
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25 (2006), Number 3

Direct (Re)Meshing for Efficient Surface Processing

John Schreiner Carlos E. Scheidegger Shachar Fleishman Cláudio T. Silva

Scientific Computing and Imaging Institute, University of Utah

Abstract

We propose a novel surface remeshing algorithm. While many remeshing algorithms are based on global
parametrization or local mesh optimization, our algorithm is closely related to surface reconstruction techniques
and it requires no explicit parameterization. Our approach is based on the advancing-front paradigm, and it can
be used to both incrementally remesh the complete surface, or simply to remesh a portion of it with a high-quality
mesh. It is accurate, fast, robust, and suitable for use with interactive mesh processing applications that require
local remeshing. We show a number of applications, including matching the resolution of meshes when doing
Boolean operations such as unions and intersections. We also show how to adapt the algorithm to blend and
merge mixed-mode objects — for example, to compute the union of a point-set surface and a triangle mesh.

1. Introduction

Triangle meshes are ubiquitous in digital geometry pro-
cessing, and as such, triangulated models are frequently
only intermediate steps in more complex systems [DMSB99,
GSS99,GVSS00,LSS∗98]. Often, the efficiency and robust-
ness of these geometric operations depend directly on mesh
quality. Unfortunately, many geometric algorithms tend to
generate low-quality triangulations to start with, or to lower
triangulation quality after each application. This need for
high-quality meshes, and in particular for improving mesh
quality, has driven much of the development of remeshing
algorithms [AUGA05].

Certain operations require meshes with roughly the same
triangle size and reasonable triangle shape to work well.
Mesh-editing systems are the typical example: Boolean op-
erations, such as union and intersection between meshes
work much better when the triangle sizes between the
meshes are similar. This is particularly true for the re-
cently developed advanced mesh-editing techniques based
on Laplacian coordinates [SLCO∗04] or on the Pois-
son equation [YZX∗04]. These techniques allow automatic
smooth stitching of two object parts. For these techniques
to work, it is necessary to perform a remeshing step that
matches the resolution and produces a single high-quality
mesh before the computations. This problem gained little at-
tention in the past and is so far solved by combining shapes
of similar triangle size and manual work [YZX∗04].

Many of these geometric applications are not well served
by current remeshing techniques. Some approaches require
parameterization of the surface to a planar region, which
limits the techniques to surfaces homeomorphic to disks.
If more general surfaces are used, cutting and stitching is
necessary, and the quality of the meshing tends to suffer
near the seams of the parameterization. Also, performing
global parametrization of very large objects can be challeng-
ing. Techniques based on local mesh-improving operations
(e.g., edge splits, edge collapses, and vertex repositioning)
tend to be more practical, but need to be performed with
care not to modify the overall geometric shape of the model.
See [AUGA05] for an excellent survey.

We introduce a new remeshing algorithm that is based
on a surface-reconstruction approach. Our technique builds
a high-quality triangulation by directly resampling the ge-
ometry and topology of the input geometry, as though it
was performing surface reconstruction. Our remeshing al-
gorithm can be applied locally to a region of interest as in
the case of editing operations between two meshes. Also,
we can remesh the entire input to obtain a mesh that is op-
timally sampled in terms of triangle quality and Hausdorff
distance between an input surface and the remesh and with
an intuitive user control over the allowed error. Because our
technique is based on surface reconstruction, it is not lim-
ited to triangle meshes. As Figure 1 shows, it also allows for
mixed-mode operations, e.g., the union of a triangle mesh
with a point-set surface.

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

J. Schreiner et al. / Direct Remeshing

Figure 1: Many surface processing tasks require good meshes. At the same time, many meshes created automatically exhibit bad triangula-
tions. Our remeshing algorithm is based on surface reconstruction and requires no parameterization. It generates graded triangle meshes of
excellent quality, and can also be used for high-quality CSG operations. Because the technique is very general, we also use it to create mixed-
mode models: CSG operations between a mesh and a point-set, for example. On the left, we show a remesh of a portion of the Michelangelo
David (the watertight and manifold input mesh was created with Reconstruct3D [Kaz05]). On the right, we compute the union of a triangle
mesh with genus 48 and a torus defined by a point set, with a final genus of 68. For CSG operations, we do not remesh the entire surface:
only a part of the original mesh, shown in blue, is retriangulated. Note that triangles meet one another in the intersection curves with the same
resolution, yielding high triangle quality.

Our work is based on the technique of Scheidegger et al.
[SFS05]. The main idea of their advancing-front algorithm is
to grow a triangulation over a point-set surface using a guid-
ance field that dictates the appropriate triangle size. They use
a finite set of samples from the surface curvature that, when
queried appropriately, tends to overcome the excessive lo-
cality of decision-making by advancing-front methods. We
extend their approach in significant ways. First, we have a
more principled way to compute the guidance field, which
can be used to prove that the induced function is Lipschitz
continuous. As a result, we generate fewer and better trian-
gles. The algorithm is also significantly more robust. Addi-
tionally, we show that the algorithm works on any surface for
which we can compute curvature and project points on the
surface. For example, this includes a variety of point set sur-
face definitions. This allows us to generate a mesh that is the
result of some operation between different types of surface
representations, or allowing users to perform mesh opera-
tions which results in a triangle soup, i.e. a mesh that may
contain triangle flips, overlaps, holes, etc. then one can sam-
ple the affected region with some points and simply remesh
that region with our algorithm. We exploit the local nature
of the code to handle sharp features in input meshing.

