
GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD
SIMULATION DATA

Zhenmin Peng1, Robert S. Laramee1, Guoning Chen2, Eugene Zhang2

1Visual and Interactive Computing Group, Department of Computer Science,
Swansea University, Swansea, UK. Email {cszp,r.s.laramee}@swansea.ac.uk

2School of Electrical Engineering and Computer Science, Oregon State University,
Corvallis, OR 97331. Email: {chengu,zhange}@eecs.oregonstate.edu.

THEME
Virtual Reality, Visualization

KEYWORDS
glyph placement, streamline placement, streamline seeding, flow visualization, vector field
visualization, CFD simulation data

SUMMARY
Visualization of flow on boundary surfaces from computational flow dynamics (CFD) is chal-
lenging due to the complex, adaptive resolution nature of the meshes used in the modeling
and simulation process. Part one of this paper presents a fast and simple glyph placement
algorithm in order to investigate and visualize flow data based on unstructured, adaptive res-
olution boundary meshes from CFD. The algorithm has several advantages: (1) Glyphs are
automatically placed at evenly-spaced intervals. (2) The user can interactively control the
spatial resolution of the glyph placement and their preciselocation. (3) The algorithm is
fast and supports multi-resolution visualization of the flow at surfaces. The implementation
supports multiple representations of the flow–some optimized for speed others for accuracy.
Furthermore the approach doesn’t rely on any pre-processing of the data or parameteriza-
tion of the surface and handles large meshes efficiently. Theresult is a tool that provides
engineers with a fast and intuitive overview of their CFD simulation results.

In part two, we introduce an automatic streamline seeding algorithm for vector fields defined
on surfaces in 3D space. The algorithm generates evenly-spaced streamlines fast, simply,
and efficiently for any general surface-based vector field. It is general because it handles
large, complex, unstructured, adaptive resolution grids with holes and discontinuities, does
not require a parameterization, and can generate both sparse and dense representations of the
flow. It is efficient because streamlines are only integratedfor visible portions of the sur-
face. It is simple because the image-based approach removesthe need to perform streamline
tracing on a triangular mesh, a process which is complicatedat best. And it is fast because
it makes effective, balanced use of both the CPU and the GPU. The key to the algorithm’s
speed, simplicity, and efficiency is its image-based seeding strategy. We demonstrate our
algorithm on complex, real-world simulation data sets fromcomputational fluid dynamics
and compare it with object-space streamline visualizations.



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 1:The unstructured adaptive resolution boundary grid of a cooling jacketfrom a CFD sim-
ulation. The first image is an overview of the boundary mesh, and the second is a close-up. These
images illustrate how complex a typical mesh from CFD can be.

1 Introduction
Ever increasing attention is invested in order to find reasonable and efficient solutions for
analyzing and visualizing the flow from computational fluid dynamics in last three decades.
As the size of simulation data sets increases, so does the need for effective visualizations that
provide insight into the data. A tremendous amount of time and money is spent on simulation
in order to speed up the manufacturing process. Constructingobjects in software should be
faster than building their real hardware counterparts.

Out of all the possible visualization techniques that can beused to investigate the simula-
tion results, vector glyphs and color-coding are the most popular tools used by engineers.
Vector glyphs offer several advantages. They are intuitive– the depiction of the underlying
flow is universally understood. Secondly, they do not accumulate error in the same way that
geometric techniques do. Integration-based visualizations such as streamlines have in an
inherent error associated with them stemming from the approximations made in the underly-
ing computation. Thirdly, glyphs are easy to implement. No complicated algorithms or data
structures are needed. Thus they are featured in every software application. However, glyphs
also have their drawbacks. Optimal vector field glyph placement is a challenge, especially
in the context of CFD applications. Figure 1 shows a typical, triangulated boundary mesh
produced from a CFD model. Its unstructured, adaptive resolution characteristics make the
placement of vector glyphs difficult. If we naively place a vector glyph at every sample point
on the surface, then the glyphs are either too small to see or so large that they overlap and
result in clutter. Another drawback is that the density of glyphs corresponds with the density
of mesh polygons. This variation is unrelated to the vector values themselves. Also, the
user has no control over the glyph placing. Furthermore, rendering so many glyphs degrades
performance time greatly. Most of the glyphs would be occluded.

