Surface Generation

Thanks to Prof. Chuck Hansen for figures and slides

Recap

- Implicit surfaces
- $f(x,y,z) = f(s); S = \{s: f(s) = 0\}$

The representation works in any dimension

Implicit Surfaces in nD

Implicit Surfaces in nD

Isosurface Extraction

• Given an implicit surface, get a triangle mesh

Not only SciVis!

• Implicit surfaces are great for modeling

Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans Reconstruction and Representation of 3D Objects with Radial Basis Functions

Not only SciVis!

• Implicit surfaces are great for modeling

Shen, Brien, Shewchuk. Interpolating and Approximating Implicit Surfaces from Polygon Soup

Marching Tetrahedra

- Assume volume is represented by tetrahedral mesh, with scalars attached to vertices
- Scalar field built by barycentric interpolation of scalar values

Function Reconstruction in Tet meshes

 Scalar field built by barycentric interpolation of scalar values

- Scalar function reconstruction is convex
- Isosurfaces are piecewise linear

MT: simple example

• f(x) = 0.6

- Only look at intersections with edges
- How many cases? Much fewer than 16

MT: only two cases

Only look at edges where vertices have opposing signs

On to Cubes

• First idea: do no work! Split cube in tets

- Many ways to split a cube into tets
 - How do you minimize the size of the output?
 - Are there any problems? Look at the props

Splitting into tets is wasteful

Scheme	Triangles	Ratio
Marching Cubes	1,029,936	1.0
Minimal (5), No Parity	2,452,378	2.381
Minimal (5), Even Parity	2,453,046	2.382
Minimal (5), Odd Parity	2,452,370	2.381
Freudenthal (6), Axis 000 - 111	3,011,206	2.924
Freudenthal (6), Axis 001 - 110	3,003,346	2,916

Carr, Möller, Snoeyink Artifacts Caused By Simplicial Subdivision

Marching Cubes

Direct inspection: 15 cases

Marching Cubes

Direct inspection: 15 cases

Marching Cubes

Direct inspection: 15 cases

Ambiguity in MC

• Trilinear interpolation is tricky

Ambiguity in MC

• Naive table leaves holes!

Generalizing MC

Isosurface Construction in Any Dimension Using Convex Hulls Bhaniramka, Wenger, Crawfis

- Higher dimensions, different cells, etc.
- Automatically constructed!

Efficiency

- How long does it take to run Marching Cubes?
- How can you make it faster?

Octrees

 One way to handle the big data problem is to use hierarchical data structures (hierarchical volumes)

Other Methods

MinMax Octree

Wilhelms and Van Gelder 90/92

Search Complexity: O(k log(n/k) + k) Livnat, Shen and Johnson 96

Interlude: Surface Continuation

Jules Bloomenthal An Implicit Surface Polygonizer

Other Methods

Extrema Graphs

Itoh and Koyamada 94 Volume Thinning Itoh, Yamaguchi and Kotamada 96

Search Complexity

- Avg Oln exp(2/3))
- Worst case O(n)
 Livnat, Shen and Johnson 96

The Span Space

Livnat, Shen, Johnson 96

- Given:
 - Data cells in 8D
- Past (active list):
 - Intervals in a 1D Value space
- New:
 - Points in the 2D Span
 Space
- Benefit:

Points do not exhibit any spatial relationships

Span Space: other works

The Span Space

- NOISE: O(√ n+k)
 Livnat, Shen, Johnson 96
- Optimal: O(log(n)+k)
 Cignoni et al. 96
 Better search algorithm

Triangle Quality

- We now know how to make MC faster, so we can use it as a step in the middle of other algorithms
 - Mechanical simulations, etc

Triangle Quality

- Minimum angle determines condition number of stiffness matrix in some FE simulations
- Maximum angle determines interpolation error (in particular of gradients)
- Radii-ratio goes to zero for **either** of the above

Triangle Quality

Dietrich, Scheidegger, Comba, Nedel, Silva Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods

"Give us a MC table, and we'll give you a diagnostic"

Edge Group 2 is responsible for most bad triangles!

Name	MC with old table			Macet with new table		
	θ_0	$ heta_\infty$	ρ	θ_0	$ heta_\infty$	ho
Chest CT	0.08	179.0	0.0	17.9	118.6	0.46
Bonsai	0.38	178.7	0.0	17.6	119	0.45
Shockwave	1.26	175.7	0.0	20.7	110.7	0.52
Silicium	0.66	177.4	0.0	18.7	117.3	0.47

SnapMC: Extended MC Table

- vertices can be "+", "-", or "="
 - snap scalars close to the isovalue
- How big is this table? 3^8 entries! 6561

SnapMC: Extended MC Table

- Automatically generated, by the method we described before: easy!
- One extra parameter: how aggressive are we with snapping?

- **Provable** quality bounds
 - But triangle mesh non-manifold..

SnapMC Results

SnapMC

		min edge				min radius	directed
	isovalue	length	min area	min angle	max angle	ratio	Hausdorff
aneurism	100	0.425	0.078	13.09	135.20	0.29	0.86
bonsai	30	0.427	0.083	13.35	135.67	0.28	0.86
engine	100	0.428	0.080	13.96	134.71	0.26	0.66
fuel	80	0.428	0.104	14.30	135.51	0.39	0.30
lobster	20	0.428	0.087	13.55	135.13	0.25	0.86
Marschner-Lobb	100	0.442	0.231	14.58	122.63	0.35	0.71

Name	MC with old table			Macet with new table		
	θ_0	θ_{∞}	ρ	θ_0	$ heta_{\infty}$	ρ
Chest CT	0.08	179.0	0.0	17.9	118.6	0.46
Bonsai	0.38	178.7	0.0	17.6	119	0.45
Shockwave	1.26	175.7	0.0	20.7	110.7	0.52
Silicium	0.66	177.4	0.0	18.7	117.3	0.47

Edge groups

SnapMC and Edge Groups

• Edge Groups can probably be used to illustrate SnapMC's bounds

Macet seems to have better experimental results, but has no provable bounds