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Abstract—We investigate the influence of bandwidth selection in the reconstruction quality of point-based surfaces. While the problem
has received relatively little attention in the literature, we show that appropriate selection plays a significant role in the quality of
reconstructed surfaces. We show how to compute optimal bandwidths for one class of moving-least squares surfaces by formulating
the polynomial fitting step as a kernel regression problem for both noiseless and noisy data. In the context of Levin’s projection, we
also discuss the implications of the two-step projection for bandwidth selection. We show experimental comparisons of our method,
which outperforms heuristically chosen functions and weights previously proposed. We also show the influence of bandwidth on the
reconstruction quality of different formulations of point-based surfaces. We provide, to the best of our knowledge, the first quantitative
comparisons between different MLS surface formulations and their optimal bandwidths. Using these experiments, we investigate the
choice of effective bandwidths for these alternative formulations. We conclude with a discussion of how to effectively compare the
different MLS formulations in the literature.
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1 INTRODUCTION

T HERE has been a large, recent interest in the area of sur-
face reconstruction from point-sampled data. This work

has been motivated by a set of important applications where
the ability to define continuous surfaces out of a set of discrete
point samples is necessary. The resolution and availability of
current 3-D range scanners that output a very large set of
unconnected points has driven the development of effective
techniques to reconstruct surfaces directly from the point cloud
data.

One of the main challenges in effectively using these data
is dealing with the inherently noisy and irregular nature of
the acquired dataset. The noise introduced by these point-of-
view scanners is dependent on factors such as the material of
the object being reconstructed, incident angle of the range-
finder laser on the object, and distance to the scanner. This
means there typically are different noise levels throughout the
range scan, and reconstruction techniques must cope with these
issues to be successful. Notably, these three-dimensional range
scans are currently being used in digital archeology, where the
acquired data is considered a historical artifact. In some of
these scans, it is possible to recover details that elucidate the
technique used by the artist [1]. It becomes very important,
then, to recover as much detail as possible.

In particular, Moving Least-Squares surfaces [2], [3] have
shown to be a powerful and popular surface reconstruction
method. An MLS surface is defined by a point cloud P and
a projection operator f : R2 → R2, which takes a point r in
the neighborhood of a C∞ surface S (the MLS surface), and
returns a point f(r) ∈ S close to r. The points in P might
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generally not be in S, but in the limit of increasing density of
P , it can be shown that P converges to S geometrically and
topologically [4], [5]. One of the main attractions of MLS is
its natural resilience to noise. This is easily done by changing
the bandwidths of the point samples — their influence radii,
essentially.

We address the problem of accurately selecting bandwidths
for different point-based surface formulations. In particular,
we derive optimal bandwidths (in a sense which we will
make precise later) that can be used in one popular moving-
least square surface formulation. This paper is an extended
version of our previous conference submission [6], where
we derive our results based on Levin’s MLS surface. There
are, however, other popular point-based surface definitions. In
addition to the work presented at the conference, we study
the relation between the bandwidths and reconstruction quality
of alternative point-based surface formulations. These new
experiments suggest that different formulations have different
optimal bandwidths and reconstruction qualities. To the best
of our knowledge, this is the first quantitative comparison
between different MLS surface formulations, and sheds light
on their respective reconstruction abilities. In the remainder
of the paper, we discuss the choice of bandwidth for some of
these formulations. While we do not have counterparts for the
theoretical results we first derive, we investigate whether the
computed optima are effective for these other formulations. As
we will show, it is possible to use the optimal bandwidths of
Levin’s MLS surfaces for Adamson and Alexa’s surface with
good results.

2 RELATED WORK

There have been many different proposed formulations of
MLS surfaces. These include the projection operator of Levin
and Alexa et al [2], [3] and its implicit surface formulation [7].
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Simplified versions with favorable computational requirements
have also been proposed, usually derived in as a combination
of weighted centroids and normal fields [8], [9]. Fleishman et
al. presented extensions that increase the method’s robustness
to outliers while also introducing sharp features in the surface
[10]. Zwicker et al. suggested the most popular variant of
the k-nearest neighbor rule for bandwidth determination [11].
Shen et al. use an implicit variant of MLS surfaces that allow
for normal constraints, and a weighting function that includes
interpolatory constraints [12]

In this work, we use four different MLS formulations. The
first two, and the ones for which we discuss and derive optimal
bandwidth formulas, are based on Levin and Alexa et al.’s
projection operator [3]. In this paper, we will call these Levin’s
MLS surface. We then compare the definition to Alexa and
Adamson’s implicit surface formulation [8] (which we will
call Alexa’s MLS surface).

