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Abstract

We address the problem of bandwidth selection in MLS
surfaces. While the problem has received relatively little at-
tention in the literature, we show that appropriate selection
plays a critical role in the quality of reconstructed surfaces.
We formulate the MLS polynomial fitting step as a kernel re-
gression problem for both noiseless and noisy data. Based
on this framework, we develop fast algorithms to find opti-
mal bandwidths for a large class of weight functions. We
show experimental comparisons of our method, which out-
performs heuristically chosen functions and weights previ-
ously proposed. We conclude with a discussion of the im-
plications of the Levin’s two-step MLS projection for band-
width selection.

1 Introduction

There has been a large, recent interest in the area of sur-
face reconstruction from point-sampled data. This work has
been motivated by a set of important applications where the
ability to define continuous surfaces out of a set of discrete
point samples is necessary. The resolution and availability
of current 3-D range scanners that output a very large set of
unconnected points has driven the development of effective
techniques to reconstruct surfaces directly from the point
cloud data.

One of the main challenges in effectively using these
data is dealing with the inherently noisy and irregular na-
ture of the acquired dataset. The noise introduced by these
point-of-view scanners is dependent on factors such as the
material of the object being reconstructed, incident angle of
the range-finder laser on the object, and distance to the scan-
ner. This means there typically are different noise levels
throughout the range scan, and reconstruction techniques
must cope with these issues to be successful. Notably, these
three-dimensional range scans are currently being used in
digital archeology, where the acquired data is considered a
historical artifact. In some of these scans, it is possible to
recover details that elucidate the technique used by the artist
[15]. It becomes very important, then, to recover as much

detail as possible.
In particular, Moving Least-Squares surfaces [12, 3]

have shown to be a powerful and popular surface recon-
struction method. An MLS surface is defined by a point
cloud P and a projection operator f : R2 → R2, which
takes a point r in the neighborhood of a C∞ surface S (the
MLS surface), and returns a point f(r) ∈ S close to r. The
points in P might generally not be in S, but in the limit of
increasing density of P , it can be shown that P converges
to S geometrically and topologically [8]. One of the main
attractions of MLS is its natural resilience to noise. This is
easily done by changing the bandwidths of the point sam-
ples — their influence radii, essentially.

In this paper, we address the problem of accurately se-
lecting these bandwidths. In particular, we show that by
reformulating part of the MLS procedure, it is possible to
derive analytical optima for the bandwidths that minimize
certain criteria we will make precise. An appropriate choice
of bandwidth plays a critical role in the reconstruction of ge-
ometric detail. We start by reviewing related work. Then,
we discuss our formulation of the problem in terms of ker-
nel regression, and the derivation of optimal bandwidths.
We present implementation details and results on the fol-
lowing section. Finally, we discuss some implications of
the techniques and suggest future work.

2 Related Work

There have been many different proposed formulations
of MLS surfaces. These include the projection operator of
Levin and Alexa et al [12, 3] and its implicit surface formu-
lation [6]. Simplified versions with favorable computational
requirements have also been proposed, usually derived in
as a combination of weighted centroids and normal fields
[2, 10]. Fleishman et al. presented extensions that increase
the method’s robustness to outliers while also introducing
sharp features in the surface [9]. In this work, we use the
two-step projection procedure of Alexa et al. Zwicker et al.
suggested the most popular variant of the k-nearest neigh-
bor rule for bandwidth determination [25].

While much work has gone into different MLS sur-
face formulations, relatively little attention has been paid



Figure 1. An overview of the MLS surface pro-
jection operator we use in this paper. (from
[4])

to choosing bandwidths for the surface projection. Adam-
son et al. [1] originally proposed extending their weighted-
centroid formulation to incorporate elliptical kernels, allow-
ing the samples to conform to the principal curvatures of
the surface. While they provide an argument for picking
ellipsoidal kernels for clean samples, there is little discus-
sion of the influence of noise in the anisotropy estimation.
It is not clear, also, how to derive optimality criteria using
those definitions. Lipman et al. show a tight error bound
for the pointwise error in the MLS approximation formula
[13]. They use this bound to numerically minimize the error
for each projection. This mathematically sound approach
outperforms heuristically chosen neighborhood sizes in ac-
curacy. On the other hand, they depend on a search scheme
that can be computationally costly.

