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1997 Sandia Technical Report about ASCI Red:
"Although other distributed strategies for visualizing large data sets 
are also being considered, several parallel tools are currently being 
implemented directly on the ASCI Red machine to enable in 
situ visualization of machine capacity data sets thereby avoiding the 
need to move the data prior to visualization”

In Situ Visualization History
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2000 - 2005 - 79
2005 - 2010 - 284
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1990 - 2000 - 26
2000 - 2005 - 79
2005 - 2010 - 284
2010 - 2015 - 803
2015 - 2020 - 1,580
2020 - 2022 - 783 (~ 2,000 by 2025)
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In Situ Motivation - Early Days
Jackie Chen - Kwan-Liu Ma - Combustion simulation data that is multi-
scale, multi-variate, time varying and three-dimensional. The data was 
intrinsically intermittent and highly transient (turbulence, unsteady 
ignition and extinction events) necessitating performing the analysis and 
visualization in situ since we weren't able to store data at sufficient 
frequency and the IO rates and storage capacity were limited.
Success Story:  Then postdoc, Hongfeng Yu (now a professor at U. 
Nebraska), was resident at Sandia with Jackie where he immersed 
himself with combustion scientists to learn what their needs were. From 
this interaction he developed in situ multi-variate and particle 
visualization and in-situ parallel distance field computation with respect 
to dynamical turbulent flame surfaces.



Jackie Chen: Future requirements for in situ 
visualization, analytics, ML in simulation workflows
• Adaptive data placement for staging-based coupled scientific 

workflows to address complex and dynamic data exchange patterns 
exhibited by the workflows.
• Take advantage of application-specific data access patterns to 

adaptively place data with an awareness of the system network 
topology to reduce data access costs and enable efficient data 
sharing. 
• Identify and characterize the dynamic data access patterns of data 

consumer applications at runtime using a combination of user 
provided hints and knowledge of prior access behaviors.



Jackie Chen: Future requirements for in situ 
visualization, analytics, ML in simulation workflows 
(continued)

• Including visualization as part of a more complex simulation and 
data science workflow at exascale with triggers for steering 
analytics and reduced order modeling on the fly and 
visualization the results is a challenge.
• Programming which transient events to look for, extract, 

compute statistics on, and track forwards and backwards in time 
is still a challenge, especially for large multi-scale data.



CS Chang: Extreme-scale Fusion Simulation.  In 2005 DOE awarded the 
Prototype Fusion Simulation Project (FSP) Center for Plasma Edge Simulation (CPES), 
converted to SciDAC 2.
There was a need to monitor, during the simulation: 

- when and how the kinetic buildup of tokamak edge pressure induces a sudden MHD 
instability

- how turbulence is developed and affecting the edge pressure buildup
- how to steer the simulation by parameter injection

- Code coupling between kinetic XGC and an MHD code was a necessity for this work
- Scott Klasky’s DM group (then PPPL), led by Arie Shoshani (LBNL, then director of SDM 

center), used Kepler to create an in situ visualization workflow called EFFIS for code coupling
- Service oriented Architecture was used in EFFIS (End-to-end Framework for Fusion Integrated 

Simulation)
- eSimMon Dashboard was created for collaborative in situ visualization of the simulation data, 

including macroscopic plasma profile evolution, turbulent dynamics and code coupling status
- Nagiza Samatova (NCSU) added mathematical data-analysis capability in eSimMon
- Steve Parker (then U. Utah) added visually pin-pointed simulation analysis capability in eSimMon

- Use the mouse click on a spot to get the local result data
During SciDAC 3 and 4, Kepler was replaced by ADIOS code-coupling workflow framework.

