
Surface Generation

Thanks to Prof. Chuck Hansen for figures and slides

Recap

. Implicit surfaces

. f(x,y,z) = f(s); S = {s: f(s) = 0}

. The representation works in any
dimension

Implicit Surfaces in nD

Implicit Surfaces in nD

Isosurface Extraction
. Given an implicit surface, get a triangle

mesh

Not only SciVis!
. Implicit surfaces are great for modeling

Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans
Reconstruction and Representation of 3D Objects with Radial Basis Functions

Reconstruction and Representation of 3D Objects with Radial Basis

Functions

J. C. Carr1,2 R. K. Beatson2 J. B. Cherrie1 T. J. Mitchell1,2 W. R. Fright1 B. C. McCallum1

T. R. Evans1

1Applied Research Associates NZ Ltd ∗
2University of Canterbury†

(a) (b)

Figure 1: (a) Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud. (b) Automatic mesh repair using the biharmonic RBF.

Abstract

We use polyharmonic Radial Basis Functions (RBFs) to reconstruct
smooth, manifold surfaces from point-cloud data and to repair in-
complete meshes. An object’s surface is defined implicitly as the
zero set of an RBF fitted to the given surface data. Fast methods for
fitting and evaluating RBFs allow us to model large data sets, con-
sisting of millions of surface points, by a single RBF—previously
an impossible task. A greedy algorithm in the fitting process re-
duces the number of RBF centers required to represent a surface and
results in significant compression and further computational advan-
tages. The energy-minimisation characterisation of polyharmonic
splines result in a “smoothest” interpolant. This scale-independent
characterisation is well-suited to reconstructing surfaces from non-
uniformly sampled data. Holes are smoothly filled and surfaces
smoothly extrapolated. We use a non-interpolating approximation
when the data is noisy. The functional representation is in effect a
solid model, which means that gradients and surface normals can
be determined analytically. This helps generate uniform meshes
and we show that the RBF representation has advantages for mesh
simplification and remeshing applications. Results are presented
for real-world rangefinder data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: Variational implicit surfaces, Radial Basis Function,
RBF, mesh repair, point-cloud surfacing, surface reconstruction,
geometry compression, solid modeling.

∗Applied Research Associates NZ Ltd, PO Box 3894, Christchurch,

New Zealand. Email: [j.carr,j.cherrie,r.fright,b.mccallum]@aranz.com

Web: www.aranz.com
†Dept. Mathematics and Statistics, University of Canterbury,

Christchurch, New Zealand, Email: r.beatson@math.canterbury.ac.nz

1 Introduction

Interpolating incomplete meshes (hole-filling) and reconstructing
surfaces from point-clouds derived from 3D range scanners are
ubiquitous problems in computer graphics and Computer Aided
Design (CAD). Smoothly blending between surfaces and ensuring
surfaces are manifold, and therefore manufacturable, are related
problems in CAD. Similarly, smoothing and remeshing existing
noisy surfaces are important problems in both CAD and computer
graphics. These problems have mostly been considered indepen-
dent from one another and received much attention in the litera-
ture (see [8] and the references therein). In this paper we propose
that the implicit representation of object surfaces with Radial Basis
Functions (RBFs) simplifies many of these problems and offers a
unified framework that is simple and elegant. An RBF offers a com-
pact functional description of a set of surface data. Interpolation
and extrapolation are inherent in the functional representation. The
RBF associated with a surface can be evaluated anywhere to pro-
duce a mesh at the desired resolution. Gradients and higher deriva-
tives are determined analytically and are continuous and smooth,
depending on the choice of basic function. Surface normals are
therefore reliably calculated and iso-surfaces extracted from the im-

Not only SciVis!
. Implicit surfaces are great for modeling

Shen, Brien, Shewchuk.
Interpolating and Approximating Implicit Surfaces from Polygon Soup

Marching Tetrahedra

. Assume volume is represented by
tetrahedral mesh, with scalars attached
to vertices

. Scalar field built by barycentric
interpolation of scalar values

Function Reconstruction
in Tet meshes

. Scalar field built by
barycentric interpolation
of scalar values

. Scalar function
reconstruction is convex

. Isosurfaces are piecewise
linear

0.9

1.2

0.7

0.3

MT: simple example
• f(x) = 0.6

0.9

1.2

0.7

0.3

. Only look at
intersections with edges

. How many cases? Much
fewer than 16

MT: only two cases
• Only look at edges where vertices have opposing

signs

On to Cubes

. First idea: do no work! Split cube in tets

. Many ways to split a cube into tets

. How do you minimize the size of the
output?

. Are there any problems? Look at the
props

Splitting into tets is
wasteful

Carr, Möller, Snoeyink
Artifacts Caused By Simplicial Subdivision

Marching Cubes

Canonical Cases for
Isosurfacing

The 256 possible configurations

can be grouped into these 15

canonical cases on

the basis of complementarity

(swapping positive and negative)

and rotational symmetry

The advantage of doing this is

for ease of implementation - we

just need to code 15 cases not

256

Direct inspection:
15 cases

Marching Cubes

Canonical Cases for
Isosurfacing

The 256 possible configurations

can be grouped into these 15

canonical cases on

the basis of complementarity

(swapping positive and negative)

and rotational symmetry

The advantage of doing this is

for ease of implementation - we

just need to code 15 cases not

256

Direct inspection:
15 cases

Marching Cubes

Canonical Cases for
Isosurfacing

The 256 possible configurations

can be grouped into these 15

canonical cases on

the basis of complementarity

(swapping positive and negative)

and rotational symmetry

The advantage of doing this is

for ease of implementation - we

just need to code 15 cases not

256
Direct inspection:

15 cases

Ambiguity in MC

. Trilinear interpolation is tricky

Ambiguity in MC
. Naive table leaves holes!

Generalizing MC

. Higher dimensions, different cells, etc.

. Automatically constructed!

Isosurface Construction in Any Dimension Using Convex Hulls
Bhaniramka, Wenger, Crawfis

Efficiency

. How long does it take to run Marching
Cubes?

. How can you make it faster?

Octrees

• One way to handle the big data problem is to use
hierarchical data structures (hierarchical volumes)

8x8x8 4x4x4 2x2x2 …

…

Less amount of data are required

Other Methods

MinMax Octree
Wilhelms and Van Gelder 90/92

Search Complexity:

 O(k log(n/k) + k)
 Livnat, Shen and Johnson 96

23

14

37

19

Value
10 45

MaxMin

Interlude: Surface
Continuation

· automatic surface detection,

· root-finding by binary subdivision,

· unambiguous triangulated output in points-polygon format, and

· function evaluation caching

Overview

The spatial partitioning implemented here is based on the continuation scheme presented by [Wyvill et

al], in which an initial cube is centered on a surface point (the ‘starting point’). Continuation consists of

generating new cubes across any face that contains corners of opposite polarity (of the implicit surface

function); this process continues until the entire surface is contained by the collection of cubes. The

surface within each cube is then approximated by one or more polygons. Unfortunately, some polarity

combinations are ambiguous; the ‘marching cubes’ method produces errant holes in the surface

because it treats these ambiguities inconsistently.