A key contribution of this work is a simple solution to
a problem that is encountered by most implementations of
mesh processing algorithms: the requirement of high quality
triangulations and control of their resolutions. Our method
produces meshes that balance three requirements well: high
geometric fidelity, low triangle count and good triangle
shape. Our remeshing algorithm requires no parameteriza-
tion, is indifferent to the topology of the objects or their in-
tersection curve and is simple.

2. Related work

The need to generate discrete representations of continuous
geometry for computational, imaging and other purposes is
widespread, and has generated substantial amount of litera-
ture in surface polygonization, meshing, and, more recently,
remeshing. For implicit surfaces, seminal work is reviewed
in [Blo97]. A good example of this early work is the March-
ing Cubes algorithm [LC87, NH91], which samples func-
tions on a grid of fixed resolution, and uses a table of possi-
ble configurations of range signs to create a triangulated sur-
face from those samples. The main strengths of Marching
Cubes are its generality, simplicity and robustness, which
have made it one of the most used meshing algorithms in
practice (e.g., 3D photography [LPC∗00]). The main prob-
lem with Marching Cubes is the inherent bias caused by
placing vertices on all intersections between grid edges and
the surface. This also implies that the sampling density is
proportional to the grid resolution, and not to any intrinsic
surface properties. Meshes from Marching Cubes are typi-
cally over-tessellated, and contain many bad triangles.

The growing field of mesh processing has developed
a number of advanced surface processing techniques,
e.g., mesh editing [Sor06, YZX∗04], mesh deformation
[SZGP05], cloth simulation and compression. For these, and
other applications, good triangle meshes are required since
often the mesh is assumed to be a piecewise approximation
of a smooth function. As explained in the excellent survey
of Alliez et al. [AUGA05], there is a need to improve raw
meshes with oversampled and redundant geometry. This has
given rise to the sub-field of remeshing. Although no formal
definition of remeshing exists, it is roughly the process of
creating a mesh with certain improved properties from a pre-

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

existing mesh. Typically, the goal is to optimize sampling,
grading, regularity, size, and shape of elements, while keep-
ing the overall geometry of the model the same.

A number of remeshing techniques work by first comput-
ing a parametrization of the input geometry. Then, the sur-
face is resampled in the parameter domain, and the samples
are mapped back into 3D space. Unless the surface is home-
omorphic to a disk, this requires cutting and stitching of the
surface. Surazhsky and Gotsman [SG03] point out that such
remeshing techniques are sensitive to the specific global pa-
rameterization used and can be slow. Additionally, robust
implementation of these techniques is nontrivial, since nu-
merical precision issues often arise from the distortion in-
duced by the parameterizations. Instead, they advocate it-
eratively applying local optimizations directly on the exist-
ing mesh until some quality criteria are fulfilled. We point
the reader to [AUGA05] for coverage of existing remeshing
techniques.

Our technique is most related to recent developments
in surface reconstruction, triangulation, and remeshing
[ABCO∗01, BO03, SFS05]. Given a two-dimensional ori-
entable manifold surface S embedded in R3 that supports a
projection operator and curvature computation, we produce
a high quality triangulation that accurately captures details.
Our final reconstruction has bounded error from the origi-
nal mesh, and most of the triangles exhibit excellent quality
– the user defines how close to equilateral they must be. In
particular, our work is inspired by the advancing-front algo-
rithm of Scheidegger et al. [SFS05], who extended the tech-
nique of Karkanis and Stewart [KS01] to the triangulation
of point-set surfaces. Their key innovation was the use of
a global guidance field (also called a sizing field in other
works [ACSYD05, BO03]) to avoid missing features of the
underlying surface. Section 5 contains a detailed comparison
to their work.

3. The advancing front algorithm

We state the basic remeshing problem as follows. Given a
surface S as input, defined as a projection operatorP : R3→
S, we want to construct a triangulation T such that the dis-
tance between T and S is bounded. We also want to control
the number of triangles used, and the quality of the gen-
erated triangles. There are two user-defined parameters ρ

and η which will control approximation accuracy and tri-
angle quality, respectively. Both parameters affect triangle
count, as can be seen in Figure 8. For each surface, we de-
fine ιS : S → R+ to be a function that gives the local ideal
edge size for a triangle of T on S. As illustrated in Figure 4,
we define ιS(x) to be the length of the edge that subtends an
angle ρ on the osculating circle of minimum radius situated
at x:

ιS(x) =
2sin(ρ/2)

κmax

where κmax is the maximum curvature at x. One critical
problem for triangulation quality is that of grading: good tri-

angle meshes are possible when triangle sizes change slowly
throughout the surface [Rup93]. We solve this problem by
using a guidance field gS(x) : R3 → R+ which will deter-
mine the triangle size. The guidance field will be constructed
so that triangle grading in T is adequate, and triangles are no
larger than ιS mandates.