In Situ Motivation - Early Days



Utilize a hybrid in situ monitoring and analysis method
• In-line analysis for well parallized part.
• On-line asynchronous analysis and visualization for poorly parallized but time-consuming part: off-

load the in situ analysis/visualization to independent analysis nodes.
• Utilize AI/ML in analysis nodes for feature detection, UQ, validation and simulation steering

• Simulation steering: AMR where needed, filter out known instabilities, etc.
• Analysis nodes also reduce and compress data for further post processing.
• Utilize accelerators as much as possible.
• Extend this technique for collaborative research on big experiments.

ADIOS+ EFFIS + eSimMon

CS Chang: Future requirements for in situ visualization, analysis 
and monitoring simulation workflows



• Electromagnetic turbulence could partially 
destroy the last closed magnetic surface called 
“separatrix” surface (white dashed line)

• At every simulation timestep, the fluctuating 
magnetic field data is asynchrously off-loaded to 
an analysis load for on-line visualization

- XGC simulation continues without 
interruption

• In-line visualization would have doubled the 
XGC simulation time (full-scale Summit is used)

• The Poincare visualization routine is difficult 
to be massively parallelized, like XGC.

v XGC simulation by S. Ku (PPPL)
v ADIOS2.0 data movement by S. Klasky’s group 

(ORNL)
v Poincare puncture-movie by D. Pugmire’s group 

(ORNL)

CS Chang: On-line visualization of Poincare puncture movie 
in XGC from fluctuating homoclinic tangle in ITER edge



Top In Situ Visualization Challenges - 2019 Dagstuhl Workshop
• Data quality and reduction, i.e., reducing data in situ and then exploring it post hoc, which is likely the form that will 

enable exploration of large data sets on future supercomputers.
• Workflow execution, i.e., how to efficiently execute specified workflows, including workflows that are very complex.
• Software complexity, heterogeneity, and user-facing issues, i.e., the challenges that prevent user adoption of in 

situ techniques because in situ software is complex, computational resources are complex, etc.
• Exascale systems, which will have billion-way concurrency and disks that are slow relative to their ability to 

generate data.
• Algorithmic challenges, i.e., algorithms will need to integrate into in situ ecosystems and still perform efficiently.
• Workflow specification, i.e., how to specify the composition of different tools and applications to facilitate the in situ

discovery process.
• Use cases beyond exploratory analysis, i.e., ensembles for uncertainty quantification and decision optimization, 

computational steering, incorporation of other data sources, etc.
• Exascale data, i.e., the data produced by simulations on exascale machines will, in many cases, be fundamentally 

different than that of previous machines.
• Cost models, which can be used to predict performance before executing an algorithm and thus be used to optimize 

performance overall.
• Convergence of HPC and Big Data for visualization and analysis, i.e., how can developments in one field, such as 

machine learning for Big Data, be used to accelerate techniques in the other?
H. Childs, J.C. Bennett, C. Garth (editors). In Situ Visualization for Computational Science, 
Springer, 2022



My In Situ Visualization Challenges and Opportunities
• Reproducibility



Reproducibility
National Academies of Sciences, Engineering, and Medicine, Reproducibility and 
Replicability in Science. The National Academies Press, 2019. [Online]. Available: 
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science 

Jean-Daniel Fekete, Juliana Freire. Exploring Reproducibility in Visualization. IEEE 
Computer Graphics and Applications, Institute of Electrical and Electronics Engineers, 
2020, 40 (5), pp.108-119. 

Reproducibility and Replicability (R&R)  tools e.g., ReproZip, Docker, Jupyter and 
repositories zenodo.org, osf.org—that make it easier to publish transparent, R&R results. 
It is worth noting that there are possible limitations, regarding humans, hardware, and 
software, that can hamper reproducibility. In particular, special hardware is an obstacle to 
reproducibility. Visualization is particularly rich in special hardware, from HPC to display 
technologies like VR, AR, wall-sized displays, and physical visualizations. 



Reproducibility

Michael Will, Quincy Wofford, John Patchett, David Rogers, Jonas Lukasczyk, and Christoph 
Garth. 2021. Developing and Evaluating In Situ Visualization Algorithms using Containers. 
ISAV'21: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. Association 
for Computing Machinery, New York, NY, USA, 6–11. 

