La Rochelle

Recent advances on low-rank and sparse decomposition for moving object detection

Matrix and Tensor-based approaches

Atelier : Enjeux dans la détection d'objets mobiles par soustraction de fond

Summary

- Context
- Understanding an Intelligent Video Surveillance Framework
- Introduction to Background Subtraction
- Decomposition into Additive Matrices
- Case 1: Low-rank Approximation and Matrix Completion
- Case 2: Robust Principal Component Analysis (RPCA)
- Case 3: Stable decomposition
- Constrained RPCA
- Introduction to Tensors
- Tensor Decomposition
- Tucker/HoSVD
- CANDECOMP-PARAFAC (CP)
- Applications to Background Subtraction

Behind the Scenes of an Intelligent Video Surveillance Framework

our focus

Introduction to Background Subtraction

Background Subtraction Methods

A large number of algorithms have been proposed for background subtraction over the last few years:

Traditional methods:

- Basic methods, mean and variance over time
- Fuzzy based methods
- Statistical methods
- Non-parametric methods
- Neural and neuro-fuzzy methods

Matrix and Tensor Factorization methods:

- Eigenspace-based methods (PCA / SVD)
- RPCA, LRR, NMF, MC, ST, etc.
- Tensor Decomposition, NTF, etc.

BGSLibrary (C++)
https://github.com/andrewssobral/bgslibrary
\wedge

our focus

Andrews Sobral and Antoine Vacavant. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding (CVIU), 2014.

Background Subtraction Methods

Glossary of terms:

PCA Principal Component Analysis
SVD Singular Value Decomposition
LRA Low-rank Approximation
MC Matrix Completion
NMF Non-negative Matrix Factorization
RPCA Robust Principal Component Analysis
LRR Low-rank Recovery RNMF Robust NMF ST Subspace Tracking

Stable RPCA Stable version of RPCA TTD Three-Term Decomposition

TD Tensor Decomposition
NTF Non-negative Tensor Factorization

Decomposition into Additive Matrices

- The decomposition is represented in a general formulation:

$$
A=\sum_{k=1}^{K} M_{k}
$$

- where \mathbf{K} usually is equal to 1,2 , or 3 . For $\mathbf{K}=3, \mathbf{M}_{\mathbf{1}} \ldots \mathbf{M}_{\mathbf{3}}$ are commonly defined by:
$A=M_{1}+M_{2}+M_{3}=L+S+E$
- The characteristics of the matrices $\mathbf{M}_{\mathbf{K}}$ are as follows:
- The first matrix $\mathbf{M}_{1}=\mathbf{L}$ is the low-rank component.
- The second matrix $\mathbf{M}_{\mathbf{2}}=\mathbf{S}$ is the sparse component.
- The third matrix $\mathbf{M}_{3}=\mathbf{E}$ is generally the noise component.
- When $\mathbf{K}=\mathbf{1}$, the matrix $\mathbf{A} \approx \mathbf{L}$ and \mathbf{S} (implicit) can be given by $\mathbf{S}=\mathbf{A}-\mathrm{L}$. e.g.: LRA, MC, NMF, ...
- When $\mathbf{K = 2 , A}=\mathbf{L}+\mathbf{S}$. This decomposition is called explicit. e.g.: RPCA, LRR, RNMF, ...
- When $\mathbf{K}=\mathbf{3}, \mathbf{A}=\mathbf{L}+\mathbf{S}+\mathbf{E}$. This decomposition is called stable. e.g.: Stable RPCA / Stable PCP.

Decomposition into Additive Matrices

- The decomposition is represented in a general formulation:

$$
A=\sum_{k=1}^{K} M_{k}
$$

- where \mathbf{K} usually is equal to 1,2 , or 3 . For $\mathbf{K}=3, \mathbf{M}_{\mathbf{1}} \ldots \mathbf{M}_{\mathbf{3}}$ are commonly defined by:
$A=M_{1}+M_{2}+M_{3}=L+S+E$
- The characteristics of the matrices $\mathbf{M}_{\mathbf{K}}$ are as follows:
- The first matrix $\mathbf{M}_{1}=\mathbf{L}$ is the low-rank component.
- The second matrix $\mathbf{M}_{\mathbf{2}}=\mathbf{S}$ is the sparse component.
- The third matrix $\mathbf{M}_{3}=\mathbf{E}$ is generally the noise component.
- When $\mathbf{K}=\mathbf{1}$, the matrix $\mathbf{A} \approx \mathbf{L}$ and \mathbf{S} (implicit) can be given by $\mathbf{S}=\mathbf{A}-\mathrm{L}$. e.g.: LRA, MC, NMF, ...
- When $\mathbf{K = 2 , A}=\mathbf{L}+\mathbf{S}$. This decomposition is called explicit. e.g.: RPCA, LRR, RNMF, ...
- When $\mathbf{K}=\mathbf{3}, \mathbf{A}=\mathbf{L}+\mathbf{S}+\mathbf{E}$. This decomposition is called stable. e.g.: Stable RPCA / Stable PCP.

Low Rank Approximation

" Low-rank approximation (LRA) is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
$\underset{L}{\operatorname{minimize}} \quad\|A-L\|_{F}$
subject to $\operatorname{rank}(L)<r,($ desired rank).
usually $\operatorname{rank}(L)$ is remplaced by $\|L\|_{*}=\sum_{i=1}^{r} \sigma_{i}$ where $\sigma_{1}, \ldots, \sigma_{r}$ are the singular values of L.

Low Rank Approximation

" Low-rank approximation (LRA) is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
$\underset{L}{\operatorname{minimize}} \quad\|A-L\|_{F}$
subject to $\operatorname{rank}(L)<r,($ desired rank).
usually $\operatorname{rank}(L)$ is remplaced by $\|L\|_{*}=\sum_{i=1}^{r} \sigma_{i}$ where $\sigma_{1}, \ldots, \sigma_{r}$ are the singular values of L.
!!! Singular Value Decomposition !!!