While glyph-based visualization has been widely applied to tensor field and medical visual-
ization [19] [23], glyphs for vector field visualization have received relatively little attention.
This may be due to the difficulties in placing glyphs evenly onunstructured, adaptive resolu-
tion boundary meshes from the complex CFD data sets and perceptual problems like visual
complexity and occlusion (as indicated above). In order to address these challenges, we



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 2:Visualization of flow at the surface of a cooling jacket. The first image presents an overview
of the surface. The second image focuses on the bottom left-hand corner of the jacket. The mesh is
comprised of approximately 227,000 adaptive resolution polygons. Detailedimages of sample grids
have been presented earlier [11].

present a fast and simple glyph placement algorithm to investigate and visualize flow data
based on unstructured, adaptive resolution boundary meshes from CFD yielding the follow-
ing benefits:

• Glyphs are automatically placed at evenly-spaced intervals, independent of how com-
plex or dense the underlying adaptive resolution mesh is.

• The user can interactively and intuitively control the spatial resolution of the glyph
placement as well as their precise location.

• Multi-resolution visualization of the flow at surfaces can be applied to increase detail
in areas deemed interesting by the user.

• Glyphs are never generated for occluded or otherwise invisible regions of the surfaces.

• The algorithm is fast, enabling novel user interaction suchas zooming, translating and
rotation.

• Our approach enables various representations of the flow, optimized for either speed
or accuracy, in a natural way.

The algorithm relies neither on pre-processing of the data nor on parameterization of the
surface. It also handles large numbers of polygons efficiently. The key to the algorithms
speed and simplicity is transferring computation that would normally take place in object
space to image space. The approach is especially useful because engineers often start their
investigation of simulation results by looking at the surface for an overview.

A second family of visualization techniques is based aroundstreamlines; curves in the do-
main that are tangent to the velocity of the flow field. The use of streamlines to depict motion
in vector fields is of key interest in many areas of flow visualization. The low visual com-
plexity of the technique coupled with scalable density means that important flow features
and behavior may be expressed elegantly and intuitively, inboth static and interactive appli-
cations. Since one of the primary appeals of using streamlines is their visual intuitiveness, a
great deal of prior research has focussed on effective seeding and placement within the vector



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

field. All streamline-based flow visualization techniques have to face the seeding problem,
that is, finding the optimal distribution of streamlines such that all the features in the vector
field are visualized. One popular approach to this problem stems from the use of evenly-
spaced streamlines, i.e. streamlines that are distributeduniformly in space. Specifically, this
work has centred around ensuring streamlines are evenly-spaced, of an optimal length and
are spatio-temporally coherent (Figure 2).

Until relatively recently, the task of distributing streamlines uniformly onto 3D surfaces has
received comparatively little attention. This is due in part to the numerous difficulties en-
countered when performing particle tracing in 3D space. In this paper we describe a con-
ceptually simple method of seeding and integrating evenly-spaced streamlines for surfaces
by making use of image space. In previous approaches, streamlines are first seeded and in-
tegrated in object space. The result is then projected onto the image plane. In our approach,
we reverse the classic order of operations by projecting thevector field onto the image plane,
then seeding and integrating the streamlines. The advantages of this approach are that:

• Streamlines are always evenly-spaced in image space, regardless of the resolution,
geometric complexity or orientation of the underlying mesh.

• Streamlines are never generated for occluded or otherwise invisible regions of the sur-
face.

• Various stages of the process are accelerated easily using programmable graphics hard-
ware.

• The user has a precise and intuitive level of control over thespacing and density of the
streamlines.

• The algorithm is fast, resulting in support for user-interaction such as zooming, pan-
ning and rotation.

• The distribution of the streamlines remains constant, independent of the user’s view-
point, e.g. zoom level.

• The algorithm decouples the complexity of the underlying mesh from the streamline
computation and so does not require any parameterization ofthe surface.

• The algorithm is simple and intuitive and thus could be incorporated into any visual-
ization library.

However, in order to obtain these characteristics, certainchallenges, both technical and per-
ceptual, must first be overcome. We describe these in detail in the sections that follow.