EZ-ISAV - A work-in-progress towards a framework for easy construction of customizable in situ 
pipelines in container images. Designed for portability and ease of use, these images are intended 
to serve as proof-of-concept cases for in situ visualization and analysis research…reduce the 
overhead of developing and evaluating in situ techniques and provide improved reproducibility 
and portability of in situ visualization research. 

pantheonscience.org



My In Situ Visualization Challenges and Opportunities
• Reproducibility
• High Performance Data Movement



2
6

– Secondary ViSUS server in Utah
– Clients connect remotely
– Work without additional HPC resources

Workflow
• Data creation
• Data Management

Scalable Deployment: Exploration of 3.5PB of NASA Weather/Climate 
Data in Real Time

• 7km GEOS-5 “Nature Run”
• 1 dataset, 3.5 PB
• theoretically: openly accessible
• practically: precomputed pics

Distributed Resources
– 3.5 PB of data store in NASA
– Primary ViSUS server in LLNL

– Processing
– Analysis
– Visualization Simulation

Servers



DOE PSAAP2 Simulations of GE  Clean(er)  Coal Boilers
• Large scale turbulent combustion needs mm scale grids  

10^14 mesh cells 10^15 variables (1000x more than now)
• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation 
• LES  closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

60m

• Low Mach number approx. (pressure Poisson solve up to   
10^12    variables. 1M patches 10 B variables

• Radiation via Discrete Ordinates – many hypre solves 
Mira (cpus) or ray tracing Titan (gpus strong and weak 
scaling via AMR).

• FAST I/O needed PIDX for scalability



High Performance Data Movement for Real-Time 
Monitoring of Large Scale Simulations



My In Situ Visualization Challenges and Opportunities
• Reproducibility
• High Performance Data Movement
• Adaptive Meshes and High Order Simulation

§ Most large-scale simulation use adaptive meshes and/or high 
order basis functions, however, most visualization algorithms 
do not.  





AMR Visualization

F. Wang, I. Wald, Q. Wu, W. Usher, C. R. Johnson. “CPU Isosurface Ray Tracing 
of Adaptive Mesh Refinement Data,” In IEEE Transactions on Visualization and 
Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1142-1151. Jan, 2019.

NASA Exajet Landing GearColliding Black Holes



CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement Data

F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, C. R. Johnson. “CPU Ray Tracing of 
Tree-Based Adaptive Mesh Refinement Data,” In Eurographics Conference on Visualization (EuroVis) 
2020, Vol. 39, No. 3, 2020.



High-Order FEM Visualization

Mike Kirby and Bob Haimes

Counter-Rotating Vortex Vorticity

Topological Analysis of Fields
FEM Vorticity LSIAC Filtered 

Vorticity

Sampled LSIAC Filtered

LSIAC FilteredSampled



Iso-Geometric Analysis

Cottrell, J.A., Hughes, T.J. and Bazilevs, Y. Isogeometric Analysis: Toward Integration of 
CAD and FEA. John Wiley & Sons, 2009.
F. Massarwi, G. Elber. A B-spline based framework for volumetric object modeling, 
Computer-Aided Design, Volume 78, pp. 36-47, 2016.



My In Situ Visualization Challenges and Opportunities
• Reproducibility
• High Performance Data Movement
• Adaptive Meshes and High Order Simulation

§ Most large-scale simulation use adaptive meshes and/or high 
order basis functions, however, most visualization algorithms 
do not.  

• Domain Expertise and Compact Analysis Techniques
§ Feature Extraction, TDA, Lagrangian Representations



In Situ Lagrangian Analysis

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and 
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award. 

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation 
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 
2021. Best Paper Award. 



In Situ Lagrangian Analysis

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and 
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award. 

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation 
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 
2021. Best Paper Award. 