3 Computing Optimal Bandwidths

In this section, we first review the MLS projection opera-
tor, (following the presentation in [4]) and, in particular, the
polynomial fitting step. Then we will reformulate this sec-
ond step as a kernel regression problem. This leads to the
discussion of weight functions and optimal bandwidths for
2-D functional data, after which we move on to the general-
ization into 3-D data. Finally, we discuss how to incorporate
the method into MLS projections.

3.1 Background

Given a set of input points P = pi ⊂ R2 and a point r to
be projected on S, the MLS surface is defined in two steps.
In the first step, we find a local approximating hyperplane
H that minimizes a locally-weighted sum of squared dis-
tances from pi to H . The weights are given as a funtion of

the distance from the projection of r onto H (called q), as
shown in Figure 1. The local plane H = {x|〈n, x〉 − D =
0, x ∈ R2}, n ∈ R2, ||n|| = 1 is found by minimizing

N∑
i=1

(〈n, pi〉 −D)2 θi(||pi − q||) (1)

where θ is the weight function, the principal subject of this
paper. After H is found, a second step finds a local polyno-
mial approximation g of the surface, by minimizing

N∑
i=1

(g(xi, yi)− fi)
2
θ(||pi − q||) (2)

where (xi, yi) are the representations of qi, the projections
of pi onto H expressed in the local coordinate system H ,
and fi is the signed height of pi over H . The same weight-
ing functions are used, but notice that the weights now are
not part of the optimization (q is fixed), so the optimization
is linear. The most commonly used weighting function is a
(possibly truncated) Gaussian:

wh(r) = e
− r2

(h−r)2 χ[0,k)(r) (3)

k indicates a cutoff that is typically used for computational
efficiency, limiting the distance query into the spatial data
structures. Although this function works well in practice,
it is empirically chosen and little work has been done with
respect to which weight functions are valid and which ones
are optimal. In addition, this weight function has confined
the shape of the neighborhood of the reference point to be
isotropic, which might not be geometrically justified.

3.2 2-D Kernel Regression

We modify the problem setting to transform the inter-
polation problem into a regression problem. To facilitate
our discussion, we adopt the standard kernel regression ter-
minology in statistics: Given random variables X1, ..., Xn

with density g(X) and response variables Y1, ..., Yn that
satisfy:

Yi = f(Xi) + v1/2εi, i = 1, .., n

where v is the variance of the noise and εi are independent
random variables for which

E(εi|X1, ..., Xn) = 0, V ar(εi|X1, ..., Xn) = 1

The value of f(x) at a specific point x is estimated by a
polynomial of degree d:

p(t) = β̂0 + β̂1(t− x) + ... + β̂d(t− x)d (4)

where (β̂0, β̂1, ..., β̂d) minimizes
n∑

i=1

(Yi − q(x))2Kh(Xi − x) (5)
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Figure 2. Even though kernel regression and
MLS surfaces both employ kernels, the way
samples are weighted is different.

Here Kh(u) = 1
hK(u

h ) is a weight function (kernel)
which assigns large weights to points within some neighbor-
hood of x and small weights outside of the neighborhood.
The size of neighborhood is controlled by parameter h. No-
tice that the weighting in kernel regression is a function of
the distance between the values in the domain of the func-
tional, ||Xi − x||, while in MLS surfaces the weighting is a
function of the distance between the actual samples and the
center of the reference frame, ||pi − q||. This is illustrated
in Figure 2.

The kernel function is usually chosen to be a symmet-
ric and unimodal probability density function [7]. Common
choices of kernels include the normal kernel, Epanechnikov
kernel, biweight kernel, etc. It has been proved [24] that in
2-D the bandwidth rather than the kernel plays the vital role
in achieving high quality regression result. In other words,
we can replace one kernel for another in regression without
causing much loss of acuracy if we use the optimal band-
width for each of them respectively. The Gaussian kernel
we use is within 95% of the efficiency of the Epanechnikov
kernel, the asymptotically optimal choice.

