to write our
results. This is known as a scatter operation [?], and is one
that is missing from GPUs: the rasterization stage issues a
fixed output place for each fragment. We need to replace the
scatter operation with a gather one: an operation in which
we don’t know, prior to running the program, what are the
cells we will read. This is implemented in GPUs through the
use of dependent texturing [?]. We illustrate our solution in
Figure 6. Instead of determining the position that the ink in
the present position will be, we will determine what portion
of ink was in a past position. To do this, we assume that the
velocity field is sufficiently smooth, and we use a step back-
ward in time using the present velocity. We have to sample
the velocity at center of the grid cell, because that’s where
the ink is stored. Since the velocities are stored in a stag-
gered grid, this requires careful coding in the interpolation
routine.

This basic visualization technique works fine for inspect-
ing local portions of the domain. But we would like to have a
more global visualization, that enables us to quickly spot all
major features of the flow, to maybe later use ink splats to an-
alyze specific features. For this end, we adapted the image-
based flow visualization of van Wijk [?] to run entirely on
GPUs. Originally, the visualization technique relies on an
eulerian advection of regular patches through the velocity
field. This implies a scatter operation, or at least a texture
lookup in a vertex program. Since texture lookups inside ver-
tex programs are limited to NV40’s, and we wanted porta-
bility across different GPU models, we adapted the original
model to use instead a lagrangian backward step, similar to
the ink advection solution. In fact, implementing IBFV re-
quired only five additional lines of code in the fragment pro-
gram, to sample the modulated noise texture and to blend it
appropriately. We then create an array of uncorrelated noise
textures, noting that a good PRNG (ie, not the one in the
standard library) is necessary to avoid spatially correlated
noise. We show some visualizations using our new imple-
mentation next.

Flow visualization is a huge research area in and of itself,
so there are many other techniques we could have used. We
chose IBFV because not only it is extremely simple to im-
plement, it offers objective advantages. For example, LIC [?]
doesn’t show the relative velocities of the fluid, and more ad-
vanced techniques, such as UFAC, [?] requires storage of the
velocity field at different times. IBFV offered the ideal com-
promise between visualization quality while meeting our re-
strictions on performance and storage requirements.
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Figure 6: Stepping backward in time to avoid a scatter op-
eration.

CPU 32×32 64×64 128×128

Re = 100 1.73s 35.71s 428.05s
Re = 1000 5.52s 122.47s 903.63s

NV35 32×32 64×64 128×128

Re = 100 3.36s 13.34s 60.29s
Re = 1000 6.14s 28.60s 110.36s

NV40 32×32 64×64 128×128

Re = 100 1.54s 5.29s 30.79s
Re = 1000 2.11s 9.15s 42.89s

Table 1: Timings for CPU, NV35 and NV40

6. Results

To judge the performance of the GPU implementation, we
compared our solution to a CPU reference code provided by
Griebel et al [?]. We used a classical CFD verification prob-
lem, the lid-driven cavity. The problem begins with the fluid
in a stationary state, and the fluid is moved by the drag of a
rotating lid. This is a steady problem, no matter what are the
conditions such as Reynolds number and lid velocity: when t
increases, the velocity field tends to stabilize. Knowing this,
we run the simulations until the changes in the velocity field
are negligible.

We conducted our tests using two different Reynolds
numbers and three different grid sizes. The results can
be seen in Table 1. Figure 7 shows the ratio of im-
provement of the GPU solution. The CPU is a Pentium
IV running at 2 GHz, and the GPUs are a GeForce FX
5900(NV35) and GeForce 6800 Ultra(NV40). Both pro-
grams were compiled with all optimization options en-
abled, using Microsoft Visual Studio .NET 2003. Our GPU
implementation, with all source code for the vertex and
fragment programs and movie fragments is available at
http://www.sci.utah.edu/˜cscheid/smac.

As we can see, the only case where the GPU was out-

Figure 7: GPU-CPU ratio timings

performed by the CPU was in very small grids with the
NV35. This is a situation where convergence is very quick,
and the overhead due to pbuffer switches [?] probably over-
shadowed the parallel work of the GPU. Also, the ratio
between GPU computation and CPU-GPU communication
was smallest in this case. In all the other situations, the
GPU implementation was significantly faster, with the NV40
achieving a speedup factor of 21 in large grids with large
Reynolds numbers.

