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Decision Making Under Uncertainty
Surfaces imply certainty
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Uncertainty Quotes
•Richard Feynman: What is not surrounded by uncertainty cannot be the truth.

•Richard Feynman: If you thought that science was certain, well, that is just an 
error on your part.

•George Box: All models are wrong. Some models are useful.

•John W. Tukey: Far better an approximate answer to the right question, which 
is often vague, than an exact answer to the wrong question, which can always 
be made precise.

•Francis Bacon - If we begin with certainties, we shall end in doubts; but if we 
begin with doubts, and are patient in them, we shall end in certainties

•Winston Churchill: True genius resides in the capacity for evaluation of 
uncertain, hazardous, and conflicting information.
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2012. 
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V. Pascucci, C.R. Johnson. “Ensemble-Vis: A Framework 
for the Statistical Visualization of Ensemble Data,” In 
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2003. 

Uncertainty Visualization
When is the last time you’ve seen an error
bar in a visualization of complex data ?



• Uncertainty observed in sampled data.
• Uncertainty measures generated by models or 

simulations.
• Uncertainty introduced by the data processing 

or visualization processes. 

Sources of Uncertainty



• Experimental (observational, equipment limits, 
multiple trials)

• Numerical (approximation, interpolation, 
extrapolation)

• Mathematical Model (approximation to true 
physics/biology)

• Geometric Model (accuracy compared to true 
geometry)

Sources of Uncertainty



Categories

EPISTEMIC UNCERTAINTY
• Systematic uncertainty
• Things we could in principle know but don’t in 
practice
• Insufficient measurement or modeling, missing 
data

REDUCIBLE: can be alleviated by better models, 
more accurate measurement



Categories

ALEATORIC UNCERTAINTY
• Statistical uncertainty
• Unknowns that differ on each run
• i.e. throwing dice

Irreducible: cannot be eliminated through 
improvements in models or measurements



• Probability Distribution Functions (PDFs) -
approximate outcome through a probability 
function
• Probability Density - continuous random 

variables, frequency of outcome values
• Statistics on PDFs - mean, median, standard 

deviation

Statistical Uncertainties - Common in 
Visualization



Scientific Computing and Imaging Institute, University of Utah

Traditional Display of Uncertainty

Boxplots (Tukey, 1977)
- Quartile range including 

median
- Outliers
- Assume Gaussian



Boxplot Modifications
• Visual Modifications

- Refinement for aesthetic purposes
• Density indications

- Use the box sides to            
encode

• Data Characteristics
- Sample size, confidence levels

• Additional Statistics
- Skew, modality

C. Choonpradub, D. McNeil.  
Can the box plot be improved? 
Songklanakarin J Sci Technol,
27(3), 2005,
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The Summary Plot
• Augment boxplot with numerous 
display techniques
• Emphasize characteristics other than 
mean/variance
• Indicate quantity and location of 
uncertainty

K. Potter, J. Kniss, R. Riesenfeld, C.R. Johnson.
"Visualizing Summary Statistics and Uncertainty".
In Proc Eurovis 2010, 29(3), 2010.
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Summary Plot in Higher Dimensions
•Statistics similar to 
summary plot
•Highlight correlations

K. Potter, J. Kniss, R. Riesenfeld, C.R. Johnson.
"Visualizing Summary Statistics and Uncertainty".
In Proc Eurovis 2010, 29(3), 2010.



Visual Encodings of Temporal Uncertainty 

Gschwandtnei, T., Bögl, M., Federico, P., & Miksch, S. (2015). Visual 
encodings of temporal uncertainty: A comparative user study. IEEE 
transactions on visualization and computer graphics, 22(1), 539-548.