Singular Value Decomposition

- Formally, the singular value decomposition of an $\mathbf{m} \times \mathbf{n}$ real or complex matrix \mathbf{A} is a factorization of the form:

$$
A=U D V^{T}
$$

" where \mathbf{U} is a $\mathbf{m} \times \mathbf{m}$ real or complex unitary matrix, \mathbf{D} is an $\mathbf{m} \times \mathbf{n}$ rectangular diagonal matrix with non-negative real numbers on the diagonal, and $\mathbf{V}^{\boldsymbol{\top}}$ (the transpose of \mathbf{V} if \mathbf{V} is real) is an $\mathbf{n} \times \mathbf{n}$ real or complex unitary matrix. The diagonal entries \mathbf{D} are known as the singular values of \mathbf{A}.

- The \mathbf{m} columns of \mathbf{U} and the \mathbf{n} columns of \mathbf{V} are called the left-singular vectors and right-singular vectors of A, respectively.

Best rank r Approximation

If $A=U D V^{T}$ is the SVD of A and the singular values are sorted as $\sigma_{1} \geq \sigma_{2} \geq \sigma_{n}$ then for any $r<n$, the best rank- r approximation to A is:
$L=A_{r}=U_{r} D_{r} V_{r}^{T}$ or $L=\sum_{i=1}^{r} u_{i} d_{i} v_{i}^{T}$
$L=A_{r}$ minimizes $\|A-L\|_{2}$ and $\|A-L\|_{F}$ among all rank- r matrices

Background Model Estimation

```
3 %% Load video
4- load(fullfile(lrs_conf.lrs_dir,'dataset','trafficdb','traffic_patches.mat'));
5 - V = im2double(imgdb{100});
6 % convert to 2D matrix
7 - A = convert_video3d_to_2d(V);
8 %% low-rank appoximation (rank-1)
9- [m,n] = size(A);
10 % let us define that rank to be equal to r
11- r = 1;
12 % doing it the normal SVD way
13- [U,S,V] = svd(A);
14- L = U(1:m,1:r)*S(1:r,1:r)*V(1:n,1:r)';
15 % ||A - L||_F
16 - norm(abs(A-L),'fro')
```


What about LRA for corrupted entries?

(a) noise

(b) random corruptions

(c) sample-specific corruptions

Introduction to Matrix Completion (MC)

" Matrix Completion (MC) can be formulated as the problem of o recover a low rank matrix L from the partial observations of its entries (represented by \mathbf{A}):

```
minimize }\quad\operatorname{rank}(L
subject to }\mp@subsup{L}{ij}{}=\mp@subsup{A}{ij}{},(i,j)\in\Omega(\mathrm{ set of observed elements).
```


Introduction to Matrix Completion (MC)

- Matrix Completion (MC) can be formulated as the problem of o recover a low rank matrix L from the partial observations of its entries (represented by A):
$\underset{L}{\operatorname{minimize}} \operatorname{rank}(L)$
subject to $\quad L_{i j}=A_{i j},(i, j) \in \Omega($ set of observed elements $)$.

Demo: Matrix Completion

Setup a problem

```
rng(234923); % for reproducible results
N = 16; % the matrix is N x N
r = 2; % the rank of the matrix
df = 2*N*r - r^2; % degrees of freedom of a N x N rank r matrix
nSamples = 3*df; % number of observed entries
% For this demo, we will use a matrix with integer entries
% because it will make displaying the matrix easier.
iMax = 5;
X = randi(iMax,N,r)*randi(iMax, r,N); % Our target matrix
```

Now suppose we only see a few entries of X . Let "Omega" be the set of observed entries

```
rPerm = randperm(N^2); % use "randsample" if you have the stats toolbox
omega = sort( rPerm(1:nSamples));
```

Print out the observed matrix in a nice format. The "NaN" entries represent unobserved values. The goal of this demo is to find out what those values are!

```
Y = nan(N);
Y(omega) = X (omega);
disp('The "NaN" entries represent unobserved values');
disp(Y)
```

minimize	$\\|L\\|_{*}$
subject to	$P_{\Omega}(L)=P_{\Omega}(A)$
	$P_{\Omega}($.$) (is the sampling operator).$

Matrix completion via TFOCS
http://cvxr.com/tfocs/demos/matrixcompletion/

| The "NaN" entries represent unobserved values | | | | | | | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 30 | NaN | 24 | 8 | 12 | 14 | 12 | NaN | 22 | NaN | NaN | 10 | 14 | 24 | 20 | NaN |
| 30 | 21 | NaN | 11 | 21 | NaN | 12 | 21 | NaN | 15 | 17 | NaN | 8 | 15 | 23 | NaN |
| NaN | 9 | NaN | NaN | 9 | NaN | NaN | NaN | 7 | 9 | 8 | 7 | 5 | NaN | 11 | 6 |
| 35 | NaN | NaN | 10 | NaN | NaN | NaN | NaN | 23 | NaN | 17 | 13 | 15 | 26 | 24 | NaN |
| NaN | 9 | 9 | 5 | NaN | NaN | NaN | NaN | NaN | 9 | 8 | NaN | NaN | 9 | 11 | NaN |
| NaN | 11 | 19 | 7 | NaN | 13 | 10 | 11 | 17 | 19 | 12 | 9 | 11 | 19 | 17 | NaN |
| 45 | 24 | 30 | NaN | NaN | 29 | 18 | NaN | 25 | 30 | NaN | 19 | 17 | 30 | 32 | NaN |
| NaN | NaN | 21 | NaN | 15 | 18 | 12 | 15 | 18 | 21 | 15 | 12 | 12 | 21 | 21 | 12 |
| 25 | 11 | NaN | 7 | 11 | 13 | 10 | 11 | 17 | 19 | 12 | 9 | NaN | 19 | NaN | NaN |
| NaN | 13 | 11 | 7 | 13 | 16 | 8 | NaN | 8 | 11 | 11 | NaN | NaN | 11 | 15 | 8 |
| 45 | 24 | 30 | 14 | 24 | 29 | 18 | 24 | 25 | 30 | 23 | 19 | 17 | NaN | 32 | 18 |
| NaN | 15 | 21 | 9 | NaN | 18 | 12 | 15 | 18 | 21 | 15 | 12 | NaN | 21 | 21 | 12 |
| 25 | NaN | 13 | 9 | 17 | NaN | 10 | 17 | NaN | 13 | 14 | 13 | 7 | 13 | 19 | 10 |
| 40 | 20 | 28 | 12 | 20 | NaN | 16 | 20 | NaN | NaN | NaN | 16 | 16 | NaN | 28 | 16 |
| NaN | NaN | 18 | 10 | 18 | 22 | 12 | NaN | 14 | NaN | 16 | 14 | 10 | NaN | 22 | 12 |
| 25 | 11 | 19 | 7 | 11 | NaN | 10 | NaN | NaN | NaN | NaN | 9 | 11 | 19 | 17 | NaN |