6.1. Quality

To judge the quality of the GPU implementation when com-
pared to the reference CPU implementation, we ran both
programs with exactly the same problem specifications, and
compared the velocity fields at each timestep. In our exper-
iments, the difference between velocity components com-
puted in the two programs was always less than 10−2, and
most of the time less than 10−3. The problems had velocity
ranges between 0 and 1. The largest differences were found
in high pressure areas, probably due to the difference be-
tween the Jacobi and the SOR algorithms.

The reference CPU implementation didn’t allow for gen-
eral domains, so for that part of the implementation, we had
to rely on qualitative measurements. For example, we expect
vortices around corners with high speed fluid, and we can
see this in Figure ??. Some well-known phenomena, such as
the Kárman vortex street [?], were also experienced in our
software, in accordance to experimental results. See Figure
??.

6.2. CFD Simulation Cases

We tested our solution with several other CFD classic prob-
lems discussed in [?]. The simulations and their main param-
eters are listed below, as well as pointers to corresponding
figures:
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• Lid-Driven Cavity: Square container filled with fluid is af-
fected by the movement of the lid along a given constant
velocity. We used a 256×256 grid, with Re = 10000. The
expected counter-eddies in the corner for large Re can be
seen on the left image of Figure ??. We show a similar
simulation (Re = 1000) with our IBFV-based visualiza-
tion tool (right image of Figure ??). Notice how we can
clearly spot the relative flow velocity and vorticity from
the noise patterns.

• Domain with Obstacles: Square container filled with ob-
stacles, with a single fluid entry and two exits. We used a
128×128 grid, with Re = 1000, with inflow in the lower
west, outflow everywhere else. (left image of Figure ??).
We also show a similar simulation (64× 64, Re = 100)
using our IBFV-based visualization tool (right image of
Figure ??). Notice how the global behavior of the fluid is
captured, even where there’s no ink splats.

• Smoke Simulation: 128×1024. In this experiment we ob-
serve the effects on using large Reynold numbers, gener-
ating smoke-like vector trails. We used a 128×1024 grid,
with Re = 10000, inflow in the south, outflow in the north
(Figure ??).

• Wind tunnel mock-up: This experiment simulates wind
tunnel mockup conditions with inflow fluid coming from
the east, around an object resembling a vehicle, and out-
flow in the east (Figure ??). We used a 256× 64 grid,
Re = 100.

• Flow Past an Obstacle: In this experiment we consider
flow past a simple obstacle. For Reynold numbers above
40, a Kárman vortex street effect can be seen on the trail of
vertices. We used a 256×64 grid, Re = 1000, with inflow
in the west, outflow in the east (Figure ??).

• Natural Convection with Heated Lateral Wall. In this ex-
periment we have a square container with one heated lat-
eral wall, and no-slip boundary conditions everywhere.
The temperature difference drives fluid movement. We
used a 64×64 grid, with Pr = 7, Re = 985.7, β = 2.1e−4
and gravity components gx = 0 and gy=-9.706e-2. Note
the central vertex and expected circular fluid movement
(Figure ??).

7. Analysis

The GPU achieves top performance when doing simple cal-
culations on massive amounts of data, and this is the case in
our algorithm. Most of the computation is done on the GPU.
The CPU only orchestrates the different GPU programs and
buffers, adjusts the timestep and determines the convergence
of the Poisson equation.

Measuring the amount of time taken in each part of our al-
gorithm, we noticed that more than 95% percent of the time
was spent solving the Poisson equation. This was the main
motivation for the exponential backoff residual calculation
step. This change doubled the overall performance.

We could have implemented a conjugated gradient solver,

but since this method requires two dot products at each
timestep, additional reductions would need to be performed
(which is a slower operation). Alternatively, we could have
used a multigrid solver for the Poisson equation, such as the
one developed by Goodnight et al. [?]. We chose not to do
so because we did not have a suitable CPU multigrid code
to compare to, and we did not want to skew the results in
either way. In addition, this solver requires a more involved
treatment of boundary conditions, specially in complex en-
vironments with several obstacles.

