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Abstract. Nowadays we are in the big data era. The high-dimensionality of
data imposes big challenge on how to process them effectively and efficiently.
Fortunately, in practice data are not unstructured. Their samples usually lie
around low-dimensional manifolds and have high correlation among them. Such
characteristics can be effectively depicted by low rankness. As an extension to
the sparsity of first order data, such as voices, low rankness is also an effective
measure for the sparsity of second order data, such as images. In this paper, I
review the representative theories, algorithms and applications of the low rank
subspace recovery models in data processing.

1. Introduction. Sparse representation and compressed sensing has achieved tremen-
dous success in practice. They naturally fit for order-one data, such as voices and
feature vectors. However, in applications we are often faced with various types of
data, such as images, videos, and genetic microarrays. They are inherently matrices
or even tensors. Then we are naturally faced with a question: how to measure the
sparsity of matrices and tensors?

Low-rank models are recent new tools that can robustly and efficiently handle
high-dimensional data. Although rank has been used in statistics as a regularizer of
matrices, e.g., reduced rank regression (RRR) [61], and in three-dimensional stereo
vision [50], rank constraints are ubiquitous, the surge of low-rank models in recent
years was inspired by sparse representation and compressed sensing. There has been
systematic development on new theories and applications. In this background, rank
is interpreted as the measure of the second order (i.e., matrix) sparsity1, rather
than merely a mathematical concept. To illustrate this, we take image and video
compression as an example. To achieve effective compression, we have to fully
utilize the spatial and temporal correlation in images or videos. Take the Netflix
challenge2 (Figure 1) as another example, to infer the unknown user ratings on
videos, one has to consider both the correlation between users and the correlation
between videos. Since the correlation among columns and rows is closely connected
to matrix rank, it is natural to use rank as a measure of the second order sparsity.
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1The first order sparsity is the sparsity of vectors, whose measure is the number of nonzeros,

i.e., the !0 norm ‖ · ‖0.
2Netflix is a video-renting company, which owns a lot of users’ ratings on videos. The user/video

rating matrix is very sparse. The Netflix company offered one million US dollars to encourage im-
proving the prediction on the user ratings on videos by 10%. See http://www.netflixprize.com/
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Figure 1. The Netflix challenge is to predict the unknown ratings
of users on videos.

In the following, I review the recent development on low-rank models3. I first
introduce linear models in Section 2, then nonlinear ones in Section 3, where the
former are classified as single subspace models and multi-subspace ones. Theoretical
analysis on some linear models, including exact recovery, closed-form solutions,
and block-diagonality structure, is also provided in Section 2. Then I introduce
commonly used optimization algorithms for solving low-rank models in Section 4,
which can be classified as convex, non-convex, and randomized ones. Next, I review
representative applications in Section 5. Finally, I conclude the paper in Section 6.

2. Linear Models. The recent boom of low-rank models started from the matrix
completion (MC) problem [6] proposed by E. Candès in 2009. We introduce linear
models first. Although they look simple, theoretical analysis show that linear models
are very robust to strong noises and missing values. In real applications, they also
have sufficient data representation power.

2.1. Single Subspace Models. Single subspace models are to extract one overall
subspace from data. The most famous one may be the MC problem, proposed by
E. Candès. It is as follows. Given the values of a matrix D at some locations,
whether we can recover the whole matrix? This is a very general mathematical
model for various problems, such as the above-mentioned Netflix challenge and the
measurement of genetic microarrays. Obviously, the answer to this question is non-
unique. Observing that we should consider the correlation among matrix columns
and rows, E. Candès suggested to choose the solution A with the lowest rank:

min
A

rank(A), s.t. πΩ(A) = πΩ(D), (1)

where Ω is the set of indices where the entries are known, πΩ is the projection
operator that keeps the values of entries in Ω while filling the remaining entries
with zeros. The MC problem is to recover the low-rank structure in the case of

3There has been an excellent review on low-rank models in image analysis by Zhou et al. [82].
However, my review differs significantly from [82]. My review introduces much more low-rank
models, e.g., tensor completion and recovery, multi-subspace models, and nonlinear models, while
[82] mainly focuses on matrix completion and Robust PCA. My review also provides theoretical
analysis and randomized algorithms.
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missing values. Shortly, E. Candès further considered MC with noise [5]:

min
A

rank(A), s.t. ‖πΩ(A)− πΩ(D)‖2F ≤ ε, (2)

in order to handle the case when the observed data are noisy, where ‖ · ‖F is the
Frobenius norm.

When considering the low-rank recovery problem in the case of strong noises,
it seems that this problem is well solvable by the traditional Principal Component
Analysis (PCA). However, the traditional PCA is effective in accurately recovering
the underlying low-rank structure only when the noises are Gaussian. If the noises
are non-Gaussian and strong, even a few outliers can make PCA fail. Due to the
great importance of PCA in applications, many scholars spent a lot effort on ro-
bustifying PCA, proposing many so-called “robust PCAs.” However, none of them
has a theoretical guarantee that under certain conditions the underlying low-rank
structure can be exactly recovered. In 2009, Chandrasekaran et al.[7] and Wright et
al. [68] proposed Robust PCA (RPCA) simultaneously. The problem they consid-
ered is how to recover the low-rank structure when the data have sparse and large
outliers:

min
A,E

rank(A) + λ‖E‖0, s.t. A+E = D, (3)

where ‖E‖0 stands for the number of nonzeros in E. Shortly, E. Candè joined J.
Wright et al.’s work and obtained stronger results. Namely, the matrix can have
missing values. The generalized model is [4]:

min
A,E

rank(A) + λ‖E‖0, s.t. πΩ(A+E) = πΩ(D). (4)

In their paper, they also discussed a generalized RPCA model which involves dense
Gaussian noises [4]:

min
A,E

rank(A) + λ‖E‖0, s.t. ‖πΩ(A+E)− πΩ(D)‖2F ≤ ε. (5)

Chen et al. [9] considered the case that noises cluster in sparse columns and
proposed the Outlier Pursuit model, which replaces ‖E‖0 in the RPCA model with
‖E‖2,0, i.e., counting how many $2 norms of columns of E are zeros.