In the following discussions of this paper, we will fo-
cus on two error criteria for the evaluation of performance
of kernel regression: the first one is the Mean Squared Er-
ror (MSE) which emphasizes the expected error of the local
specific point of interest:

MSE(p(x)) = (E [p(x)− f(x)])2 (6)

and the other one is the integral of MSE over the functional

domain which summarizes the overall expected errors:

MISE(p(x)) =
∫

MSE(x)g(x)dx (7)

Without loss of generality we assume Xi ∈ [a, b]. We have
the following formula for MSE [18]:

MSE(p(x)) ' 1
4
h4(f ′′(x))2µ2(K)2 +

R(K)v
nhg(x)

(8)

where

µ2(K) =
∫

z2K(z)dz, R(K) =
∫

K2(z)dz

The error term of MSE in Equation 8 is oP (n−1h−1 + h2).
Letting the derivative of the approximated MSE be 0 and
solving for h, we get the h that minimizes MSE:

hopt = C

(
v

ng(x)(f ′′(x))2

)1/5

(9)

where C = (R(K)/µ2(K)2)
1
5 is a constant dependent on

the kernel, e.g, for normal kernel C = 1/(2
√

π)
1
5 .

Computing the optimal bandwidth involves calculating
g(x), f ′′(x) and v, which are related to the underlying func-
tion that we do not know. Our solution is to use the “plug-
in” method [22, 18, 21], which uses statistical inference to
estimate these values and then plugs the estimator into the
formula of optimal bandwidth. Among various ways to es-
timate the density g(x), we choose to use kernel density es-
timation because of its accuracy and close relation to kernel
regression:

g(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(10)

Once again, we need to choose the right bandwidth. We
are only looking for an unbiased estimator of g(x), so many
choices are possible. We use the normal scale rule [24] to
select the bandwidth:

h =
(

8π1/2C

3n

)1/5

σ (11)

where C is defined as before and σ is the sample standard
deviation. The normal scale rule essentially uses the opti-
mal bandwidth for normal density as the bandwidth.

To estimate the second derivatives, we apply ordinary
least squares quartic polynomial fitting to approximate the
underlying functional. It has been shown [11] that it is
necessary to divide the functional domain Ω into several
“blocks” to make the method work for fast oscillating func-
tionals. The “blocking method” divides the domain accord-
ing to Mallow’s Cp [14]: The number of blocks N is chosen
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Figure 3. Incorporating the kernel selector in
MLS surfaces. A neighborhood around q (red
diamond) is chosen among the sample data
and kernel regression is applied to points
within the neighborhood.

from the set {1, 2, ..., Nmax} to minimize:

Cp(N) =
RSS(N)(n− 5Nmax)

RSS(Nmax)
− (n− 10N) (12)

where RSS(N) is the residual sum of squares over N
blocks. In order to reduce the chance of overfitting, the fol-
lowing formula for Nmax [18] has been suggested:

Nmax = max{min(bn/20c, N∗), 1} (13)

where N∗ is a user specified parameter which sets the upper
limit of the number of blocks. As for variance, we use the
estimator suggested by Ruppert et.al [18]:

v =
RSS(N)
n− 5N

(14)

The optimal bandwidth based on MISE can be derived in an
analogous way and the result is:

hopt = C

(
v(b− a)

n
∫ b

a
(f ′′(x))2g(x)dx

)1/5

(15)

The only new difficulty that arises in the MISE based for-
mula is estimation of the integral of the square of second
derivative. We approximate the integral by Monte Carlo In-
tegration:∫

Ω

(f ′′(x))2g(x)dx ' b− a

n

N∑
i=1

∑
{j:xj∈block i}

p′′(xj)2

(16)

3.3 3-D Kernel Regression

In 3-D space, we work on vectors x = (x1, x2)T instead
of scalars. The formulation of kernel regression problem

in 3-D space is analogous to that in 2-D space except that
the bandwidth H is now a matrix and the kernel function
KH(x) = |H|−1/2K(H1/2x). K(x) can be constructed
from a univarite kernel function in one of the two ways:

K(x) = k(x1)k(x2) or K(x) =
k((xT x)1/2)∫
k((xT x)1/2)dx

If the univariate kernel is normal, we get the same bivariate
Gaussian kernel in either way of construction:

K(x) =
1
2π

e−
1
2xT x (17)

This property of Gaussian kernel motivates us to use it as
our kernel function in the following discussions.