Demo: Matrix Completion

\% Add TFOCS to your path (modify this line appropriately): addpath ~/Dropbox/TFOCS/

observations	$=X($ omega $) ;$		\% the observed entries
mu	$=.001 ;$		\% smoothing parameter

\% The solver runs in seconds
tic
Xk = solver_sNuclearBP($\{N, N, o m e g a\}$, observations, mu); toc

Auslender \& Teboulle's single-projection method
Iter Objective $|\mathrm{dx}| /|\mathrm{x}|$ step
100 | +3.54125e+02 $1.68 \mathrm{e}-04 \quad 1.32 \mathrm{e}-03$
200 | +3.54125e+02 7.42e-07 1.77e-03*
251 | +3.54125e+02 5.41e-09 2.28e-03*
Finished: Step size tolerance reached
Elapsed time is 1.289716 seconds.

Recover															
30	12	24	8	12	14	12	12	22	24	14	10	14	24	20	12
30	21	15	11	21	26	12	21	10	15	17	16	8	15	23	12
15	9	9	5	9	11	6	9	7	9	8	7	5	9	11	6
35	16	26	10	16	19	14	16	23	26	17	13	15	26	24	14
15	9	9	5	9	11	6	9	7	9	8	7	5	9	11	6
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10
45	24	30	14	24	29	18	24	25	30	23	19	17	30	32	18
30	15	21	9	15	18	12	15	18	21	15	12	12	21	21	12
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10
20	13	11	7	13	16	8	13	8	11	11	10	6	11	15	8
45	24	30	14	24	29	18	24	25	30	23	19	17	30	32	18
30	15	21	9	15	18	12	15	18	21	15	12	12	21	21	12
25	17	13	9	17	21	10	17	9	13	14	13	7	13	19	10
40	20	28	12	20	24	16	20	24	28	20	16	16	28	28	16
30	18	18	10	18	22	12	18	14	18	16	14	10	18	22	12
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10
Original matrix:															
30	12	24	8	12	14	12	12	22	24	14	10	14	24	20	12
30	21	15	11	21	26	12	21	10	15	17	16	8	15	23	12
15	9	9	5	9	11	6	9	7	9	8	7	5	9	11	6
35	16	26	10	16	19	14	16	23	26	17	13	15	26	24	14
15	9	9	5	9	11	6	9	7	9	8	7	5	9	11	6
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10
45	24	30	14	24	29	18	24	25	30	23	19	17	30	32	18
30	15	21	9	15	18	12	15	18	21	15	12	12	21	21	12
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10
20	13	11	7	13	16	8	13	8	11	11	10	6	11	15	8
45	24	30	14	24	29	18	24	25	30	23	19	17	30	32	18
30	15	21	9	15	18	12	15	18	21	15	12	12	21	21	12
25	17	13	9	17	21	10	17	9	13	14	13	7	13	19	10
40	20	28	12	20	24	16	20	24	28	20	16	16	28	28	16
30	18	18	10	18	22	12	18	14	18	16	14	10	18	22	12
25	11	19	7	11	13	10	11	17	19	12	9	11	19	17	10

Relative error, no rounding: 0.00000410\%

MC Algorithms

- LRSLibrary:

- MC: Matrix Completion (14)
- FPC: Fixed point and Bregman iterative methods for matrix rank minimization (Ma et al. 2008)
- GROUSE: Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010)
- IALM-MC: Inexact ALM for Matrix Completion (Lin et al. 2009)
- LMaFit: Low-Rank Matrix Fitting (Wen et al. 2012)
- LRGeomCG: Low-rank matrix completion by Riemannian optimization (Bart Vandereycken, 2013)
- MC_logdet: Top-N Recommender System via Matrix Completion (Kang et al. 2016)
- MC-NMF: Nonnegative Matrix Completion (Xu et al. 2011)
- OP-RPCA: Robust PCA via Outlier Pursuit (Xu et al. 2012)
- OptSpace: Matrix Completion from Noisy Entries (Keshavan et al. 2009)
- OR1MP: Orthogonal rank-one matrix pursuit for low rank matrix completion (Wang et al. 2015)
- RPCA-GD: Robust PCA via Gradient Descent (Yi et al. 2016)
- ScGrassMC: Scaled Gradients on Grassmann Manifolds for Matrix Completion (Ngo and Saad, 2012)
- SVP: Guaranteed Rank Minimization via Singular Value Projection (Meka et al. 2009)
- SVT: A singular value thresholding algorithm for matrix completion (Cai et al. 2008)

MC Algorithms

- LRSLibrary:

- MC: Matrix Completion (14)
- FPC: Fixed point and Bregman iterative methods for matrix rank minimization (Ma et al. 2008)
- GROUSE: Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010)
- IALM-MC: Inexact ALM for Matrix Completion (Lin et al. 2009)
- LMaFit: Low-Rank Matrix Fitting (Wen et al. 2012)
- LRGeomCG: Low-rank matrix completion by Riemannian optimization (Bart Vandereycken, 2013)
- MC_logdet: Top-N Recommender System via Matrix Completion (Kang et al. 2016)
- MC-NMF: Nonnegative Matrix Completion (Xu et al. 2011)
- OP-RPCA: Robust PCA via Outlier Pursuit (Xu et al. 2012)
- OptSpace: Matrix Completion from Noisy Entries (Keshavan et al. 2009)
- OR1MP: Orthogonal rank-one matrix pursuit for low rank matrix completion (Wang et al. 2015)
- RPCA-GD: Robust PCA via Gradient Descent (Yi et al. 2016)
- ScGrassMC: Scaled Gradients on Grassmann Manifolds for Matrix Completion (Ngo and Saad, 2012)
- SVP: Guaranteed Rank Minimization via Singular Value Projection (Meka et al. 2009)
- SVT: A singular value thresholding algorithm for matrix completion (Cai et al. 2008)