The algorithm begins with a set of initial fronts, which
are lists of vertices with normals. These initial fronts could
be resamplings of the intersection curves computed from a
constructive solid geometry (CSG) operation (see Figure 7),
a boundary loop of a patch of the surface to be locally
remeshed, or simply a single seed edge to begin remeshing
the entire surface. The fronts are iteratively modified with
edge growth and connection operations until all fronts have
been closed. New triangles are always created from an edge
in a front. Free triangles are those where the remaining ver-
tex is a newly chosen sample of S. If this free triangle were
to encroach on an existing front, we instead pick an existing
vertex of T , and call it a connection triangle. If the edge
and the connection vertex are part of the same front, the
front gets split into two. Otherwise, the two different fronts
are merged into one. A front is closed when it only con-
tains three vertices, which are used in a single triangle. As
the front advances, every free triangle is placed before any
connection triangles. Within each class of triangles, we pri-
oritize the ones which would result in larger ratios of the
incircle radius to the circumcircle radius. Note that there is
a correspondence between these operations and handlebody
decompositions [Mat97]. Therefore, advancing front tech-
niques naturally cope with high-genus manifold reconstruc-
tion.

Delayed Triangle Output In straightforward advancing-
front techniques [SFS05] poor connection triangles can be
created, which leads to a few bad triangles in an otherwise
good mesh (see Section 5). We have adapted the “virtual
front” idea of Silva and Mitchell [SM98] to greatly improve
even the worst triangles. This algorithm works by keeping a
small band of triangles behind the advancing front in mem-
ory. As the front advances, new vertices and triangles are in-
serted into the band. When all three vertices of a triangle are
no longer on a front, the triangle is finalized, at which time
they are outputted. By allowing edge flips on this small band,
triangulation quality can be substantially improved. An edge
flip is done when two conditions are satisfied. First, the two
new triangles must have a larger minimum angle than the
original two triangles adjacent to the edge. This is the main
objective of performing edge flips. Second, the normals of
the new triangles must not be in opposition to the normals of
the original triangles. This is necessary since flipping edges
based solely on the first condition can cause geometric over-
laps.

At the heart of our algorithm is the guidance field gS(x).
The guidance field determines the choice of triangle size on
the surface. It prevents large triangles from being created
near small ones by “looking ahead” and gradually shrink-

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Figure 2: Illustration of ĝi(x), the function that defines the correct
edge size as a function of the distance to a sample s̃i of the surface.

ing edges before getting to a detailed area. Limiting the rate
of edge length change also bounds the aspect ratio of free tri-
angles. When placing a free triangle, we query the guidance
field at each of the existing edge vertex locations. These val-
ues, combined with the normals and ordering of the two front
vertices, determine a tentative location for the new vertex.
This vertex is then projected onto the surface and inserted
into the front.

3.1. Constructing the guidance field

Here, we show how to construct the guidance field gS(x)
from a finite set of samples s̃i taken from S, each associated
with an ideal length ιi. We will discuss only the construc-
tion of the guidance field for meshing a single surface, but
will explain in later sections how to extend the definition for
more advanced operations.

We assume the surface we want to remesh is smooth.
Then, a Taylor expansion of the surface around a point shows
that up to second order the surface is locally characterized by
the shape operator [dC76]. We do not take into account the
anisotropy of the surface curvature for the guidance field. In-
stead, we bound the curvature by computing κmax from the
shape operator. We impose two conditions on the size of tri-
angles:

1. The triangles placed over a patch of surface must be a
good approximation for the surface. In other words, the
triangle edge size at si should be at most ιi.

2. Triangle quality throughout the triangulation must be ad-
equate. Specifically, we require that any two edges ei and
e j incident to a common vertex have a ratio bounded by
a user-defined parameter η:

η
−1 ≤ |ei|/|e j| ≤ η (1)

Given a set of surface samples s̃i ∈ S, we compute κi =
κmax applied at s̃i, calling ιi = 2sin(ρ/2)/κi (see Figure 4).
Each s̃i defines a constraint on gS(x), namely gS(x)≤ g̃i(x),

Figure 3: The guidance field g(t) on a curve t : R→ S. g(t) is
the minimum over all g̃. At the sample points s̃i, g̃i is minimum, and
it grows linearly as the distance from s̃i increases. Note that if the
sampling is too coarse, g(t) might not bound ι(t), and that some of
the samples might be unnecessary. Since each g̃i is Lipschitz, so is
g(t).

and the guidance field will be, at each point, the maximum
value that satisfies all constraints.

We will construct g̃i(x) by making use of a simpler func-
tion. ĝi : R+→R+ will define the constraint on edge size as
a function of the distance to s̃i: g̃i(x) = ĝi(|s̃i−x|). To use as
few triangles as possible, ĝi(x) should be as large as possi-
ble. Furthermore, ĝi should be monotonically increasing so
that triangle edge sizes always increase as the edges move
away from s̃i. To satisfy Condition 1, we need

ĝi(ιi) = ιi. (2)

In other words, edges close to the sample must be suffi-
ciently small. While Condition 1 restricts the correct size for
the closest edge to the sample, Condition 2 will restrict the
remaining edge sizes. Maximizing ĝi(x) along with equation
(2) directly implies

ĝi(ιi(1+η)) = ηιi

ĝi(ιi(1+η+η
2)) = η

2
ιi

...

ĝi

(
ιi

1−η
k

1−η

)
= η

k−1
ιi,k > 0 (3)

Equation 3 defines ĝi(x) at a set of discrete values. Since we
need to evaluate it at any distance d ∈ R+, we must extend
its definition appropriately. There are many such functions.
Since ĝi will directly determine edge sizes, we look for one
that minimizes Z ∞

0

(
ĝ′′i (x)

)2
dx (4)

This will minimize the change in the grading determined by
the function. Consider the following expression for ĝi(x):

ĝi(x) = (1−η
−1)x+η

−1
ιi (5)

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Figure 4: To robustly detect front interference, we use a set of
fences: extensions of the front curve in the normal direction of the
surface. We exploit the bound on the Hausdorff error to determine
the correct fence height – the inset on the right shows the argument
in two dimensions. r = κ

−1
max.