While much work has gone into different MLS surface for-
mulations, relatively little attention has been paid to choosing
bandwidths for the surface projection. Adamson et al. [13]
originally proposed extending their weighted-centroid formu-
lation to incorporate elliptical kernels, allowing the samples
to conform to the principal curvatures of the surface. They
provide an argument for picking ellipsoidal kernels for clean
samples, there is no discussion of the influence of noise in
the anisotropy estimation. It is not clear, then, how to derive
optimality criteria using those definitions. Lipman et al. show
a tight error bound for the pointwise error in the MLS ap-
proximation formula [14]. They use this bound to numerically
minimize the error for each projection. This mathematically
sound approach outperforms heuristically chosen neighbor-
hood sizes in accuracy. On the other hand, they depend on
a search scheme that can be computationally costly. Dey and
Sun [4] and Kolluri [5] propose using weight functions that
take into account the estimated local feature size of the surface.
This has the critical advantage of provable convergence to the
right surface, but it involves computing the Voronoi diagram
of a large set of points, which is computationally expensive.

Most of the papers in the literature provide different surface
definitions (see, for example, the survey of Cheng et al.
[15]). To the best of our knowledge, there have not been
substantial comparisons between these methods in terms of
ideal bandwidth choices and reconstruction quality under
these bandwidths. Because of the sheer number of different
formulations, we cannot hope to have a comprehensive account
of all different formulations. Still, we believe the comparisons
we present in Section 5 bring light on the relative merits of
each projection.

3 COMPUTING OPTIMAL BANDWIDTHS
In this section, we first review Levin’s MLS projection oper-
ator, (following the presentation in [16]) and, in particular,
the polynomial fitting step. Then we will reformulate this
second step as a kernel regression problem. This leads to the
discussion of weight functions and optimal bandwidths for 2-D
functional data, after which we move on to the generalization
into 3-D data. Finally, we discuss how to incorporate the
method into MLS projections.

Fig. 1. An overview of the MLS surface projection opera-
tor we use in this paper. (from [16])

3.1 Background

Given a set of input points P = pi ⊂ R2 and a point r to be
projected on S, the MLS surface is defined in two steps. In
the first step, we find a local approximating hyperplane H that
minimizes a locally-weighted sum of squared distances from
pi to H . The weights are given as a funtion of the distance
from the projection of r onto H (called q), as shown in Figure
1. The local plane H = {x|〈n, x〉 − D = 0, x ∈ R2}, n ∈
R2, ||n|| = 1 is found by finding the plane that minimizes a
certain functional:

Ĥ = argminH

N∑
i=1

(〈n, pi〉 −D)2
θi(||pi − q||) (1)

where θ is the weight function, the principal subject of this
paper. After Ĥ is found, a second step finds a local polynomial
approximation ĝ of the surface, by minimizing a slightly
different functional:

ĝ = argming

N∑
i=1

(g(xi, yi)− fi)
2
θi(||pi − q||) (2)

where (xi, yi) are the representations of qi, the projections
of pi onto Ĥ expressed in the local coordinate system Ĥ ,
and fi is the signed height of pi over Ĥ . The same weighting
functions are used, but notice that the weights now are not part
of the optimization (q is fixed), so the optimization is linear.
The most commonly used weighting function is a (possibly
truncated) Gaussian:

wh(r) = e−
r2

h2 χ[0,k)(r) (3)

k indicates a cutoff that is typically used for computational
efficiency, limiting the distance query into the spatial data
structures, and χ[a,b)(x) is the function identically one if
a ≤ x < b, and zero otherwise. Although this function works
well in practice, it is empirically chosen and little work has
been done with respect to which weight functions are valid and
which ones are optimal. In addition, this weight function has
confined the shape of the neighborhood of the reference point
to be isotropic, which might not be geometrically justified.
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3.2 2-D Kernel Regression
We modify the problem setting to transform the interpolation
problem into a regression problem. We use kernel regression
because of the large amount of research that has been done into
how to choose the weights appropriately. Kernel regression is
conceptually very similar to weighted least-squares fitting. The
statistical emphasis on expected errors allows us to define and
compute optimal bandwidths. Additionally, these computations
are elementary in nature: the only necessary machinery is a
small amount of calculus. The basic idea is as follows: one
writes the expression for the input points, the local regression
function fit and the residuals, all as functions of the size (the
bandwidth) of the selected kernel (typically a Gaussian). Then
we simply take the derivative of the expected error, set it to
zero, and solve for the bandwidth. The computations them-
selves become complicated because of the amount of terms
that appear, but technically speaking they’re straightforward.

To facilitate our discussion, we adopt the standard kernel
regression terminology in statistics. Given random variables
X1, ..., Xn with density g(X), response variables Y1, ..., Yn

that satisfy:

Yi = f(Xi) + v1/2εi, i = 1, .., n

where v is the variance of the noise and εi are independent
random variables for which

E(εi|X1, ..., Xn) = 0, V ar(εi|X1, ..., Xn) = 1,

the value of f(x) at a specific point x is estimated by
evaluating a polynomial p(t) of degree d at t = x. p(t) is
defined as follows:

p(t) = β̂0 + β̂1(t− x) + ...+ β̂d(t− x)d (4)

where (β̂0, β̂1, ..., β̂d) minimizes

F (p) =
n∑

i=1

(Yi − p(x))2Kh(Xi − x) (5)

Here Kh(u) = 1
hK(u

h ) is a weight function (kernel) which
assigns large weights to points within some neighborhood of
x and small weights outside of the neighborhood. The size
of neighborhood is controlled by parameter h. Notice that the
weighting in kernel regression is a function of the distance
between the values in the domain of the functional, ||Xi −
x||, while in MLS surfaces the weighting is a function of
the distance between the actual samples and the center of the
reference frame, ||pi − q||. This is illustrated in Figure 2.