The implementation presented here treats all cube cases consistently, in one of two user-selectable

ways. Either the cube is directly polygonized according to an algorithm given in [Bloomenthal], or it is

decomposed into tetrahedra that are then polygonized, as suggested by [Payne and Toga]. Thus, either

a cube or a tetrahedron serves as the polygonizing cell. Each edge of the polygonizing cell that connects

corners of differing polarity is intersected with the surface; we call these surface/edge intersections

‘surface vertices.’ When connected together, they form polygons.

The continuation, decomposition, and polygonization steps are illustrated below.

polygonization

surface

continuation (side view) decomposition

surface

Figure 1: overview of the polygonizer.

Continuation versus Exhaustive Search

Continuation methods require O(n2) function evaluations, where n is some measure of the size of the

object (thus, n2 corresponds to the object’s surface area). Methods that employ exhaustive search

through a given volume require O(n3) function evaluations. We know of only one other published

polygonization implementation, which is given in [Watt]; it employs a ‘marching cubes’ exhaustive

search.

One benefit of exhaustive search is its detection of all pieces of a set of disjoint surfaces. This is not

guaranteed with continuation methods, which require a starting point for each disjoint surface. With

the implementation provided here, a surface is automatically detected by random search; thus, only a

single object is detected and polygonized. If, however, the client provides a starting point for the

partitioning, random search is not performed and disjoint objects may be polygonized by repeated calls

to the polygonizer, each with a different starting point.

Root-Finding

Most exhaustive search methods were designed to process three-dimensional arrays (i.e., discrete

samples such as produced by CAT or MRI scans); the present polygonizer, however, was designed for

objects defined by a continuous, real-valued function. Such functions allow the location of a surface

Jules Bloomenthal
An Implicit Surface Polygonizer

Other Methods

Extrema Graphs
Itoh and Koyamada 94

Volume Thinning
Itoh, Yamaguchi and Kotamada 96

Search Complexity
• Avg O(n exp(2/3))

• Worst case O(n)

 Livnat, Shen and Johnson 96

The Span Space
 Livnat, Shen, Johnson 96

• Given:

– Data cells in 8D

• Past (active list):

– Intervals in a 1D Value
space

• New:

– Points in the 2D Span
Space

• Benefit:
 Points do not exhibit any

spatial relationships
Value

Maximum

Minimum

m
in
 =

 m
ax

Span Space: other works

Maximum

Minimum

m
in
 =

 m
ax

– Optimal: O(log(n)+k)
Cignoni et al. 96

Better search algorithm

– NOISE: O(! n+k)
 Livnat, Shen, Johnson 96

The Span Space

Triangle Quality

. We now know how to make MC faster,
so we can use it as a step in the middle
of other algorithms

. Mechanical simulations, etc

Triangle Quality
. Minimum angle determines condition number

of stiffness matrix in some FE simulations

. Maximum angle determines interpolation error
(in particular of gradients)

. Radii-ratio goes to zero for either of the above

important, whether the application is rendering, mapmaking,

or simulation, because they can compromise accuracy or cre-

ate unwanted visual artifacts. In finite element methods they

contribute to discretization errors.

If the true function is smooth, the error in the interpolated

function can be reduced simply by making the triangles or

tetrahedra smaller. However, the error in the gradient is

strongly affected by the shape of the elements as well as their

size, and this error is often the primary arbiter of element

quality. The enemy is large angles: the error in the gradient

can grow arbitrarily large as angles approach 180◦. Bounds

on the errors associated with piecewise linear interpolation

are discussed in Section 2.

If your application is the finite element method, then the

condition number of the stiffness matrix associated with the

method should be kept as small as possible. Poorly con-

ditioned matrices affect linear equation solvers by slowing

them down or introducing large roundoff errors into their re-

sults. Element shape has a strong influence on matrix condi-

tioning, but unlike with interpolation errors, small angles can

have as bad an effect as large ones. The relationship between

element shape and matrix conditioning depends on the par-

tial differential equation being solved and the basis functions

and test functions used to discretize it. Bounds on condition

number must be derived on a case-by-case basis. The stiff-

ness matrices associated with Poisson’s equation on linear

elements are studied in Section 3.

The discretization error is the difference between the ap-

proximation computed by the finite element method and the

true solution. Like stiffness matrix condition numbers, dis-

cretization error depends in part on the partial differential

equation and the method of discretization. However, dis-

cretization error is closely related to the interpolation errors,

and is mitigated by elements whose shapes and sizes are se-

lected to control the interpolation errors.

Quality measures for evaluating and comparing elements are

discussed in Section 4. These include measures of an ele-

ment’s fitness for interpolation and stiffness matrix forma-

tion. The quality measures discussed in this paper can be

used in either an a priori or a posteriori fashion, and are de-

signed to interact well with numerical optimization methods

for mesh smoothing.

The results of this paper can be extended to anisotropic

meshes, whose elements are elongated in response to prop-

erties of an interpolated function or a differential equa-

tion. Specifically, long, thin, correctly oriented elements can

achieve the best tradeoff between interpolation error and the

number of elements when the function being interpolated

has a large curvature along one axis and very little curva-

ture along an orthogonal axis. Elongated, correctly oriented

elements can achieve the best matrix conditioning for partial

differential equations whose coefficients create anisotropy.

These extensions are omitted because of space, but they ap-

pear in the full-length version of this paper. All the deriva-

tions and proofs of the results may be found there too.

1
A

4
A

3
A

2
A

l
14 l

34

l
24

l
23

l
12

l
13

3

2 1
l l

l

v

v
1

v
v
1

v

v

v

2

3 4

2

3

r r

r

circ

in

mc

circumcircle incircle
min!containment

circle

Figure 1: Quantities associated with triangles and
tetrahedra.

Table 1 is a reference chart for the notation used in this pa-

per. Some of the quantities are illustrated in Figure 1. Trian-

gle vertices and edges are numbered from 1 to 3, with vertex

vi opposite edge i. Tetrahedron vertices and faces are num-
bered from 1 to 4, with vertex vi opposite face i.

The value rcirc is the radius of the circumcircle or circum-

sphere of a triangular or tetrahedral element t, rin is the ra-

dius of the incircle or insphere of t, and rmc is the radius

of the min-containment circle or sphere of t. The circumcir-
cle, or circumscribed circle, of a triangle is the unique circle

that passes through all three of its vertices, and the circum-

sphere of a tetrahedron passes through all four of its vertices.

The incircle, or inscribed circle, of a triangle is the smallest

circle that touches all three of its sides, and the insphere of

a tetrahedron is the smallest sphere that touches all four of

its triangular faces. The min-containment circle of a triangle

is the smallest circle that encloses the triangle; its center is

either the circumcenter of the triangle or a midpoint of one

of its edges. The min-containment sphere of a tetrahedron

is the smallest sphere that encloses it; its center is either the

circumcenter of the tetrahedron, the circumcenter of one of

its triangular faces, or a midpoint of one of its edges.

