
Large-Scale Visual Analysis in the Age of Data



Computer Graphics at Utah

8. Jim Kajyia
• Rendering Equation
• VP Research at Microsoft

9. Tom Stockham
• Known for work in Signal Processing
• Helped to invent the CD Player

10. Jim Blinn
• Invented Blinn-Phong Shading Model

11. Henri Gouraud
• Invented Gouraud Shading Model

12. Bui Tuong Phong
• Invented Phong Reflection and 

Shading Models

13. Allen Ashton
• Word Perfect
• My CFO Founder

1, 2. David Evans /Ivan Sutherland
• Founded CS Dept at the UofU in 1968
• Ivan Sutherland - Turing award
• Founded Evans & Sutherland Company

• 3. John Warnock
• Worked at Evans & Sutherland
• Founded Adobe
• Hidden Line Removal Algorithm 
• Helped invent Postscript @ Adobe

4. Ed Catmull
• Worked at Lucas Film
• Co-Founded Pixar
• President of Disney Animation 

Studios
• Chair of CoE External Advisory 

Board

5. Jim Clark
• Founded SGI, Netscape, Healtheon
• Work in Geometry Pipelines

6. Alan Kay
• Personal Computer
• Turing Award Winner
• Object Oriented Languages 

7. Nolan Bushnell
• Invented Pong 
• Founded Atari

1 2 3 4 5 6 7
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Visualization

Computing Image AnalysisScientific Data
Management

Research Cores



Research Centers at SCI

National Science
Data Fabric

NSF Cyberinfrastructure Center of Excellence

Center for Extreme Data 
Management, Analysis, 
and Visualization

CEDMAVGraphics and 
Visualization 
Institute

NIH/NIGMS Center for Integrative
Biomedical Computing

UTAH Center for 
Computational Earth Sciences

CDE3M Alliance for Computationally-guided Design 
of Energy Efficient Electronic Materials

Carbon Capture 
Multidisciplinary 
Simulation Center

OneAPI
Center of 
Excellence





Scientific Computing and Imaging Institute, University of Utah

Brain Information Bandwidth



Feynman Diagrams

• Feynman: “What I am really try to do is bring birth to clarity, which is really a half-
assedly thought-out-pictorial semi-vision thing. I would see the jiggle-jiggle-jiggle or the 
wiggle of the path. Even now when I talk about the influence functional, I see the 
coupling and I take this turn - like as if there was a big bag of stuff - and try to collect it 
in away and to push it. It's all visual. It's hard to explain.”

• James Gleick, The Life and Science of Richard Feynman, Vintage Books, New York, 
1992.







341 Sections
90nm thick sections
~32GB/Section
~1000 tiles/section
4096x4096 pixels/tile
2.18 nm/Pixel
16.5 TB after processing





Connectome



Platform for:
Visualization Research
Space & Astro Research
Science Communication

OpenSpace 



OpenSpace Team

http://openspaceproject.com









FluoRender Capabilities

Multichannel
visualization

Interactive
segmentation

4D scan
visualization

Auto segmentation
on GPU

Tracking Large-Scale Data



FluoRender



PROBLEM-DRIVEN 
VISUALIZATION RESEARCH 
for biological data

- target specific biological problems

- close collaboration with biologists

- rapid, iterative prototyping

- focus on genomic and molecular data



M. Meyer et al., EuroVis 2010. Pathline M. Meyer et al., InfoVis 2009.MizBee

M. Meyer et al., InfoVis 2010.MulteeSumInSite







Genome-wide synteny 
through highly sensitive 
sequence alignment: 
Satsuma
M. Grabherr, et al. 
Bioinformatics (2010) 26 (9): 
1145-1151.

http://bioinformatics.oxfordjournals.org/search?author1=Manfred+G.+Grabherr&sortspec=date&submit=Submit


26



Michelangelo's David



Michelangelo's David - Part 2



2
9

– Secondary ViSUS server in Utah
– Clients connect remotely
– Work without additional HPC resources

Workflow
• Data creation
• Data Management

Scalable Deployment: Exploration of 3.5PB of NASA Weather/Climate 
Data in Real Time

• 7km GEOS-5 “Nature Run”
• 1 dataset, 3.5 PB
• theoretically: openly accessible
• practically: precomputed pics

Distributed Resources
– 3.5 PB of data store in NASA
– Primary ViSUS server in LLNL

– Processing
– Analysis
– Visualization Simulation

Servers





DOE PSAAP2 Simulations of GE  Clean(er)  Coal Boilers
• Large scale turbulent combustion needs mm scale grids  

10^14 mesh cells 10^15 variables (1000x more than now)
• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation 
• LES  closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

60m

• Low Mach number approx. (pressure Poisson solve up to   
10^12    variables. 1M patches 10 B variables
• Radiation via Discrete Ordinates – many hypre solves 

Mira (cpus) or ray tracing Titan (gpus strong and weak 
scaling via AMR).
• FAST I/O needed PIDX for scalability



High Performance Data Movement for Real-Time 
Monitoring of Large Scale Simulations



Topological Data Analysis and Visualization



Topological Data Analysis for Astronomical Data Cubes

Analysis of cosmic voids

Yulong Liang, Vikranta Kamble, Helion Dumas Desbourboux, Lin Yan, Mengjiao Han, Kyle Dawson, Nicholas Boardman, Gail 
Zasowski, Anil Seth, Joel Brownstein, Paul Rosen, Juna A. Kollmeier, Guillermo Blanc, Bei Wang

Using Contour Trees in the Analysis and Visualization of 
Radio Astronomy Data Cubes 



In Situ Lagrangian Analysis

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and 
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award. 