The kernel function is usually chosen to be a symmetric and
unimodal probability density function [17]. Common choices
of kernels include the normal kernel, Epanechnikov kernel
and biweight kernel. It has been proven [18] that in 2-D
the bandwidth rather than the kernel plays the vital role in
achieving high quality regression result. In other words, we can
replace one kernel for another in regression without causing
much loss of acuracy if we use the optimal bandwidth for
each of them respectively. The Gaussian kernel we use is
within 95% of the efficiency of the Epanechnikov kernel,
the asymptotically optimal choice in the kernel regression
setting. While these results only hold in the context of kernel

Fig. 2. Even though kernel regression and MLS surfaces
both employ kernels, the way samples are weighted is
different.

regression, they provide a justification for focusing in the
bandwidth selection more than in the particular kernel shape.

In the following discussions of this paper, we will focus on
two error criteria for the evaluation of performance of kernel
regression: the first one is the Mean Squared Error (MSE)
which emphasizes the expected error of the local specific point
of interest:

MSE(p(x)) = (E [p(x)− f(x)])2 (6)

and the other one is the integral of MSE over the functional
domain which summarizes the overall expected errors:

MISE(p(x)) =
∫

MSE(x)g(x)dx (7)

We have the following formula for MSE [19]:

MSE(p(x)) ' 1
4
h4(f ′′(x))2µ2(K)2 +

R(K)v
nhg(x)

(8)

where

µ2(K) =
∫
z2K(z)dz, R(K) =

∫
K2(z)dz

The error term of MSE in Equation 8 is oP (n−1h−1 + h2).
Letting the derivative of the approximated MSE be 0 and
solving for h, we get the h that minimizes MSE:

hopt = C

(
v

ng(x)(f ′′(x))2

)1/5

(9)

where C = (R(K)/µ2(K)2)
1
5 is a constant dependent on the

kernel, e.g, for normal kernel C = 1/(2
√
π)

1
5 .

Computing the optimal bandwidth involves calculating g(x),
f ′′(x) and v, which are determined by the underlying function,
which is exactly the object we are trying to approximate. The
standard solution to this problem is to settle for estimators of
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these unknown values. We compute these estimators, and use
them instead of the fundamentally impossible alternative of
computing these functions over the unknown function. This is
known in statistics as the “plug-in” method [20], [19], [21].
Among various ways to estimate the density g(x), we choose
to use kernel density estimation because of its accuracy and
close relation to kernel regression:

g(x) =
1
nh

n∑
i=1

K

(
x−Xi

h

)
(10)

Once again, we need to choose the right bandwidth. We are
only looking for an unbiased estimator of g(x), so many
choices are possible. We use the normal scale rule [18] to
select the bandwidth:

h =
(

8π1/2C

3n

)1/5

σ (11)

where C is defined as before and σ is the sample standard
deviation. The intuition behind the normal scale rule is that

The normal scale rule essentially uses the optimal band-
width for normal density as the bandwidth.

To estimate the second derivatives, we apply ordinary least
squares quartic polynomial fitting to approximate the underly-
ing functional. It has been shown [22] that it is necessary to
divide the functional domain Ω into several “blocks” to make
the method work for fast oscillating functionals. The “blocking
method” divides the domain according to Mallow’s Cp [23].
Cp is a statistic defined for the regression model of fitting each
of the N blocks of data to a p− 1 degree of polynomial. The
optimal N is the one that minimizes Cp. Technically, N is
chosen from the set {1, 2, ..., Nmax} to minimize:

Cp(N) =
RSS(N)(n− pNmax)

RSS(Nmax)
− (n− 2pN) (12)

In our case, since we fit data to a quartic polynomial, p = 5
and the Cp becomes:

Cp(N) =
RSS(N)(n− 5Nmax)

RSS(Nmax)
− (n− 10N) (13)

where RSS(N) is the residual sum of squares over N blocks.
In order to reduce the chance of overfitting, the following
formula for Nmax [19] has been suggested:

Nmax = max{min(bn/20c, N∗), 1} (14)

where N∗ is a user specified parameter which sets the upper
limit of the number of blocks. As for variance, we use the
estimator suggested by Ruppert et.al [19]:

v =
RSS(N)
n− 5N

(15)

Assume Xi ∈ [a, b], the optimal bandwidth based on MISE
can be derived in an analogous way and the result is:

hopt = C

(
v(b− a)

n
∫ b

a
(f ′′(x))2g(x)dx

)1/5

(16)

Fig. 3. Incorporating the kernel selector in MLS surfaces.
A neighborhood around q (red diamond) is chosen among
the sample data and kernel regression is applied to points
within the neighborhood.