When the data are tensor-like, Liu et al. [42] generalized matrix completion to
tensor completion. Although tensors have a mathematical definition of rank, which
is based on the CP decomposition [31], it is not computable. So Liu et al. proposed
a new rank for tensors, which is defined as the sum of the ranks of matrices unfolded
from the tensor in different modes. Their tensor completion model is thus: given
the values of a tensor at some entries, recover the missing values by minimizing this
new tensor rank. Also using the same new tensor rank, Tan et al. [60] generalized
RPCA to tensor recovery. Namely, given a tensor, decompose it as a sum of two
tensors, one having a low new tensor rank, the other being sparse.

There are also matrix factorization based models, such as nonnegative matrix
factorization [34]. Such models could be casted as low-rank models. However, they
are better viewed as optimization techniques, as mentioned at the end of Section 4.2.
So I will not elaborate them here. Interested readers may refer to several excellent
reviews on matrix factorization based methods, e.g., [11, 59, 65].

To sum up, single-subspace models could be viewed as extensions of the tradi-
tional PCA, which is mainly for denoising data and finding common components.
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2.2. Multi-subspace models. MC and RPCA can only extract one subspace from
data. They cannot describe finer details of data within this subspace. The simplest
case of finer structure is the multi-subspace model, i.e., data distribute around some
subspaces. We need to find these subspaces. This problem is called the Generalized
PCA (GPCA) problem [62] or subspace clustering [63], which has a lot of solution
methods, such as the algebraic method and RANSAC [63], but none of them have
a theoretical guarantee. The emergence of sparse representation offers a new way
to this problem. In 2009, E. Elhamifar and R. Vidal proposed the key idea of self-
representation, i.e., using other samples to represent every sample. Based on self-
representation, they proposed the Sparse Subspace Clustering (SSC) model [14, 15]
such that the representation matrix is sparse:

min
Z,E

‖Z‖0 + λ‖E‖0, s.t. D = DZ+E, diag(Z) = 0, (6)

where the constraint diag(Z) = 0 is to prevent using the sample itself to represent a
sample. Inspired by their work, Liu et al. proposed the Low-Rank Representation
(LRR) model [38, 39]:

min
Z,E

rank(Z) + λ‖E‖2,0, s.t. D = DZ+E. (7)

The reason of enforcing the low-rankness of Z is to enhance the correlation among
the columns of Z so as to boost the robustness against noise. The optimal represen-
tation matrix Z∗ of SSC and LRR could be used as a measure of similarity between
samples. Utilizing (|Z∗|+|Z∗,T |)/24 to define the similarity between samples (|Z∗| is
the matrix whose entries are the absolute values of those of Z∗), one can cluster the
data into several subspaces via spectral clustering. Zhuang et al. further required
Z∗ to be nonnegative and sparse, and applied Z∗ to semi-supervised learning [84].

LRR requires that the samples are sufficient. In the case of insufficient samples,
Liu and Yan [41] proposed the Latent LRR model:

min
Z,L,E

rank(Z) + rank(L) + λ‖E‖0, s.t. D = DZ+ LD+E. (8)

They call DZ as the Principal Feature and LD the Salient Feature. Z is used for
subspace clustering and L is used for extracting discriminant features for recogni-
tion. As an alternative way, Liu et al. [44] proposed the Fixed Rank Representation
(FRR) model:

min
Z,Z̃,E

‖Z− Z̃‖2F + λ‖E‖2,0, s.t. D = DZ+E, rank(Z̃) ≤ r, (9)

where Z̃ is used for measuring the similarity between samples.
To further improve the accuracy of subspace clustering, Lu et al. [45] proposed

using Trace Lasso to regularize the representation vector:

min
Z,E

‖Ddiag(Zi)‖∗ + λ‖Ei‖0, s.t. Di = DZi +Ei, i = 1, · · · , n, (10)

where Zi is the ith column of Z, ‖Ddiag(Zi)‖∗ is called the Trace Lasso of Zi, and
‖ · ‖∗ is the nuclear norm of a matrix (sum of singular values). When the columns
of D are normalized in the $2-norm, Trace Lasso has an appealing interpolation
property:

‖Zi‖2 ≤ ‖Ddiag(Zi)‖∗ ≤ ‖Zi‖1.

4In their later work [38], Liu et al. changed to use |UZ∗UT
Z∗ | as the similarity matrix, where

the columns of UZ∗ are the left singular vectors of the skinny SVD of Z∗. For the reason, please
refer to Section 2.3.2.
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Moreover, the left hand side is achieved when the data are completely correlated
(the columns being the same vector or the negative of the vector), while the right
hand side is achieved when the data are completely uncorrelated (the columns being
orthogonal). Therefore, Trace Lasso has the characteristic of being adaptive to the
correlation among samples. This model is called Correlation Adaptive Subspace
Segmentation (CASS).