Feng, D., Kwock, L., Lee, Y., & Taylor, R. M., 2nd (2010). Matching visual saliency to 
confidence in plots of uncertain data. IEEE transactions on visualization and computer 
graphics, 16(6), 980–989. doi:10.1109/TVCG.2010.176
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2D Annotation
•Modulate annotation lines or 
glyphs with uncertainty
•Minimal interference
•Uncertainty not emphasized

A. Cedilnik, P. Rheingans.
Procedural Annotation of Uncertain Information.
In Proc IEEE Vis, 2000.



Visual Entropy

Holliman, N. S., Coltekin, A., Fernstad, S. J., 
Simpson, M. D., Wilson, K. J., & Woods, A. J. 
(2019). Visual entropy and the visualization of 
uncertainty. arXiv preprint arXiv:1907.12879.



Contouring
• Contours follow the line of a 
specific data value             
(ex. terrain map)
• Standard Deviation
• Fuzzy contours
• Graduated contours

R.S. Allendes Osorio,  K.W. Brodlie.
Contouring with Uncertainty.
In Theory and Practice of Computer Graphics Conf, 2008.Mean = colormap, 

Standard Deviation 
= contours

R.S. Allendes Osorio,  K.W. Brodlie.
Contouring with Uncertainty.
In Theory and Practice of Computer Graphics Conf, 
2008

K. Potter, et al.
Ensemble-Vis: A Framework for 
the Statistical Visualization of 
Ensemble Data.
In IEEE ICDM Workshop on 
Knowledge Discovery from 
Climate Data: Prediction, 2009.

. Sanyal, S. Zhang, J. Dyer,  A. 
Mercer, P. Amburn.
Noodles: A Tool for Visualization of 
Numerical Weather Model 
Ensemble Uncertainty
In Proc IEEE Vis, 2010.



Ensembles / 2D Distributions
• Multi-run/model simulations
• Distribution of data at every 

point
• Mean/std dev may not be 

appropriate

. Sanyal, S. Zhang, J. Dyer,  A. Mercer, P. Amburn.
Noodles: A Tool for Visualization of Numerical 
Weather Model Ensemble Uncertainty
In Proc IEEE Vis, 2010.

K. Potter, et al.
Ensemble-Vis: A Framework for the 
Statistical Visualization of Ensemble 
Data.
In IEEE ICDM Workshop on Knowledge 
Discovery from Climate Data: 
Prediction, 2009.

D. Kao, M. Kramer, A. Luo, J. Dungan, 
A. Pang.
Visualizing Distributions from Multi-
Return Lidar Data to Understand Forest 
Structure.D. Kao,  A. Luo, J. Dungan,  A. Pang.

Visualizing Spatially Varying 
Distribution Data.
In Proc Information Visualisation, 2002.



Ensemble-Vis: 
A Framework for the Statistical 
Visualization of Ensemble Data

What is ensemble data?
Collection of data sets generated by 
computational simulations.

Used to simulate complex systems,  
mitigate uncertainty, unknowns in initial 
conditions, and parameter sensitivity.

These data sets are:

• Multidimensional

• Multivariate

• Multivalued

Implementation

SREF Weather Explorer  
• VTK filters, Qt Widgets

• Relational database:

•MySQL/ Netezza 

Query Contours
Trend ChartsEnsemble-Vis Workflow

• User-driven

• Component-based

Ensemble Overviews

Spatial Overviews:             
Mean and standard deviation 

encoded through colormaps and 
contours.

Temporal Overviews:                          
Filmstrip and animation.                 

Show evolution through time.      
Small multiples show every time step. 

User can select desired temporal 
location.

0000

ViSUS

• Climate Data Analysis 
Tools (CDAT) integration

• C++, python, FLTK

• Out-of-core, streaming

Quartile Charts:              
Show minimum and maximum, 

innerquartile range.

Plume Charts:                     
Show every member and mean.        

Color coded based on model.            
Deselect members to hide.          

Drill-down to direct data display.  