Topological Data Analysis and Visualization



Topological Data Analysis for Astronomical Data Cubes

Analysis of cosmic voids

P. Rosen, A. Seth, E. Mills, A. Ginsburg, J. Kamenetzky, J. Kern, C.R. 
Johnson and B. Wang. Using Contour Trees in the Analysis and 
Visualization of Radio Astronomy Data Cubes. In Topological Methods 
in Data Analysis and Visualization VI, pp. 87–108, Springer-Verlag, 
2021. 



•Most topological analysis, from persistent homology to 
merge trees to Morse-Smale complexes require global 
information.
• There are some topological tools used for
geometry/topology-based stratification learning that use 
local homology to infer structure in local neighborhoods:

Brown, A., Wang, B. Sheaf-Theoretic Stratification 
Learning from Geometric and Topological 
Perspectives. Discrete Computational 
Geometry 65, 1166–1198, 2021.

Topological Data Analysis and Visualization



My In Situ Visualization Challenges and Opportunities
• Reproducibility
• High Performance Data Movement
• Adaptive Meshes and High Order Simulation

§ Most large-scale simulation use adaptive meshes and/or high 
order basis functions, however, most visualization algorithms 
do not.  

• Domain Expertise and Compact Analysis Techniques
§ Feature Extraction, TDA, Lagrangian Representations

• Uncertainty and Error Propagation
§ Information loss. Data reduction is used throughout in situ 

visualization pipelines. Plus, there is already uncertainty in the 
simulation data and visualization algorithms.  How do we 
assess overall quality?



G.P. Bonneau, H.C. Hege, C.R. Johnson, M.M. Oliveira, K. 
Potter, P. Rheingans, T. Schultz. “Overview and State-of-
the-Art of Uncertainty Visualization,” In Scientific 
Visualization: Uncertainty, Multifield, Biomedical, and 
Scalable Visualization, Edited by M. Chen and H. Hagen and 
C.D. Hansen and C.R. Johnson and A. Kauffman, Springer-
Verlag, pp. 3-27. 2014. 
M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. 
Sun. “Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 
1-11. 2014. 
K. Potter, P. Rosen, C.R. Johnson. “From Quantification to 
Visualization: A Taxonomy of Uncertainty Visualization 
Approaches,” In Uncertainty Quantification in Scientific 
Computing, IFIP Series, Vol. 377, Springer, pp. 226-249. 
2012. 
K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, 
V. Pascucci, C.R. Johnson. “Ensemble-Vis: A Framework 
for the Statistical Visualization of Ensemble Data,” In 
Proceedings of the 2009 IEEE International Conference on 
Data Mining Workshops, pp. 233-240. 2009. 
C.R. Johnson, A.R. Sanderson. “A Next Step: Visualizing 
Errors and Uncertainty,” In IEEE Computer Graphics and 
Applications, Vol. 23, No. 5, pp. 6-10. September/October, 
2003. 

Uncertainty Visualization
When is the last time you’ve seen an error
bar on an isosurface?



Contour Box Plots

Whitaker, Mirzargar, Kirby, IEEE Transactions on Visualization and 
Computer Graphics, Vol. 19, No. 12, pp. 2713--2722, 2013.

M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. Sun. 
“Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 1-11. 2014.



Uncertainty Visualization of the Marching Squares 
and Marching Cubes Topology Cases - VIS 2021



Back to Computational Steering and In
Situ Visualization Together Again?
“How do the above considerations change if in situ 
interactive exploration (mandating short response times) is 
considered, e.g. for computational steering applications?"

Report from Dagstuhl Seminar 18271 
In Situ Visualization for Computational Science 
Edited by Janine C. Bennett, Hank Childs, Christoph Garth, and Bernd 
Hentschel. Available at: https://www.osti.gov/pages/servlets/purl/1492333



Productivity Machines



More Information

www.sci.utah.edu

crj@sci.utah.edu