2 Related Work
Ward [23] states that glyph-based visualization has been widely used to convey various infor-
mation simultaneously by employing intuitive graphs to depict corresponding various vari-
ables from abstract data sets. Our work focuses on applying this intuitive depiction in image-
space as well as developing an efficient and fast glyph placement algorithm to illustrate the
vector field accurately. Previously, related techniques have been proposed in order to im-
prove glyph-based visualization. In this section we describe these related techniques.



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

2.1 Vector Field Glyph Placement
Vector field glyph placement has received comparatively little attention. A vector glyph
placement approach is described by Klassen and Harrington [9]. Three-dimensional glyphs
are placed at regularly-spaced intervals on a 2D plane. Shadows on the plane are added to the
glyphs to highlight their orientation. In order to depict the vector fields on curvilinear and
unstructured grids, Dovey [3] presents a vector glyph placement algorithm for slices through
3D curvilinear and unstructured grids. He describes two different object-space approaches
for resampling a vector field defined on a 3D unstructured or curvilinear grid onto a regular
planar slice. The most computationally expensive part of the procedure for interpolating a
simulation result value onto an arbitrary new point is locating the cell that contains the point.
This process can be very costly in terms of processing time even when spatial data structures
are used to accelerate the search. Hong et al [5] use volume rendered vector glyphs which
are generated from pre-voxelized icon templates to describe regular, structured vector fields
in 3D space. Incremental image updates which re-compute only those pixels on the image
plane affected by user input make visualization of the scalar and vector field faster and more
interactive. Laramee describes an object-space approach using resampling and vector glyph
placement for slices through unstructured, 3D CFD meshes [10]. The algorithm we describe
here is conceptually similar but raises the spatial dimensionality to surfaces (as well as planar
slices). Our algorithm is also faster, simpler, and more efficient. In fact we are surprised not
to find any previous work that provides an elegant and fast solution to the basic problem we
are addressing.

2.2 Evenly-Spaced Streamlines in 2D and 3D
Turk and Banks introduce the first evenly-spaced streamline strategy [21]. The algorithm is
based on an iterative optimization process that uses an energy function to guide streamline
placement. Their work is extended to parametric surfaces (or curvilinear grids) by Mao et
al. [15]. They adapt the aforementioned energy function to work in 2D computational space
analogous to the way that Forssell and Cohen [4] extended the original LIC algorithm [1] to
curvilinear grids. The Turk and Banks algorithm [21] is enhanced by Jobard and Lefer [6]
who introduce an accelerated version of the automatic streamline seeding algorithm. This
algorithm uses the streamlines to perform what is essentially a search process for spaces in
which streamlines have not already been seeded. Animated [7] and multiresolution versions
of the algorithm [8] have been implemented. Mebarki et al. [17] introduce an alternative
approach to that of Jobard and Lefer [6] by using a search strategy that locates the largest
areas of the spatial domain not containing any streamlines.Liu and Moorhead [14] present
another alternative approach capable of detecting closed and spiraling streamlines. Li et
al. [12] describe a seeding approach that resembles hand-drawn streamlines for a flow field.

Mattausch et al. [16] implement an evenly-spaced streamline seeding algorithm for 3D flow
data and incorporate illumination. The technique does not generate evenly-spaced stream-
lines in image space however, but object space. Li and Shen describe an image-based stream-
line seeding strategy for 3D flows [13]. The goal of their workis to improve the display of
3D streamlines and reduce visual cluttering in the output images. Their algorithm does not
however, necessarily, result in evenly-spaced streamlines in image space. Streamlines may
overlap one another after projection from 3D to 2D. Furthermore, unnecessary complexity



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

is introduced by performing the integration in object space. We also note the closely related,
automatic streamline seeding strategies of Verma et al. [22] and Ye et al. [24]. These tech-
niques seed streamlines first by extracting and classifyingsingularities in the vector field and
then applying a template-based seeding pattern that corresponds to the shape of the singular-
ity. Chen et al. [2] also use a topology-based seeding strategy.

3 Glyph and Streamline Placement Algorithms

CFD Simulation
Data

Vector Field
Encoding

Vector Field
Projection

Decoding and
Reconstruction

Glyph
Placement

Image Overlay
Application

Optional
Enhancements

Viewpoint
Changes?