Demo: LRSLibrary for MC

https://github.com/andrewssobral//rslibrary/blob/master/algorithms/mc/GROUSE/run alg.m

```
% MC | GROUSE | Grassmannian Rank-One Update Subspace Estimation (Balzano et al. 2010)
% process_video('MC', 'GROUSE', 'dataset/demo.avi', 'output/demo_MC-GROUSE.avi');
[numr,numc] = size(M);
I = randi([0 1],numr,numc); % ones(size(M));
maxrank = 1;
maxCycles = 100;
step_size = 0.1;
[Usg, Vsg, err_reg] = grouse(M,I,numr, numc,maxrank,step_size,maxCycles);
L = Usg*Vsg';
S = M - L;
% show_2dvideo(M,m,n);
% show_2dvideo(M.*I,m,n);
% show_2dvideo(L,m,n);
% show_2dvideo(S,m,n);
```


https://github.com/andrewssobral//rslibrary

MC for Background Model Initialization

Sobral, Andrews; Bouwmans, Thierry; Zahzah, El-hadi. "Comparison of Matrix Completion Algorithms for Background Initialization in Videos". Scene Background Modeling and Initialization (SBMI), Workshop in conjunction with ICIAP 2015, Genova, Italy, September, 2015.

Decomposition into Additive Matrices

- The decomposition is represented in a general formulation:

$$
A=\sum_{k=1}^{K} M_{k}
$$

- where \mathbf{K} usually is equal to 1,2 , or 3 . For $\mathbf{K}=3, \mathbf{M}_{\mathbf{1}} \ldots \mathbf{M}_{\mathbf{3}}$ are commonly defined by:
$A=M_{1}+M_{2}+M_{3}=L+S+E$
- The characteristics of the matrices $\mathbf{M}_{\mathbf{K}}$ are as follows:
- The first matrix $\mathbf{M}_{1}=\mathbf{L}$ is the low-rank component.
- The second matrix $\mathbf{M}_{\mathbf{2}}=\mathbf{S}$ is the sparse component.
- The third matrix $\mathbf{M}_{3}=\mathbf{E}$ is generally the noise component.
- When $\mathbf{K}=\mathbf{1}$, the matrix $\mathbf{A} \approx \mathbf{L}$ and \mathbf{S} (implicit) can be given by $\mathbf{S}=\mathbf{A}-\mathrm{L}$. e.g.: LRA, MC, NMF, ...
- When $\mathbf{K}=\mathbf{2}, \mathbf{A}=\mathbf{L}+\mathbf{S}$. This decomposition is called explicit. e.g.: RPCA, LRR, RNMF, ...
- When $\mathbf{K}=\mathbf{3}, \mathbf{A}=\mathbf{L}+\mathbf{S}+\mathbf{E}$. This decomposition is called stable. e.g.: Stable RPCA / Stable PCP.

Robust Principal Component Analysis (RPCA)

- RPCA can be formulated as the problem of decomposing a data matrix A into two components \mathbf{L} and \mathbf{S}, where \mathbf{A} is the sum of a low-rank matrix \mathbf{L} and a sparse matrix \mathbf{S} :
$A=L+S$

Matrix of corrupted observations

Underlying low-rank matrix

Sparse error matrix

Robust Principal Component Analysis (RPCA)

" Candès et al. (2009) show that \mathbf{L} and \mathbf{S} can be recovered by solving a convex optimization problem, named as Principal Component Pursuit (PCP):
minimize $\quad\|L\|_{*}+\lambda\|S\|_{1}$
subject to $A=L+S$, where λ is a weighting parameter.
$\|L\|_{*}$ enforces low rank in L.
$\|S\|_{1}$ enforces the sparsity in S.

Video

Background model

Low-rank

Moving objects

Sparse

Foreground

Solving PCP

One effective way to solve PCP for the case of large matrices is to use a standard augmented Lagrangian multiplier method (ALM) (Bertsekas, 1982).
$\ell(\mathbf{L}, \mathbf{S}, \mathbf{Y}) \triangleq\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1}+\langle\mathbf{Y}, \mathbf{M}-\mathbf{L}-\mathbf{S}\rangle+\mu\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{\mathrm{F}}^{2}$
and then minimizing it iteratively by setting
$\left(\mathbf{L}^{(k)}, \mathbf{S}^{(k)}\right)=\underset{(\mathbf{L}, \mathbf{S})}{\arg \min } \ell\left(\mathbf{L}, \mathbf{S}, \mathbf{Y}^{(k)}\right)$
and updating $\mathbf{Y}^{(k+1)} \leftarrow \mathbf{Y}^{(k)}+\mu\left(\mathbf{M}-\mathbf{L}^{(k)}-\mathbf{S}^{(k)}\right)$.
where:
$\underset{\mathbf{S}}{\arg \min } \ell(\mathbf{L}, \mathbf{S}, \mathbf{Y})=\mathcal{S}_{\lambda \mu^{-1}}\left(\mathbf{M}-\mathbf{L}+\mu^{-1} \mathbf{Y}\right)$
$\underset{\mathbf{L}}{\arg \min } \ell(\mathbf{L}, \mathbf{S}, \mathbf{Y})=\mathcal{D}_{\mu^{-1}}\left(\mathbf{M}-\mathbf{S}+\mu^{-1} \mathbf{Y}\right)$.
$\mathcal{S}_{\tau}(x) \triangleq \operatorname{sgn}(x) \max \{|x|-\tau, 0\}$.
$\mathcal{D}_{\tau}(\mathbf{A}) \triangleq \mathbf{U} \mathcal{S}_{\tau}(\boldsymbol{\Sigma}) \mathbf{V}^{T}$
$\langle\mathbf{A}, \mathbf{B}\rangle \triangleq \operatorname{tr}\left(\mathbf{A}^{T} \mathbf{B}\right)$, where $\operatorname{tr}(\cdot)$ denotes the trace operator $\lambda=1 / \sqrt{\max \left\{n_{1}, n_{2}\right\}}$ and $\mu=\left(n_{1} n_{2}\right) /\left(4\|\mathbf{M}\|_{1}\right)$

```
Algorithm 1 ALM using alternating directions [2], [3], [5]
    input: \(\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}\)
    initialize: \(\mathbf{S}^{(0)}=\mathbf{Y}^{(0)}=\mathbf{0}, \lambda=1 / \sqrt{\max \left\{n_{1}, n_{2}\right\}}\),
    \(\mu=\left(n_{1} n_{2}\right) /\left(4\|\mathbf{M}\|_{1}\right), k=0\)
    while not converged do
        \(\mathbf{L}^{(k+1)} \leftarrow \mathcal{D}_{\mu^{-1}}\left(\mathbf{M}-\mathbf{S}^{(k)}+\mu^{-1} \mathbf{Y}^{(k)}\right)\)
        \(\mathbf{S}^{(k+1)} \leftarrow \mathcal{S}_{\lambda \mu^{-1}}\left(\mathbf{M}-\mathbf{L}^{(k+1)}+\mu^{-1} \mathbf{Y}^{(k)}\right)\)
        \(\mathbf{Y}^{(k+1)} \leftarrow \mathbf{Y}^{(k)}+\mu\left(\mathbf{M}-\mathbf{L}^{(k+1)}-\mathbf{S}^{(k+1)}\right)\)
    end while
    output: \(\mathbf{L}^{(k)}, \mathbf{S}^{(k)}\)
```