The only new difficulty that arises in the MISE based formula
is estimation of the integral of the square of second derivative.
We approximate the integral by Monte Carlo Integration:∫

Ω

(f ′′(x))2g(x)dx ' b− a
n

N∑
i=1

∑
{j:xj∈block i}

p′′(xj)2 (17)

3.3 3-D Kernel Regression
In 3-D space, we work on vectors x = (x1, x2)T instead
of scalars. The formulation of kernel regression problem in
3-D space is analogous to that in 2-D space except that
the bandwidth B is now a matrix and the kernel function
KB(x) = |B|−1/2K(B1/2x). K(x) can be constructed from
a univarite kernel function in one of the two ways:

K(x) = k(x1)k(x2) or K(x) =
k((xT x)1/2)∫
k((xT x)1/2)dx

If the univariate kernel is normal, we get the same bivariate
Gaussian kernel in either way of construction:

K(x) =
1

2π
e−

1
2xT x (18)

This property of Gaussian kernel motivates us to use it as our
kernel function in the following discussions.

Different from 2-D kernel regression, the bandwidth matrix
B not only controls the size of the neighborhood but also the
shape. If B takes the following form:

B =
[
h2 0
0 h2

]
(19)

the shape of the neighborhood would be circular on the XY
plane; if B is of the following form

B =
[
h2

1 0
0 h2

2

]
(20)

then the neighborhood on the XY plane is an ellipse with its
axes parallel to the coordinate axes. The MSE for an arbitrary
B [24] is:

MSE ' 1
4
µ2(K)2tr2(BHf (x)) +

R(K)v
ng(x)|B|1/2

(21)

where

µ2(K)I =
∫

zzTK(z)dz, R(K) =
∫
K2(z)dz
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Fig. 4. Optimal bandwidths for 2-D and 3-D functional data, with circular kernels in the case of 3-D data. The underlying
functionals are shown in Tables 1 and 2. The bottom row shows plots of bandwidth vs. Mean Squared Error. Our
algorithm finds a value close to the real minimum in all cases.

Hf (x) is the Hessian Matrix and tr(B) is the trace of B.
The error term of MSE in Equation (21) is oP {n−1|B|−1/2 +
tr2(B)}.

To find the optimal bandwidths, we plug in a particular form
of B into approximated MSE and try to find the minimizer.
For circular kernel based on MSE we have:

hopt =

(
2R(K)v

nµ2(K)2( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)

)1/6

(22)

If we choose h based on MISE, then the optimal h is (Assume
Xi ∈ [a, b]× [c, d].):

hopt =

(
2R(K)v(b− a)(d− c)

nµ2(K)2
∫

( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)dx

)1/6

(23)

For elliptical kernel, let:

C1 =
R(K)v
ng(x)

, C2 = µ2(K)2, d1 =
∂2f

∂x1
2
, d2 =

∂2f

∂x2
2

When d1d2 > 0, the optimal h1 and h2 satisfy:

h2
1 =

√
d2

d1

(
C1

2C2d1d2

) 1
3

(24)

h2
2 =

√
d1

d2

(
C1

2C2d1d2

) 1
3

(25)

When d1d2 < 0, no minimizer exists for MSE. In this case,
one can either choose to use the circular kernel or the MISE
based optimal bandwidth matrix which satisfies:

h2
1 =

(
I3
I1

)1/4(
R(K)v(b− a)(d− c)
nµ2(K)2(

√
I1I3 + I2)

)1/3

(26)

h2
2 =

(
I1
I3

)1/4(
R(K)v(b− a)(d− c)
nµ2(K)2(

√
I1I3 + I2)

)1/3

(27)

where

I1 =
∫ (

∂2f

∂x1
2

)2

g(x)dx (28)

I2 =
∫
∂2f

∂x2
1

∂2f

∂x2
2
g(x)dx (29)

I3 =
∫ (

∂2f

∂x2
2

)2

g(x)dx (30)

and Xi ∈ [a, b]× [c, d].
As in 2-D, we approximate the underlying functional by

ordinary quartic polynomial fitting. The integrals are approx-
imated by Monte Carlo Integration and the densities are
estimated by kernel density estimation with optimal bandwidth
matrix n−1/3Σ (Σ is the sample covariance matrix) found
again by the normal scale rule[25]. We also use the 3-D version
of “blocking” method to adapt our method to fast-oscillating
functionals.

In our formulas for optimal bandwidths, we found that
the optimal bandwidths are proportional to variance of noise
variable. This means that higher noise level motivates us to
choose larger bandwidths. In addition, optimal bandwidths are
inversely proportional to the number of samples, a quantity
related to the curvature (second derivatives) and the density.
This means that more samples, higher curvature or higher
density all lead to smaller bandwidth. Our formulas agree with
the intuition.

3.4 MLS
We have investigated two ways to incorporate our method
into MLS. We first chose a neighborhood for each q which
ensures that all points in that neighborhood are sampled from
a functional instead of, say, double-sheeted surfaces, and then
applied kernel regression using kernel regression weighting
within that neighborhood (Figure 3); We also used kernel
regression with MLS weighting on the whole dataset but
this time we employed local weighted polynomial fitting to
estimate the second derivatives of the underlying surfaces, etc.
to find the optimal bandwidth.
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Fig. 5. MISE based circular kernel incoporated into MLS. We use as a model a circle with varying levels of noise (on
the left). In the middle, the red line shows the selected bandwidth as a function of angle, and the black line shows the
measured noise. On the right column, we show the results of choosing a constant h or a certain value of k for the k
nearest neighbor heuristic. Notice that the optimal bandwidth around regions of no noise is not zero (see Section 6).