User
Options

NoYes

Figure 3: (first) An overview chart of the glyph placement algorithm for the fast generation and
simple placement of vector field glyphs for surfaces. (second) An overview diagram for generating
evenly-spaced streamlines on surfaces. Here,n is the frame number.

For the glyph placement algorithm, first the vector field is projected from 3D object space
to 2D image space, this is done by exploiting graphics hardware. The vector field on the
boundary surface from the CFD data set is encoded into the frame buffer. This is followed
by both flow reconstruction and glyph placement. The vector field is reconstructed based
on the user-defined resolution of an image-based Cartesian mesh. Then the vector glyphs
are rendered along with the original surface geometry imageoverlay. An overview of this
process is depicted in Figure 3. Several enhancements can beadded including various inter-
action techniques as well as multi-resolution visualizations. Many different user options are
available following the reconstruction and glyph placement phases in order to depict the vec-
tor field accurately and interactively. It’s also worth mentioning that if viewpoint is changed
after the final glyph rendering, the next pass will start fromthe encoding phase. Only a sub-
set of the algorithm is required, starting with decoding andreconstruction if the user-defined
resampling parameters are changed. More details are given by Peng and Laramee [18].

The streamline placement algorithm overcomes many difficulties by performing streamline
integration in image space utilizing a multi-pass technique that is both conceptually simple



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

and computationally efficient. It operates by projecting flow data onto the view plane, se-
lecting and tracing seed candidates to generate the streamlines, and finally rendering both
geometry and streamlines to the framebuffer. To generate our images we use a 3D polygonal
model of a flow data set. Technically, the velocity is defined as 0 at the boundary (no slip
condition) so we have extrapolated the velocity from just inside the boundary for visualiza-
tion purposes. Each vertex describes the direction and magnitude of the flow at that point on
the surface. An overview diagram describing each conceptual stage of the algorithm can be
seen in Figure 3. More details are given by Spencer et al. [20].

4 Performance and Results
Data Set Resampling Rate (FPS)

Sub-sampling Average Linear Gaussian

Ring
(10K)

59(29) 2.5(2.0) 30(17) 30(16)

Combustion
Chamber

(79K)

59(20) 1.9(1.8) 29(11) 29(12)

Intake Port
(221K)

59(11) 2(1.5) 29(8) 30(7.5)

Cooling
Jacket
(228K)

59(9.5) 1.9(1.7) 29(8.2) 29(7.8)

Table 1:Sample frame rates for the glyph placement algorithm applied with15
2 fixed resolution of

user-defined resampling grid with about 75% image space area covered.An image of512
2 pixels is

used.

Figure 4: The comparison of brute-force hedgehog visualization (first) and our multi-resolution
glyph-based visualization which is using a Gaussian filter (second) appliedin order to depict the flow
at a surface of an intake port mesh composed of unstructured, adaptive-resolution 221K polygons.
Notice how the glyphs are cluttered using the hedgehog approach (first image). Also notice that
artifacts appear resulting from the underlying mesh that have nothing to do with the actual flow.
Glyphs are color-coded according to velocity magnitude.

As our glyph-based visualization is focused on unstructured, adaptive resolution boundary
meshes from the complex CFD data sets, we evaluate our visualization on simulation data
sets with these characteristics. Figure 4 shows a comparison of brute-force hedgehog place-
ment and our glyph-based method applied on a surface of an intake port mesh composed
of 221K polygons. The intake port has highly adaptive resolution boundary surface and for
which no global parameterization is easily computed. As we can see from the first picture,



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 5: Another comparison of brute-force hedgehog flow visualization (first) and glyph-based
flow visualization which is powered by Gaussian filter and multi-resolution (second) applied at the
surface of a cooling jacket - a composite of 228K unstructured, adaptive-resolution polygons.

most glyphs overlap or are occluded. Using a hedgehog approach 664k glyphs are rendered.
However, our approach renders only about 400 glyphs. Also, the distribution of glyphs is
uneven. These artifacts are a result of the underlying mesh and have no relation to the flow
itself. In the second, our method places glyphs in an intuitive and efficient fashion enabling
engineers to get a fast and clear overview of the flow on the surface. At the same time, with
the help of a multi-resolution option, more details on the interesting areas can be obtained.
The vector field on the complex cooling jacket boundary meshes (from Figure 1) can be also
efficiently visualized by our intuitive glyph-based method(Figure 5), especially compared
to a hedgehog visualization. Because of the fast speed of our method this glyph-based vi-
sualization allows users to translate, rotate and zoom in the object interactively to get better
insight of the CFD data sets. We encourage the reader to view the supplementary video for
more results.