λ_{1}	0	0
0	λ_{2}	0
0	0	x_{3}

More information:
(Qiu and Vaswani, 2011), (Pope et al. 2011), (Rodríguez and Wohlberg, 2013)

RPCA solvers

```
Algorithm }1\mathrm{ (RPCA via Iterative Thresholding)
Input: Observation matrix }D\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ , weights }\lambda\mathrm{ and }\tau\mathrm{ .
    1: while not converged do
        (U,S,V)=\operatorname{svd}(Yk-1),
        Ak}=U\mp@subsup{\mathcal{S}}{\tau}{}[S]\mp@subsup{V}{}{T
        Ek}=\mp@subsup{\mathcal{S}}{\lambda\tau}{}[\mp@subsup{Y}{k-1}{}]
        Yk}=\mp@subsup{Y}{k-1}{+}+\mp@subsup{\delta}{k}{}(D-\mp@subsup{A}{k}{}-\mp@subsup{E}{k}{})
    6: end while
Output: }A\leftarrow\mp@subsup{A}{k}{},E\leftarrowE\mp@subsup{E}{k}{
```


Algorithm 5 (RPCA via the Inexact ALM Method)

Input: Observation matrix $D \in \mathbb{R}^{m \times n}, \lambda$.
1: $Y_{0}=D / J(D) ; E_{0}=0 ; \mu_{0}>0 ; \rho>1 ; k=0$.
2: while not converged do
3: $\quad / /$ Lines 4-5 solve $A_{k+1}=\arg \min _{A} L\left(A, E_{k}, Y_{k}, \mu_{k}\right)$.
4: $\quad(U, S, V)=\operatorname{svd}\left(D-E_{k}+\mu_{k}^{-1} Y_{k}\right)$;
5: $\quad A_{k+1}=U \mathcal{S}_{\mu_{k}^{-1}}[S] V^{T}$.
6: $\quad / /$ Line 7 solves $E_{k+1}=\arg \min _{E} L\left(A_{k+1}, E, Y_{k}, \mu_{k}\right)$.
7: $\quad E_{k+1}=\mathcal{S}_{\lambda \mu_{k}^{-1}}\left[D-A_{k+1}+\mu_{k}^{-1} Y_{k}\right]$.
8: $\quad Y_{k+1}=Y_{k}+\mu_{k}\left(D-A_{k+1}-E_{k+1}\right)$.
9: Update μ_{k} to μ_{k+1}.
10: $\quad k \leftarrow k+1$.
11: end while
Output: $\left(A_{k}, E_{k}\right)$.

```
Algorithm 2 (RPCA via Accelerated Proximal Gradient)
Input: Observation matrix \(D \in \mathbb{R}^{m \times n}, \lambda\).
    : \(A_{0}=A_{-1}=0 ; E_{0}=E_{-1}=0 ; t_{0}=t_{-1}=1 ; \bar{\mu}>0 ; \eta<1\).
    while not converged do
        \(Y_{k}^{A}=A_{k}+\frac{t_{k-1}-1}{t_{k}}\left(A_{k}-A_{k-1}\right), Y_{k}^{E}=E_{k}+\frac{t_{k-1}-1}{t_{k}}\left(E_{k}-E_{k-1}\right)\).
        \(G_{k}^{A}=Y_{k}^{A}-\frac{1}{2}\left(Y_{k}^{A}+Y_{k}^{E}-D\right)\).
        \((U, S, V)=\operatorname{svd}\left(G_{k}^{A}\right), A_{k+1}=U \mathcal{S}_{\frac{\mu_{k}}{2}}[S] V^{T}\)
        \(G_{k}^{E}=Y_{k}^{E}-\frac{1}{2}\left(Y_{k}^{A}+Y_{k}^{E}-D\right)\).
        \(E_{k+1}=\mathcal{S}_{\frac{\lambda \mu_{k}}{2}}\left[G_{k}^{E}\right]\).
        \(t_{k+1}=\frac{1+\sqrt{4 t_{k}^{2}+1}}{2}\)
8: \(\quad t_{k+1}=\frac{1+\sqrt{4 t_{k}^{2}+1}}{2} ; \mu_{k+1}=\max \left(\eta \mu_{k}, \bar{\mu}\right)\).
9: \(\quad k \leftarrow k+1\).
10: end while
Output: \(\quad A \leftarrow A_{k}, E \leftarrow E_{k}\).
```


Robust PCA Algorithm Comparison

Algorithm	Rank of estimate	Relative error in estimate of \boldsymbol{A}	Time (s)
Singular Value Thresholding	20	3.4×10^{-4}	877
Accelerated Proximal Gradient	20	2.0×10^{-5}	43
Accelerated Proximal Gradient	20	1.8×10^{-5}	8
(with partial SVDs)	Dual Method	20	1.6×10^{-5}
Exact ALM	20	7.6×10^{-8}	177
Inexact ALM	20	4.3×10^{-8}	4
Alternating Direction Methods	20	2.2×10^{-5}	2

What about RPCA for very dynamic background?