For better clustering of tensor data, Fu et al. proposed the Tensor LRR mod-
el [19], so as to fully utilize the information of tensor in different modes.

In summary, multi-subspace models can model the data structure much better
than the single-subspace ones. Their main purpose is to cluster data, drastically in
contrast to that of single-subspace ones, i.e., to denoise data.

2.3. Theoretical Analysis. The theoretical analysis on low-rank models is rela-
tively rich. It consists of the following three parts.

2.3.1. Exact Recovery. The above-mentioned low-rank models are all discrete op-
timization problems, most of which are NP-hard, which incurs great difficulty in
efficient solution. To overcome this difficulty, a common way is to approximate dis-
crete low-rank models as convex programs. Roughly speaking, the convex function
(over the unit ball of $∞ norm) “closest” to the $0 pseudo-norm ‖ ·‖0 is the $1 norm
‖ · ‖1, i.e., the sum of absolute values of entries, and the convex function (over the
unit ball of matrix spectral norm) “closest” to rank is the nuclear norm ‖ ·‖∗. Thus,
all the above discrete problems can be converted into convex programs, which can be
solved much more efficiently. However, this naturally brings a question: can solving
a convex program result in the ground truth solution? For most low-rank models
targeting on a single subspace, such as MC [6], RPCA [4], RPCA with missing
values [4], and Outlier Pursuit [9, 74], the answer is affirmative. Briefly speaking,
if the outlier is sparse and uniformly random and the ground truth matrix is of low
rank, then the ground truth matrix can be exactly recovered. What is surprising is
that the exact recoverability is independent on the magnitude of outliers. Instead,
it depends on the sparsity of outliers. Such results ensure that the low-rank models
for single subspace recovery are very robust. This characteristic is unique when
compared with the traditional PCA. Unfortunately, for multi-subspace low-rank
models, only LRR has relatively thorough analysis [40]. However, Liu et al. only
proved that when the proportion of outliers does not exceed a threshold, the row
space of Z0 and which samples are outliers can be exactly known, where Z0 is given
by UZ∗UT

Z∗ , in which UZ∗ΣZ∗VT
Z∗ is the skinny SVD of Z∗. The analysis did not

answer whether Z0 and E0 themselves can be exactly recovered. Fortunately, when
applying LRR to subspace clustering, we only need the row space of Z0.

When data are noisy, it is inappropriate to use the noisy data to represent the
data themselves. A more reasonable way is to denoise the data first and then apply
self-representation on the denoised data, resulting in modified LRR and Latent LRR
models:

min
Z,A,E

‖Z‖∗ + λ‖E‖2,1, s.t. D = A+E,A = AZ, (11)

and

min
Z,L,A,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖1, s.t. D = A+E,A = AZ+ LA. (12)

By utilizing the closed-form solutions discovered in the following subsection, Zhang
et al. [76] proved that the solutions of modified LRR and Latent LRR can be
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expressed as that of corresponding RPCA models:

min
A,E

rank(A) + λ‖E‖2,1, s.t. D = A+E, (13)

and
min
A,E

rank(A) + λ‖E‖1, s.t. D = A+E, (14)

respectively. So the exact recovery results of RPCA [4] and Outlier pursuit [9, 74]
can be applied to the modified LRR and Latent LRR models, where again only the
column space of D and which samples are outliers can be recovered.

2.3.2. Closed-form Solutions. An interesting property of low-rank models is that
they may have closed-form solutions when the data are noiseless. In comparison,
sparse models do not have such a property. Wei and Lin [66] analyzed the mathe-
matical properties of LRR. They first found that the noiseless LRR model:

min
Z

‖Z‖∗, s.t. D = DZ, (15)

has a unique closed-form solution. Let the skinny SVD of D be UDΣDVT
D, then

the solution is VDVT
D, which is called the Shape Interaction Matrix in structure

from motion. Liu et al. [38] further found that the LRR with a general dictionary:

min
Z

‖Z‖∗, s.t. D = BZ, (16)

also has a unique closed-form solution: Z∗ = B+D, where B+ is the Moore-Penrose
pseudo-inverse of B. This result is generalized by Yu and Schuurmans [72] to
general unitary invariant norms, in which they found mode low-rank models with
closed-form solution. Favaro et al. also found some low-rank models which are
related to subspace clustering and have closed-form solutions [16]. Zhang et al. [73]
further found that the solution to noiseless Latent LRR (both discrete and convex
approximation) is non-unique and gave the complete closed-form solutions. In the
paper, they also found that discrete noise-less LRR (the E in (7) being 0) is actually
not NP-hard and further gave the complete closed-form solutions. To remedy this
issue of Latent LRR, based on their analysis, Zhang et al. [75] further proposed to
find the sparsest solution among the solution set of Latent LRR.