This expression interpolates all values given by Equation 3.
Since its second derivative is zero everywhere in the open
interval (0,∞), the integral is zero, and so it is the global
minimizer of Equation 4. Figure 2 illustrates the situation.
Finally, we simply say that gS(x) = mini g̃i(x). Each ĝi(x) is
clearly Lipschitz, and so are the g̃i(x). Since the minimum of
a set of Lipschitz functions is Lipschitz, a gS(x) constructed
in this way will be Lipschitz, regardless of the ιi or the sam-
pling density. Notice that the Lipschitz order is directly re-
lated to the allowed rate of change of triangle edges. Figure 3
illustrates a plot of an example guidance field.

3.2. Surfaces

Our algorithm only requires a few properties of S. S must
admit only a projection operator P : R3→S, and the com-
putation of curvature at any given point s̃∈ S. The curvature
is used for computing ι, andP projects the new points of free
triangles onto the surface. We now describe how to compute
these for a few surface types we have implemented.
Triangle Meshes Since triangle meshes are ubiquitous in
all areas of computer graphics, they are an obvious target
for our triangulator. We take the surface samples s̃i to be the
mesh vertices. We estimate the curvature at a point by fit-
ting a quadratic polynomial to a neighborhood of the mesh
[GS03], though other estimations are possible [MDSB02].
We have found that using the 3-ring neighborhood of a ver-
tex to compute the curvature works well for all the meshes
we have experimented with. Using a smaller neighborhood
will typically lead to erroneous curvature estimations as
most meshes have poorly represented areas.

One possible definition of P for mesh surfaces is simply a
nearest point projection. Traditional advancing front tech-
niques use a projection procedure where a tentative point is
created, usually through some sort of prediction, and then
projected on the surface. This procedure tends to cluster
point samples on non-smooth parts of the surface, leading
to unexpected changes in triangle edge lengths, and trian-
gulation artifacts. Instead, we use a procedure which guar-
antees that the edge lengths of the new triangle are exactly
the desired length. Consider creating a free triangle from a
front edge with vertices v1 and v2 and new vertex x. We want
||x− v1|| = gS(v1) and ||x− v2|| = gS(v2). Each of these
equations defines a sphere. We find the intersections between
these spheres and the mesh, and define the projection to be
the point for which the new triangle normal is closest to the
front normals. The following figure illustrates, respectively,
the original triangle, the result of a closest point projection,
and the solution we use.

MLS Surfaces Moving-Least Squares surfaces are a popu-
lar way to define a smooth surface from a finite set of sam-
ples [AA03,ABCO∗01,AK04,FCOS05]. Most of them work
precisely in terms of a projection operator, the fixed points
of which are taken to be the resulting surface. These defini-
tions are in general suitable for our algorithm. The original
MLS surface [ABCO∗01] is defined in terms of a non-linear
optimization, and so it is non-trivial to compute any differ-
ential properties. We then estimate normals and curvatures
as described in [SFS05].

Linear MLS Surfaces We have also implemented a linear
formulation of MLS surfaces, which take points and ori-
ented normals as input [AA03]. This formulation defines the
surface as a level set of an implicit function. Since there is
no non-linear optimization in the evaluation of the implicit
function, we are able to compute the differential properties
of the surface exactly. Implementing the computation of the
Hessian of the projected point explicitly would be very te-
dious and error-prone. Instead, we use C++ metaprogram-
ming to automatically compute the expressions. We use a
class that essentially encodes the behavior of the chain rule
in calculus. Additionally, since all the expansion is done at
compile-time, the compiler can optimize redundant expres-
sions. We have measured the performance to be similar to
the previously described methods used in meshes and non-
linear MLS.

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Figure 5: A sample of the results of our algorithm. From left to right we show remeshes of the Happy Buddha, the Feline, Pensatore, a
Marching Cubes reconstruction of a pelvis bone used for a biomechanics simulation, and the head of Michelangelo’s David.

g(x)

1 γ←∞
2 repeat
3 p← NEXTCLOSESTPOINT(x)
4 γ←min(γ, g̃p(x))
5 until ||p−x||> γ/(1−η

−1)
6 return γ

Figure 6: Algorithm to compute the guidance field at a given point.

3.3. Feature Preservation

Our advancing front algorithm allows for a simple exten-
sion to enable meshing of surfaces while preserving a certain
class of surface features. We are able to preserve boundaries,
creases, and intersection curves from CSG operations. In or-
der to preserve them, we must ensure that no triangles are
created which cross them. This is easiest done by initializing
the advancing fronts at the features, essentially dealing with
each piecewise smooth patch separately. Finding boundaries
and creases is a hard problem in general. For mesh sur-
faces, finding boundaries is trivial. To identify creases, we
simply threshold the dihedral angles, though advanced tech-
niques could be used for identifying ridges and valleys in
meshes [HPW05], and point-set surfaces [FCOS05]. Once
the feature curves have been found, we resample them with
an algorithm analogous to our advancing front, albeit in one
lower dimension. These resampled curves then become the
initial fronts for the triangulation.