Decomposition into Additive Matrices

- The decomposition is represented in a general formulation:

$$
A=\sum_{k=1}^{K} M_{k}
$$

- where \mathbf{K} usually is equal to 1,2 , or 3 . For $\mathbf{K}=3, \mathbf{M}_{\mathbf{1}} \ldots \mathbf{M}_{\mathbf{3}}$ are commonly defined by:
$A=M_{1}+M_{2}+M_{3}=L+S+E$
- The characteristics of the matrices $\mathbf{M}_{\mathbf{K}}$ are as follows:
- The first matrix $\mathbf{M}_{1}=\mathbf{L}$ is the low-rank component.
- The second matrix $\mathbf{M}_{\mathbf{2}}=\mathbf{S}$ is the sparse component.
- The third matrix $\mathbf{M}_{3}=\mathbf{E}$ is generally the noise component.
- When $\mathbf{K}=\mathbf{1}$, the matrix $\mathbf{A} \approx \mathbf{L}$ and \mathbf{S} (implicit) can be given by $\mathbf{S}=\mathbf{A}-\mathrm{L}$. e.g.: LRA, MC, NMF, ...
- When $\mathbf{K = 2 , A}=\mathbf{L}+\mathbf{S}$. This decomposition is called explicit. e.g.: RPCA, LRR, RNMF, ...
- When $\mathbf{K}=\mathbf{3}, \mathbf{A}=\mathbf{L}+\mathbf{S}+\mathbf{E}$. This decomposition is called stable. e.g.: Stable RPCA / Stable PCP.

Stable PCP

- The PCP is limited, the low-rank component needs to be exactly low-rank and the sparse component needs to be exactly sparse, but in real applications the observations are often corrupted by noise.
- Zhou et al. (2010) proposed a stable version of PCP, named Stable PCP (SPCP), adding a third component that guarantee stable and accurate recovery in the presence of entry-wise noise. The observation matrix \mathbf{A} is represented as $\mathbf{A}=\mathbf{L}+\mathbf{S}+\mathbf{E}$, where \mathbf{E} is a noise term.
$\begin{array}{ll}\operatorname{minimize} & \|L\|_{*}+\lambda_{1}\|S\|_{1}+\lambda_{2}\|E\|_{F}^{2} \\ \text { subject to } & A=L+S+E\end{array}$

Constrained RPCA (example 1)

- Some authors added an additional constraint to improve the background/foreground separation:
- Oreifej et al. (2013) use a turbulance model that quantify the scene's motion in terms of the motion of the particles which are driven by dense optical flow.
minimize $\quad\|L\|_{*}+\lambda_{1} \mid\|\Pi(S)\|_{1}+\lambda_{2}\|E\|_{F}^{2}$
subject to $A=L+S+E$, where $\Pi($.$) represents the confidence map.$

http://www.cs.ucf.edu/~oreifej/papers/3-Way-Decomposition.pdf

Constrained RPCA (example 2)

- Yang et al. (2015) propose a robust motion-assisted matrix restoration (RMAMR) where a dense motion field is estimated for each frame by dense optical flow, and mapped into a weighting matrix which indicates the likelihood that each pixel belongs to the background.
$\operatorname{minimize} \quad\|L\|_{*}+\lambda_{1}\|S\|_{1}+\lambda_{2}\|E\|_{F}^{2}$
subject to $W \circ A=W \circ(L+S+E)$, where W represents the weighting matrix.

http://projects.medialab-tju.org/bf_separation/

Double-constrained RPCA?

- Sobral et al. (2015) propose a double-constrained Robust Principal Component Analysis (RPCA), named SCM-RPCA (Shape and Confidence Map-based RPCA), is proposed to improve the object foreground detection in maritime scenes. It combine some ideas of Oreifej et al. (2013) and Yang et al. (2015).
- The weighting matrix proposed by Yang et al. (2015) can be used as a shape constraint (or region constraint), while the confidence map proposed by Oreifej et al. (2013) reinforces the pixels belonging from the moving objects.
- The original 3WD was modified adding the shape constraint as has been done in the RMAMR. We chose to modify the 3WD instead of RMAMR due its capacity to deal more robustly with the multimodality of the background.

Solving the SCM-RPCA

Author(s)	Minimization	Algorithm 1 Algorithm for solving SCM-RPCA.						
Oreifej et al. [12]	$\begin{aligned} & \min _{L, S, E}\\|L\\|_{*}+\lambda\\|\Pi(S)\\|_{1}+\gamma\\|E\\|_{F}^{2} \\ & \text { s.t. } A=L+S+E \end{aligned}$	Input: Observation $A \in \mathbb{R}^{m n \times k}$ Confidence Map $\Pi \in \mathbb{R}^{m n \times k}$ Shape Constraint $W \in[0,1]^{m n \times k}$						
Yang et al. [15]	$\begin{aligned} & \min _{L, S, E}\\|L\\|_{*}+\lambda\\|S\\|_{1}+\gamma\\|E\\|_{F}^{2} \\ & \text { s.t. } W \circ A=W \circ(L+S+E) \end{aligned}$	Output: Background $L \in \mathbb{R}^{m n \times k}$ Foreground $S \in \mathbb{R}^{m n \times k}$						
SCM-RPCA	$\begin{aligned} & \min _{L, S, E}\\|L\\|_{*}+\lambda\\|\Pi(S)\\|_{1}+\gamma\\|E\\|_{F}^{2} \\ & \text { s.t. } A=L+W \circ S+E \end{aligned}$	Noise $E \in \mathbb{R}^{m n \times k}$ while not converged do $\Upsilon=\beta_{t}^{-1} Y_{t}$						
Table 1. Comparison Is important constraints (con be built from two from spatial, information), but spatial saliency m	the proposed method and related work note that the double dence map and shape) can different types of source (i.e. mporal, or spatio-temporal in this work we focus only on aps.	$\begin{aligned} & \text { s. } U R V^{T}=\operatorname{svd}\left(A-L_{t}-E_{t}+\Upsilon\right) \\ & L_{t+1}=U s_{\left(1 / \beta_{t}\right)}(R) V^{T} \\ & \left.S_{t+1}=W \circ s_{(\lambda)} \beta_{t} \Pi\right)\left(A-L_{t+1}-E_{t}+\Upsilon\right) \\ & \kappa=\left(1+\frac{2 \gamma}{\beta_{t}}\right)^{-1} \\ & E_{t+1}=\kappa\left(A-L_{t+1}-S_{t+1}+\Upsilon\right) \\ & Z=A_{t+1}-L_{t+1}-S_{t+1}-E_{t+1} \\ & Y_{t+1}=Y_{t}+\beta_{t} Z \\ & \beta_{t+1}=\rho \beta_{t} \\ & t=t+1 \\ & \text { end } \\ & \hline \end{aligned}$						

SCM-RPCA - Visual results on UCSD data set

(a)

(b)

(c)

(d)

(f)

From left to right: (a) input frame, (b) saliency map generated by BMS, (c) ground truth, (d) proposed approach, (e) 3WD, and (f) RMAMR.