2.3.3. Block-diagonal Structure. Multi-subspace clustering models all result in a
representation matrix Z. For SSC and LRR, it can be proven that under the ideal
conditions, i.e., the data are noiseless and the subspaces are independent (i.e., none
of the subspaces can be represented by other subspaces), the optimal representa-
tion matrix Z∗ is block-diagonal. As each block corresponds to one subspace, the
block-structure of Z∗ is critical to subspace clustering. Surprisingly, Lu et al. [47]
proved that if Z is regularized by the squared Frobenius norm (the corresponding
model is called Least Squared Representation (LSR)), then under ideal condition-
s the optimal representation matrix Z∗ is also block-diagonal. Lu et al. further
proposed the Enforced Block-Diagonal (EBD) Conditions. As long as the regular-
izer for Z satisfies the EBD conditions, the optimal representation matrix under
the ideal conditions is block-diagonal [47]. The EBD conditions greatly extended
the range of possible choices of Z, which is no longer limited to sparsity or low-
rankness constraints. For subspace clustering models whose representation matrix
Z is solved column-wise, e.g., Trace-Lasso-based CASS (10), Lu et al. also pro-
posed the Enforced Block-Sparse (EBS) Conditions. As long as the regularizer on
the columns of Z satisfies the EBS conditions, the optimal representation matrix
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under the ideal conditions is also block-diagonal [45]. However, all the above results
are obtained under the ideal conditions. If the ideal conditions do not hold, i.e.,
when the data are noisy or when the subspaces are not independent, the optimal
Z will not be exactly block-diagonal, which may cause difficulty in the subsequent
subspace pursuit. To address this issue, based on the basic result in the spectral
graph theory that the algebraic multiplicity of the eigenvalue zero of the Laplacian
matrix equals the number of diagonal blocks in the weight matrix, Feng et al. [17]
proposed the block-diagonal prior. Adding the block-diagonal prior to the subspace
clustering models, an exactly block-diagonal representation matrix Z can be en-
sured even under non-ideal conditions, thus significantly improved the robustness
against noise.

The grouping effect among the representation coefficients, i.e., when the samples
are similar their representation coefficient vectors should also be similar, is also
helpful for maintaining the block-diagonal structure of the representation matrix
Z when the data are noisy. SSC, LRR, LSR, and CASS are all proven to have
the grouping effect. Hu et al. proposed general Enforced Grouping Effect (EGE)
Conditions [24], with which one can easily verify whether a regularizer has the
grouping effect.

To conclude, linear models are relatively simple yet powerful enough to model
complex data distributions. They can also have good mathematical properties and
theoretical guarantees.

3. Nonlinear Models. Linear models assume that the data distribute near some
low-dimensional subspaces. Such assumption can be easily violated in real applica-
tions. So developing nonlinear models is necessary. However, low-rank models for
clustering nonlinear manifolds are relatively few. A natural idea is to utilize the
kernel trick, proposed by Wang et al. [64]. The idea is as follows. Suppose that via
a nonlinear mapping φ, the set X of samples is mapped to linear subspaces in a high
dimensional space. Then the LRR model can be applied to the mapped sample set.
Suppose that the noises are Gaussian, the model is:

min
Z

‖φ(X)− φ(X)Z‖2F + λ‖Z‖∗.

Since ‖φ(X)− φ(X)Z‖2F = tr
[
(φ(X)− φ(X)Z)T (φ(X)− φ(X)Z)

]
, we obtain inner

products φ(X)Tφ(X). So we can introduce a kernel function K(x,y), such that
K(x,y) = φT (x)φ(y). Therefore, the above model can be written in a kernalized
form without introducing the nonlinear mapping φ explicitly. However, when the
noises are not Gaussian, the above kernel trick does not apply.

The other heuristic approach is to add Laplacian or hyper-Laplacian to the cor-
responding linear models. It is claimed that Laplacian or hyper-Laplacian can
capture the nonlinear geometry of the data distribution. For example, Lu et
al. [49] added the Laplacian regularization tr(ZLWZT ) to the objective function
of LRR, where LW is the Laplacian matrix of the weight matrix W in which
Wij = exp

(
−‖xi − xj‖2/σ

)
. Zheng et al. [81] added another form of Laplacian

regularization tr(DLZ̃D
T ) to the objective function of LRR, where D is the data

matrix and LZ̃ is the Laplacian matrix of Z̃ = (|Z|+ |ZT |)/2. Yin et al. considered
both Laplacian and hyper-Laplacian regularization in the nonnegative low-rank and
sparse LRR model [71].



8 ZHOUCHEN LIN

Although the modifications on linear models result in more powerful nonlinear
models, it is hard to analyze their properties. So their performance may heavily
depend on the choice of parameters.

4. Optimization Algorithms. Once we have a mathematical model, we need to
solve it efficiently. The discrete low-rank models in Section 2 are mostly NP-hard.
So most of the time they could only be solved approximately. A common way is to
convert them into continuous optimization problems. There are two ways to do so.
The first way is to convert them into convex programs. For example, as mentioned
above, one may replace the $0 pseudo-norm ‖ ·‖0 with the $1 norm ‖ ·‖1 and replace
rank with the nuclear norm ‖·‖∗. Another way is to convert to non-convex programs.
More specifically, it is to use a non-convex continuous function to approximate the
$0 pseudo-norm ‖ · ‖0 (e.g., using the $p pseudo-norm ‖ · ‖p(0 < p < 1)) and
rank (e.g., using the Schatten-p pseudo-norm (the $p pseudo-norm of the vector
of singular values)). There is still another way. It is to represent the low-rank
matrix as a product of two matrices, the number of columns of the first matrix and
the number of rows of the second matrix both being the expected rank, and then
update the two matrices alternately until they do not change. This special type of
algorithm does not appear in the sparsity based models. The advantage of convex
programs is that their global optimal solutions can be relatively easy obtained.
The disadvantages include that the solution may not be sufficiently low-rank or
sparse. In contrast, the advantage of non-convex optimization is that lower-rank or
sparser solutions can be obtained. However, their global optimal solution may not
be obtained. The quality of solution may heavily depend on the initialization. So
the convex and non-convex algorithms complement each other. By fully utilizing
the characteristics of problems, it is also possible to design randomized algorithms
so that the computation complexity can be greatly reduced.