Different from 2-D kernel regression, the bandwidth ma-
trix H not only controls the size of the neighborhood but
also the shape. If H takes the following form:

H =
[

h2 0
0 h2

]
(18)

the shape of the neighborhood would be circular on the XY
plane; if H is of the following form

H =
[

h2
1 0
0 h2

2

]
(19)

then the neighborhood on the XY plane is an ellipse with
its axes parallel to the coordinate axes. The MSE for an
arbitrary H [19] is:

MSE ' 1
4
µ2(K)2tr2(HHf (x)) +

R(K)v
ng(x)|H|1/2

(20)

where

µ2(K)I =
∫

zzT K(z)dz, R(K) =
∫

K2(z)dz

Hf (x) is the Hessian Matrix and tr(H) is the trace
of H. The error term of MSE in Equation (20) is
oP {n−1|H|−1/2 + tr2(H)}.

To find the optimal bandwidths, we plug in a particular
form of H into approximated MSE and try to find the min-
imizer. For circular kernel based on MSE we have:

hopt =

(
2R(K)v

nµ2(K)2( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)

)1/6

(21)

If we choose h based on MISE, then the optimal h is:

hopt =

(
2R(K)v(b− a)(d− c)

nµ2(K)2
∫

( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)dx

)1/6

(22)
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Figure 4. Optimal bandwidths for 2-D and 3-D functional data, with circular kernels in the case of
3-D data. The underlying functionals are shown in Tables 1 and 2. The bottom row shows plots of
bandwidth vs. Mean Squared Error. Our algorithm finds a value close to the real minimum in all
cases.

For elliptical kernel, let:

C1 =
R(K)v
ng(x)

, C2 = µ2(K)2, d1 =
∂2f

∂x1
2
, d2 =

∂2f

∂x2
2

When d1d2 > 0, the optimal h1 and h2 satisfy:

h2
1 =

√
d2

d1

(
C1

2C2d1d2

) 1
3

(23)

h2
2 =

√
d1

d2

(
C1

2C2d1d2

) 1
3

(24)

When d1d2 < 0, no minimizer exists for MSE. In this case,
one can either choose to use the circular kernel or the MISE
based optimal bandwidth matrix which satisfies:

h2
1 =

(
I3

I1

)1/4(
R(K)v(b− a)(d− c)
nµ2(K)2(

√
I1I3 + I2)

)1/3

(25)

h2
2 =

(
I1

I3

)1/4(
R(K)v(b− a)(d− c)
nµ2(K)2(

√
I1I3 + I2)

)1/3

(26)

where

I1 =
∫ (

∂2f

∂x1
2

)2

g(x)dx (27)

I2 =
∫

∂2f

∂x2
1

∂2f

∂x2
2
g(x)dx (28)

I3 =
∫ (

∂2f

∂x2
2

)2

g(x)dx (29)

As in 2-D, we approximate the underlying functional by
ordinary quartic polynomial fitting. The integrals are ap-
proximated by Monte Carlo Integration and the densities are

estimated by kernel density estimation with optimal band-
width matrix n−1/3Σ (Σ is the sample covariance matrix)
found again by the normal scale rule[23]. We also use the
3-D version of “blocking” method to adapt our method to
fast-oscillating functionals.

3.4 MLS

We have investigated two ways to incorporate our
method into MLS. We first chose a neighborhood for each
q which ensures that all points in that neighborhood are
sampled from a functional instead of, say, double-sheeted
surfaces, and then applied kernel regression using kernel
regression weighting within that neighborhood (Figure 3);
We also used kernel regression with MLS weighting on the
whole dataset but this time we employed local weighted
polynomial fitting to estimate the second derivatives of the
underlying surfaces, etc. to find the optimal bandwidth.

The advantage of the first method is that by simply us-
ing linear polynomial fitting, we can have a reconstruction
whose precision is higher than heuristic approaches (Fig-
ure 6). Since it uses the kernel weighting scheme instead
of the MLS weighting scheme (Figure 2), the distances be-
tween the sample points and underlying surface along the
normal directions do not affect the weights assigned to each
point. This helps reduce estimator bias: using MLS weight-
ing, there is an inherent bias towards f(x) = 0. The non-
trivial part of this method is how to choose a neighborhood
for each q that quanrantees all the points selected are sam-
pled from a functional. We empirically chose the size of
the neighborhood for q in our experiments. However, this
choice is not critical: in places where the neighborhoods
and reference frames are likely to not be functional, the
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Figure 5. MISE based circular kernel incoporated into MLS. We use as a model a circle with varying
levels of noise (on the left). In the middle, the red line shows the selected bandwidth as a function
of angle, and the black line shows the measured noise. On the right column, we show the results
of choosing a constant h or a certain value of k for the k nearest neighbor heuristic. Notice that the
optimal bandwidth around regions of no noise is not zero (see Section 5).