The advantage of the first method is that by simply using
linear polynomial fitting, we can have a reconstruction whose
precision is higher than heuristic approaches (Figure 6). Since
it uses the kernel weighting scheme instead of the MLS
weighting scheme (Figure 2), the distances between the sample
points and underlying surface along the normal directions do
not affect the weights assigned to each point. This helps reduce
estimator bias: using MLS weighting, there is an inherent bias
towards f(x) = 0. The non-trivial part of this method is
how to choose a neighborhood for each q that quanrantees
all the points selected are sampled from a functional. We
empirically chose the size of the neighborhood for q in our
experiments. However, this choice is not critical: in places
where the neighborhoods and reference frames are likely to
not be functional, the MLS method will typically fail [26],
[27].

As for the second method, there is no trouble of selecting
a neighborhood for q. However, since Euclidean distances are
used here, nonlinear regression instead of linear regression
should be applied to alleviate the bias problem. It is compar-
atively easy to find optimal bandwidths for nonlinear polyno-
mial fitting in 2-D [19], but we were unable to generalize the
result to 3-D due to the complexity of the equation systems.
We believe, however, that such a derivation is possible, and
intend to pursue it in future work. In the following sections,
we present experimental results using the first method.

4 EXPERIMENTAL RESULTS WITH LEVIN’S
MLS
Since the second step of Levin’s MLS is polynomial fitting
on functional data, testing our methods on functional data is
enough for evaluation their effectiveness. For completeness,
however, we present experimental results of the method’s
performance after it is incorporated into MLS. To test our
methods for functional data, we compared our results with the

Name Function
F1 sin(8x− 4) + e−16(4x−2)2

F2 sin(6.5πx)

TABLE 1
2-D functionals in experiments

Name Function

F3 0.3cos(12x)sin(9y) + e−
9
4 (x2+y2)

F4 (2x− 1)3 − 3(2x− 1)(2y − 1)2

F5 cos(20x)

TABLE 2
3-D functionals in experiments

real optimum; to test our methods in MLS, we compared our
methods with heuristic approaches for bandwidth selection.

4.1 Functionals

For 2-D functionals, we tested our algorithm on points sampled
from functions in Table 1. Sample size is 500 and the distribu-
tion of noises is N(0, 0.2). To evaluate the performance of the
algorithm, we checked 100 possible values of the bandwidth
from the interval [0, 1] and compared the integral squared error
of the approximated curves using these bandwidths against the
one produced by our algorithm. Figure 4 shows the comparison
results. Our results are close to optimal, even in data sets with
high noise level or fast oscillation.

For 3-D functionals, we chose to test MISE based circular
kernel in the same setting as 2-D functionals. The underly-
ing functionals are shown in Table 2. As in 2-D case, our
reconstruction error is close to the real minimum (Figure 4).
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Fig. 6. MISE based circular kernel incorporated into MLS, using two synthetic models whose ground truth is known.
The top model is a sphere, the bottom one an undulating torus, with varying inner radius. The middle column shows
the mean squared error over the entire surface of varying h, and the right column shows the error using the k nearest
neighbor heuristic. Our results are represented by the straight lines in the plots.

4.2 MLS

We have evaluated our method quantitatively reconstructing a
circle (Figure 5), a sphere and an undulating torus with chang-
ing inner radius (Figure 6). In our evaluation, we compared
our method against two commonly used heuristic approaches
for bandwidth selection - a constant h for all projected points
and the k-Nearest Neighbor method which uses a third of the
distance from q to its kth nearest neighbor as the standard
deviation of the Gaussian kernel. As in our experiments for
functional data, we enumerated possible values of h and k
and compared the reconstruction errors (distances between the
reconstructed surface and real underlying surface) of different
methods.

As demonstrated by the experimental results, our method
outperforms the heuristic approaches. First, it is not clear how
to find the optimal h or k for all possible projected points,
while we have a closed-form analytical solution for a large
family of cases. Second, and more importantly, the results
show that there isn’t a particular h or k that is best suited for
the entire model, even in the case of constant noise. As we
argue in Section 6, our method outperforms both algorithms
because it makes fewer assumptions about the neighborhood
configurations.

We also tested our method on real world models. Figure 8
shows that a visually acceptable reconstruction by heuristic
approaches may fail to capture the geometry precisely, but
our approach is capable of achieving close approximation to
the real surface.

Since we used the first method of incorporating the kernel
selectors into MLS, we had to choose a neighborhood for
each q. The size of this neighborhood affects the quality
of reconstruction but we’ve found that for a wide range of

neighbor sizes our method all produced reconstruction errors
smaller than heuristic approaches. The neighborhoods used
in the figures are not necessarily the best. For example, to
reconstruct the circle (Figure 5), we set(maxXi−minXi)/10
as the neighborhood size but (maxXi −minXi)/5 produced
better results. The important point, however, is that both of
them significantly outperform the heuristic approaches.