* User-driven query                             
* Select subset based on conditions   
* Returns % of satisfying members     
* Displayed as nested contours

Spaghetti Charts

* Show variation across space                
* User chosen contour value                   
* Isocontour for each desired member    
* Highlights outliers and divergence



2D Vector Fields - LIC
• Line Interval Convolution
• 2D steady flow
• PDF describes the magnitude & direction of each vector 
in the field
• LIC representation of the gradient field,  color encodes 
magnitude of uncertainty

R. S.  Allendes Osorio, K. W. Brodlie.
Uncertain Flow Visualization using LIC.
In Theory and Practice of Computer Graphics, 2009.

R. S.  Allendes Osorio, K. W. Brodlie.
Uncertain Flow Visualization using LIC.
In Theory and Practice of Computer Graphics, 2009.



2D Vector Fields
• Texture-based
• Particle positions along 
streamlines
•Measuring errors and their 
influence on position

R. Botchen, D. Weiskop, T. Ertl.
Texture-based visualization of uncertainty 
in flow fields. In IEEE Vis, 2005.

R. Botchen, D. Weiskopf, T. Ertl.
Interactive visualisation of uncertainty in flow fields using 
texture-based techniques.
In International Symposium on Flow Visualisation, 2006.



Reaction Diffusion Vector Field Visualization

A.R. Sanderson, C.R. Johnson, R.M. Kirby. “Display of Vector 
Fields Using a Reaction Diffusion Model,” In Proceeding of IEEE 
Visualization 2004, pp. 115--122. 2004

A.R. Sanderson, R.M. Kirby, C.R. Johnson, L. Yang. “Advanced 
Reaction-Diffusion Models for Texture Synthesis,” In Journal of 
Graphics Tools, Vol. 11, No. 3, pp. 47--71. 2006. 



Streamlines
• Uncertainty from numerical 
algs for particle tracing in 
fluid flow
• Highlight sensitivity of 
algorithm choice -
particularly near critical pts

Tube Ribbon 

Lines Balls + lines

S. Lodha,  A. Pang, R. Sheehan, C. Wittenbrink.
UFLOW: visualizing uncertainty in fluid flow.
In Proc IEEE Vis, 1996.

Differences between 2 streamlines 

Modulate pitch based on uncertainty

S. Lodha, C. Wilson, R. Sheehan.
"LISTEN: sounding uncertainty visualization".
In Proceedings Visualization '96, pp. 189--195, 

1996



Streamline Variability Plots for Characterizing the 
Uncertainty in Vector Field Ensembles 

Ferstl, F., Bürger, K., & Westermann, R. (2015). Streamline variability plots for 
characterizing the uncertainty in vector field ensembles. IEEE Transactions on 
Visualization and Computer Graphics, 22(1), 767-776.



3D Meteorological Trajectory
•Estimate uncertainty due to interpolation 
•User seeded trajectories 
•Prune trajectories with high uncertainty

R. Boller, S. Braun, J. Miles, D. Laidlaw.
Application of Uncertainty Visualization Methods to 
Meteorological Trajectories.
In Earth Science Informatics, 3(1-2), 2010.



QuizLens:  A Multi-lens approach for 
uncertainty exploration

• Global 
information 
important for 
qualitative 
evaluation & 
context

• Local 
information 
necessary for 
quantitative 
understanding

• Interchangeable 
lenses to explore 
various data 
characteristics

Probability Slice

Context High Level Focus Lens

Fuzzy Volume 
Lens

Uncertain 
Boundary



DTI Tensor Uncertainty Visualization

Siddiqui, F., Höllt, T., & Vilanova, A. (2021). Uncertainty in the DTI 
Visualization Pipeline. Anisotropy Across Fields and Scales, 125.



Topological Uncertainty

M. Otto, T. Germer, H.C. Hege, H. Theisel.  Uncertain 2D Vector Field 
Topology. In CGF, 29(2), 2010.



Visualizing uncertainty in topological structures

Merge Tree: a topological summary of scalar fields  

Merge trees that arise from an ensemble of 
scalar fields

1. Compute an average merge tree from an ensemble
2. Uncertainty visualization of the average tree captures 

structural variations among the ensembles

Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, Bei Wang. 
A Structural Average of Labeled Merge Trees for Uncertainty 
Visualization, IEEE VIS, 2019. arXiv: 1908.00113. 