MLS method will typically fail [5, 16].
As for the second method, there is no trouble of selecting

a neighborhood for q. However, since Euclidean distances
are used here, nonlinear regression instead of linear regres-
sion should be applied to alleviate the bias problem. It is
comparatively easy to find optimal bandwidths for nonlin-
ear polynomial fitting in 2-D [18], but we were unable to
generalize the result to 3-D due to the complexity of math-
ematics. In the following sections, we present experimental
results using the first method.

4 Experimental Results

Since the second step of MLS is polynomial fitting on
functional data, testing our methods on functional data
is enough for evaluation their effectiveness. For com-
pleteness, however, we present experimental results of the
method’s performance after it is incorporated into MLS. To
test our methods for functional data, we compared our re-
sults with the real optimum; to test our methods in MLS, we
compared our methods with heuristic approaches for band-
width selection.

4.1 Functionals

For 2-D functionals, we tested our algorithm on points
sampled from functions in Table 1. Sample size is 500 and
the distribution of noises is N(0, 0.2). To evaluate the per-
formance of the algorithm, we checked 100 possible val-

Name Function
F1 sin(8x− 4) + e−16(4x−2)2

F2 sin(6.5πx)

Table 1. 2-D functionals in experiments

Name Function
F3 0.3cos(12x)sin(9y) + e−

9
4 (x2+y2)

F4 (2x− 1)3 − 3(2x− 1)(2y − 1)2

F5 cos(20x)

Table 2. 3-D functionals in experiments

ues of the bandwidth from the interval [0, 1] and compared
the integral squared error of the approximated curves us-
ing these bandwidths against the one produced by our algo-
rithm. Figure 4 shows the comparison results. Our results
are close to optimal, even in data sets with high noise level
or fast oscillation.

For 3-D functionals, we chose to test MISE based circu-
lar kernel in the same setting as 2-D functionals. The under-
lying functionals are shown in Table 2. As in 2-D case, our
reconstruction error is close to the real minimum (Figure 4).
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Figure 6. MISE based circular kernel incorporated into MLS, using two synthetic models whose
ground truth is known. The top model is a sphere, the bottom one a torus with varying radius.
The middle column shows the mean squared error over the entire surface of varying h, and the right
column shows the error using the k nearest neighbor heuristic. Our results are represented by the
red lines in the plots.

4.2 MLS

We have evaluated our method quantitatively recon-
structing a circle (Figure 5), a sphere and a torus (Figure 6).
In our evaluation, we compared our method against two
commonly used heuristic approaches for bandwidth selec-
tion - a constant h for all projected points and the k-Nearest
Neighbor method which uses a third of the distance from q
to its kth nearest neighbor as the standard deviation of the
Gaussian kernel. As in our experiments for functional data,
we enumerated possible values of h and k and compared the
reconstruction errors (distances between the reconstructed
surface and real underlying surface) of different methods.

As demonstrated by the experimental results, our method
outperforms the heuristic approaches. First, it is not clear
how to find the optimal h or k for all possible projected
points, while we have a closed-form analytical solution for
a large family of cases. Second, and more importantly, the
results show that there isn’t a particular h or k that is best
suited for the entire model, even in the case of constant
noise. As we argue in Section 5, our method outperforms
both algorithms because it makes fewer assumptions about
the neighborhood configurations.

We also tested our method on real world models. Fig-
ure 7 shows that a visually acceptable reconstruction by
heuristic approaches may fail to capture the geometry pre-

cisely, but our approach is capable of achieving close ap-
proximation to the real surface.

Since we used the first method of incorporating the
kernel selectors into MLS, we had to choose a neighbor-
hood for each q. The size of this neighborhood affects
the quality of reconstruction but we’ve found that for a
wide range of neighbor sizes our method all produced re-
construction errors smaller than heuristic approaches. The
neighborhoods used in the figures are not necessarily the
best. For example, to reconstruct the circle (Figure 5), we
sed (maxXi − minXi)/10 as the neighborhood size but
(maxXi − minXi)/5 produced better results. The impor-
tant point, however, is that both of them significantly out-
perform the heuristic approaches.