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation 
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 
2021. Best Paper Award. 



In Situ Lagrangian Analysis

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and 
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award. 

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation 
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 
2021. Best Paper Award. 





AMR Visualization

F. Wang, I. Wald, Q. Wu, W. Usher, C. R. Johnson. “CPU Isosurface Ray Tracing 
of Adaptive Mesh Refinement Data,” In IEEE Transactions on Visualization and 
Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1142-1151. Jan, 2019.

NASA Exajet Landing GearColliding Black Holes



CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data

F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, C. R. Johnson. “CPU Ray Tracing of 
Tree-Based Adaptive Mesh Refinement Data,” In Eurographics Conference on Visualization (EuroVis) 
2020, Vol. 39, No. 3, 2020.



Bricktree for Large-scale Volumetric Data Visualization
- Interactive visualization solution 

for large-scale volumes in
OSPRay

+ Quickly loads progressively
higher resolutions of data,
reducing user wait times

- Bricktree – a low-overhead 
hierarchical structure allows for 
encoding a large volume into 
multi-resolution representation

- Rendered via OSPRay module

F. Wang, I. Wald, and C.R. Johnson. Interactive Rendering of Large-Scale Volumes on Multi-Core 
CPUs IEEE Symposium on Large Data Analysis and Visualization 2019, pp. 27-36, 2019. 



Display Wall Rendering with OSPRay
+  Software infrastructure that allows parallel renderers (OSPRay) to render to large-tiled display clusters.

+  Decouples the rendering cluster and display cluster

+ Lightweight, inexpensive and easy to deploy options via Intel NUC + remote rendering cluster

Streamlines computed on flow past a torus
300M triangle isosurface on the Richtmeyer Meshkov

M. Han, I. Wald, W. Usher, N. Morrical, A. Knoll, V. Pascucci, and C.R. Johnson. A Virtual Frame 
Buffer Abstraction for Parallel Rendering of Large Tiled Display Walls. IEEE Visualization 2020, 



Progressive sampling
• Hierarchical representation
• On-demand loading
• Independent data-streaming

threads
• Visualize coarse data as a

approximate and gradually 
refine it 

Ray-guided Progressive Rendering





G.P. Bonneau, H.C. Hege, C.R. Johnson, M.M. Oliveira, K. 
Potter, P. Rheingans, T. Schultz. “Overview and State-of-
the-Art of Uncertainty Visualization,” In Scientific 
Visualization: Uncertainty, Multifield, Biomedical, and 
Scalable Visualization, Edited by M. Chen and H. Hagen and 
C.D. Hansen and C.R. Johnson and A. Kauffman, Springer-
Verlag, pp. 3-27. 2014. 
M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. 
Sun. “Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 
1-11. 2014. 
K. Potter, P. Rosen, C.R. Johnson. “From Quantification to 
Visualization: A Taxonomy of Uncertainty Visualization 
Approaches,” In Uncertainty Quantification in Scientific 
Computing, IFIP Series, Vol. 377, Springer, pp. 226-249. 
2012. 
K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, 
V. Pascucci, C.R. Johnson. “Ensemble-Vis: A Framework 
for the Statistical Visualization of Ensemble Data,” In 
Proceedings of the 2009 IEEE International Conference on 
Data Mining Workshops, pp. 233-240. 2009. 
C.R. Johnson, A.R. Sanderson. “A Next Step: Visualizing 
Errors and Uncertainty,” In IEEE Computer Graphics and 
Applications, Vol. 23, No. 5, pp. 6-10. September/October, 
2003. 

Uncertainty Visualization
When is the last time you’ve seen an error
bar on an isosurface?



Contour Box Plots

Whitaker, Mirzargar, Kirby, IEEE Transactions on Visualization and 
Computer Graphics, Vol. 19, No. 12, pp. 2713--2722, 2013.

M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. Sun. 
“Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 1-11. 2014.



Ensemble Curved Boxplot

M. Mirzargar, R. Whitaker, R. M. Kirby. “Curve Boxplot: Generalization of Boxplot for Ensembles of Curves,”
IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 12, IEEE, pp. 2654-63. December, 2014. 





Uncertainty Visualization of the Marching Squares 
and Marching Cubes Topology Cases - VIS 2021



Productivity Machines



More Information

www.sci.utah.edu

crj@sci.utah.edu