Some of the quantities are signed, which means that they are

negative for inverted elements. To say an element is inverted

is to presuppose that it has a fixed topological orientation,

defined by an ordering of its vertices. For instance, a trian-

gle is inverted if its vertices are supposed to occur in coun-

terclockwise order, but upon inspection occur in clockwise

order. The topology of a mesh determines the orientation of

each element relative to the orientations of all the others.

2 Element Size, Element Shape, and
Interpolation Error

This section describes the mathematical relationship be-

tween the size and shape of an element and the errors in a

Triangle Quality

Fig. 8. From left to right, comparisons on enlarged sections of Silicium, Engine, Bonsai, Lobster. First row: MC using original table. Second row:
Macet using original MC table. Third Row: Macet using displacements and the new MC table. Green triangles are good, purple triangles are bad.
Observe that there is a clear improvement in the overall triangle quality in our proposal (bottom row images).

[34] L. Tzeng. Warping cubes: Better triangles from marching cubes. In
European Workshop on Computational Geometry, 2004.

[35] B. Wyvill, C. McPheeters, and G. Wyvill. Data structures for soft objects.
The Visual Computer, 2(4):227–234, 1986.

APPENDIX

Lemma 1: There are exactly 8 different edge groups in a cubic
cell. Proof: The proof is based on the number of shared vertices in
each edge configuration, which can be 0, 1 or 2. Edge configurations
are unchanged by rotations and reflections. We assume that edges in a
group are numbered in a way that e0 < e1 < e2, where e stands for an
edge. Consider now each case individually, using the value associated
to each edge in the representation of the cell described in Figure 9.
case 0 (0 intersections): Assume that e0 = 0, which gives us a con-
figuration (0,e1,e2). Since e1 and e2 must not be connected, this rules
out values 1, 2, 3 and 4. Consider the remaining values 5 through
11. Let e1 = 5, which gives a configuration (0,5,e2). Similarly,
this rules out e2 ∈ {6,7}. The remaining configurations are all valid,
(0,5,8),(0,5,9),(0,5,10) and (0,5,11), and are described in the first
row of Figure 9. The same argument is used to create the remaining
edge configurations in this case, and they are all displayed in Figure
9. Each configuration is associated to an edge group, which is dis-
played in a yellow background in the center of each edge configura-
tion. Eleven configurations are identified, but due to symmetries they
correspond to only three edge groups of Table 1: 4, 5 and 7.
case 1 (1 intersection): Assume that e0 = 0 and e1 = 1, which gives
us a start configuration (0,1,e2). Since e2 must be disconnected, edge
values 2 through 6 are discarded. The remaining values are all valid,
(0,1,7),(0,1,8),(0,1,9),(0,1,10) and (0,1,11), described in the case
1 box of Figure 9. Five configurations are enumerated, but due to sym-

Fig. 9. Cases used to enumerate edge groups in a cubic cell.

metries they correspond to only three three edge groups of Table 1: 1,
3 and 6.
case 2 (2 intersections): Assume that e0 = 0 and e1 = 1, which gives
us a start configuration (0,1,e2). Since e2 must be connected to ei-
ther e1 or e2, edge values from 7 to 11 are discarded. Edge values 3
and 5 are discarded since they create an invalid configurations (planar
edges). The remaining configurations are valid: (0,1,2),(0,1,4) and
(0,1,6), described in the case 2 box of Figure 9. Three configurations
are enumerated and reduce to symmetries to two edge groups of Table
1: 0 and 2, In total we have 8 edge groups (3 in case 0, 3 in case 1 and
2 in case 2), as stated in the lemma.

Edge Groups

0 1 2 3

4 5 6 7

Fig. 1. The eight edge groups observed in MC. All triangles generated by MC
come from one of these groups (which include symmetric or rotationally equivalent
configurations).

theory, and counting-cases for four-dimensional cases [3]. While they
count cases that occur based on the sign of the vertices of the cell,
we classify triangles inside each case by looking at the relative con-
nectivity of the edges that generate the vertices. A survey of MC was
recently presented by Newman and Yi [22].

Isosurface extraction methods are usually categorized by the general
approach they use in computing the isosurface [27]. Spatial decom-
position methods (introduced by [14]) subdivide the domain of the
function f into smaller parts, often called cells, and generate local ap-
proximations to the isosurface inside each cell [7, 15, 18, 25, 33]. Sur-
face tracking methods place seed sampling points on the isosurface
and trigger region growing-like algorithms from the seeds, iteratively
searching for optimal positions for new sampling points. These algo-
rithms trace their roots to work of Wyvill et al. [35] and have been
recently extended [31] to generate higher quality triangulations.

The divide-and-conquer nature of spatial decomposition methods of-
ten leads to robust and efficient methods, like MC [18], while the opti-
mal placing of each sample performed in the surface tracking methods
results in higher-quality meshes. In the past, efficiency and quality
have been treated as orthogonal features, but a recent trend is to con-
sider both aspects when designing an algorithm to improve mesh qual-
ity [11, 16]. Gibson [12] proposes a method based on MC that places
sampling points at the center of each active cell (a cell crossed by the
isosurface), and connects them to sampling points in adjacent cells.
This procedure resembles the Cuberille method [13] and generates a
dual of the MC mesh. A related technique is dual-contouring [15]
which has been shown to generate higher quality meshes than MC.
Bruin et al. [9] extended Gibson’s technique to couple a gradient de-
scent iteration to the mesh post-processing step, which reduces the dis-
tance between the mesh and the real isosurface. Dual MC techniques
are also studied by Nielson [25] who proposes a method that leads to
a polygon mesh surface which is the mathematical dual of a modified
form of the MC surface called the “MC Patch” surface.

Tzeng [34] proposes a post-processing step in which small edges are
collapsed to eliminate poorly shaped triangles. Labelle and Shewchuk
[16] propose warping of the sampling grid to eliminate poorly-shaped
tetrahedra before their construction. By carefully choosing the amount
and direction of warping, together with the lattice in which the sur-
face is extracted, they are able to prove lower bounds on tetrahedra
quality. Raman and Wenger [30] propose both an extended lookup
table to eliminate triangles degenerated to points or lines and a snap-
ping technique to collapse bad-shaped triangles with cut points near
to grid vertices. Extended lookup tables were previously proposed
to detect interfaces between three (or more) materials, however, and
result in non-manifold meshes; in the same way, the snapping tech-
nique allows the movement of cut points to neighboring cells, and may
join different regions of the mesh. The authors reported that all tests
of their method resulted in non-manifold meshes. The Macet algo-

Fig. 2. The quality of each triangle generated by Marching Cubes depends on
the combination of edges that generate the triangle.

rithm [11] transforms active edges to places that improve the quality
of the output mesh. Common to the solutions described above is the
idea that moving the sampling grid points [11,16,34] or the generated
cut points [9, 12, 30] results in a significant improvement of triangle
quality. Most of these approaches, however, are guided by intuition.
The framework of edge groups introduced in this work provides evi-
dence as to the reason that these methods work.