When constructing the guidance field for surfaces with
features, we include the curvature of the feature curves in
addition to the curvature of the surface. We also use the cur-
vatures of each half-disk when computing the curvature of
the surface at a point on a sharp feature. We then use the
same guidance field for both resampling the feature curves
and triangulating the surface. This ensures that all of the fea-

tures are accurately represented while still maintaining the
constraints on the triangle quality.

3.4. Implementation

Our system was designed to mesh (or remesh) a large class
of surfaces, and the design of our prototype implementation
reflects this. The main triangulation module handles the front
advancement, with all intersection tests, merging and split-
ting of fronts. A set of abstract classes define the interface of
the surface definition, and so the triangulation module is un-
aware of the underlying surface type. This simplifies the im-
plementation of more advanced operations, such as mixed-
mode remeshing.

A challenging aspect of implementing an advancing front
algorithm is to determine when a free triangle encroaches
on a front in the triangulation. The fronts are only linear
approximations of curves on the surface, so they can cross
each other without strictly intersecting. If this happens, more
than one triangle will cover a patch of the surface, making
it topologically incorrect. Our solution is to extend the front
curve along the surface normal direction, creating what we
call fences, illustrated in Figure 4. To determine if a free tri-
angle is encroaching, we test it for intersection against the
fences. Equation 8 tells us the maximum distance between a
point on S and the mesh, so the fence heights simply need
to be greater than ε(ρ,x) to guarantee that the fronts will not
cross. We call a triangle encroaching if the newly placed ver-
tex comes closer than half of its ideal step length to a fence.

Evaluating the guidance field is another operation that is
central to our algorithm. It is impractical to compute gS(x)
by taking the minimum over all the points in S, so we ap-
proximate it by densely sampling the surface with points s̃i ∈
S. Note that all g̃is grow at the same rate as we move away
from the minima. This leads to the following simple and ef-
ficient procedure for evaluating g(x) at any given point. First

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Mesh ρ Time Error Quality In Out Mesh ρ Time Error Quality In Out
Bunny 69.4 Max 200.0

0.5 14.9s 0.31% 31.2 0.5 27.3s 0.16% 37.9
1.0 10.0s 0.45% 13.7 1.0 21.2s 0.33% 16.4
1.5 9.1s 0.63% 8.8 1.5 20.3s 0.36% 10.7

Dragon 100.0 Feline 151.0
0.5 44.6s 0.29% 105.4 0.5 50.7s 0.11% 122.9
1.0 23.6s 0.39% 46.1 1.0 30.0s 0.33% 54.7
1.5 20.3s 0.61% 30.0 1.5 26.2s 0.49% 35.9

Pelvis 529.8 David 1300.8
0.5 61.4s 0.12% 48.3 1.5 158s 0.58% 122.4
1.0 56.0s 0.14% 19.2 Pensatore 1995.7
1.5 57.0s 0.29% 11.8 1.5 211s 0.26% 77.1

Buddha 1087.7
0.8 172s 0.89% 221.9

Table 1: Summary of results of our algorithm. Error is measured as Hausdorff distance, in percent of the bounding box diagonal. Input and
output size is measured in thousands of triangles. Quality is shown as a histogram of circle ratios. The three vertical bars show the worst
triangle, the first half percentile, and the median.

assume that we have an upper bound γ of g(x). Then it can
be shown that for all i such that ||s̃i − x|| > γ/(1− η

−1),
g̃i(x) > γ. That is, g̃i will not change our current estimate
of g(x). Therefore, there is no need to inspect g̃i(x) when
||s̃i− x||> γ/(1−η

−1). These observations lead to the pro-
cedure outlined in Figure 6 for evaluating g(x), which exam-
ines the fewest number of points possible by using a kd-tree
to extract the points si in ordered distance from x.

4. Experimental Results and Applications

We have tested our implementation by remeshing a large
number of models of different characteristics, including
models arising from isosurfaces, 3D photography, etc. Sev-
eral representative examples are shown in Figure 5. Statis-
tics regarding our remeshes are listed in Table 1. It relates ρ

to the number of output triangles, the Hausdorff error, and
the execution time. The system used to generate these re-
sults is a dual AMD Opteron 275 (4 cores total) with 4GB of
RAM. This multi-core system is used to exploit trivially par-
allelizable aspects of the algorithm, such as computing ι. The
amount of RAM required for our experiments ranged from
17MB for the bunny with 69 thousand triangles to 470MB
for the Pensatore mesh which has almost two million tri-
angles. Memory consumption is mostly dependent on the
data structures used for keeping the guidance field and do
not grow significantly with the density of the output mesh
as the fronts are the only other data structure that remains
in memory. Unless stated otherwise, we use η = 1.2 for the
results described.

One remarkable aspect of our algorithm is that it produces
a very consistent distribution of triangle qualities that does
not depend on the input mesh. This distribution can be seen
in Figure 9, which includes 80 of our remeshes with exceed-
ingly similar quality histograms. Figure 10 shows that our
triangulations also have a low Hausdorff error. For ρs large
enough to produce fewer output triangles than input trian-
gles, the measured error is about half of our predicted error

bound. Figure 8 demonstrates the user’s ability to control the
output of our algorithm. In addition to being used to gener-
ate full remeshes, we can apply our algorithm to other novel
applications.

4.1. Local Remeshing for Boolean Operations

Many interactive tools require local remeshing after an oper-
ation has been performed. One such example is CSG opera-
tions on two meshes S1 and S2. Since these operations need
to stitch two incompatible triangulations together, they typi-
cally create many thin triangles and high valence vertices. A
local remeshing is sufficient since only the triangles involved
in the intersection are affected.

