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Background Subtraction Methods

Traditional methods:
• Basic methods, mean and variance over time
• Fuzzy based methods
• Statistical methods 
• Non-parametric methods
• Neural and neuro-fuzzy methods

Matrix and Tensor Factorization methods:
• Eigenspace-based methods (PCA / SVD)
• RPCA, LRR, NMF, MC, ST, etc.
• Tensor Decomposition, NTF, etc.

BGSLibrary (C++)
https://github.com/andrewssobral/bgslibrary

A large number of algorithms have been proposed for background subtraction over the 
last few years:

LRSLibrary (MATLAB)
https://github.com/andrewssobral/lrslibrary

our focus

Andrews Sobral and Antoine Vacavant. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer 
Vision and Image Understanding (CVIU), 2014.

Bouwmans, Thierry; Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Zahzah, El-Hadi. "Decomposition into Low-rank plus Additive Matrices for 
Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset". Submitted to Computer Science Review, 2015.

https://github.com/andrewssobral/bgslibrary
https://github.com/andrewssobral/bgslibrary
https://github.com/andrewssobral/lrslibrary
https://github.com/andrewssobral/lrslibrary
https://github.com/andrewssobral/lrslibrary
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Glossary of terms:

PCA Principal Component Analysis
SVD Singular Value Decomposition

LRA Low-rank Approximation
MC Matrix Completion
NMF Non-negative Matrix Factorization

RPCA Robust Principal Component Analysis
LRR Low-rank Recovery
RNMF Robust NMF
ST Subspace Tracking

Stable RPCA Stable version of RPCA
TTD Three-Term Decomposition

TD Tensor Decomposition
NTF Non-negative Tensor Factorization

https://github.com/andrewssobral/bgslibrary
https://github.com/andrewssobral/bgslibrary
https://github.com/andrewssobral/lrslibrary
https://github.com/andrewssobral/lrslibrary
https://github.com/andrewssobral/lrslibrary


  

Decomposition into Additive Matrices

● The decomposition is represented in a general formulation:

● where K usually is equal to 1, 2, or 3. For K = 3, M1 … M3 are commonly defined by: 

● The characteristics of the matrices MK are as follows:

– The first matrix M1 = L is the low-rank component.

– The second matrix M2 = S is the sparse component.

– The third matrix M3 = E is generally the noise component.

● When K = 1, the matrix A ≈ L and S (implicit) can be given by S = A – L. e.g.: LRA, MC, NMF, ... 

● When K = 2, A = L + S. This decomposition is called explicit. e.g.: RPCA, LRR, RNMF, …

● When K = 3, A = L + S + E. This decomposition is called stable. e.g.: Stable RPCA / Stable PCP. 

Bouwmans, Thierry; Sobral, Andrews; Javed, Sajid; Ki Jung, Soon; Zahzah, El-Hadi. "Decomposition into Low-rank plus Additive Matrices for 
Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset". Submitted to Computer Science Review, 2015.
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Low Rank Approximation

▪ Low-rank approximation (LRA) is a minimization problem, in which the cost function measures the 
fit between a given matrix (the data) and an approximating matrix (the optimization variable), 
subject to a constraint that the approximating matrix has reduced rank. 



  

Low Rank Approximation

▪ Low-rank approximation (LRA) is a minimization problem, in which the cost function measures the 
fit between a given matrix (the data) and an approximating matrix (the optimization variable), 
subject to a constraint that the approximating matrix has reduced rank. 

!!! Singular Value Decomposition !!!



  

Singular Value Decomposition

▪ Formally, the singular value decomposition of an m×n real or complex matrix A is a factorization of 
the form:

▪ where U is a m×m real or complex unitary matrix, D is an m×n rectangular diagonal matrix with 
non-negative real numbers on the diagonal, and VT (the transpose of V if V is real) is an n×n real or 
complex unitary matrix. The diagonal entries D are known as the singular values of A.

▪  The m columns of U and the n columns of V are called the left-singular vectors and right-singular 
vectors of A, respectively.

generalization of eigenvalue decomposition



  

Best rank r Approximation



  

Background Model Estimation



  

What about LRA for corrupted entries?