Dataset:
http://www.svcl.ucsd.edu/projects/background\subtraction/ucsdbgsub_dataset.htm

SCM-RPCA - Visual results on MarDT data set

(a)

(b)

(c)

(d)

(e)

(f)

Is important to note that in the UCSD scenes we have used the original spatial saliency map provided by BMS, while for the MarDT scenes we have subtracted its temporal median due to the high saliency from the buildings around the river.

Dataset:

http://www.dis.uniroma1.it/~labrococo/MAR/index.htm

Infinity and beyond

Decomposition in Additive Matrices

```
min rank(A)
s.t. }\quad\mp@subsup{P}{\Omega}{}(A)=\mp@subsup{P}{\Omega}{}(L
    "completion"
```

$$
A=\sum_{i=1}^{N} A_{i}=A_{1}+\cdots+A_{N} \quad N \text {-term decomposition }
$$

$$
-A=L+S+E
$$

three-term decomposition "stable"

$$
A=X L+S
$$

two-term decomposition
"generic"

$$
\begin{aligned}
& L= L_{1} L_{2} \text { or } L_{1}+L_{2} \\
& S= \\
& S_{1} S_{2} \text { or } S_{1}+S_{2} \\
& \text { "reinforced" }
\end{aligned}
$$

$\longrightarrow L=\Omega(L)$ or $S=\Omega(S)$
"constrained" or "structured" sparsity/low-rank
$\longrightarrow A_{n}=L_{n}+S_{n}+E_{n}$
"online" or "incremental"
RPCA
"stable"

$X=I$	$X=A$	$X=\tilde{D}$
$A=L+S$	$A=A L+S$	Dictionary Learning
RPCA	Subspace Clustering (SC)	
"generic"		Sparse SC Low-Rank SC Sparse + Low-Rank SC Single Subspace
		Multiple Subspaces

Legend:

L low-rank matrix
S sparse matrix
E noise/outlier matrix

What about multidimensional data?

Introduction to tensors

Introduction to tensors

- Tensors are simply mathematical objects that can be used to describe physical properties. In fact tensors are merely a generalization of scalars, vectors and matrices; a scalar is a zero rank tensor, a vector is a first rank tensor and a matrix is the second rank tensor.

3d-tensor

Introduction to tensors

- Subarrays, tubes and slices of a 3rd order tensor.

Introduction to tensors

- Matricization and unfolding a 3rd order tensor.

Introduction to tensors

- Horizontal, vertical and frontal slices from a 3rd order tensor.

Frontal

Vertical

Tensor decomposition methods

- Approaches:
- Tucker / HOSVD
- CANDECOMP-PARAFAC (CP)
- Hierarchical Tucker (HT)
- Tensor-Train decomposition (TT)
- NTF (Non-negative Tensor Factorization)
- NTD (Non-negative Tucker Decomposition)
- NCP (Non-negative CP Decomposition)

$$
\mathcal{Y}=\mathcal{G} \times{ }_{1} \mathbf{A}^{(1)} \times_{2} \mathbf{A}^{(2)} \times_{3} \mathbf{A}^{(3)}+\mathcal{E}
$$

CP Decomposition

Tucker / HoSVD

The Higher Order Singular Value Decomposition (HOSVD)

The HOSVD of a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ involves computing the matrix SVDs of its modal unfoldings $\mathcal{A}_{(1)}, \ldots, \mathcal{A}_{(d)}$. This results in a representation of \mathcal{A} as a sum of rank- 1 tensors.

```
function [S,U] = HOSVD(A)
% A is an n(1)-by-\ldots..-by-n(d) tensor.
% U is a length-d cell array with the
% property that U{k} is the left singular
% vector matrix of A's mode-k unfolding.
% S is an n(1)-by-\ldots-by-n(d) tensor given by
% A x1 U{1} x2 U{2} ... xd U{d}
S = A;
for k=1:length(A.size)
    C = tenmat (A,k);
    [U{k},Sigma,V] = svd(C.data);
    S = ttm(S,U{k},,k);
```

end

CP

- The CP model is a special case of the Tucker model, where the core tensor is superdiagonal and the number of components in the factor matrices is the same.

Solving by ALS (alternating least squares) framework

```
n = [ [ 5 6 7 7 ]; rmax = 35;
% Generate a random tensor
A = tenrand(n);
for r = 1:rmax
    % Find the closest length-r ktensor
    X = cp_als(A,r);
    % Display the fit
    E = double(X)-double(A);
    fit = norm(reshape(E,prod(n),1));
    fprintf('r = %1d, fit = %5.3e\n',r,fit);
end
```

The CP Approximation Problem
Given $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and r, determine $\lambda \in \mathbb{R}^{r}, F \in \mathbb{R}^{n_{1} \times r}$, $G \in \mathbb{R}^{n_{2} \times r}$, and $H \in \mathbb{R}^{n_{3} \times r}$ so that

$$
\mathcal{A} \approx[[\lambda ; F, G, H]]=\mathcal{X}
$$

What About r ?

In the CP approximation problem we have assumed that r, the length of the approximating ktensor, is given:

$$
\mathcal{A} \approx \mathcal{X}=\sum_{j=1}^{r} \lambda_{j} U_{1}(:, j) \circ \cdots \circ U_{d}(:, j)
$$

We can think of \mathcal{X} as a rank-r approximation to \mathcal{A}.