3 EDGE GROUPS

In this section we introduce edge groups to understand and analyze the
triangle quality generated by MC. The connectivity of cut points of a
given cell in MC is determined by the sign of the function f at cell
vertices, and is used to define a piecewise triangular surface within
each cell. We call the point in which the isosurface crosses the cell
edges a cut point, and the associated edge an active edge. In this work
we are interested in the quality of each triangle. We chose as quality
metric the radii-ratio, which computes the ratio of incircle to circum-
circle, normalized to lie between zero and one; an equilateral triangle
has maximum quality one [28].

The quality of triangles generated inside a cubic cell is hard to ana-
lyze. Each cell generates a set of triangles (up to five in MC), and the
quality of each triangle is dictated by the position of its vertices, some
of which are shared among adjacent triangles. Our analysis is based
on the fact that the triangles MC generates are not arbitrary: their
endpoints are necessarily on edges of a fixed-size cubic cell. This led
us to look at the different ways that three edges can define a triangle
in MC. In Figure 2 we show a case that produces three triangles. The
shape of each triangle is directly related to the edge configuration of
each triangle: the three active edges that define a triangle in a MC case.

We represent the position of each cut point ci along the active edge
by a single parameter, ti ∈ [0,1]. The quality of the triangle set for a
given MC case can be given by a function q : Rn → R, which takes
n parameters (positions of cut points) to calculate the mesh quality,
where n varies from three to twelve (the number of active edges in a
cubic cell, which changes from case to case). As previously observed,
the behavior of this high-dimensional parameter space can be quite
complicated [16].

3.1 Edge Groups for Cubic Cells

Because of the many symmetries of the cubic cell, different edge con-
figurations can define the same triangle. Such symmetries are easy to
consider in the cube where all edges have same size and right angles
between adjacent edges. We combine symmetric configurations into a
group by partitioning the configurations under the equivalence classes:
two edge configurations are equivalent if their representation can be
transformed into each other by the symmetries of the cubic cell.

An edge group represents a set of equivalent edge configurations that
can be formed. The quality of an edge group is defined by the quality
of the worst triangle generated in this group. For example, if the edge
group is formed by edges A, B and C, then the cut points along the

Dietrich, Scheidegger, Comba, Nedel, Silva
Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods

“Give us a MC table, and we’ll give you a diagnostic”

Edge Groups

0 1 2 3

4 5 6 7

Fig. 1. The eight edge groups observed in MC. All triangles generated by MC
come from one of these groups (which include symmetric or rotationally equivalent
configurations).

theory, and counting-cases for four-dimensional cases [3]. While they
count cases that occur based on the sign of the vertices of the cell,
we classify triangles inside each case by looking at the relative con-
nectivity of the edges that generate the vertices. A survey of MC was
recently presented by Newman and Yi [22].

Isosurface extraction methods are usually categorized by the general
approach they use in computing the isosurface [27]. Spatial decom-
position methods (introduced by [14]) subdivide the domain of the
function f into smaller parts, often called cells, and generate local ap-
proximations to the isosurface inside each cell [7, 15, 18, 25, 33]. Sur-
face tracking methods place seed sampling points on the isosurface
and trigger region growing-like algorithms from the seeds, iteratively
searching for optimal positions for new sampling points. These algo-
rithms trace their roots to work of Wyvill et al. [35] and have been
recently extended [31] to generate higher quality triangulations.

The divide-and-conquer nature of spatial decomposition methods of-
ten leads to robust and efficient methods, like MC [18], while the opti-
mal placing of each sample performed in the surface tracking methods
results in higher-quality meshes. In the past, efficiency and quality
have been treated as orthogonal features, but a recent trend is to con-
sider both aspects when designing an algorithm to improve mesh qual-
ity [11, 16]. Gibson [12] proposes a method based on MC that places
sampling points at the center of each active cell (a cell crossed by the
isosurface), and connects them to sampling points in adjacent cells.
This procedure resembles the Cuberille method [13] and generates a
dual of the MC mesh. A related technique is dual-contouring [15]
which has been shown to generate higher quality meshes than MC.
Bruin et al. [9] extended Gibson’s technique to couple a gradient de-
scent iteration to the mesh post-processing step, which reduces the dis-
tance between the mesh and the real isosurface. Dual MC techniques
are also studied by Nielson [25] who proposes a method that leads to
a polygon mesh surface which is the mathematical dual of a modified
form of the MC surface called the “MC Patch” surface.

Tzeng [34] proposes a post-processing step in which small edges are
collapsed to eliminate poorly shaped triangles. Labelle and Shewchuk
[16] propose warping of the sampling grid to eliminate poorly-shaped
tetrahedra before their construction. By carefully choosing the amount
and direction of warping, together with the lattice in which the sur-
face is extracted, they are able to prove lower bounds on tetrahedra
quality. Raman and Wenger [30] propose both an extended lookup
table to eliminate triangles degenerated to points or lines and a snap-
ping technique to collapse bad-shaped triangles with cut points near
to grid vertices. Extended lookup tables were previously proposed
to detect interfaces between three (or more) materials, however, and
result in non-manifold meshes; in the same way, the snapping tech-
nique allows the movement of cut points to neighboring cells, and may
join different regions of the mesh. The authors reported that all tests
of their method resulted in non-manifold meshes. The Macet algo-

Fig. 2. The quality of each triangle generated by Marching Cubes depends on
the combination of edges that generate the triangle.

rithm [11] transforms active edges to places that improve the quality
of the output mesh. Common to the solutions described above is the
idea that moving the sampling grid points [11,16,34] or the generated
cut points [9, 12, 30] results in a significant improvement of triangle
quality. Most of these approaches, however, are guided by intuition.
The framework of edge groups introduced in this work provides evi-
dence as to the reason that these methods work.

3 EDGE GROUPS

In this section we introduce edge groups to understand and analyze the
triangle quality generated by MC. The connectivity of cut points of a
given cell in MC is determined by the sign of the function f at cell
vertices, and is used to define a piecewise triangular surface within
each cell. We call the point in which the isosurface crosses the cell
edges a cut point, and the associated edge an active edge. In this work
we are interested in the quality of each triangle. We chose as quality
metric the radii-ratio, which computes the ratio of incircle to circum-
circle, normalized to lie between zero and one; an equilateral triangle
has maximum quality one [28].

The quality of triangles generated inside a cubic cell is hard to ana-
lyze. Each cell generates a set of triangles (up to five in MC), and the
quality of each triangle is dictated by the position of its vertices, some
of which are shared among adjacent triangles. Our analysis is based
on the fact that the triangles MC generates are not arbitrary: their
endpoints are necessarily on edges of a fixed-size cubic cell. This led
us to look at the different ways that three edges can define a triangle
in MC. In Figure 2 we show a case that produces three triangles. The
shape of each triangle is directly related to the edge configuration of
each triangle: the three active edges that define a triangle in a MC case.