  

Introduction to Matrix Completion (MC)

▪ Matrix Completion (MC) can be formulated as the problem of o recover a low rank matrix L from 
the partial observations of its entries (represented by A):

L

Underlying low-rank matrix

A

Matrix of partial observations

http://perception.csl.illinois.edu/matrix-rank/home.html
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Demo: Matrix Completion

http://cvxr.com/tfocs/demos/matrixcompletion/

Matrix completion via TFOCS

http://perception.csl.illinois.edu/matrix-rank/home.html


  

Demo: Matrix Completion

http://cvxr.com/tfocs/demos/matrixcompletion/



  

MC Algorithms

● LRSLibrary:

– MC: Matrix Completion (14)
● FPC: Fixed point and Bregman iterative methods for matrix rank minimization (Ma et al. 2008)

● GROUSE: Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010)

● IALM-MC: Inexact ALM for Matrix Completion (Lin et al. 2009)

● LMaFit: Low-Rank Matrix Fitting (Wen et al. 2012)

● LRGeomCG: Low-rank matrix completion by Riemannian optimization (Bart Vandereycken, 2013)

● MC_logdet: Top-N Recommender System via Matrix Completion (Kang et al. 2016)

● MC-NMF: Nonnegative Matrix Completion (Xu et al. 2011)

● OP-RPCA: Robust PCA via Outlier Pursuit (Xu et al. 2012)

● OptSpace: Matrix Completion from Noisy Entries (Keshavan et al. 2009)

● OR1MP: Orthogonal rank-one matrix pursuit for low rank matrix completion (Wang et al. 2015)

● RPCA-GD: Robust PCA via Gradient Descent (Yi et al. 2016)

● ScGrassMC: Scaled Gradients on Grassmann Manifolds for Matrix Completion (Ngo and Saad, 2012)

● SVP: Guaranteed Rank Minimization via Singular Value Projection (Meka et al. 2009)

● SVT: A singular value thresholding algorithm for matrix completion (Cai et al. 2008)

https://github.com/andrewssobral/lrslibrary
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Demo: LRSLibrary for MC 

https://github.com/andrewssobral/lrslibrary

https://github.com/andrewssobral/lrslibrary/blob/master/algorithms/mc/GROUSE/run_alg.m
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Robust Principal Component Analysis 
(RPCA)

▪ RPCA can be formulated as the problem of decomposing a data matrix A into two 
components L and S, where A is the sum of a low-rank matrix L and a sparse matrix S:

Sparse error matrix

SL

Underlying low-rank matrix

A

Matrix of corrupted observations



  

Robust Principal Component Analysis 
(RPCA)

Video Low-rank Sparse Foreground

Background model Moving objects Classification

▪ Candès et al. (2009) show that L and S can be recovered by solving a convex optimization 
problem, named as Principal Component Pursuit (PCP):



  

Solving PCP

One effective way to solve PCP for the case of large matrices is to use a standard augmented Lagrangian multiplier 
method (ALM) (Bertsekas, 1982).

and then minimizing it iteratively by setting

where:

More information: 
(Qiu and Vaswani, 2011), (Pope et al. 2011), (Rodríguez and Wohlberg, 2013)



  

RPCA solvers

For more information see:  (Lin et al., 2010) http://perception.csl.illinois.edu/matrix-rank/sample_code.html



  

What about RPCA for very dynamic 
background?

http://changedetection.net/
http://www.svcl.ucsd.edu/projects/background_subtraction/demo.htm

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Stable PCP

▪ The PCP is limited, the low-rank component needs to be exactly low-rank and the sparse 
component needs to be exactly sparse, but in real applications the observations are often 
corrupted by noise.

▪ Zhou et al. (2010) proposed a stable version of PCP, named Stable PCP (SPCP), adding a third 
component that guarantee stable and accurate recovery in the presence of entry-wise noise. The 
observation matrix A is represented as A = L + S + E, where E is a noise term.



  

Constrained RPCA (example 1)

▪ Some authors added an additional constraint to improve the background/foreground separation:

– Oreifej et al. (2013) use a turbulance model that quantify the scene’s motion in terms of the 
motion of the particles which are driven by dense optical flow.

http://www.cs.ucf.edu/~oreifej/papers/3-Way-Decomposition.pdf



  

Constrained RPCA (example 2)

▪ Yang et al. (2015) propose a robust motion-assisted matrix restoration (RMAMR) where a dense 
motion field is estimated for each frame by dense optical flow, and mapped into a weighting matrix 
which indicates the likelihood that each pixel belongs to the background.

http://projects.medialab-tju.org/bf_separation/



  

Double-constrained RPCA?

▪ Sobral et al. (2015) propose a double-constrained Robust Principal Component Analysis (RPCA), 
named SCM-RPCA (Shape and Confidence Map-based RPCA), is proposed to improve the object 
foreground detection in maritime scenes. It combine some ideas of Oreifej et al. (2013) and Yang 
et al. (2015). 