Our bandwidth selector is fast. We tested the data for Fig-
ure 5 on an 2.8G Hz Linux machine with AMD Athlon(tm) 64
X2 Dual Core Processor 5600+. The second step (polynomial
fitting) of MLS took a total of 8.917 seconds, among which
1.160 seconds were used to calculate the bandwidths. The time
consumption of bandwidth computation is only 13% of the
total time spent on the second step of MLS.

5 OTHER FORMULATIONS

In section 3, we show that Levin’s MLS is well-suited to
bandwidth analysis through kernel regression and derive sev-
eral formulas for optimal bandwidths. Other moving least-
squares surface formulations exist, and are at least as popular
as Levin’s. In particular, formulations that use an implicit
surface definition are very popular. Unfortunately, these are
much harder with respect statistically in the fashion we have
done above— we were unable to derive optimal bandwidth
results for these. Because all these definitions are similar, one
would expect the optimal bandwidths to be related to one
another. If that were the case, one could compute optimal
bandwidths with the formulas presented above and still use
these alternative surface definitions. That is exactly what we
will investigate in this section: the possibility of using our
previous results in more general settings. Levin’s MLS surface
is only one of many equally popular surface definitions.
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Fig. 7. Error curves of Alexa’s and Levin’s projection (bandwidth vs. reconstruction error). Levin’s MLS with linear
fitting is shown in green, Levin’s MLS with quadratic fitting is shown in black, and Alexa’s MLS is shown in blue. From
left to right, the plots show reconstruction curves for a plane, a sphere and an undulating torus. In general, Alexa’s
MLS compares favorably to Levin’s MLS with linear fitting, and unfavorably to the quadratic fitting version. See text for
more details.

Alexa’s MLS surface, in particular, is attractive because of
implementation simplicity and performance. In this section,
we study different MLS formulations and their behavior with
changing bandwidths.

Different formulations of MLS have been proposed since
the introduction of Levin’s MLS. Given points P = {pi ∈
R3}, i ∈ {1, ..., N}, Alexa et. al define MLS surface implicitly
as S = {x ∈ B|n(x)T (x−a(x))} where B is a neighborhood
containing surface S; n(x) is the normal at point x and a(x)
is the weighted average of points at location x:

a(x) =
∑N

i=1 θ(||x− pi||)pi∑N
i=1 θ(||x− pi||)

Several approaches for computing MLS surfaces based on
Alexa et. al’s formulation [8] have been introduced. One such
approach is the “almost orthogonal projection” [8], which uses
an iteration scheme to move x towards a(x) along n(x) until x
converges to a(x). Our implementation of Alexa’s MLS uses
this iteration.

We have performed experiments on three different analytical
surfaces so we can measure reconstruction error. We have
chosen to test these surfaces using a plane, a sphere, and the
undulating torus described above. These choices were made
because between the three models, we have surfaces with no
curvature, positive gaussian curvature and negative gaussian
curvature. The undulating torus features spatially changing
curvature, which become important if we intend to gauge
the adaptivity of a reconstruction method to changing surface
features. For these three surfaces, we can compute the distance
between a point and the surface, and so measure the quality
of the reconstructions against the known ground truth.

Our experiments show curves of bandwidth versus recon-
struction error in Figure 7. Another way to compute Alexa’s
MLS surfaces is to use n(a(q)) instead of n(q), as imple-
mented in some PointShop3D plugins [28]. The advantage of
using n(a(q)) is that it increases the size of the domain of
points to be projected to the MLS surface. For reconstruction
quality and bandwidth size, using n(a(q)) or n(q) generates
undistinguishable results. Therefore, we only mention Alexa’s
MLS results, even though these are the same figures we get
for the PointShop3D variation.

Figure 7 shows our experiments with different MLS for-
mulations. We use a single bandwidth throughout the entire
model, to compare the intrinsic reconstruction ability of each
definition. With an optimal selector being used, we can expect
better error curves, as evidenced in Figure 6. Our experi-
mental results suggest that the optimal bandwidth of Alexa’s
projection yields better reconstruction quality than Levin’s
projection with linear fitting, but worse than Levin’s projection
with quadratic fitting. Additionally, it shows that the optimal
bandwidth for Levin’s linear fitting MLS is a reasonable (if
slightly overfit) choice for optimal bandwidth in Alexa’s MLS.
The plane results merit some discussion: the linear version
of Levin’s MLS outperforms all the other formulations. This,
however, only happens because the quadratic version of the
operator “tries” to fit a quadratic through the noise, so it
necessarily will suffer from overfitting. Notice that this does
not happen on the other models.