Volumetric Data - Isosurfacing
• Isosurfaces show where a 
volumetric data value lies in 
space
• Map uncertainties to: 

–hue, saturation, 
brightness 

– texture mapping
• Isovalue eases display

P. Rhodes, R. Laramee, R.D. Bergeron, T. Sparr.
Uncertainty Visualization Methods in Isosurface
Rendering.
In EUROGRAPHICS 2003 Short Papers, 2003.

16^3

64^3

128^3
Hue

Texture

Hue+
Texture
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Visualization Uncertainties 
- Isosurfaces

• Uncertainty from differences 
in isosurface creation
• Compare

- marching cubes & 
marching cubes with 
ambiguous cell correction

- interpolation schemes

overlay

wireframe
overlay

green/red
psuedo-coloring

gray
psuedo-coloring

transparency box glyphs ball glyphs

A. Jospeh, S. Lodha, J. Renteria,  A. Pang.
UISURF: Visualizing Uncertainty in Isosurfaces.
In Proc Computer Graphics and Imaging, 1999.



Possibility theory is mathematically the simplest uncertainty theory for dealing with incomplete 
information. It is a natural means for quantifying epistemic uncertainty coming from lack of knowledge. 

Possibilistic Marching Cubes

He, Y., Mirzargar, M., Hudson, S., Kirby, R. M., & Whitaker, R. "An uncertainty 
visualization technique using possibility theory: Possibilistic marching 
cubes." International Journal for Uncertainty Quantification 5.5 (2015).
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Isosurface uncertainty
Two kinds of boundaries

Flow-line curvature (ter Haar Romeny et al., 1991) for 
uncertainty visualization:
• Material boundaries are intrinsic
• If small D isovalue Þ big D isosurface 

orientation, isosurface probably not a good 
material boundary

• Qualitative indicator of surface model uncertainty
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Flow-line curvature results
Thumb from Visible Human Female, fresh CT: 

kf
f=1055 1095 1175 1255 1335 1405
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Volumetric Data-Volume Rendering

• Show data with high or  low 
uncertainty
• Map data to color & uncertainty to 
opacity
• Add discontinuities to regions of 
high uncertainty (speckles, noise)

S. Djurcilov, K. Kim, P. Lermusiaux, A. Pang.
Visualizing Scalar Volumetric Data with Uncertainty.
In Computers and Graphics, vol. 26, 2002.

S. Djurcilov, K. Kim, P. Lermusiaux, A. Pang.
Visualizing Scalar Volumetric Data with Uncertainty.
In Computers and Graphics, vol. 26, 2002.



muView Visualization System
Visualizing uncertainty in cardiac ischemia simulations

P. Rosen, B. Burton, K. Potter, C.R. Johnson. “muView: A Visual Analysis System for Exploring 
Uncertainty in Myocardial Ischemia Simulations,” In Visualization in Medicine and Life Sciences 
III, Springer Nature, pp. 49--69. 2016.



Uncertainty Visualization

Images Courtesy of Claes Lundström, Patric Ljung, Anders Persson, 
Anders Ynnerman



Scientific Computing and Imaging Institute, University of Utah

Uncertainty Visualization

Claes Lundström, Patric Ljung, Anders Persson, Anders Ynnerman.  Uncertainty 
Visualization in Medical Volume Rendering Using Probabilistic Animation, IEEE 
Transactions on Visualization and Computer Graphics, 13(2007): no. 5 



Volume Rendering using High 
Dimensional Transfer Functions
• Create Transfer Functions (TFs) from user selected samples in 

spatial domain and error/uncertainty.
• Multiple linked views.