Background Model Estimation via Tensor Factorization

(b) A $8 \times 8 \times 3 \times 330$ sub-tensor at pixel $(49,65)$

(a) Background of the Hall Monitor sequence

Listing 7.13 Background estimation for the HallMonitor sequence.

```
% Copyrggt 2008 Byh Huy Phan and Andrzej Cichocki
    % Load Hall sequence
clear
load Hall4Dtensor
%% Process full block
sT = size(T);
blksize = 8;
d=zeros(sT(4), prod(sT(1:2))/blksize^2);
9 kblk = 0;
xy = zeros(1,2);
for xu = 1:8:sT(1)-7
    for yu = 1:8:sT(2)-7
        kblk = kblk + 1;
        Tblk = T(xu:xu+blksize-1, yu:yu+blksize-1,:,:);
        %% Factorize subtensor with Parafac algorithms R = 1
        Yblk = permute(tensor(Tblk),[[\begin{array}{llll}{4}&{1}&{2}&{3}\end{array}]);
        options = struct('verbose',1,'tol',1e-6,'maxiters',500,
            'init',2,'nonlinearproj',1);
        [X_hals,Uinit, A_,ldam, iter] = parafac_hals(Yblk,1,options);
        d(:,kblk) = double(A-{1});
        xy(kblk,:) = [xu yu];
    end
end
%% Find stationary blocks and build background image
maxd = max(d); mind = min(d);
thresh = 0.005;
Imbgr = zeros(sT(1:3));
for k = 1:size(d,2);
    edges = [mind(k):thresh:maxd(k) maxd(k)+eps] ;
    [n,bin] = histc(d(:,k), edges);
    m}=\mathrm{ mode(bin);
    indbgr = find((d(:,k) \geqedges(m)) & (d(:,k)\leq edges(m+1)));
    bgrblk = median(T(xy(k,1):xy(k,1)+blksize-1,
        xy (k,2):xy(k,2) +blksize-1,:, indbgr),4);
    Imbgr(xy(k,1):xy(k,1)+blksize-1, xy (k,2):xy(k,2)+blksize-1,:) = bgrblk;
end
%% Display the estimated background image
imshow(Imbgr)
```


Background Subtraction via Tensor Decomposition

Incremental Tensor Learning

Interested in stream processing?

Incremental Tensor Subspace Learing

Incremental and Multifeature


```
Algorithm 1 Proposed iHoSVD algorithm.
    function incremental \(\operatorname{HoSVD}\left(\mathcal{T}_{t}, r^{(n)}, t^{(n)}\right)\)
        \(\mathcal{S}_{t} \leftarrow \mathcal{T}_{t}\)
        if \(t=0\) then \(\quad \triangleright\) Performs the standard rank \(-r\) SVD
            for \(i=1\) to \(n\) do
                    \(\left[\mathbf{U}_{t}^{(n)}, \boldsymbol{\Sigma}_{t}^{(n)}, \mathbf{V}_{t}^{(n)}\right] \leftarrow \operatorname{SVD}\left(\mathcal{T}_{t}^{(n)}, r^{(n)}, t^{(n)}\right)\)
            end for
        else \(\quad \triangleright\) Performs the incremental rank- \(r\) SVD
            for \(i=1\) to \(n\) do
                    \(\left[\mathbf{U}_{t}^{(n)}, \boldsymbol{\Sigma}_{t}^{(n)}, \mathbf{V}_{t}^{(n)}\right] \leftarrow \operatorname{iSVD}\left(\mathcal{T}_{t}^{(n)}, r^{(n)}, t^{(n)}, \mathbf{U}_{t-1}^{(n)}, \boldsymbol{\Sigma}_{t-1}^{(n)}, \mathbf{V}_{t-1}^{(n)}\right)\)
            end for
        end if
        \(\mathcal{S}_{t} \leftarrow \mathcal{T}_{t} \times_{1}\left(\mathbf{U}_{t}^{(1)}\right)^{T} \ldots \times_{n}\left(\mathbf{U}_{t}^{(n)}\right)^{T} \triangleright \times_{n}\) denotes the \(n\)-mode tensor times matrix
        return \(\mathcal{S}_{t}, \mathbf{U}_{t}^{(1)}, \ldots, \mathbf{U}_{t}^{(n)}\)
    end function
```


Incremental and Multifeature

A total of 8 features are extracted:

1) red channel,
2) green channel,
3) blue channel,
4) gray-scale,

5) local binary patterns (LBP),
6) spatial gradients in horizontal direction,
7) spatial gradients in vertical direction, and
8) spatial gradients magnitude.

Incremental and Multifeature

Online Stochastic

- Let say $N^{\text {th }}$ order observation tensor y
- corrupted by outliers, \mathcal{E}
- Main assumption
$-y$ can be reconstructed by the combination of
- low-rank component, \mathcal{X}
- sparse component, \mathcal{E}
- convex optimization framework

$$
\min _{\mathcal{X}, \mathcal{E}} \frac{1}{2} \sum_{i=1}^{N}\left\|\mathcal{Y}_{i}-\mathcal{X}_{i}-\mathcal{E}_{i}\right\|_{F}^{2}+\lambda_{1}\left\|\mathcal{X}_{i}\right\|_{*}+\lambda_{2}\left\|\mathcal{E}_{i}\right\|_{1},
$$

ONTDDCont...

- Advantages
- no batch processing
- iteratively update the basis
- used for each $i^{t h}$ mode
- Major Processing: 3 Steps
- Low-rank approximation
- Initialize the basis, L
- Bilateral Random Projections (BRP) method

$$
L=Y_{1}\left(A_{1}^{T} Y_{1}\right)^{-1} Y_{2}^{T}
$$

- L, Y, A are all random matrices
- speed-up low-rank recovery: fast convergence
- SVD decay slowly

Experimental Evaluations

- Qualitative Comparison
- White: True positive (TP) pixels
- Black: True negatives (TN) pixels
- Red: False positives (FP) pixels
- Green: False negatives (FN) pixels

LRSLibrary

The LRSLibrary provides a collection of low-rank and sparse decomposition algorithms in MATLAB. The library was designed for motion segmentation in videos, but it can be also used or adapted for other computer vision problems. Currently the LRSLibrary contains a total of 103 matrix-based and tensor-based algorithms.

BGSLibrary

The BGSLibrary provides an easy-to-use C++ framework based on OpenCV to perform background subtraction (BGS) in videos. The BGSLibrary compiles under Linux, Mac OS X and Windows. Currently the library offers 37 BGS algorithms.

Ginesnか Enal