In the simulation depicted in Figure 1, we have a 1024×
128 grid, and the simulation runs at approximately 20 frames
per second, allowing real-time visualization and interaction.

8. Future Work and Conclusion

The Navier-Stokes GPU solver shown here can be easily ex-
tended to three dimensions. The uv and FG pbuffers would
have to hold an additional channel. Additionally, we can’t
use 3D textures as pbuffers, so the texture layout would prob-
ably follow [?]. The fragment programs would not funda-
mentally change, and the overall algorithm structure would
stay the same.

A more ambitious change is to incorporate free bound-
ary value problems to our solver. In this class of problems,
we have to determine both the velocity field of the fluid and
the interface between the fluid and the exterior (for sloshing
fluid simulations, for example). The approach that is pro-
posed in the SMAC algorithm is to, starting with a known
fluid domain, place particles throughout the domain and then
displace them according to the velocity field. At the next
timestep, the algorithm checks whether any particles arrived
in cells that had no fluid. These cells are then appropri-
ately marked, and the simulation continues. We can’t do that
directly on the GPU, because that would require a scatter
operation. A possible solution is to use the volume-of-fluid
method [?]. The volume-of-fluid method keeps track of the
fraction of the fluid that leave the cells through the edges.
This way, all cells that are partially filled are marked as bor-
der cells, the ones completely filled are marked as fluid cells,
and the ones without any fluid are marked as empty cells.
Such a scheme could be implemented using GPUs, since the
calculation of fluid transfer between cells can be done for
each cell individually, without having to write to arbitrary
locations. However, this remains to be implemented.

Nevertheless, we have shown that the GPU is a viable
computing engine for the complete solution of the Navier-
Stokes via a explicit solver, suitable for engineering con-
texts. Our solution takes advantage of the streaming nature
of the GPU and minimizes the CPU/GPU interaction, result-
ing in the high performances reported. We hope that the fact
that GPU performance growth is largely outpacing the CPU
will serve as an additional motivation for the implementation
of other similar applications.
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Appendix: Vertex and Fragment Programs in Cg

Vertex programs are used in PGHFlow to precompute tex-
ture access patterns, called stencils in the CFD literature.
Fragment programs are the main computational kernels of
PGHFlow, used for every computation on the velocity, pres-
sure , ink and temperature fields. A sample of the fragment
programs is listed to give a flavor for possible optimizations.
The reader is advised to read them together with the appro-
priate equations the programs are computing.

• Poisson equation stencil

// fivestar_stencil precomputes the tex-
ture coordinates for the
// five-star stencil access pat-
tern of the Poisson solver.
// There are 5 positions we want to ac-
cess: the center of the stencil,
// and directly left, right, up and down. In-
stead of storing all 5
// pairs, we take advantage of the shar-
ing of coordinates between
// them and store all of them in only 2 registers:
// R1 = (x_left, x_center, x_right, y_center)
// R2 = (y_up, y_center, y_down, x_center)
// This way, we can use swiz-
zling in the fragment pro-
gram to reconstruct
// the texture coordinates without any per-
formance overhead.

void fivestar_stencil(
uniform float4x4 mvp,
float4 ipos: POSITION,
float2 coords: TEXCOORD0,
out float4 opos: HPOS,
out half4 xcoords: TEXCOORD0,
out half4 ycoords: TEXCOORD1,
out half2 ocoords: TEXCOORD2)

{
opos = mul(mvp, ipos);
xcoords = half4(coords.x - 1, co-

ords.x, coords.x + 1, coords.y);
ycoords = half4(coords.y - 1, co-

ords.y, coords.y + 1, coords.x);
ocoords = coords;

}

• Reduction stencil

// reduce_stencil precomputes the sten-
cil texture coordinates for the
// reduce stencil (square-shaped) ac-
cess pattern of the different
// fragment programs for reduction.
// Instead of storing all 4 pairs in 8 co-
ordinates, we take
// advantage of repeated coordi-
nates and compress them into a single
// four-element vector. We recon-
struct the texture coordinates without