The procedure for CSG operations begins by finding the
intersections of S1 and S2, which can be done robustly with-
out user input. We call Λ the set of intersection loops of S1
and S2. The local remeshing then begins by marking all tri-
angles within a user defined distance to Λ. These are the tri-
angles that will be deleted and replaced by our triangulation.
We call Ω the boundaries between the marked triangles and
the unchanged portions of the input meshes. To remesh the
marked area, we create a initial front for each loop in Ω, and
two fronts with opposing orientation for each loop in Λ. The
combination of these fronts surround the area to be remeshed
to ensure that only the local region is changed. Since the sur-
face S we are now triangulating is defined by S1⊕S2, where
⊕ is a CSG operation, we must change the guidance field in
several ways. In addition to bounding the rate of change of
the edge lengths within a single mesh, it must also ensure
a smooth gradation between S1 and S2. To achieve this, we
simply use s̃i ∈ S1∪S2. This allows the edge lengths in one
surface to be constrained by the ideal lengths of the other.
Second, the curvature of Λ may be greater than κmax of ei-
ther mesh. Since we want them to be represented accurately,
we must include their curvature when computing ι. Finally,
we would like the edge lengths of the remesh to blend into
those of the unchanged portion of the input meshes. Since

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Figure 7: An example of a CSG difference operation. The output
generated by Maya is shown in the upper-right corner, while the
bottom row shows our operation. The algorithm only changes the
portion shown in blue.

the edge lengths of the original mesh will not necessarily
conform to the ideal lengths that the user specifies with ρ,
we must create a transition. We do this by solving the fol-
lowing Laplacian system across the marked triangles where
i ∈ Λ, j ∈Ω:

∆ f = 0 fi = 0 f j = 1

This is a linear system that can be efficiently solved. The
solution will give a smooth transition between the boundary
constraints. The scalar field f is then used to blend between
the user defined ideal step length and the lengths of the orig-
inal edges at a given point.

The example shown in Figure 7 demonstrates our local
remeshing after a CSG difference operation has been per-
formed. While most modeling packages will introduce very
poor triangles to join the two meshes, we are able to accu-
rately remesh the intersection and blend the edge lengths into
those of the input meshes. Only the portion shown in blue
has been triangulated by our algorithm. The time required
to perform this CSG operation, including finding the inter-
sections, solving the linear system, computing the guidance
field for both surfaces, then finally triangulating the local re-
gion, was less than 4 seconds.

4.2. Mixed-Mode Boolean Operations

Our generalized algorithm allows a new application, which
we call mixed-mode Boolean operations. For example, we
can do CSG operations between a point-set surface S1 and
a mesh S2. One way to do this would be to triangulate both
of the surfaces, then use the procedure outlined above on the
resulting meshes. This, however, is not the approach that we

Figure 8: The effects of ρ and η on the resulting mesh. ρ con-
trols the approximation accuracy: a bigger ρ will result in a coarser
triangulation. η controls triangle grading: a larger η will result in
more adaptive triangulations.

use since it introduces an additional error component in the
result. Instead, we perform the operation directly on S1 and
S2. Finding the intersection curves of two arbitrary surfaces
is a much more difficult problem than when dealing solely
with meshes. In this case, we require a small amount of user
input to select a point close to Λ. This point is then itera-
tively projected onto each surface until it converges to the
intersection. The entire intersection curve is then traversed
by moving parallel to both surfaces and reprojecting. This
allows the discovery of the intersections of “black box” sur-
faces with a minimum of user input. If either of the surfaces
is a triangle mesh, it will be locally remeshed as described
above. Other surface types require that the entire surface be
triangulated with initial fronts at the intersection curves.

We show an example of a mixed-mode union between a
mesh and an MLS surface in Figure 1. The triangulations
of the two surfaces clearly meet to form a watertight mesh,
and the edge lengths of the locally remeshed area smoothly
blend into the original part of the mesh. This example also
demonstrates that our algorithm is oblivious to the genus of
both the input surfaces and the output of the CSG operation.

5. Discussion and Limitations

Approximation Error We can bound the error between S
and the generated mesh. In fact, the Hausdorff error between
the two surfaces can be bounded by

ξ =

(
1−

√
1+2cosρ

3

)
1

2sin(ρ/2)
(6)

ε(ρ) = emaxξ, (7)

where emax is the largest edge in the generated triangulation
[SFS05]. We can use this bound to compute the maximum
distance between any point x∈S and the output mesh. Since
we have constructed the guidance field such that x is never
crossed by a triangle with edges longer than ι(x), we can

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

Figure 9: Cumulative histograms of incircle to circumcircle ratios.
The histogram is normalized so that the best ratio is 1.0. The left
column shows all the input meshes used in the paper, and the column
in the right shows the results of all remeshes shown in this paper (80
in total).

extend Equation 7 to be defined over S with

ε(ρ,x) = ι(x)ξ. (8)

We note that these bounds hold for sufficiently smooth ap-
proximations. In Figure 10 we show predicted error and
measured error using Metro [CRS98]. In practice, our al-
gorithm tends to create meshes with maximum error half of
the predicted theoretical bound. We note that when remesh-
ing triangulated surfaces, because of non-smoothness, the
theoretical bound on Hausdorff error might not hold for
very small ρs. This happens because of the misalignment
of a remeshed triangle across edges of the original trian-
gles. We can circumvent most of these problems by iden-
tifying creases and triangulating piecewise smooth patches
of the surface. We simply sample the crease to obey the guid-
ance field, and a high-quality compatible match between the
piecewise smooth patches can be generated.