4.1. Convex Algorithms. Convex optimization is a relatively mature field. There
are a lot of polynomial complexity algorithms, such as interior point methods. How-
ever, for large scale or high dimensional data, we often need O(npolylog(n)) com-
plexity, where n is the number or the dimensionality of samples. Even O(n2) com-
plexity is unacceptable. Take the RPCA problem as example, if the matrix size is
n × n, then the problem has 2n2 unknowns. Even if n = 1000, which corresponds
to a relatively small matrix, the number of unknowns already reaches two millions.
If we solve RPCA with the interior point method, e.g., using the CVX package [22]
by Stanford University, then the time complexity of each iteration is O(n6), while
the storage complexity is O(n4). If solved on a PC with 4GB memory, the size of
matrix will be limited to 80 × 80. So to make low-rank models practical, we have
to design efficient optimization algorithms.

Currently, all the optimization methods for large scale computing are first or-
der methods. Representative algorithms include Accelerated Proximal Gradient
(APG) [2, 54], the Frank-Wolfe algorithm [18, 26], and the Alternating Direction
Method (ADM) [36, 37].

APG is basically for unconstrained problems:

min
x

f(x), (17)
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where the objective function is convex and C1,1, i.e., differentiable and its gradient
is Lipschitz continuous:

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x,y. (18)

The convergence rate of traditional gradient descent can only be O(k−1), where k
is the number of iterations. However, Nesterov constructed an algorithm [54]:

xk = yk − L−1
f ∇f(yk),

tk+1 =
1 +

√
1 + 4t2k
2

,

yk+1 = xk +
tk − 1

tk+1
(xk − xk−1),

(19)

where x0 = y1 = 0 and t1 = 1. whose convergence rate can achieve O(k−2). Later,
Beck and Teboulle generalized Nesterov’s algorithm for the following problem:

min
x

g(x) + f(x), (20)

where g is convex, whose proximity operator minx g(x) +
α
2 ‖x−w‖2 is easily solv-

able, and f is a C1,1 convex function [2], thus greatly extended the applicable range
of Nesterov’s method. APG needs to estimate the Lipschitz coefficient Lf of the
gradient of the objective function. If the Lipschitz coefficient is estimated too con-
servatively (too large), the convergence speed will be affected. So Beck and Teboulle
further proposed a back-tracking strategy to estimate the Lipschitz coefficient adap-
tively, so as to speed up convergence [2]. For some problems with special structures,
APG can be generalized (Generalized APG, GAPG) [85], such that different Lip-
schitz coefficients could be chosen for different variables, thus the convergence can
be made faster. For problems with linear constraints:

min
x

f(x), s.t. A(x) = b, (21)

where f is convex and C1,1 and A is a linear operator, one may add the squared
constraint to the objective function as a penalty, converting the problem to an
unconstrained one:

min
x

f(x) +
β

2
‖A(x)− b‖2, (22)

then solve (22) by APG. To speed up, the penalty parameter β should increase
gradually along with iteration, rather than being set at a large value from the
beginning. This important trick is called the continuation technique [20].

For problems with a convex set constraint:

min
x

f(x), s.t. x ∈ C, (23)

where f is convex and continuously differentiable and C is a compact convex set,
Frank-Wolfe-type algorithms [18, 26]:

gk = argmin
g∈C

〈g,∇f(xk)〉,

xk+1 = (1− γk)xk + γkgk, where γk =
2

k + 2
,

(24)

can be used to solve (23). In particular, when the constraint set C is a ball of
bounded nuclear norm, gk can be relatively easily computed by finding the singular
vectors associated to the leading singular values of ∇f(xk) [26]. Such a particular
problem can also be efficiently solved by transforming it into a positive semi-definite
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program [27], where only the eigenvector corresponding to the largest eigenvalue of
a matrix is needed.

ADM fits for convex problems with separable objective functions and linear or
convex-set constraints:

min
x,y

f(x) + g(y), s.t. A(x) + B(y) = c, (25)

where f and g are convex functions and A and B are linear operators. ADM is a
variant of the Lagrange Multiplier method. ADM first constructs an augmented
Lagrangian function [37]:

L(x,y,λ) = f(x) + g(y) + 〈λ,A(x) + B(y)− c〉+ β

2
‖A(x) + B(y)− c‖2, (26)

where λ is the Lagrange multiplier and β > 0 is the penalty parameter, then updates
the two variables alternately by minimizing the augmented Lagrangian function
with the other variable fixed [37]:

xk+1 = argmin
x

L(x,yk,λk),

yk+1 = argmin
y

L(xk+1,y,λk).
(27)

Finally, ADM updates the Lagrange multiplier [37]:

λk+1 = λk + β(A(xk+1) + B(yk+1)− c). (28)

The advantage of ADM is that its subproblems are simpler than the original prob-
lem. They may even have closed-form solutions. When the subproblems are not

easily solvable, one may consider approximating the squared constraint
β

2
‖A(x) +

B(y)− c‖2 in the augmented Lagrangian function with its first order Taylor expan-
sion plus a proximal term, to make the subproblem even simpler. This technique is
called the Linearized Alternating Direction Method (LADM) [37]. If after lineariz-
ing the squared constraint in the augmented Lagrangian function the subproblem
is still not easily solvable, one may further linearize the C1,1 component of the ob-
jective function [36]. For multi-block (the number of blocks of variables is greater
than 2) convex programs, a naive generalization of the two-block ADM may not
converge [8]. However, if we change the serial update with parallel update and
choose some parameters appropriately, the convergence can still be guaranteed,
even if linearization is used [36]. In all the above-mentioned ADM algorithms, the
penalty parameter β is allowed to increase dynamically so that the convergence can
be accelerated and the difficulty in tuning an optimal penalty parameter can be
overcome [36, 37].