Our bandwidth selector is fast. We tested the data
for Figure 5 on an 2.8G Hz Linux machine with AMD
Athlon(tm) 64 X2 Dual Core Processor 5600+. The sec-
ond step (polynomial fitting) of MLS took a total of 8.917
seconds, among which 1.160 seconds were used to calculate
the bandwidths. The time consumption of bandwidth com-
putation is only 13% of the total time spent on the second
step of MLS.
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5 Discussion

In this section, we discuss issues such as the impact of
this technique, its limitations, its applicability in other MLS
surface definitions, and others.
Other MLS definitions We have implemented the band-
width selector for the classic MLS surface definition of
Levin and Alexa et al, but there are many different and pop-
ular formulations. We believe the current framework can
be easily extensible to many different variants. For exam-
ple, Alexa and Anderson’s implicit surface formulation de-
fines the MLS surface as essentially the set of points whose
local normal is perpendicular to the vector pointing to the
neighborhood centroid [2]. The projection is usually im-
plemented by a custom root-finding algorithm that builds a
sequence of approximations of the normal and centroid. A
natural way of incorporating the bandwidth selection is to
use, at each iteration, the plane defined by the current best
approximation of the projection and normal. While closer
investigation is necessary, we believe that the method will
converge to a point in the surface with optimal weights.
Kernel regression weighting vs MLS surface weighting
We use kernel regression weights (Figure2) to determine
the optimal bandwidths, but use regular MLS weighting
to actually perform the second step of polynomial fitting.
While our experimental results clearly outperform the pop-
ular methods for choosing bandwidths, it is still important
to investigate possible extensions of the optimal bandwidth
derivations using MLS weighting.
Reconstruction quality It is interesting to reflect on the
Mean Squared Error results we have obtained. At first
glance, we might expect that for the case of i.i.d. noise
there should exist a single h that performs as well as any
algorithm. However, neighborhoods of i.i.d. samples are
random variables themselves, so they are subject to variabil-
ity. Then, across any particular model, there will be differ-
ent optimal bandwidths. The k-nearest neighbor heuristic
fails for similar reasons: it is effective at determining the
local density of points, but not so at estimating whether the
region is densely sampled or noisy. Figure 5 clearly illus-
trates this. The optimal bandwidth does not go to zero with
the noise, which means that as the angle goes to 180, the al-
gorithm is “shifting its focus” from noise to actual sampling
density around the circle.
Kernel shapes induced by H We have derived optima for
the class of diagonal matrices with positive eigenvalues, but
it would be desirable to find a general solution for all sym-
metric positive-definite matrices. We have solved the equa-
tions, but they involve a system of several quadratic equa-
tions that we have currently been unable to solve. However,
it is easy to circumvent this problem by rotating the coor-
dinate system before computing the optimal bandwidths.
This can be done by computing the unweighted covari-

ance matrix of a neighborhood around q, and using the
matrix of eigenvectors as a coordinate frame transforma-
tion. This will align the covariance axes with the coordinate
frames, allowing the diagonal matrix to accurately capture
the anisotropy. This works in general because all symmetric
matrices are diagonalizable.
h7→MISE(h) In some cases, we have observed the pres-
ence of more than one extrema in the function h 7→
MISE(h). While we have always observed a single mini-
mum, we have occasionally seen maxima of the function.
While it remains to be investigated under what conditions
the function will have multiple extrema, in our experiments,
the computed value of h is always extremely close to the
minimum.
Bandwidths for the first step Recall that the MLS sur-
face definition is based on a two-step approach. In current
practice, the same bandwidths are used for both steps, but
there’s no particular reason for that decision. Perhaps the
most interesting aspect of the results we have encountered
is that the optimal bandwidths for the second step are sig-
nificantly narrower than the bandwidths necessary for find-
ing an appropriate reference frame. This means, essentially,
that typical current MLS definitions tend to oversmooth the
surfaces. A notable exception is the work of Pauly et al.
[17], where Gaussian noise becomes a convolution of the
relevant functions with the exact same noise distribution.
Nonlinear kernel regression We have been able to find the
optimal bandwidth selector for nonlinear kernel regression
in MLS in 2-D, but the derivation of optimal bandwidths for
nonlinear kernel regression in 3-D is highly non-trivial [19].
In addition, the bandwidth selector for nonlinear kernel re-
gression requires higher order derivative estimation, the ac-
curacy of which is jeopardized by error propogation of nu-
merical errors. In 2-D, a few steps of iteration is usually
necessary to guarantee the precision of reconstruction [24].