The experiments provide favorable evidence for Alexa’s
MLS, which is much simpler than Levin’s linear fitting MLS
in formulation and implementation and arguably more robust,
since each step does not involve non-linear optimizations.
Even though the quadratic reconstruction can in theory gener-
ate better results, we could not derive formulas for the optimal
bandwidth in those cases. We note that Alexa’s MLS requires
surface normals, of which we have assumed the presence. If
that is not the case, then normals can be easily inferred from
the covariance structure of the neighborhood. In our case,
the normal field is computed as a weighted average of the
normals, similar to what was suggested by Amenta and Kil
[7]. Based on these results, we advocate the following heuristic
for bandwidth selection when using Alexa’s MLS surface:
select the bandwidth with Levin’s linear MLS as described
previously, and increase the computed bandwidth by a small
amount (15% or so).

It is also possible to interpret these experiments as evidence
for the reconstruction quality obtained by Algebraic Point Set
Surfaces [9]. That formulation has the distinction of incor-
porating both higher-order local surface fitting (by algebraic
spherical fitting) and use of sample normals. These are the
two features shared respectively by the quadratic version of
Levin’s MLS and Alexa’s MLS. Unfortunately, that definition
is much more complicated, and to the best of our knowledge,
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Fig. 9. Bandwidth and reconstruction error when the
reference plane is rotated. Points are sampled from a
circle with noise added. Left plot shows the bandwidth of
a reference point when the rotation angle grows from 0 to
90 degrees; The right plot shows the reconstruction error
associated with each reference point.

the current statistical tools are not sufficient to derive optimal
bandwidth formulas.

6 DISCUSSION

In this section, we discuss issues such as the impact of this
technique, its limitations, its applicability in other MLS surface
definitions, and others.
Kernel regression weighting vs MLS surface weighting
We use kernel regression weights (Figure2) to determine the
optimal bandwidths, but use regular MLS weighting to actually
perform the second step of polynomial fitting. While our
experimental results clearly outperform the popular methods
for choosing bandwidths, it is still important to investigate
possible extensions of the optimal bandwidth derivations using
MLS weighting.
Reconstruction quality It is interesting to reflect on the Mean
Squared Error results we have obtained. At first glance, we
might expect that for the case of i.i.d. noise there should
exist a single h that performs as well as any algorithm.
However, neighborhoods of i.i.d. samples are random variables
themselves, so they are subject to variability. Then, across any
particular model, there will be different optimal bandwidths.
The k-nearest neighbor heuristic fails for similar reasons: it is
effective at determining the local density of points, but not so
at estimating whether the region is densely sampled or noisy.
Figure 5 clearly illustrates this. The optimal bandwidth does
not go to zero with the noise, which means that as the angle
goes to 180, the algorithm is “shifting its focus” from noise
to actual sampling density around the circle.
Kernel shapes induced by B We have derived optima for
the class of diagonal matrices with positive eigenvalues, but it
would be desirable to find a general solution for all symmetric
positive-definite matrices. We have solved the equations, but
they involve a system of several quadratic equations that we
have currently been unable to solve. However, it is easy to
circumvent this problem by rotating the coordinate system
before computing the optimal bandwidths. This can be done
by computing the unweighted covariance matrix of a neigh-
borhood around q, and using the matrix of eigenvectors as a
coordinate frame transformation. This will align the covariance
axes with the coordinate frames, allowing the diagonal matrix

to accurately capture the anisotropy. This works in general
because all symmetric matrices are diagonalizable.

h7→MISE(h) In some cases, we have observed the presence
of more than one extrema in the function h 7→ MISE(h).
While we have always observed a single minimum, we have
occasionally seen maxima of the function. While it remains to
be investigated under what conditions the function will have
multiple extrema, in our experiments, the computed value of
h is always extremely close to the minimum.

Bandwidths for the first step Recall that the MLS surface
definition is based on a two-step approach. In current practice,
the same bandwidths are used for both steps, but there’s no
particular reason for that decision. Perhaps the most interesting
aspect of the results we have encountered is that the optimal
bandwidths for the second step are significantly narrower
than the bandwidths necessary for finding an appropriate
reference frame. This means, essentially, that typical current
MLS definitions tend to oversmooth the surfaces. A notable
exception is the work of Pauly et al. [30], where Gaussian
noise becomes a convolution of the relevant functions with
the exact same noise distribution.

Nonlinear kernel regression We have been able to find the
optimal bandwidth selector for nonlinear kernel regression in
MLS in 2-D, but the derivation of optimal bandwidths for
nonlinear kernel regression in 3-D is highly non-trivial [24].
In addition, the bandwidth selector for nonlinear kernel regres-
sion requires higher order derivative estimation, the accuracy
of which is jeopardized by error propagation of numerical
errors. In 2-D, a few steps of iteration is usually necessary
to guarantee the precision of reconstruction [18].

Robustness of Levin’s MLS surface fitting First is that it
is possible to determine a good planar fit for the first step of
Levin’s MLS projection. Because the kernel regression setting
requires a reference frame in which the data is representable
as a function, if it is impossible to find an appropriate such
first step, the results of kernel regression will not necessarily
return a good fit. Levin’s projection has been shown to have
robustness issues in some settings [26], and this work does not
try to solve these issues. We are interested in finding the best
reconstruction quality at some point, given that it is possible
to succesfully use Levin’s projection.