When solving the low-rank models with convex surrogates, we often face with
the following subproblem:

min
X

‖X‖∗ +
α

2
‖X−W‖2F ,

which has a closed-form solution [3]. Suppose that the SVD of W is W = UΣVT ,
then the optimal solution is X = UΘα−1(Σ)VT , where

Θε(x) =






x− ε, if x > ε,
x+ ε, if x < −ε,
0, if − ε ≤ x ≤ ε.

(29)

So solving low-rank models with nuclear norm, SVD is often indispensable. For
m×n matrices, the time complexity of full SVD is O(mnmin(m,n)). So in general
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the computation cost for solving low-rank models with nuclear norm is large. This
issue is more critical when m and n is large. Fortunately, from (29) one can see
that it is unnecessary to compute the singular values not exceeding α−1 and their
associated singular vectors, because these singular values will be shrunk to zeros,
thus do not contribute to X. So we only need to compute singular values greater
than α−1 and their corresponding singular vectors. Such partial SVD computation
can be achieved by PROPACK [33] and accordingly the computation cost reduces
to O(rmn), where r is the expected rank of the optimal Z. It is worth noting that
PROPACK can only provide expected number of leading singular values and their
singular vectors. So we have to dynamically predict the value of r when calling
PROPACK [37]. When the solution is not sufficiently low-rank, such as Transform
Invariant Low-Rank Textures (TILT) [78] ((30) and Section 5.5) which has wide
applications in image processing and computer vision, one can use incremental
SVD [58] for acceleration.

Convex algorithms have the advantage of being independent of initialization.
However, the quality of their solutions may not be good enough. So exploring
nonconvex algorithms is another hot topic in low-rank models.

4.2. Nonconvex Optimization Algorithms. Nonconvex algorithms trade the
initialization independency for better solution quality and possibly faster speed as
well. For unconstrained problems which use the Schatten-p norm to approximate
rank and the $p norm to approximate the $0 norm, an effective way is the Iter-
atively Reweighted Least Squares (IRLS) [46]. To be more precise, approximate

tr
(
(XXT )p/2

)
with tr

(
(XkXT

k )
(p/2)−1(XXT )

)
and |xi|p with |x(k)

i |p−2x2
i , where

Xk is the value of low-rank matrix X at the kth iteration and x(k)
i is the ith com-

ponent of the sparse vector x at the kth iteration. So each time to update X, a
matrix equation needs to be solved, while updating x needs solving a linear system.
Another way is to apply the idea of APG. To be specific, linearize the C1,1 compo-
nent of the objective function. Then in each iteration one only needs to solve the
following subproblem:

min
X

n∑

i=1

g(σi(X)) +
α

2
‖X−W‖2F ,

where g is a non-decreasing concave function on {x ≥ 0}, such as xp(0 < p < 1).
Lu et al. [48] provided an algorithm to solve the above subproblem. Another func-
tion that approximates rank is the Truncated Nuclear Norm (TNN) [25]: ‖X‖r =
min(m,n)∑
i=r+1

σi(X). TNN does not involve the largest r singular values. So it is not a

convex function. The intuition behind TNN is obvious. By minimizing TNN, the
tailing singular values will be encouraged to be small, while the magnitudes of the
first r singular values are unaffected. So a solution closer to a rank r matrix can be
obtained. TNN can be generalized by adding larger weights to smaller singular val-

ues, obtaining theWeighted Nuclear Norm (WNN) [23]: ‖X‖w,∗ =
min(m,n)∑

i=1
wiσi(X).

However, in this case in general the subproblem

min
X

n∑

i=1

‖X‖w,∗ +
α

2
‖X−W‖2F ,
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does not have a closed-form solution. Instead, a small-scale optimization w.r.t. the
singular values need to be solved numerically.

The third kind of methods for low-rank problems is to represent the expected
low-rank matrix X as X = ABT , where A and B both have r columns. Then A
and B can be updated alternately until they do not change [67]. The advantage
of this kind of methods is its simplicity. However, we have to estimate the rank of
low-rank matrix apriori and A and B may easily get stuck.

Nonconvex algorithms for low-rank models are much richer than convex ones.
The price paid is that their performance may heavily depend on initialization. In
this case, prior knowledge is important for proposing a good initialization.