In order to compare the various reconstruction options implemented in our framework, we
evaluated sub-sampling, averaging, the linear filter function and the Gaussian filter function
on a PC with an Nvidia Geforce 8600GT graphics card, a 2.66 GHzdual-processor and 4
GB of RAM. The performance times reported in Table 1 were obtained using a fixed15

2

resolution resampling grid with about 75% image space coverage. The first times illustrated
in the FPS column are for the static case of (no change to the view point) only changes to
the user options. The times shown within parenthesis depictthe dynamic case of changes
to the viewpoint. In terms of the overview chart presented inFigure 3, the construction of
a velocity image, image overlay, reconstruction of vector field, as well as glyph placement
need to be computed in the dynamic case. From Table 1, we can see that sub-sampling is
the fastest while averaging is the slowest. Linear and Gaussian filter functions are in the
middle as a balance between computation speed and high accuracy. More detail about the
performance of the glyph placement algorithm can be found inPeng and Laramee [18].

We tested the streamline placement algorithm on a range of datasets taken from complex
CFD simulations. To obtain high-quality results, we use a second-order Runge-Kutta par-



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

dsep (pixels)
Scene % 1.0 2.0 4.0 8.0 16.0

Gas Engine 39.3% 1977.6ms 627.49ms 244.21ms 95.27ms 46.76ms
Diesel Engine 39.6% 1455.08ms 456.58ms 166.28ms 73.44ms 29.69ms
Ring Surface 41.3% 1392.65ms 368.39ms 132.23ms 53.79ms 24.41ms

Cooling Jacket 39.3% 3774.56ms 1345.37ms 592.95ms 250.81ms 126.44ms

Table 2: Streamline generation timing figures for a variable value ofdsep. In these examples, the
integration step size is set to 1 pixel. Foreshortening and edge detection is enabled. The dimensions
of the framebuffer upon which each mesh is rendered is500

2 pixels. % is the amount of the image
plane covered by the geometry after projection.

ticle tracer with an adaptive step size in the sub-pixel range. Our test system included an
Intel Core 2 Duo 6400 processor with 2GB RAM and an nVidia GeForce 7900 GS graphics
card. Given that the flow projection and mesh rendering passes are handled by the GPU,
we found that increasing the complexity of the underlying model did not adversely affect
the time taken to generate an image. Except when the number ofpolygons was relatively
high, our graphics card capped the frame rate at 60Hz. In order to render the streamlines
to the framebuffer, however, the memory associated with thedevice needed to be locked
at each frame. Reading from video memory typically incurs a read-back penalty (we en-
countered it to be approximately 570ms per megabyte of framebuffer data) which adversely
affects performance. However the net gain of off-loading computationally expensive tasks
onto the graphics hardware meant that this was an acceptabletrade-off. In all our examples,
the underlying colour gradient is mapped to flow velocity.

Figure 6 uses high-detail data from the computed flow throughtwo intake ports. Here, the
color scheme has been chosen to highlight slow-moving flow. Notice how the streamlines
fit well around the small holes on top of each of the two intake lines. We also compare our
algorithm with an object-based approach (middle image). There is no visible difference in
terms of the accuracy between each method of streamline integration. Further results are
illustrated in the accompanying video.

The dataset in Figure 2 is a snapshot from a simulation of fluidflow through an engine
cooling jacket. The adaptive resolution mesh is composed ofover 227,000 polygons and
contains many holes, discontinuities and seeding zones. Despite the high level of geomet-
ric complexity, our algorithm computes evenly-spaced streamlines cleanly and efficiently.
In this instance, using a technique based on surface parameterization would be especially
difficult owing to the complex topology of the shape.

In Figure 7 we demonstrate the flexibility of our algorithm inhandling arbitrary levels of
magnification. The left-most image shows a profile view of a gas engine simulation cut-away
with object-based streamlines. The next image shows the same dataset rendered using image-
based streamlines. The remaining images show progressively higher factors of magnification
with the small square in the first frame corresponding to the field of view in the final frame.
Note how the spacing of the streamlines automatically remains uniform, independent of the
level of magnification.