Functional Boxplots. 
Ying Sun, Marc G. Genton. 
J. of Comp. and Graphical Statistics 20:2, 2011, 316-334.

Functional Box Plot
Boxplot statistics on 2D 
functions

Defined on the function, 
rather than point-wise

http://pubs.amstat.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Sun%2C+Ying)
http://pubs.amstat.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Genton%2C+Marc+G.)


Functional Boxplots. 
Ying Sun, Marc G. Genton. 
J. of Comp. and Graphical Statistics 20:2, 2011, 316-334.

Functional Box Plot
Band Depth

The amount of time a 
function lies within the 
set of functions

http://pubs.amstat.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Sun%2C+Ying)
http://pubs.amstat.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Genton%2C+Marc+G.)


Contour Box Plots

Whitaker, Mirzargar, Kirby, IEEE Transactions on Visualization and 
Computer Graphics, Vol. 19, No. 12, pp. 2713--2722, 2013.

M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. Sun. 
“Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 1-11. 2014.



Ensemble Curved Boxplot

M. Mirzargar, R. Whitaker, R. M. Kirby. “Curve Boxplot: Generalization of Boxplot for Ensembles of Curves,”
IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 12, IEEE, pp. 2654-63. December, 2014. 



Surface Box Plots
• Extension of band depth to 3D
• Images rather than curves
• Volume-based band-depth

Surface Boxplots.
Marc G. Genton, Christopher Johnson, 
Kristin Potter, Georgiy Stenchikov, and 
Ying Sun.
Stat. 3:1, 2014, 1–11.



• Data-driven space-filling curves 
• better coherency preservation (data value + position) than existing methods
• 2D and 3D data
• regular grids and multiscale

• A flexible Hamiltonian path method 

Data-driven space-filling curves 

L. Zhou, C. R. Johnson, D. Weiskopf. “Data-Driven Space-Filling 
Curves,” In IEEE Transactions on Visualization and Computer 
Graphics, Vol. 27, No. 2, IEEE, pp. 1591-1600. 2021.



• Brain atlas of 2D MRI scans (176*208 pixels); curve generation time: 3m49s
• Surface Boxplot; linearized based on the median 

Example - Brain Atlas
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0

+

-

3D Transfer Function
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Visualizing Uncertainty Using Volume Rendering

Fuzzy Sensitivity Confidence



High Dimensional Transfer Functions
• Create Transfer Functions (TFs) from user selected samples in 

spatial domain and error/uncertainty.
• Multiple linked views.





Contributions
• Nonparametric statistical framework for the quantification, analysis, and 

propagation of data uncertainty in direct volume rendering (DVR). 
• Nonparametric models of uncertainty improve the quality of 

reconstruction and classification within an uncertainty-aware direct 
volume rendering framework. 

• Closed-form nonparametric framework for efficient statistical rendering.  
Linear time complexity compared to Monte Carlo methods.

• Qualitative and quantitative comparisons with the mean, parametric, 
and Gaussian mixture models

• Application of statistical volume rendering to multidimensional transfer 
functions



X

Quantile 
interpolation

PdfX

Integrate 
against
transfer
function 

Color/opacity

Intensity(x)

𝐸(𝑇𝐹(𝑥)) = ∫ 𝑇𝐹(𝑥)𝑃𝑑𝑓!(𝑥)𝑑𝑥

Transfer 
function (TF)

X

Volume Rendering With Nonparametric 
Statistics

Represent probability 
distribution using quantiles

Expected fragment color 
computation:

A single grid cell

Grid vertex

T. Athawale, B. Ma, E. Sakhaee, C.R. Johnson, and A. Entezari. 
Nonparametric Statistical Framework for Direct Volume Rendering 
of Uncertain Data. IEEE Visualization 2020, Oct. 2020. 