4.3. Randomized Algorithms. All the above-mentioned methods, no matter for
convex or non-convex problems, their computation complexity is at least O(rmn),
where m×n is the size of the low-rank matrix that we want to compute. This is not
fast enough when m and n are both very large. To break this bottleneck, we have
to resort to randomized algorithms. However, we cannot reduce the whole com-
putation complexity simply by randomizing each step of a deterministic algorithm,
e.g., simply replacing SVD with linear-time SVD [13], because some randomized
algorithms are very inaccurate. So we have to design randomized algorithms based
on the characteristics of low-rank models. As a result, currently there is limited
work on this aspect. For RPCA, Liu et al. proposed the $1-filtering method [43].
It first randomly samples a submatrix Ds, with an appropriate size, from the data
matrix D. Then it solves a small-scale RPCA on Ds, obtaining a low-rank As and
a sparse Es, Next, it processes the sub-columns and sub-rows of D that Ds resides
on, using As, as they should belong to the subspaces spanned by the columns or
rows of As up to sparse errors. Finally, the low-rank matrix A that corresponds
to the original matrix D can be represented by the Nyström trick, without explicit
computing. The complexity of the whole algorithm is O(r3)+O(r2(m+n)), which
is linear with respect to the matrix size. For LRR and Latent LRR, Zhang et al.
found that if we denoise the data first with RPCA and then apply LRR or Latent
LRR on the denoised data, then their solutions can be expressed by the solution
of RPCA and vice versa. So the solutions of LRR and Latent LRR can be greatly
accelerated by reducing to RPCA [76].

Randomized algorithms could bring down the order of computation complexity.
However, designing randomized algorithms often needs to consider the characteristic
of the problems.

5. Representative Applications. Low-rank models have found wide application-
s in data analysis and machine learning. For example, there have been a lot of
papers on NIPS 2011 which discussed low-rank models. Below I introduce some
representative applications.

5.1. Video Denoising [29]. Image and video denoising can be conveniently formu-
lated as a matrix completion problem. In [29], Ji et al. first broke each of the video
frames into patches, then grouped the similar patches. For each group, the patches
are reshaped into vectors and assembled into a matrix. Next, the unreliable (noisy)
pixels are detected as those whose values deviate from the means of their corre-
sponding row vectors and the remaining pixels are considered reliable (noiseless).
The unreliable pixel values can be estimated by applying the matrix completion
model (2) to the matrix by marking them as missing values. After denoising all the
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Figure 2. Video denoising results, adapted from [29]. (a) The
results of VBM3D, without preprocessing the impulsive noise. (b)
The results of PCA, without preprocessing the impulsive noise. (c)
The results of VBM3D, with preprocessing the impulsive noise.
(d) The results of PCA, with preprocessing the impulsive noise.
(e) The results of Matrix Completion.

Figure 3. An example of keyword extraction by PRCA, adapted
from [63]. The sample document is from the Reuters dataset. The
blue words are keywords indicated by the sparse term E.

patches, each frame is restored by averaging the pixel values in overlapping patches.
Part of the results of video denoising are shown in Figure 2.

5.2. Keyword Extraction [51]. In document analysis, it is important to extract
keywords from documents. Let D be the unnormalized term frequency matrix,
where the row indices are the document IDs and the column indices are the term
IDs and the (i, j)-th entry is the frequency of the j-th term in the i-th document.
Then for documents of similar topics, many of the words are common, forming
the “background” topic, and each document should have its unique keywords to
discriminate it from others. This phenomenon makes keyword extraction naturally
fit for the RPCA model (3), where the sparse error E identifies keywords in each
document. One example of keyword extraction is shown in Figure 3.

5.3. Background Modeling [4]. Background modeling is to separate the back-
ground and the foreground from a video. The simplest case is that the video is taken
by a fixed video camera. It is easy to see that the background hardly changes. So
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Figure 4. Background modeling results, adapted from [4]. The
first column are frames of surveillance video, the second are the
background video, and the third are the foreground video (in ab-
solute value).

if putting each frame of the background as a column of a matrix, then the matrix
should be of low rank. As the foreground consists of moving objects, it often oc-
cupies only a small portion of pixels. So the foreground corresponds to the sparse
“noise” in the video. So we can obtain the RPCA model (3) for background mod-
eling, where each column of D, A, and E is a frame of the video, the background,
and the foreground, respectively, rearranged into a vector. Part of the results of
background modeling is shown in Figure 4.

5.4. Robust Alignment by Sparse and Low-Rank Decomposition (RASL)
[56]. The RPCA model for background modeling has to assume that the back-
ground has been aligned so as to obtain a low-rank background video. In the case
of misalignment, we may consider aligning the frames via appropriate geometric
transformation. So the mathematical model is:

min
τ,A,E

‖A‖∗ + λ‖E‖1, s.t. D ◦ τ = A+E, (30)

where D ◦ τ represents applying frame-wise geometric deformation τ to each frame,
which is a column ofD. Now (30) is a nonconvex optimization problem. For efficient
solution, Peng et al. [56] proposed to linearize τ locally and update the increment
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initial poses intermediate poses final poses

Figure 5. The iterative process of facial image alignment, adapted from [56].

Figure 6. Example of using TILT for image rectification, adapted
from [78]. The first row are the original image patches (in rectan-
gles) and their respective rectification transformations (in quadri-
laterals. The transformations are to map the quadrilaterals into
rectangles). The second row are the rectified image patches.

of τ iteratively. That is to say, first solve ∆τk from:

min
∆τk,A,E

‖A‖∗ + λ‖E‖1, s.t. D ◦ τk + J∆τk = A+E, (31)

then add ∆τk to τk as τk+1, where J is the Jacobian of D ◦ τ with respect to the
parameters of transformation τ . Under the affine transformation, part of the results
of facial image alignment are shown in Figure 5.

