Surface Generation

Thanks to Prof. Chuck Hansen for figures and slides

Recap

- Implicit surfaces
- $f(x, y, z)=f(s) ; S=\{s: f(s)=0\}$
- The representation works in any dimension

Implicit Surfaces in nD

Implicit Surfaces in nD

Isosurface Extraction

- Given an implicit surface, get a triangle mesh

Not only SciVis!

- Implicit surfaces are great for modeling

Carr, Beatson, Cherrie, Mitchell, Fright, McCallum, Evans
Reconstruction and Representation of 3D Objects with Radial Basis Functions

Not only SciVis!

- Implicit surfaces are great for modeling

Shen, Brien, Shewchuk.
Interpolating and Approximating Implicit Surfaces from Polygon Soup

Marching Tetrahedra

- Assume volume is represented by tetrahedral mesh, with scalars attached to vertices
- Scalar field built by barycentric interpolation of scalar values

Function Reconstruction in Tet meshes

- Scalar field built by
barycentric interpolation of scalar values
- Scalar function reconstruction is convex
- Isosurfaces are piecewise linear

MT: simple example

- $f(x)=0.6$

- Only look at intersections with edges
0.3 - How many cases? Much fewer than 16

MT: only two cases

- Only look at edges where vertices have opposing signs

On to Cubes

- First idea: do no work! Split cube in tets
- Many ways to split a cube into tets
- How do you minimize the size of the output?
- Are there any problems? Look at the props

Splitting into tets is wasteful

Scheme	Triangles	Ratio
Marching Cubes	$1,029,936$	1.0
Minimal (5), No Parity	$2,452,378$	2.381
Minimal (5), Even Parity	$2,453,046$	2.382
Minimal (5), Odd Parity	$2,452,370$	2.381
Freudenthal (6), Axis 000 - 111	$3,011,206$	2.924
Freudenthal (6), Axis 001-110	$3,003,346$	2,916

Carr, Möller, Snoeyink
Artifacts Caused By Simplicial Subdivision

Marching Cubes

Direct inspection:
 15 cases

Marching Cubes

Direct inspection:
 15 cases

Marching Cubes

Direct inspection:
 15 cases

Ambiguity in MC

- Trilinear interpolation is tricky

Ambiguity in MC

- Naive table leaves holes!

Generalizing MC

Isosurface Construction in Any Dimension Using Convex Hulls
Bhaniramka, Wenger, Crawfis

- Higher dimensions, different cells, etc.
- Automatically constructed!

Efficiency

- How long does it take to run Marching Cubes?
- How can you make it faster?

Octrees

- One way to handle the big data problem is to use hierarchical data structures (hierarchical volumes)

Less amount of data are required

Other Methods

MinMax Octree

Wilhelus and Van Gelder 90/92

Search Complexity:

Ok log(h/k) + k)
Livnat, Shen and Johuson 96

Interlude: Surface Continuation

continuation (side view)

decomposition

Jules Bloomenthal
An Implicit Surface Polygonizer

Other Methods

Extrema Graphs

Itoh and Koyamada 94
Volowe Thinning
Itoh, Yamaguchi and Kotamada 96

Search Complexity

- Avg On expi(2/3))
- Worst case O(n) Livnat, Shen and Johuson 96

The Span Space

Livnat, Shen, Johnson 96

- Given:
- Data cells in 80
- Past (active Ifst):
- Intervals in a 10 Value space
- New:
- Points in the 20 Span Space
- Benefit:

Points do not exhibit any spatial relationships

Span Space: other works

The Span Space

- NOISE: O(V $n+k)$

Livnat, Shen, Johnson 96

- Optimal: Ollog(n)+k)

Cignoni et al. 96
Better search algorithm

Triangle Quality

- We now know how to make MC faster, so we can use it as a step in the middle of other algorithms
- Mechanical simulations, etc

Triangle Quality

- Minimum angle determines condition number of stiffness matrix in some FE simulations
- Maximum angle determines interpolation error (in particular of gradients)
- Radii-ratio goes to zero for either of the above

Triangle Quality

Edge Groups

Dietrich, Scheidegger, Comba, Nedel, Silva
Edge Groups: An Approach to Understanding the Mesh Quality of Marching Methods

Edge Groups

6

3

Edge Groups

Quality				
histogram $\begin{aligned} & =\text { Max-angle } \\ & =\text { Min-angle } \\ & =\text { Radii-ratio } \end{aligned}$				
Quality				
histogram $\begin{aligned} & =\text { Max-angle } \\ & =\text { Min-angle } \\ & =\text { Radii-ratio } \end{aligned}$			134.7	

Edge Groups

Edge case occurrence over all triangles

Edge case occurrence over worst 1000 triangles

Edge Group 2 is responsible for most bad triangles!

Edge Groups

Name	MC with old table			Macet with new table		
	θ_{0}	θ_{∞}	ρ	θ_{0}	θ_{∞}	ρ
Chest CT	0.08	179.0	0.0	17.9	118.6	0.46
Bonsai	0.38	178.7	0.0	17.6	119	0.45
Shockwave	1.26	175.7	0.0	20.7	110.7	0.52
Silicium	0.66	177.4	0.0	18.7	117.3	0.47

SnapMC: Extended

MC Table

Original MC

SnapMC

- vertices can be " + ", " ${ }^{\prime}$ ", or "="
- snap scalars close to the isovalue
- How big is this table? $3 \wedge 8$ entries! 6561

SnapMC: Extended
 MC Table

- Automatically generated, by the method we described before: easy!
- One extra parameter: how aggressive are we with snapping?
- Provable quality bounds
- But triangle mesh non-manifold..

SnapMC Results

SnapMC

				min radius ratio	directed Hausdorff		
	isovalue	minge length	min area	min angle	max angle	0.29	0.86
aneurism	100	0.425	0.078	13.09	135.20	0.28	0.86
bonsai	30	0.427	0.083	13.35	135.67	0.26	0.66
engine	100	0.428	0.080	13.96	134.71	0.939	0.30
fuel	80	0.428	0.104	14.30	135.51	0.39	0.25
lobster	20	0.428	0.087	13.55	135.13	0.86	
Marschner-Lobb	100	0.442	0.231	14.58	122.63	0.35	0.71

Name	MC with old table			Macet with new table		
	θ_{0}	θ_{∞}	ρ	θ_{0}	θ_{∞}	ρ
Chest CT	0.08	179.0	0.0	17.9	118.6	0.46
Bonsai	0.38	178.7	0.0	17.6	119	0.45
Shockwave	1.26	175.7	0.0	20.7	110.7	0.52
Silicium	0.66	177.4	0.0	18.7	117.3	0.47

Edge groups

SnapMC and Edge Groups

- Edge Groups can probably be used to illustrate SnapMC's bounds
- Macet seems to have better experimental results, but has no provable bounds