We represent the position of each cut point ci along the active edge
by a single parameter, ti ∈ [0,1]. The quality of the triangle set for a
given MC case can be given by a function q : Rn → R, which takes
n parameters (positions of cut points) to calculate the mesh quality,
where n varies from three to twelve (the number of active edges in a
cubic cell, which changes from case to case). As previously observed,
the behavior of this high-dimensional parameter space can be quite
complicated [16].

3.1 Edge Groups for Cubic Cells

Because of the many symmetries of the cubic cell, different edge con-
figurations can define the same triangle. Such symmetries are easy to
consider in the cube where all edges have same size and right angles
between adjacent edges. We combine symmetric configurations into a
group by partitioning the configurations under the equivalence classes:
two edge configurations are equivalent if their representation can be
transformed into each other by the symmetries of the cubic cell.

An edge group represents a set of equivalent edge configurations that
can be formed. The quality of an edge group is defined by the quality
of the worst triangle generated in this group. For example, if the edge
group is formed by edges A, B and C, then the cut points along the

Edge Groups

Edge Groups

Fig. 3. Box plots show the edge group distribution for 30 different datasets collected by [6]. The left plot shows the overall distribution of edge cases for the datasets,
and the right plot shows the distribution of the worst 1000 triangles. Notice that case 2 dominates the bad triangles.

to the triangles of some table entries, we can try to remove from the
table groups that have a higher probability of generating low-quality
triangles, as the edge group 2 of Table 1. In Figure 3, we show a box
plot of the occurrences of edge groups across isosurfaces. We also
show the plot for the 1000 worst triangles of these isosurfaces. Notice
that edge group 2 dominates the bottom end of the quality distribution,
experimentally confirming our intuition.

These results suggest the removal of edge case 2 in each entry of the
MC table. Obviously, removing this edge group will cause the edge
groups of the other triangles in that particular entry to change. Even
though the edge groups of adjacent triangles may be replaced by an
edge group with a higher probability of generating bad triangles, edge
case 2 is responsible for the majority of the worst cases. Exchanging
edge group 2 out for a better one in expense of exchanging a group
with good quality for a slightly worse one has a positive impact on the
overall quality of the entry in the case table. This simple modification
results in a significant improvement in the mesh quality, reported in
Section 5. An example of removing edge case 2 is illustrated in Figure
4 for three MC cases.

Fig. 4. Replacing cases in MC. The top row shows the original triangulation in 3
MC cases (case 5, complement of case 6 and case 11, respectively [18]), while
the bottom row shows the modified connectivity. The reconnection of the cut points
removes the edge group 2 from these cells, reducing the probability of generating
low quality triangles.

4.2 Improving Macet

Macet [11] is a technique that improves triangle quality by modifying
the inner computation of MC. It is based on the observation that, by
moving the location of grid points in MC, they separate cut points that
are too close to each other. If done carefully, this can improve trian-
gle quality. They observed that MC generates better triangles when
active edges are locally perpendicular to the isosurface, and proposed
two ways to move edges defined between grid points (see Figure 5).
Similar conclusion is obtained by looking where edge groups generate
bad triangles. Tables 1 and 5 show that most edge groups can produce

degenerate triangles. This happens because an edge group generates
badly-shaped triangles when they have two edges incident to a com-
mon grid point, which leads to cut points very close to each other.

Although effective, Macet lacks theoretical guarantees on the improve-
ment of the triangle quality. Edge group analysis helps validate the in-
tuition behind Macet. By applying the edge transformations discussed
in Macet over edge groups, we can measure the quality of the resulting
triangles. We redefine Macet as a projection pro jP(e), which corre-
sponds to the projection of the midpoint of the edge e onto the plane
P tangent to the isosurface. The projection results in the closest point
ċ in P to the midpoint of e, as illustrated in Figure 6. The projection
pro jP(e) is equivalent to the transformation of the edge e when P is a
good approximation to the isosurface around e.

The main conclusion derived from the anal-
ysis of the quality histograms of edge groups
is the need to move cut points away from
the corners of shared vertices. This creates
a tradeoff between triangle quality and iso-
surface fidelity: by moving the intersection
points from their actual position we are po-
tentially increasing its distance to the isosur-
face. On the left side of Figure 7 we illus-
trate the suggested movement for cut points
in edge groups 0, 1 (first row), 2 and 3 (second row). Observe that in
edge group 2 we have one edge that has two suggested movements,
but in opposite directions. Such opposite movements become even
more common when we consider the several edge groups that a given
edge may belong (right side of Figure 7). In this figure, we show a cut
vertex that belongs to 7 different triangles and consequently different
edge groups. The opposing movements suggest that cut points are to
be moved towards the center of each edge. (A similar movement, but
for a different goal, was proposed in the Discretized Marching Cubes
algorithm [20].) Forcing intersection points to be placed at the middle
of the edges is unnecessary in some situations. Therefore, we apply a
symmetric non-linear displacement using a modulation function. On
the x axis we describe the original position of the intersection (nor-
malized between 0 and 1, from start to end of the edge), and on the y

Fig. 5. Intuition behind Macet: small changes to grid vertices positions (left)
may improve triangle quality. Moving vertices along the gradient (center) or along
tangential paths (right) improve triangle quality.

Fig. 3. Box plots show the edge group distribution for 30 different datasets collected by [6]. The left plot shows the overall distribution of edge cases for the datasets,
and the right plot shows the distribution of the worst 1000 triangles. Notice that case 2 dominates the bad triangles.

to the triangles of some table entries, we can try to remove from the
table groups that have a higher probability of generating low-quality
triangles, as the edge group 2 of Table 1. In Figure 3, we show a box
plot of the occurrences of edge groups across isosurfaces. We also
show the plot for the 1000 worst triangles of these isosurfaces. Notice
that edge group 2 dominates the bottom end of the quality distribution,
experimentally confirming our intuition.

These results suggest the removal of edge case 2 in each entry of the
MC table. Obviously, removing this edge group will cause the edge
groups of the other triangles in that particular entry to change. Even
though the edge groups of adjacent triangles may be replaced by an
edge group with a higher probability of generating bad triangles, edge
case 2 is responsible for the majority of the worst cases. Exchanging
edge group 2 out for a better one in expense of exchanging a group
with good quality for a slightly worse one has a positive impact on the
overall quality of the entry in the case table. This simple modification
results in a significant improvement in the mesh quality, reported in
Section 5. An example of removing edge case 2 is illustrated in Figure
4 for three MC cases.

Fig. 4. Replacing cases in MC. The top row shows the original triangulation in 3
MC cases (case 5, complement of case 6 and case 11, respectively [18]), while
the bottom row shows the modified connectivity. The reconnection of the cut points
removes the edge group 2 from these cells, reducing the probability of generating
low quality triangles.