Table 2 compares the time taken to integrate streamlines over the velocity image for each of



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 6: The visualization of flow at the boundary surface of two intake ports. (Left) With our
novel, image-based streamlines. (Middle) With full-precision, object-basedstreamlines computed on
the CPU. (Right) High-contrast, image-based streamlines. This mesh is comprized of approximately
222,000 polygons at an adaptive resolution.

the four models described above. The figures describing the size of the flow field are calcu-
lated by summing the number of visible pixels belonging to the flow mesh that are rasterized
onto the framebuffer. Our performance times are comparableto previous 2D seeding algo-
rithms. Furthermore, our algorithm is approximately two orders of magnitude faster than the
CPU, object-based method owing to the reduced computationalcomplexity.

The CPU, object-based method requires more than 60 seconds ofcomputation time (several
minutes). It is worth noting that our implementation of the original evenly-spaced stream-
line algorithm is not fully optimized. Several enhancements and improvements have been
proposed that both speed up and refine seeding and placementsof streamlines [14], however
we have deliberately kept our implementation simple so as toconcentrate on extending it to
a higher spatial dimension.

Figure 7: Zooming: Visualization of the flow at the surface of a gas engine simulation at progres-
sively higher levels of magnification. The left-most image was generated using a full floating-point,
object-based algorithm computed on the CPU. The successive images weregenerated using our novel,
image-based technique.



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

5 Conclusion and Future Work
In the first part of this paper we propose a fast and simple glyph placement algorithm for
investigating and visualizing boundary flow data based on unstructured, adaptive resolu-
tion boundary meshes from CFD. We show that the algorithm effectively and automatically
places glyphs at evenly-spaced intervals, independent of geometric and topological complex-
ity of the underlying adaptive resolution mesh. We have alsodemonstrated that the spatial
resolution and precise location of the glyph placement can be interactively and intuitively
adjusted by the user in order to gain better visualization results. In addition, multi-resolution
visualization can be applied to highlight details in areas deemed interesting by the user. Fur-
thermore, the efficiency of our algorithm is reinforced by the fact that no computation time
is wasted on occluded polygons or polygons covering less than one pixel. Due to the effi-
ciency and speed of the algorithm user interaction such as zooming, translating and rotation
is enabled. The framework supports various representations of the flow optimized for both
speed and accuracy. No pre-processing of the data or parameterization is required.

The second constituent of this paper describes an, image-based technique for generating
evenly-spaced streamlines over surfaces. We have shown that our algorithm effectively
places streamlines on datasets with arbitrary topologicaland geometric complexity. We have
also demonstrated how a sense of depth and volume can be conveyed while preserving the
desirable evenly-spaced property of the algorithm’s 2D counterpart. Our results show that
an image-based projection approach and seeding strategy can automatically handle zooming,
panning and rotation at arbitrary levels of detail. The efficiency of the technique is also high-
lighted by the fact that streamlines are never generated forinvisible regions of the dataset.
The accuracy of the visualization is demonstrated by comparing the results of image- and
object-based approaches.

As future work we would like to extend the work to visualization of unsteady, 3D (volu-
metric) flow. Challenges stem from both the resampling performance time and perceptual
issues. Future work also includes using floating-point texture in order to encode and decode
the vector field.

6 Acknowledgements
This work was supported by EPSRC research grant EP/F002335/1.

References

[1] B. Cabral and L. C. Leedom. Imaging Vector Fields Using Line Integral Convolution. In
Poceedings of ACM SIGGRAPH 1993, Annual Conference Series, pages 263–272, 1993.

[2] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang. Vector Field Editing and
Periodic Orbit Extraction Using Morse Decomposition.IEEE Transactions on Visualization and
Computer Graphics, 13(4):769–785, Jul/Aug 2007.

[3] D. Dovey. Vector Plots for Irregular Grids. InProceedings IEEE Visualization ’95, pages
248–253, 1995.

[4] L. K. Forssell and S. D. Cohen. Using Line Integral Convolution for Flow Visualization: Curvi-
linear Grids, Variable-Speed Animation, and Unsteady Flows.IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(2):133–141, June 1995.



GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

[5] L. Hong, X. Mao, and A. E. Kaufman. Interactive Visualization of Mixed Scalar and Vector
Fields. InProceedings IEEE Visualization ’95, pages 240–247, 1995.

[6] B. Jobard and W. Lefer. Creating Evenly–Spaced Streamlines of Arbitrary Density. InPro-
ceedings of the Eurographics Workshop on Visualization in Scientific Computing ’97, volume 7,
pages 45–55, 1997.

[7] B. Jobard and W. Lefer. Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines.
In Computer Graphics Forum (Eurographics 2000), volume 19(3), pages 21–31, 2000.

[8] B. Jobard and W. Lefer. Multiresolution Flow Visualization. InWSCG 2001 Conference Pro-
ceedings, pages 33–37, Plzen, Czech Republic, February 2001.

[9] R. V. Klassen and S. J. Harrington. Shadowed hedgehogs: A technique for visualizing 2D slices
of 3D vector fields. InProceedings IEEE Visualization ’91, pages 148–153, 1991.

[10] R. S. Laramee. FIRST: A Flexible and Interactive Resampling Tool for CFD Simulation Data.
Computers & Graphics, 27(6):905–916, 2003.

[11] R. S. Laramee.Interactive 3D Flow Visualization Using Textures and Geometric Primitives.
PhD thesis, Vienna University of Technology, Institute for Computer Graphics and Algorithms,
Vienna, Austria, December 2004.

[12] L. Li, H.-S. Hsieh, , and H.-W. Shen. Illustrative Streamline Placementand Visualization. In
IEEE Pacific Visualization Symposium 2008, pages 79–85. IEEE Computer Society, 2008.

[13] L. Li and H.-W. Shen. Image-Based Streamline Generation and Rendering. IEEE Transactions
on Visualization and Computer Graphics, 13(3):630–640, 2007.

[14] Z. P. Liu and R. J. Moorhead, II. An Advanced Evenly-SpacedStreamline Placement Algorithm.
IEEE Transactions on Visualization and Computer Graphics, 12(5):965–972, September 2006.

[15] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya. Image-Guided Streamline Placement on
Curvilinear Grid Surfaces. InProceedings IEEE Visualization ’98, pages 135–142, 1998.

[16] O. Mattausch, T. Theussl, , H. Hauser, and E. Gröller. Strategies for Interactive Exploration
of 3D Flow Using Evenly-Spaced Illuminated Streamlines. InProceedings of the 19th Spring
Conference on Computer Graphics, pages 213–222, 2003.

[17] A. Mebarki, P. Alliez, and O. Devillers. Farthest Point Seeding forEfficient Placement of
Streamlines. InProceedings IEEE Visualization 2005, pages 479–486. IEEE Computer Society,
2005.

[18] Z. Peng and R. S. Laramee. Vector Glyphs for Surfaces: A Fastand Simple Glyph Placement
Algorithm for Adaptive Resolution Meshes. InProceedings of Vision, Modeling, and Visualiza-
tion (VMV) 2008, pages 61–70, 2008.

[19] T. Ropinski and B. Preim. Taxonomy and Usage Guidelines for Glyph-based Medical Visu-
alization. InProceedings of the 19th Conference on Simulation and Visualization (SimVis08),
pages 121–138, 2008.

[20] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang. Evenly-Spaced Streamlines for Surfaces:
An Image-Based Approach.Computer Graphics Forum, 28, 2009. forthcoming.

[21] G. Turk and D. Banks. Image-Guided Streamline Placement. InACM SIGGRAPH 96 Confer-
ence Proceedings, pages 453–460, August 1996.

[22] V. Verma, D. Kao, and A. Pang. A Flow-guided Streamline Seeding Strategy. InProceedings
IEEE Visualization 2000, pages 163–170, 2000.

[23] M.O. Ward. A Taxonomy of Glyph Placement Strategies for Multidimentional Data Visualiza-
tion. Information Visualization, 1(3-4):194–210, 2002.

[24] X. Ye, D. Kao, and A. Pang. Strategy for Seeding 3D Streamlines. In Proceedings IEEE
Visualization 2005, pages 471–476, 2005.