Models of Uncertainty

Mean
Ground truth:

Tangle function
mixed with noise

Parametric

Two values per-voxel
(mean and width)

n representative samples
per-voxel (e.g., min, Q1, 

median, Q2, max)

Nonparametric

Probabilistic marching cubes, 
[P  thkow et al., 2013];

Uncertainty-aware marching 
cubes [Athawale et al., 2015]

One value per-voxel



Ground truth Mean Uniform Gaussian

Gaussian mixtures 
(four Gaussians) 

(Monte Carlo)

Quantile interpolation
(two quantiles)

Quantile interpolation
(four quantiles)

Quantile interpolation
(eight quantiles)

Tangle Function (Qualitative Comparisons)



Tangle Function (Quantitative Comparisons)

Ground truth
Mean Uniform Gaussian

Gaussian mixtures 
(Monte Carlo)

Quantile interpolation
(two quantiles)

Quantile interpolation
(four quantiles)

Quantile interpolation
(eight quantiles)

RMSE = 0.0245 RMSE = 0.02 RMSE = 0.0062

RMSE = 0.0051 RMSE = 0.0067 RMSE = 0.0053 RMSE = 0.0055

0.6

0

D
iff

er
en

ce

fps = 10  fps = 5 fps = 4.9  

fps = 6.1 fps = 5.8 fps = 5.3



Visualizing Uncertain Multivariate Data Using 
Feature Confidence Level-Sets 

• We explore whether extending the method by Zehner et al. to compute 
“Feature Confidence Level-Sets” is useful.

• We would effectively be replacing “additional” feature level-sets with 
feature confidence level-sets.

• Assume each grid point has a distribution of values represented using a 
mean and standard deviation.

• For each grid point we compute an upper and lower confidence value 
using mean, standard deviation and confidence interval %. 

• We perform a range intersection to determine if a trait exists at a grid point.

S. Sane, T. Athawale, and C.R. Johnson.  Visualization of 
Uncertain Multivariate Data via Feature Confidence Level-
Sets.  EuroVis 2021.



Zero level-set

+ Distance Field (2)

+ Feature 
Confidence (50%)

+ Feature 
Confidence (68%)

+ Feature 
Confidence (95%)

Sudhanshu Sane



T. Athawale, C. R. Johnson. “Probabilistic 
Asymptotic Decider for Topological Ambiguity 
Resolution in Level-Set Extraction for 
Uncertain 2D Data,” In IEEE Transactions on 
Visualization and Computer Graphics, Vol. 25, 
No. 1, IEEE, pp. 1163-1172. Jan, 2019.



Uncertainty Visualization of the Marching Squares 
and Marching Cubes Topology Cases - VIS 2021
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Perceptual Uncertainty
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Perceptual Uncertainty



Path of water through a karst limestone structure of a ground 
sample analysis visualizing stone porosity and the spatial 
arrangement of the flow traces.



NIH Visible Male



Visible Human - High Resolution



The Need for High Resolution Visualization

Lower Resolution High Resolution

“…the data show for the first time how detailed transport and chemistry effects can influence the mixing of reactive scalars. It 
may be advantageous to incorporate these effects within molecular mixing models. It is worth noting that at present it is 
impossible to obtain this type of information any other way than by using the type of highly resolved simulation performed here.”
Jacqueline Chen, Sandia National Laboratories



In Pursuit of Error: A Survey of Uncertainty Visualization Evaluation
Jessica Hullman, Xiaoli Qiao, Michael Correll, Alex Kale, Matthew Kay
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2019

https://idl.cs.washington.edu/papers/uncertainty-eval-survey
http://faculty.washington.edu/jhullman
http://pages.cs.wisc.edu/~mcorrell/


Summary
• Decision making, exploration, and understanding with uncertainty

• Currently, the study of uncertainty is usually performed in along 
disciplinary lines.

• We need more unified, interdisciplinary treatments of uncertainty:

• Representation, Quantification, Propagation, and Visualization of 
Uncertainty

• Need to also concentrate on Certainty



More Information

www.sci.utah.edu

crj@sci.utah.edu