Triangle Quality For every free triangle, we can give strong
bounds on the aspect ratio of the generated triangle. The rea-
son is that the Lipschitz property of the guidance field can
be used to enforce that the edge lengths for these edges also
satisfy a Lipschitz condition. For each of these vertices, the
ratio of the shortest to longest incident edge is greater than
or equal to the reduction factor. This automatically creates
a smooth gradation between triangle sizes when going from
high to low curvature areas. Furthermore, for each of the free
triangles, the ratio of the longest to shortest edge will always
be less than or equal to η. When η is close to one, all free
triangles will be close to equilateral.

However, these guarantees do not exist for connection tri-
angles. This is an inherent obstacle for advancing front algo-
rithms, because an existing vertex needs to be used. Hence,
the error bound for free triangles does not hold for connec-
tion triangles. In these areas, where the fronts are merged
and split we use heuristics [KS01, SM98]. In practice, bad
triangles rarely happen. See histograms shown in Figure 9.
There, we show the ratio of incircle to circumcircle of a tri-
angle (normalized to [0,1]) as a measure of triangle quality.
Notice that the first half percentile of all remeshes have ratio
0.5 or better: 99.5% of the triangles have acceptable quality,
and all of them have the median ratio within 3% of optimal.

Figure 10: Predicted error and measured error, in percent of the
bounding box diagonal.

Performance Our algorithm is fast and requires a small
amount of RAM. The bottleneck is in the construction and
evaluation of the guidance field, which takes approximately
half of the execution time. The running time of our remesher
is typically measured in seconds or minutes. See Table 1 for
detailed timings for a number of meshes of varying sizes (up
to around 2 million triangles). The new mesh is streamed to
disk as it is created, so the memory footprint is only depen-
dent on the size of the input surface and the number of edges
in the advancing fronts.

User Control The coarseness and quality of the mesh are
entirely controlled by two parameters: ρ ∈ (0,2π/3] and
η ∈ (1,2). ρ directly controls the coarseness of the triangles
by scaling the ideal edge length at each point. η is a compro-
mise between adaptability of the triangle size to the surface,
and quality of the triangle shape. A small η will not allow
the triangle size to change quickly, resulting in nearly equi-
lateral triangles, but sizing them much smaller than required
for the local curvature. Using a larger η allows more adap-
tive triangles, but results in more triangles with poor aspect
ratios. We have found setting η = 1.2 to perform very well,
and we typically set 0.2≤ ρ≤ 1.5, depending on the desired
coarseness of the resulting mesh.

Comparison to Scheidegger et al. Though the algorithm of
Scheidegger et al. [SFS05] served as a stepping stone to our
algorithm, there are several significant differences between
them. The accumulation of these differences results in an
algorithm that produces higher quality triangles, can easily
be applied to many more meshing scenarios, and is faster
and more robust.

One of the most important differences is in the construc-
tion and evaluation of the guidance field. Though they men-
tion a Lipschitz condition on the edge lengths, their guidance
field construction does not enforce it. We provide a princi-
pled way to create the guidance field, which can be proven to
be Lipschitz with constant (1−η

−1), regardless of the ideal
edge lengths ι. Our procedure for evaluating the guidance
field is only a function of the point location that it is being
evaluated at, rather than the point location and the incident
edge lengths of our output mesh. This additionally increases

c© The Eurographics Association and Blackwell Publishing 2006.

J. Schreiner et al. / Direct Remeshing

the robustness of our algorithm because it prevents subop-
timal edge lengths (from connected triangles) from cascad-
ing throughout the triangulation. Our evaluation procedure
is also more efficient since it only searches in the smallest
radius necessary to determine the correct result.

Another significant difference is in the robustness of our
front intersection tests. We use the bound on the Hausdorff
distance to ensure that the fronts will not cross each other.
This results in a much more reliable meshing tool that is not
as sensitive to the input.

Finally, our algorithm is more widely applicable than
theirs. We treat S in a completely abstract way which allows
us to plug any surface definition into our system. We can also
robustly and accurately mesh surfaces with boundaries and
sharp features.

6. Conclusions and Future Work

We have presented a novel algorithm for meshing a large
class of surfaces. Our technique can be used for remeshing
a complete surface, or selectively triangulating a portion of
it. We exploit this to perform high quality CSG operations
and mixed-mode CSG. The algorithm is fast, robust, simple
to implement, and produces very high quality meshes.

We believe that stronger properties of the algorithm can be
shown by using different ιs, such as the popular local feature
size [Rup93]. The same strategy may be used to preserve
other features of the surface. We would also like to study the
necessary sampling conditions for the guidance field to cor-
rectly bound ι over the entire surface rather than only at a re-
gion around s̃. We are also interested in other applications of
our technique. In particular, the algorithm is currently being
extended to generate compatible contact surfaces for finite
element simulations. These are all exciting directions for fu-
ture work.

Acknowledgments

We thank Valerio Pascucci for insightful comments. We would
like to thank Christian Rössl, Andrew Anderson, the Stanford 3D
Scanning Repository, the Digital Michelangelo Project, VCG_ISTI,
SensAble Technologies, and AIM@SHAPE shape repository for
access to the 3D models used in this paper. This work was
partially supported by the National Science Foundation (grants
CCF-0528201, CCF-0401498, EIA-0323604, OISE-0405402, IIS-
0513692), the Department of Energy, an IBM Faculty Award, and a
University of Utah Seed Grant.