6 Conclusion and Future Work

In this paper, we provide a solid theoretic foundation for
the polynomial fitting step in the MLS procedure. We have
discussed the possible choices of weight functions and we
have proposed algorithms for choosing the optimal param-
eters for weight functions. We have tested our methods on
functionals, surfaces and real world scanning models. Our
methods work for clean data as well as for noisy data.

We are currently working on generalizing the kernel se-
lector for higher degree polynomial fitting from 2-D to 3-D.
In some cases it might be desirable to settle for numerical
optimization, using nonlinear optimizers such as conjugate
gradients to explicitly minimize the MISE instead of ana-
lytically deriving the optimal value.
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Figure 7. Dragon head reconstructed from points sampled by afront [20] of the dragon model in
the Stanford Scanning Model Repository. Red points are projections of reference points using our
MISE-based kernel selector; blue points are projections using a constant bandwidth across the point
set. Red points are close to real surface (green points) while the surface composed of blue points
contracts.
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A Appendix

In this section, we provide the derivation for optimal
bandwidth formulas in 3-D.

A.1 Circular Kernel

By Equation (20) we have:

MSE ' µ2(K)2h4

4
(

∂2f

∂x1
2

+
∂2f

∂x2
2
)2 +

R(K)v
nh2g(x)

(30)

By setting MSE′ to be 0 and solving the equation, we ob-
tain the optimal h:

hopt =

(
2R(K)v

nµ2(K)2( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)

)1/6

(31)

If we choose h based on MISE:

MISE ' µ2(K)2h4

4

∫
(

∂2f

∂x1
2

+
∂2f

∂x2
2
)2g(x)dx +

R(K)v
nh2

(32)
then the optimal h is:

hopt =

(
2R(K)v

nµ2(K)2
∫

( ∂2f
∂x12 + ∂2f

∂x22 )2g(x)dx

)1/6

(33)

A.2 Elliptical Kernel

By Equation (20) we have:

MSE ' µ2(K)2

4
(h2

1

∂2f

∂x1
2
+h2

2

∂2f

∂x2
2
)2+

R(K)v
nh1h2g(x)

(34)

To simplify demonstration of our derivation, let:

C1 =
R(K)v
ng(x)

, C2 = µ2(K)2, d1 =
∂2f

∂x1
2
, d2 =

∂2f

∂x2
2

then MSE can be rewritten as

MSE =
C1

h1h2
+

C2

4
(d1h

2
1 + d2h

2
2)

2 (35)

Now we have:

∂MSE
∂h1

= − C1

h2
1h2

+ C2d1h1(d1h
2
1 + d2h

2
2) (36)

∂MSE
∂h2

= − C1

h1h2
2

+ C2d2h2(d1h
2
1 + d2h

2
2) (37)

When d1d2 > 0, by setting both equations to be 0 we get:

h2
1 =

√
d2

d1

(
C1

2C2d1d2

)1/3

(38)

h2
2 =

√
d1

d2

(
C1

2C2d1d2

)1/3

(39)

When d1d2 < 0, no minimizer exists for MSE: If d1(d1h
2
1+

d2h
2
2) < 0, then ∂MSE

∂h1
< 0 for ∀h1; if d1(d1h

2
1 +d2h

2
2) >

0, then ∂MSE
∂h2

< 0 for ∀h2. In this case, one can either
choose to use the circular kernel or the MISE based optimal
bandwidth matrix. By analogous analysis, the optimal h1

and h2 based on MISE satisfy:

h2
1 =

(
I3

I1

)1/4(
R(K)v

nµ2(K)2(
√

I1I3 + I2)

)1/3

(40)

h2
2 =

(
I1

I3

)1/4(
R(K)v

nµ2(K)2(
√

I1I3 + I2)

)1/3

(41)

where

I1 =
∫ (

∂2f

∂x1
2

)2

g(x)dx (42)

I2 =
∫

∂2f

∂x1
2

∂2f

∂x2
2
g(x)dx (43)

I3 =
∫ (

∂2f

∂x2
2

)2

g(x)dx (44)
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