Robustness of bandwidth selectors Our bandwidth selector
is not integrated with the nonlinear optimization of MLS sur-
faces. To test the robustness of the method against imperfectly
selected reference frames, we rotate the reference plane from
0 to 90 degrees and investigate the behavior of our bandwidth
selectors. As shown in Figure 9, the bandwidth selector are
capable of selecting bandwidth adaptively according to the
local neighborhood up to 45 degrees - the bandwidths change
with rotation angles while the reconstruction errors stay at the
same level. This means our bandwidth selectors are insensitive
to possible errors in the first step. In addition, the curve that
plots bandwidth against angle approximates a cosine curve,
which agrees with the fact that when the reference plane is
rotated by angle θ approximately only cos(θ) of the original
points remain in the neighborhood.
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Fig. 8. Dragon head reconstructed from points sampled by afront [29] of the dragon model in the Stanford Scanning
Model Repository. Red points are projections of reference points using our MISE-based kernel selector; blue points
are projections using a constant bandwidth across the point set. Red points are close to real surface (green points)
while the surface composed of blue points contracts.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the relation between bandwidth selec-
tion and reconstruction quality for point-based surfaces. We
provide a solid theoretic foundation for choosing bandwidths
in polynomial fitting step in the MLS procedure. We discuss
the possible choices of weight functions and we propose
algorithms for choosing the optimal parameters for weight
functions. We have tested our methods on functionals, surfaces
and real world scanning models. Our methods work for clean
data as well as for noisy data.

We then use these techniques as a basis for comparing dif-
ferent point-based surface representations, and suggest band-
width selection techniques for cases where analytical formulas
are otherwise unavailable. To the best of our knowledge, this is
the first work that provides quantitative comparisons between
these popular surface definitions.

We are currently working on generalizing the kernel selector
for higher degree polynomial fitting from 2-D to 3-D. In some
cases it might be desirable to settle for numerical optimization,
using nonlinear optimizers such as conjugate gradients to
explicitly minimize the MISE instead of analytically deriving
the optimal value.
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APPENDIX

In this section, we provide the derivation for optimal band-
width formulas in 3-D.

Circular Kernel

By Equation (21) we have:

MSE ' µ2(K)2h4

4
(
∂2f

∂x1
2

+
∂2f

∂x2
2

)2 +
R(K)v
nh2g(x)

(31)

By setting MSE′ to be 0 and solving the equation, we obtain
the optimal h:

hopt =

(
2R(K)v

nµ2(K)2( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)

)1/6

(32)

If we choose h based on MISE:

MISE ' µ2(K)2h4

4

∫
(
∂2f

∂x1
2

+
∂2f

∂x2
2

)2g(x)dx +
R(K)v
nh2

(33)
then the optimal h is:

hopt =

(
2R(K)v

nµ2(K)2
∫

( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)dx

)1/6

(34)

Elliptical Kernel

By Equation (21) we have:

MSE ' µ2(K)2

4
(h2

1

∂2f

∂x1
2

+ h2
2

∂2f

∂x2
2

)2 +
R(K)v

nh1h2g(x)
(35)

To simplify demonstration of our derivation, let:

C1 =
R(K)v
ng(x)

, C2 = µ2(K)2, d1 =
∂2f

∂x1
2
, d2 =

∂2f

∂x2
2
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then MSE can be rewritten as

MSE =
C1

h1h2
+
C2

4
(d1h

2
1 + d2h

2
2)2 (36)

Now we have:

∂MSE
∂h1

= − C1

h2
1h2

+ C2d1h1(d1h
2
1 + d2h

2
2) (37)

∂MSE
∂h2

= − C1

h1h2
2

+ C2d2h2(d1h
2
1 + d2h

2
2) (38)

When d1d2 > 0, by setting both equations to be 0 we get:

h2
1 =

√
d2

d1

(
C1

2C2d1d2

)1/3

(39)

h2
2 =

√
d1

d2

(
C1

2C2d1d2

)1/3

(40)

When d1d2 < 0, no minimizer exists for MSE: If d1(d1h
2
1 +

d2h
2
2) < 0, then ∂MSE

∂h1
< 0 for ∀h1; if d1(d1h

2
1 + d2h

2
2) > 0,

then ∂MSE
∂h2

< 0 for ∀h2. In this case, one can either choose to
use the circular kernel or the MISE based optimal bandwidth
matrix. By analogous analysis, the optimal h1 and h2 based
on MISE satisfy:

h2
1 =

(
I3
I1

)1/4(
R(K)v

nµ2(K)2(
√
I1I3 + I2)

)1/3

(41)

h2
2 =

(
I1
I3

)1/4(
R(K)v

nµ2(K)2(
√
I1I3 + I2)

)1/3

(42)

where

I1 =
∫ (

∂2f

∂x1
2

)2

g(x)dx (43)

I2 =
∫

∂2f

∂x1
2

∂2f

∂x2
2
g(x)dx (44)

I3 =
∫ (

∂2f

∂x2
2

)2

g(x)dx (45)
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