4.2 Improving Macet

Macet [11] is a technique that improves triangle quality by modifying
the inner computation of MC. It is based on the observation that, by
moving the location of grid points in MC, they separate cut points that
are too close to each other. If done carefully, this can improve trian-
gle quality. They observed that MC generates better triangles when
active edges are locally perpendicular to the isosurface, and proposed
two ways to move edges defined between grid points (see Figure 5).
Similar conclusion is obtained by looking where edge groups generate
bad triangles. Tables 1 and 5 show that most edge groups can produce

degenerate triangles. This happens because an edge group generates
badly-shaped triangles when they have two edges incident to a com-
mon grid point, which leads to cut points very close to each other.

Although effective, Macet lacks theoretical guarantees on the improve-
ment of the triangle quality. Edge group analysis helps validate the in-
tuition behind Macet. By applying the edge transformations discussed
in Macet over edge groups, we can measure the quality of the resulting
triangles. We redefine Macet as a projection pro jP(e), which corre-
sponds to the projection of the midpoint of the edge e onto the plane
P tangent to the isosurface. The projection results in the closest point
ċ in P to the midpoint of e, as illustrated in Figure 6. The projection
pro jP(e) is equivalent to the transformation of the edge e when P is a
good approximation to the isosurface around e.

The main conclusion derived from the anal-
ysis of the quality histograms of edge groups
is the need to move cut points away from
the corners of shared vertices. This creates
a tradeoff between triangle quality and iso-
surface fidelity: by moving the intersection
points from their actual position we are po-
tentially increasing its distance to the isosur-
face. On the left side of Figure 7 we illus-
trate the suggested movement for cut points
in edge groups 0, 1 (first row), 2 and 3 (second row). Observe that in
edge group 2 we have one edge that has two suggested movements,
but in opposite directions. Such opposite movements become even
more common when we consider the several edge groups that a given
edge may belong (right side of Figure 7). In this figure, we show a cut
vertex that belongs to 7 different triangles and consequently different
edge groups. The opposing movements suggest that cut points are to
be moved towards the center of each edge. (A similar movement, but
for a different goal, was proposed in the Discretized Marching Cubes
algorithm [20].) Forcing intersection points to be placed at the middle
of the edges is unnecessary in some situations. Therefore, we apply a
symmetric non-linear displacement using a modulation function. On
the x axis we describe the original position of the intersection (nor-
malized between 0 and 1, from start to end of the edge), and on the y

Fig. 5. Intuition behind Macet: small changes to grid vertices positions (left)
may improve triangle quality. Moving vertices along the gradient (center) or along
tangential paths (right) improve triangle quality.

Edge Group 2 is responsible for most bad triangles!

Edge Groups

Figure 10. Macet pipeline adds two new
stages to the MC pipeline: edge transforma-
tions and vertex displacement.

Figure 11. MC original grid, and after gradient
and tangential transformations.

mation to use. Instead, they perform both transformations,
and do a neighborhood analysis that chooses the transfor-
mation that leads to local improved triangle quality. While
the local analysis is fast, the cost of using both transforma-
tions still leaves room for improvement.

In [3] they gave a different interpretation for the edge
transformations that serves as room for the unification of
edge transformations. They formulate the edge transforma-
tion as a projection operation of the edge midpoint onto the
plane tangent to the isosurface. The same result can be ac-
complished using a new approach with unified edge trans-
formations.

The idea is as follows. First we identify the edge extrema
closest to the isosurface. This one will be subject to inter-
leaved edge transformations using gradient and tangential
transformations (8 in total, 4 for each type). The use of al-
ternate transformations in sequence combines the proper-
ties of each transformation without requiring a second edge
transformation step or subsequent neighborhood analysis.
For the other extrema, it is moved to the edge midpoint,
which under ideal circumstances is what the projection op-

eration advocates.

Figure 12. Unified Macet: one endpoint is
subject to alternate tangential and gradient
transformations, while the other is fixed to
the original edge midpoint.

5. Results

The impact of the new MC table and Unified Macet
were evaluated with experiments using a collection of 23
datasets. We summarize the results in Table 11. We com-
pare results using two methods: the original MC and the
Unified Macet with the extended edge table. For each case,
we report minimum and maximal angles (θ0 and θ∞) and
radii ratio (ρ).

Results clearly demonstrate that the Unified Macet ap-
proach using the new MC table generates consistently im-
proved triangle quality in all datasets (worst radii ratio is
0.43). An intuition of the impact of the changes of the Uni-
fied Macet, we show in Figure fig:retriangulation-snapshot
a zoomed version of a part of the Bonsai dataset.

Name MC with old table Macet with new table
θ0 θ∞ ρ θ0 θ∞ ρ

Chest CT 0.08 179.0 0.0 17.9 118.6 0.46
Bonsai 0.38 178.7 0.0 17.6 119 0.45
Shockwave 1.26 175.7 0.0 20.7 110.7 0.52
Silicium 0.66 177.4 0.0 18.7 117.3 0.47

Table 1. Triangle quality for MC and sug-
gested variants. Results are typical of all
datasets tested (full set of results with all 30
datasets available online).

1 Full results are available online

. vertices can be “+”, “-”, or “=”

. snap scalars close to the isovalue

. How big is this table? 3^8 entries! 6561

S. Raman & R. Wenger / Quality Isosurface Mesh Generation

a)

2

2

2
2

2

2

−

−
b)

+
−

−
− −

−

4
v

2

Figure 1: a) Grid cube with one vertex with scalar value four
and all others with scalar values two. The grid cube has a
single ’+’ vertex when the isovalue is four. b) Lookup table
isosurface patch for configuration with a single ’+’ vertex.

possible labels, ’+’ or ’−’ or ’=’. The extended isosurface
lookup table has 38 = 6561 entries, one for each possible
configuration of the labels on the cube vertices.

The algorithm for isosurface construction based on the
extended isosurface lookup table is exactly the same as
the Marching Cubes Algorithm. The challenge is in con-
structing the extended lookup table. Lachaud and Mon-
tanvert in [LM00] and independently Bhaniramka et. al.
in [BWC00,BWC04] gave convex hull based algorithms for
automatically generating isosurface lookup tables. We show
how to modify those algorithms to generate extended isosur-
face lookup tables based on ’+’, ’−’ and ’=’ vertex labels.

Just as isosurface vertices located on grid vertices can cre-
ate degenerate triangles, isosurface vertices located near grid
vertices can create triangles with small areas, edges or an-
gles. They can also create triangles with angles near 180◦.
Recently, Labelle and Shewchuk [LS07] presented an algo-
rithm for constructing tetrahedral meshes with good dihe-
dral angles. By combining their algorithm with the extended
isosurface lookup table, we can modify Marching Cubes to
produce an isosurface with good triangle angles. We deter-
mine where Marching Cubes will place the isosurface vertex
on each bipolar grid edge. If that vertex is too close to a
grid vertex, then we modify the scalar value of the grid ver-
tex to exactly equal the isovalue. This forces the isosurface
vertex to be “snapped” to the grid vertex. We run Marching
Cubes on the modified scalar grid using the extended lookup
table and then reposition the “snapped” isosurface vertices.
Our algorithm is called SnapMC. Figure 2 contains an exam-
ple of the output of our algorithm compared with Marching
Cubes.