// overhead by using appropriate swiz-
zling operations.

void reduce_stencil(
uniform float4x4 mvp,
float4 ipos: POSI-

TION, out half2 opos: HPOS,
half2 coords: TEXCOORD0,
out half4 ocoords: TEXCOORD0)

{
opos = mul(mvp, ipos);
ocoords = half4(coords.x - 0.5, co-

ords.x + 0.5,
coords.y - 0.5, co-

ords.y + 0.5);
}

• FG field seven-star stencil

void sevenstar_stencil(
uniform float4x4 mvp,
float4 ipos: POSI-

TION, out float4 opos: HPOS,
half2 coords: TEXCOORD0,
out half4 xcoords: TEXCOORD1,
out half4 ycoords: TEXCOORD2,
out half4 dcoords: TEXCOORD3,
out half2 ocoords: TEXCOORD0)

{
opos = mul(mvp, ipos);
xcoords = half4(coords.x - 1, co-

ords.x, coords.x + 1, coords.y);
ycoords = half4(coords.y - 1, co-

ords.y, coords.y + 1, coords.x);
dcoords = half4(coords.x + 1, co-

ords.y - 1, coords.x - 1, coords.y + 1);
ocoords = coords;

}

• Fragment program to compute the discrete FG field with
the Boussinesq buoyancy terms (equations (15) and (16)):

void compute_fg_temperature
(half4 xcoords: TEXCO-
ORD1, // these three are
half4 ycoords: TEXCOORD2, // precom-

puted on
half4 dcoords: TEXCOORD3, // ver-

tex programs
half2 coords: TEXCOORD0,
out float2 value: COLOR,
uniform texobjRECT uv,
uniform texobjRECT flag,
uniform float4 dxdy,
uniform float Re,
uniform float dt,
uniform float gamma,
uniform float beta,
uniform float2 g)

{
// we place as many val-

ues in float4s and float2s as possible
// to take advantage of the 4-

element parallelism

c© The Eurographics Association and Blackwell Publishing 2005.



Carlos E. Scheidegger & João L. D. Comba & Rudnei D. Cunha / Practical CFD Simulations using SMAC

float4 val5 = f2texRECT(uv, xcoords.yw).xyxy,
val42 = float4(f2texRECT(uv, xcoords.xw),

f2texRECT(uv, ycoords.wx)),
val68 = float4(f2texRECT(uv, xcoords.zw),

f2texRECT(uv, ycoords.wz));
float2 val73 = {texRECT(uv, dcoords.zw).x,

texRECT(uv, dcoords.xy).y};
float4 ddd2 = (val68 -

2 * val5 + val42) * dxdy.yyww;
float2 lap = Re * (ddd2.xy + ddd2.zw);
float4 m5658 = (val5 + val68) / 2.0;
float4 m4525 = (val5 + val42) / 2.0;
float4 dc23 = (val5 - val68) / 2.0;
float4 dc14 = (val42 - val5 ) / 2.0;
float2 dc65 = (val42.xw + val73) / 2.0;
float4 t = float4(m4525.x, dc65, m4525.w);
float4 d = dxdy.xxzz * ((m5658.xzyw * m5658 -

t * m4525) +
gamma * (abs(m5658.xzyw) * dc23 -

abs(t) * dc14));

// Boussinesq term for tempera-
ture influence

float this_t = f3texRECT(uv, coords).z;
float2 b_term = { this_t + f3texRECT(uv, xcoords.zw).z,

this_t + f3texRECT(uv, ycoords.wz).z};
b_term = -b_term * g * (dt/2) * beta;
value = val5.xy + dt * (lap + g -

float2(d.x + d.z, d.y + d.w))
+ b_term;

// this sets the FG boundary condi-
tions appropriately

float4 flags = f4texRECT(flag, coords);
if (flags.y == 0) value.x = 0;
if (flags.w == 0) value.y = 0;

}

• Jacobi relaxation: Most used fragment program, because
the time to solve the Poisson equation dominates the total
running time. Notice that there are a lot of obscure tech-
niques to take advantage of the 4-way parallelism of the
fragment processor.