5.5. Transform Invariant Low-rank Textures (TILT) [78]. The purpose of
Transform Invariant Low-rank Textures (TILT) is to rectify an image patch D
with a geometric transformation τ , such that the content in patch becomes regular,
such as being rectilinear or symmetric. Such regularity could be depicted by low-
rankness. The mathematical formulation of TILT is the same as that of RASL (30).
The solution method is also identical. The difference resides in the interpretation on
the matrix D, which is now a rectangular image patch in a single image. Figure 6
gives examples of rectifying image patches under the perspective transform.

In principle, TILT should work for any parameterized transformations. Zhang
et al. [79] further considered TILT under generalized cylindrical transformations,
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Figure 7. Texture unwarping from buildings, using TILT under
generalized cylindrical transformations. Images are adapted
from [79].

which can be used for texture unwarping from buildings. Some examples are shown
in Figure 7.

TILT is also widely applied to geometric modeling of buildings [78], camera
self-calibration, and lens distortion auto-correction [80]. Due to its importance in
applications, Ren and Lin [58] proposed a fast algorithm for TILT to speed up its
solution by more than five times.

5.6. Motion Segmentation [38, 39]. Motion segmentation means to cluster the
feature points on moving objects in a video, such that each cluster corresponds
to an independent object. Then an object can be identified and tracked. For
each feature point, its feature vector consists of its image coordinate in each frame
and is a column of the data matrix D. Then subspace clustering models, such as
those in Section 2.2, could be applied to cluster the feature vectors and hence the
corresponding feature points. LRR (7) is regarded as one of the best algorithms
for segmenting the motion of rigid bodies [1]. Some of the examples of motion
segmentation are shown in Figure 8.

5.7. Image Segmentation [10]. Image segmentation is to partition an image into
homogenous regions. It can be viewed as a special clustering problem. Cheng et
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Figure 8. Examples of motion segmentation, adapted from [63].

Figure 9. Examples of image segmentation by LRR, adapted from [10].

al. [10] proposed to oversegment the image into superpixels, then extract usual
features from the superpixels. Next, they fused multiple features via an integrated
LRR model, where basically each feature corresponds to an LRR model. After
obtaining the global representation matrix Z∗, they applied normalized cut to a
graph whose weights are given by the similarity matrix (|Z∗| + |Z∗T |)/2 to cluster
the superpixels into clusters, each corresponding to an image region. Part of the
results of image segmentation are shown in Figure 9.

5.8. Gene Clustering [12]. Gene clustering is to group genes with similar func-
tionality. Identifying gene clusters from the gene expression data is helpful for the
discovery of novel functional gene interactions. Let D be the transposed gene ex-
pression data matrix, whose columns contain the expression levels of a gene in all
the samples and whose rows are the expression levels of all the genes in one sample.
Cui et al. [12] then applied the LRR model to D to cluster the genes. Two examples
of gene clustering are shown in Figure 10.

5.9. Image Saliency Detection [32]. Saliency detection is to detect the visually
salient regions in an image without understanding the content of the image. Motion
segmentation, image segmentation, and gene clustering all utilize the representation
matrix Z in LRR. In contrast, Lang et al. [32] proposed to utilize the sparse “noise”
E in LRR for image saliency detection. Note that salient regions in an image is
the “larruping” region. So if using other regions to “predict” salient regions, there
will be relatively large errors. Therefore, by breaking an image into patches and
extracting their features, the salient regions should correspond to those with large
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Figure 10. Clustering of genes from the yeast dataset by LRR.
(A) A heatmap of expression values of genes in Cluster C17. It
shows similar expression patterns of genes in different samples. (B)
A heatmap of expression values of genes in Cluster C14. It shows
different expression patterns of genes in different samples (marked
as a and b). The images are adapted from [12].

sparse “noise” E in the LRR model, where the data matrix D consists of the feature
vectors. Part of the examples of saliency detection are shown in Figure 11.

5.10. Other Applications. There have been many other applications of low-rank
models, such as partial duplicate image search [70], face recognition [57], struc-
tured texture repairing [35], man-made object upright orientation [30], photometric
stereo [69], image tag refinement [83], robust visual domain adaption [28], robust
visual tracking [77], feature extraction from 3D faces [52], ghost image removal
in computed tomography [21], semi-supervised image classification [84], image set
co-segmentation [53], and even audio analysis [53, 55], protein-gene correlation anal-
ysis, network flow abnormality detection, robust filtering and system identification.
Due to the space limit, I omit their introductions.

6. Conclusions. Low-rank models have found wide applications in many fields,
including signal processing, machine learning, and computer vision. In a few years,
there has been rapid development in theories, algorithms, and applications on low-
rank models. This review is only a sketchy introduction to this dynamic research
topic. Many real problems, if combining the characteristic of problem with proper
low-rankness constraints, very often we could obtain better results. In some prob-
lems, the raw data may not have a low-rank property. However, the low-rankness
could be enhanced by incorporating appropriate transforms (like the improvement of
RASL/TILT over RPCA). Some scholars did not check whether the data have low-
rank property or do proper pre-processing before claiming that low-rank constraints
do not work well. This should be avoided. From the above review, we can see that
low-rank models still lack research in the following aspects: generalization from
matrices to tensors, nonlinear manifold clustering, and low-complexity (polylog(n))
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Figure 11. Examples of image saliency detection, adapted
from [32]. The first column are the input images. The second
to fifth columns are the detection results of different methods. The
last column are the results of LRR-based detection method.

randomized algorithms, etc. Hope this review can attract more research in these
aspects.
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