– The weighting matrix proposed by Yang et al. (2015) can be used as a shape constraint (or 
region constraint), while the confidence map proposed by Oreifej et al. (2013) reinforces the 
pixels belonging from the moving objects. 

▪ The original 3WD was modified adding the shape constraint as has been done in the RMAMR. We 
chose to modify the 3WD instead of RMAMR due its capacity to deal more robustly with the 
multimodality of the background.

https://sites.google.com/site/scmrpca/



  

Solving the SCM-RPCA

Is important to note that the double 
constraints (confidence map and shape) can 
be built from two different types of source (i.e. 
from spatial, temporal, or spatio-temporal 
information), but in this work we focus only on 
spatial saliency maps.



  

SCM-RPCA - Visual results on UCSD data set

From left to right: (a) input frame, (b) saliency map generated by BMS, (c) ground truth, (d) proposed 
approach, (e) 3WD, and (f) RMAMR.

Dataset:
http://www.svcl.ucsd.edu/projects/background\_subtraction/ucsdbgsub\_dataset.htm



  

SCM-RPCA - Visual results on MarDT data set

Is important to note that in the UCSD scenes we have used the original spatial saliency map provided 
by BMS, while for the MarDT scenes we have subtracted its temporal median due to the high saliency 
from the buildings around the river.

Dataset:
http://www.dis.uniroma1.it/~labrococo/MAR/index.htm

http://www.svcl.ucsd.edu/projects/background/_subtraction/ucsdbgsub/_dataset.htm
http://www.svcl.ucsd.edu/projects/background/_subtraction/ucsdbgsub/_dataset.htm
http://www.svcl.ucsd.edu/projects/background/_subtraction/ucsdbgsub/_dataset.htm


  

Infinity and beyond

http://www.dis.uniroma1.it/~labrococo/MAR/index.htm
http://www.dis.uniroma1.it/~labrococo/MAR/index.htm


  

What about multidimensional data?



Introduction to 
tensors



  

Introduction to tensors

● Tensors are simply mathematical objects that can be used to describe physical properties. In 
fact tensors are merely a generalization of scalars, vectors and matrices; a scalar is a zero 
rank tensor, a vector is a first rank tensor and a matrix is the second rank tensor.



  

Introduction to tensors

● Subarrays, tubes and slices of a 3rd order tensor.



  

Introduction to tensors

● Matricization and unfolding a 3rd order tensor.



  

Introduction to tensors

● Horizontal, vertical and frontal slices from a 3rd order tensor.
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Tensor decomposition methods

● Approaches:

– Tucker / HOSVD

– CANDECOMP-PARAFAC (CP)

– Hierarchical Tucker (HT)

– Tensor-Train decomposition (TT)

– NTF (Non-negative Tensor Factorization)

– NTD (Non-negative Tucker Decomposition)

– NCP (Non-negative CP Decomposition)



  



  

Tucker / HoSVD



  

CP

● The CP model is a special case of the Tucker model, where the core tensor is 
superdiagonal and the number of components in the factor matrices is the same.

Solving by ALS (alternating least squares) framework



  

Background Model Estimation via Tensor Factorization

https://github.com/andrewssobral/mtt/blob/master/tensor_demo_subtensors_ntf_hals.m



  

Background Subtraction via Tensor Decomposition

https://github.com/andrewssobral/lrslibrary



Incremental Tensor Learning
Interested in stream processing?



Incremental Tensor Subspace Learing



  

Incremental and Multifeature

https://github.com/andrewssobral/imtsl



  

Incremental and Multifeature

A total of 8 features are extracted: 

1) red channel, 

2) green channel, 

3) blue channel, 

4) gray-scale, 

5) local binary patterns (LBP), 

6) spatial gradients in horizontal direction, 

7) spatial gradients in vertical direction, and 

8) spatial gradients magnitude.

values

pixels

features

tensor model  

…



  

Incremental and Multifeature

https://github.com/andrewssobral/imtsl

Feature Extraction
+

iHoSVD
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Online Stochastic

https://github.com/andrewssobral/ostd



  



  



  

LRSLibrary

The LRSLibrary provides a collection of low-rank and sparse decomposition algorithms in MATLAB. 
The library was designed for motion segmentation in videos, but it can be also used or adapted for 
other computer vision problems. Currently the LRSLibrary contains a total of 103 matrix-based and 
tensor-based algorithms. 

https://github.com/andrewssobral/lrslibrary



  

BGSLibrary

The BGSLibrary provides an easy-to-use C++ framework based on OpenCV to perform 
background subtraction (BGS) in videos. The BGSLibrary compiles under Linux, Mac OS X and 
Windows. Currently the library offers 37 BGS algorithms.
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