References
[AA03] ADAMSON A., ALEXA M.: Approximating and intersecting surfaces from

points. In Symposium on Geometry Processing (2003), pp. 230–239.

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA

C. T.: Point set surfaces. In IEEE Visualization 2001 (2001), pp. 21–28.

[ACSYD05] ALLIEZ P., COHEN-STEINER D., YVINEC M., DESBRUN M.: Variational
tetrahedral meshing. ACM Trans. Graph. 24, 3 (2005), 617–625.

[AK04] AMENTA N., KIL Y. J.: Defining point-set surfaces. ACM Trans. Graph. (Pro-
ceedings of ACM SIGGRAPH 2004) 23, 3 (2004), 264–270.

[AUGA05] ALLIEZ P., UCELLI G., GOTSMAN C., ATTENE M.: Recent advances in
remeshing of surfaces. In State-of-the-art report of the AIM@SHAPE EU network.
Springer, 2005.

[Blo97] BLOOMENTHAL J. (Ed.): Introduction to Implicit Surfaces. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[BO03] BOISSONNAT J. D., OUDOT S.: Provably good surface sampling and approxi-
mation. In Symposium on Geometry Processing (2003), pp. 9–18.

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: measuring error on sim-
plified surfaces. Computer Graphics Forum 17, 2 (1998), 167–174.

[dC76] DO CARMO M.: Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR A. H.: Implicit fairing
of irregular meshes using diffusion and curvature flow. In SIGGRAPH 1999 (1999),
pp. 317–324.

[FCOS05] FLEISHMAN S., COHEN-OR D., SILVA C.: Robust moving least squares
fitting with sharp features. ACM Transactions on Graphics 24, 3 (2005), 544–552.

[GS03] GARIMELLA R. V., SWARTZ B. K.: Curvature Estimation for Unstructured
Triangulations of Surfaces. Tech. Rep. LA-UR-03-8240, Los Alamos National Labo-
ratory, Nov. 2003.

[GSS99] GUSKOV I., SWELDENS W., SCHRÖDER P.: Multiresolution signal process-
ing for meshes. In SIGGRAPH 99 (1999), pp. 325–334.

[GVSS00] GUSKOV I., VIDIMCE K., SWELDENS W., SCHRÖDER P.: Normal meshes.
In SIGGRAPH 2000 (2000), pp. 95–102.

[HPW05] HILDEBRANDT K., POLTHIER K., WARDETZKY M.: Smooth feature lines
on surface meshes. In Eurographics Symposium on Geometry Processing (2005),
pp. 85–90.

[Kaz05] KAZHDAN M. M.: Reconstruction of solid models from oriented point sets. In
Symposium on Geometry Processing (2005), pp. 73–82.

[KS01] KARKANIS T., STEWART A.: Curvature-dependent triangulation of implicit
surfaces. IEEE Computer Graphics and Applications 21, 2 (2001), 60–69.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high resolution 3d surface re-
construction algorithm. In SIGGRAPH 1987 (1987), pp. 163–169.

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ S., KOLLER D.,
PEREIRA L., GINZTON M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J.,
FULK D.: The digital michelangelo project: 3d scanning of large statues. In ACM
SIGGRAPH 2000 (2000), pp. 131–144.

[LSS∗98] LEE A. W. F., SWELDENS W., SCHRÖDER P., COWSAR L., DOBKIN

D.: Maps: Multiresolution adaptive parameterization of surfaces. In SIGGRAPH 98
(1998), pp. 95–104.

[Mat97] MATSUMOTO Y.: Introduction to Morse Theory. American Mathematical So-
ciety, 1997.

[MDSB02] MEYER M., DESBRUN M., SCHRÖDER, BARR A. H.: Discrete
differential-geometry operators for triangulated 2-manifolds. VisMath (2002).

[NH91] NIELSON G. M., HAMANN B.: The asymptotic decider: resolving the ambi-
guity in marching cubes. In IEEE Visualization 1991 (1991), pp. 83–91.

[Rup93] RUPPERT J.: A new and simple algorithm for quality 2-dimensional mesh
generation. In Symposium on Discrete Algorithms (1993), pp. 83–92.

[SFS05] SCHEIDEGGER C. E., FLEISHMAN S., SILVA C. T.: Triangulating point set
surfaces with bounded error. In Symposium on Geometry Processing (2005), pp. 63–
72.

[SG03] SURAZHSKY V., GOTSMAN C.: Explicit surface remeshing. In Symposium on
Geometry Processing (2003), pp. 20–30.

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D., ALEXA M., RÖSSL C., SEI-
DEL H.-P.: Laplacian surface editing. In Symposium on Geometry processing (2004),
pp. 179–188.

[SM98] SILVA C. T., MITCHELL J. S. B.: Greedy cuts: An advancing front terrain
triangulation algorithm. In ACM-GIS (1998), pp. 137–144.

[Sor06] SORKINE O.: Differential representations for mesh processing. Computer
Graphics Forum 25, 4 (2006).

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C., POPOVIC J.: Mesh-based
inverse kinematics. ACM Trans. Graph. 24, 3 (2005), 488–495.

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B., SHUM H.-Y.: Mesh
editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3
(2004), 644–651.

c© The Eurographics Association and Blackwell Publishing 2006.