Labelle and Shewchuk’s algorithm constructs a 3D mesh
filling the volume bounded by an isosurface but can easily be
modified to generate only an isosurface. However, Labelle
and Shewchuk’s algorithm requires converting the input reg-
ular grid into a body centered lattice partitioned into tetrahe-
dra. In contrast, SnapMC constructs the isosurface directly
on the original grid cubes. SnapMC also uses a slightly dif-
ferent technique for “snapping” isosurface vertices to grid
vertices, modifying scalar values instead of warping the grid
as in [LS07].

Processing degenerate or small triangles is time consum-

a) b)

Figure 2: Isosurface from fuel data set (www.volvis.org),
isovalue 80. a) Marching Cubes isosurface. b) SnapMC iso-
surface (snap parameter 0.3.)

ing, but not a major visualization problem. However, when
isosurface triangulations are used for modeling and simula-
tion, small or large triangle angles can create significant nu-
merical problems [She02]. SnapMC produces an isosurface
triangulation with guaranteed upper and lower bounds on the
angles of any triangle in the triangulation.

SnapMC has two drawbacks. First, it can change isosur-
face topology, eliminating small tunnels and components
and merging vertices, edges and faces which are not con-
nected in the isosurface triangulation but are geometrically
close. Second, because our algorithm merges geometrically
close vertices, edges and faces, it can and often will produce
non-manifold isosurfaces. Non-manifold surfaces can be a
real problem for numerical simulation software. Post pro-
cessing can be used to unglue merged vertices, edges and
facets, creating a manifold with well-shaped triangles.

Our paper makes the following contributions:

1. An algorithm for constructing extended isosurface
lookup tables with ’+’ or ’−’ or ’=’ labels assigned to
vertices. The Marching Cubes Algorithm run with this
extended lookup table does not create any degenerate tri-
angles.

2. An algorithm for constructing isosurfaces without small
areas, edges or angles. The algorithm is similar to the one
in [LS07], but it uses a lookup table for cubes not tetra-
hedra. It can also be modified for other convex mesh ele-
ments, such as pyramids or bipyramids.

2. Background

Lorensen and Cline [LC87] published the Marching Cubes
Algorithm in 1987. A year earlier, Wyvill et. al. [WMW86]
published a somewhat similar isosurface extraction algo-
rithm, but without the use of isosurface patch lookup tables.
Marching Cubes is a fast, efficient, easily implementable al-
gorithm because of its use of lookup tables.

There are numerous variations and improvements of
the original Marching Cubes Algorithm. We cite only

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Original MC SnapMC

SnapMC: Extended
MC Table

SnapMC: Extended
MC Table

. Automatically generated, by the method
we described before: easy!

. One extra parameter: how aggressive are
we with snapping?

. Provable quality bounds

. But triangle mesh non-manifold..

SnapMC Results
S. Raman & R. Wenger / Quality Isosurface Mesh Generation

a) Marching Cubes b) SnapMC c) Afront d) DelIso e) DelIso (closeup)

Figure 7: Example of topological changes. Isosurface from silicium data set (www.volvis.org), isovalue 130. a) Marching Cubes
isosurface. b) SnapMC isosurface (snap parameter 0.3.) c) Afront (rho 0.5.) d) DelIso. e) Closeup of DelIso showing two holes
in the reconstructed isosurface.

grid Regular Lookup Table Extended Lookup Table SnapMC (γ = 0.3)
dimensions isovalue # triangles cpu time # triangles cpu time # triangles cpu time

aneurism 256×256×256 100 175,832 0.71 sec 174,300 0.73 sec 106,356 1.52 sec
bonsai 256×256×256 30 1,284,542 1.16 sec 1,117,304 1.19 sec 729,623 2.19 sec
engine 256×256×128 100 608,416 0.58 sec 593,963 0.59 sec 427,338 1.08 sec
lobster 301×324×56 20 312,948 0.33 sec 300,340 0.34 sec 181,058 0.77 sec

Table 2: Number of isosurface triangles and cpu times of Marching Cubes with regular and extended lookup tables and of
SnapMC. CPU time does not include time to read or write data.

b) (0,−γ,0), (1− γ,0,0), (1,1− γ,0): Min. area, γ = 0.4;
c) (1− γ,1,1), (0,−γ,0), (1,1,1− γ):

Min. angle, γ = 0.1,0.2;
d) (1− γ,1,0), (0,−γ,0), (1,1,γ): Min. angle, γ = 0.3;
e) (1,γ,0), (0,−γ,0), (1,1+ γ,0): Min. angle, γ = 0.4;
f) (0,0,γ), (0,0.5,0), (1,γ,0): Max. angle, γ = 0.1,0.2;
g) (−γ,0,1), (γ,0,0), (1,0,−γ): Max. angle γ = 0.3,0.4.

See Figure 8. Minimum area and minimum and maximum
angles for specific values of γ are shown in Table 1.

Isosurface triangles in Figure 8b), 8e), and 8g) overlap a
face of the cube. While such triangles cannot be created by
the original Marching Cubes algorithm, they can be created
using the extended isosurface lookup table described in Sec-
tion 4. The triangle in the extended lookup table connected
three vertices in a cube face. These three vertices were repo-
sitioned to the three isosurface vertices seen in the figure.

8. Results

We implemented our algorithms in C++ and applied them
to the publicly available data sets at www.volvis.org. (See
Figures 2 and 9.) Running times are for a computer with two
Intel Xeon 2.80 GHz CPU’s, a 2048K cache and 8 GB RAM
running Linux.

We first compared the regular Marching Cubes algorithm
and Marching Cubes with the extended lookup table. See
Table 2. The CPU times were the almost same. The reported
CPU times measure only the time to run construct the iso-
surface and do not include the time to read in the scalar data
or write out the isosurface mesh. The time to read in the iso-

Values of γ
0.1 0.2 0.3 0.4

min length 0.141 0.29 0.43 0.58
min area 0.001 0.04 0.09 0.15
min angle 4.87◦ 9.7◦ 13.6◦ 12.5◦

max angle 161.3◦ 146.7◦ 135.1◦ 144.0◦

Hausdorff 0.80 0.81 0.86 0.93
mean dist 0.014 0.02 0.04 0.05
RMS dist 0.060 0.07 0.09 0.11

Table 3: Measurements of lobster isosurface. Min. edge
length, min. area, min. and max. triangle angles, directed
Hausdorff distance, mean directed distance and root mean
squared directed distance. Measurements are for the isosur-
face with isovalue 20 except for the distances which com-
pared isosurfaces with isovalue 20.01.

surface lookup table is negligible for both the regular and
extended table.