void jacobi_step(
half4 xcoords: TEXCOORD0,
half4 ycoords: TEXCOORD1,
half2 coords: TEXCOORD2,
out float value: COLOR,
uniform texobjRECT fg,
uniform texobjRECT p_old,
uniform texobjRECT neighbors,
// z=0, so we can throw .z of dot-

ted vector away
uniform float3 one_over_dxdt_dydt,
uniform float2 dxdy) // { 1/(dx*dx), 1/(dy*dy) }

{
float4 nsew = 1 -

f4texRECT(neighbors, xcoords.yw);
// 4 multiplies with one instruction
nsew *= dxdy.xxyy;

float4 val4628;
val4628.x = f1texRECT(p_old, xcoords.xw);
val4628.y = f1texRECT(p_old, xcoords.zw);
val4628.z = f1texRECT(p_old, ycoords.wx);
val4628.w = f1texRECT(p_old, ycoords.wz);

// 4 multiplies with one instruction
val4628 *= nsew.wzyx;

// fg only stores usely r and g, but we dot it
// with (...,...,0) so b is thrown away
// We do this be-

cause there is no dot2 in Cg, only dot3.
float3 fg5 = f3texRECT(fg, xcoords.yw);
fg5.x -= f2texRECT(fg, xcoords.xw).x;
fg5.y -= f2texRECT(fg, ycoords.wx).y;

// 4 multiplies and 3 adds in one instruction
float factor = dot(float4(1,1,1,1), nsew);

// 2 multiplies and 1 add in one instruction
float rhs = dot(fg5, one_over_dxdt_dydt);
if (factor == 0.0)

value = 0;
else {

// 4 multi-
plies and 3 adds in one instruction

value = 1/fac-
tor * (dot(float4(1,1,1,1), val4628) -
rhs);

}
}

• Ink advection: main part of ink advection fragment pro-
grams. We omit auxiliary functions such as the linear in-
terpolating texture lookups.

void ink_advection
(float2 coords: TEXCOORD0,
out float4 value: COLOR,
uniform float dt,
uniform float supersample,
uniform float velscale,
uniform float2 dxdy,
uniform samplerRECT uv,
uniform samplerRECT ink,
uniform samplerRECT noise1,
uniform samplerRECT noise2,
uniform float noise_alpha,
uniform float noise_modulate)

{
float2 offset = fmod(coords, 1);
float2 correctionx = float2(offset.x < 0.5 ? 0 : -

1, 0);
float2 correctiony = float2(0, off-

set.y < 0.5 ? 0 : -1);

float2 offsetv = offset + correc-
tionx + float2(1, 0);
float2 offsetu = offset + correc-

tiony + float2(0, 1);
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// staggeredbilerp is a bilinear interpo-
lating texture lookup that takes

// into account the stag-
gered setup for u and v

float u = staggered_bilerp_lookup(uv, co-
ords + correctionx, offsetu).x;

float v = staggered_bilerp_lookup(uv, co-
ords + correctiony, offsetv).y;

// This is a lagrangian back-
ward step in time, so that ink advection

// becomes a gather op instead of a scat-
ter op.

// velscale is used to in-
crease speeds for interactive visualization

float2 direction = float2(u,v) * velscale;

coords -= dt * direction / dxdy;
coords *= supersample;
value = bilerp_lookup(ink, coords);

// modulate noise with a saw-
tooth profile.

float4 noise1_value = texRECT(noise1, coords);
float4 noise2_value = texRECT(noise2, coords);
float t1 = fmod(noise_modulate,1), t2 = 1 -

t1;
float4 noise_value = t1 * noise1_value + t2 * noise2_value;

// interpolate noise with previ-
ous ink values

value = (1-noise_alpha) * value + noise_alpha * noise_value;
}
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Figure 8: Lid-driven cavity, visualized with ink field and IBFV.

Figure 9: Domain with obstacles, visualized with ink field and IBFV.

Figure 10: Wind tunnel mock-up.
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Figure 11: Smoke simulation with large Re.

Figure 12: The Kárman vortex street.

Figure 13: Natural convection with a heated lateral wall and image-based flow visualization.
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