The regular Marching Cubes algorithm produces an iso-
surface containing degenerate triangles. The difference in
the number of isosurface triangles between the Marching
Cubes with the regular and extended lookup tables is the
number of such degenerate isosurface triangles.

Output size and CPU times for SnapMC with snap param-
eter 0.3 are reported in Table 2. SnapMC reduced the number
of isosurface triangles by 25-40% over the Marching Cubes
isosurface. Of course, the reduction depends greatly on the
snap parameter γ, with smaller values of γ giving less reduc-
tion in the number of isosurface triangles.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

SnapMC

Figure 10. Macet pipeline adds two new
stages to the MC pipeline: edge transforma-
tions and vertex displacement.

Figure 11. MC original grid, and after gradient
and tangential transformations.

mation to use. Instead, they perform both transformations,
and do a neighborhood analysis that chooses the transfor-
mation that leads to local improved triangle quality. While
the local analysis is fast, the cost of using both transforma-
tions still leaves room for improvement.

In [3] they gave a different interpretation for the edge
transformations that serves as room for the unification of
edge transformations. They formulate the edge transforma-
tion as a projection operation of the edge midpoint onto the
plane tangent to the isosurface. The same result can be ac-
complished using a new approach with unified edge trans-
formations.

The idea is as follows. First we identify the edge extrema
closest to the isosurface. This one will be subject to inter-
leaved edge transformations using gradient and tangential
transformations (8 in total, 4 for each type). The use of al-
ternate transformations in sequence combines the proper-
ties of each transformation without requiring a second edge
transformation step or subsequent neighborhood analysis.
For the other extrema, it is moved to the edge midpoint,
which under ideal circumstances is what the projection op-

eration advocates.

Figure 12. Unified Macet: one endpoint is
subject to alternate tangential and gradient
transformations, while the other is fixed to
the original edge midpoint.

5. Results

The impact of the new MC table and Unified Macet
were evaluated with experiments using a collection of 23
datasets. We summarize the results in Table 11. We com-
pare results using two methods: the original MC and the
Unified Macet with the extended edge table. For each case,
we report minimum and maximal angles (θ0 and θ∞) and
radii ratio (ρ).

Results clearly demonstrate that the Unified Macet ap-
proach using the new MC table generates consistently im-
proved triangle quality in all datasets (worst radii ratio is
0.43). An intuition of the impact of the changes of the Uni-
fied Macet, we show in Figure fig:retriangulation-snapshot
a zoomed version of a part of the Bonsai dataset.

Name MC with old table Macet with new table
θ0 θ∞ ρ θ0 θ∞ ρ

Chest CT 0.08 179.0 0.0 17.9 118.6 0.46
Bonsai 0.38 178.7 0.0 17.6 119 0.45
Shockwave 1.26 175.7 0.0 20.7 110.7 0.52
Silicium 0.66 177.4 0.0 18.7 117.3 0.47

Table 1. Triangle quality for MC and sug-
gested variants. Results are typical of all
datasets tested (full set of results with all 30
datasets available online).

1 Full results are available online

Edge groups

S. Raman & R. Wenger / Quality Isosurface Mesh Generation

a) b)

Figure 9: Isosurface from lobster data set (www.volvis.org), isovalue 20. a) Marching Cubes isosurface. b) SnapMC isosurface
(snap parameter 0.3.)

min edge min radius directed
isovalue length min area min angle max angle ratio Hausdorff

aneurism 100 0.425 0.078 13.09 135.20 0.29 0.86
bonsai 30 0.427 0.083 13.35 135.67 0.28 0.86
engine 100 0.428 0.080 13.96 134.71 0.26 0.66
fuel 80 0.428 0.104 14.30 135.51 0.39 0.30
lobster 20 0.428 0.087 13.55 135.13 0.25 0.86
Marschner-Lobb 100 0.442 0.231 14.58 122.63 0.35 0.71

Table 4: Measurements on SnapMC isosurfaces. Snap parameter γ = 0.3. The minimum radius ratio is the minimum ratio of the
inscribed to circumscribed circle for any isosurface triangle. Directed Hausdorff distance was computed on isosurfaces with
isovalue 0.01 greater than the isovalues listed in column two.

SnapMC took approximately twice as long as the March-
ing Cubes algorithm. The extra time was spent in “snapping”
scalar values in the grid to the isovalue.

We ran SnapMC on different data sets varying the snap
parameter γ. We measured the minimum isosurface edge
length, the maximum isosurface triangle area, the minimum
and maximum angle in an isosurface triangle, and the min-
imum inradius to circumradius ratio. Output measurements
for the data set lobster (Figure 9) are presented in Table 3.
Output measurements for other data sets and snap value 0.3
are presented in Table 4. As can be seen, the actual minimum
and maximum values are quite close to the theoretical ones.

To measure how much SnapMC modified the isosurface,
we measured the difference between the SnapMC isosurface
and the original isosurface using the tool METRO [CRS98].
METRO measures the Hausdorff distance between two sur-
faces. For technical reasons, we measured only the directed
Hausdorff distance from the SnapMC surface to the original
surface and used a slightly perturbed isovalue. The directed
Hausdorff distance from P to Q is maxp∈P minq∈Q |p− q|.
We also measured the mean directed distance defined as
∑p ∈ P (minq ∈ Q |p−q|) / |P|, and the root mean squared
directed distance defined as ∑p∈P(minq∈Q |p − q|)2/|P|.
The sums are over a set of sample points chosen from the
surface. METRO reports all these distances.

The directed distances for lobster are in Table 3. Distances
for the other data sets with snap value 0.3 are in Table 4. Note
that all distances are less than 1.

Comparison with DelIso and Afront

We compared SnapMC with two publicly available isosur-
face meshing programs, Afront [SSS06] and DelIso [DL07].
(See Figure 7 and Table 5.) Afront meshing is controlled by
a parameter rho which we set to 0.5. As expected, SnapMC
ran an order of magnitude faster than the other two. Afront
failed to complete on two of the data sets and DelIso failed
on one. Afront and DelIso created triangles with extremely
small angles and DelIso often created degenerate triangles
with zero area or edge length.

On all the data sets, SnapMC joined different regions of
the isosurface, creating a non-manifold. However, on many
of the data sets DelIso also produced a non-manifold, creat-
ing duplicate triangles, or edges or vertices whose neighbor-
hoods were not manifolds (nor manifolds with boundary.)
DelIso almost produced a manifold on engine but created a
single non-manifold vertex. All the other non-manifold iso-
surfaces produced by DelIso had multiple non-manifold ver-
tices or edges. The surface produced by DelIso sometimes
had “holes”. (See Figure 7e).)

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

SnapMC and Edge
Groups

. Edge Groups can probably be used to
illustrate SnapMC’s bounds

. Macet seems to have better experimental
results, but has no provable bounds

