GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD
SIMULATION DATA

Zhenmin Peng?!, Robert S. Laramee!, Guoning Chen?, Eugene Zhang?

lvisual and Interactive Computing Group, Department of Computer Science,
Swansea Univer sity, Swansea, UK. Email {cszp,r.s.laramee}@swansea.ac.uk

2School of Electrical Engineering and Computer Science, Oregon State Univer sity,
Corvallis, OR 97331. Email: {chengu,zhange} @eecs.oregonstate.edu.

THEME
Virtual Reality, Visualization

KEYWORDS
glyph placement, streamline placement, streamline sgetlow visualization, vector field
visualization, CFD simulation data

SUMMARY

Visualization of flow on boundary surfaces from computagidtow dynamics (CFD) is chal-
lenging due to the complex, adaptive resolution nature @itieshes used in the modeling
and simulation process. Part one of this paper presentg arfdssimple glyph placement
algorithm in order to investigate and visualize flow datagloben unstructured, adaptive res-
olution boundary meshes from CFD. The algorithm has sevekardages: (1) Glyphs are
automatically placed at evenly-spaced intervals. (2) Téer gan interactively control the
spatial resolution of the glyph placement and their pretsation. (3) The algorithm is
fast and supports multi-resolution visualization of thevflat surfaces. The implementation
supports multiple representations of the flow—some opgchior speed others for accuracy.
Furthermore the approach doesn’t rely on any pre-procgsdithe data or parameteriza-
tion of the surface and handles large meshes efficiently. réhelt is a tool that provides
engineers with a fast and intuitive overview of their CFD diation results.

In part two, we introduce an automatic streamline seediggrahm for vector fields defined
on surfaces in 3D space. The algorithm generates evenbedpgtreamlines fast, simply,
and efficiently for any general surface-based vector fietds general because it handles
large, complex, unstructured, adaptive resolution gridh fwles and discontinuities, does
not require a parameterization, and can generate bothespadsdense representations of the
flow. It is efficient because streamlines are only integrdtediisible portions of the sur-
face. Itis simple because the image-based approach reni@/esed to perform streamline
tracing on a triangular mesh, a process which is complicatdebst. And it is fast because
it makes effective, balanced use of both the CPU and the GP& k& to the algorithm’s
speed, simplicity, and efficiency is its image-based sepdimtegy. We demonstrate our
algorithm on complex, real-world simulation data sets frommputational fluid dynamics
and compare it with object-space streamline visualization

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

: s A
Figure 1:The unstructured adaptive resolution boundary grid of a cooling jdoiet a CFD sim-
ulation. The first image is an overview of the boundary mesh, and the désanclose-up. These
images illustrate how complex a typical mesh from CFD can be.

1 Introduction

Ever increasing attention is invested in order to find reabtenand efficient solutions for

analyzing and visualizing the flow from computational fluighdmics in last three decades.
As the size of simulation data sets increases, so does thdoresffective visualizations that

provide insight into the data. A tremendous amount of tingkranney is spent on simulation

in order to speed up the manufacturing process. Construchjggts in software should be
faster than building their real hardware counterparts.

Out of all the possible visualization techniques that cauged to investigate the simula-
tion results, vector glyphs and color-coding are the mogiufar tools used by engineers.
Vector glyphs offer several advantages. They are intuititlee depiction of the underlying
flow is universally understood. Secondly, they do not acdateterror in the same way that
geometric techniques do. Integration-based visualinatguch as streamlines have in an
inherent error associated with them stemming from the agmEitions made in the underly-
ing computation. Thirdly, glyphs are easy to implement. Mmplicated algorithms or data
structures are needed. Thus they are featured in everyasefapplication. However, glyphs
also have their drawbacks. Optimal vector field glyph plageis a challenge, especially
in the context of CFD applications. Figure 1 shows a typig@ngulated boundary mesh
produced from a CFD model. Its unstructured, adaptive résolcharacteristics make the
placement of vector glyphs difficult. If we naively place a&tgr glyph at every sample point
on the surface, then the glyphs are either too small to see large that they overlap and
result in clutter. Another drawback is that the density @fpgis corresponds with the density
of mesh polygons. This variation is unrelated to the vectues themselves. Also, the
user has no control over the glyph placing. Furthermorejegng so many glyphs degrades
performance time greatly. Most of the glyphs would be ocetud

While glyph-based visualization has been widely appliectsor field and medical visual-
ization [19] [23], glyphs for vector field visualization haveceived relatively little attention.
This may be due to the difficulties in placing glyphs evenlyuostructured, adaptive resolu-
tion boundary meshes from the complex CFD data sets and peatg@poblems like visual
complexity and occlusion (as indicated above). In orderddress these challenges, we

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 2:Visualization of flow at the surface of a cooling jacket. The firstimage pitesa overview
of the surface. The second image focuses on the bottom left-hand odiine jacket. The mesh is
comprised of approximately 227,000 adaptive resolution polygons. Detaikges of sample grids
have been presented earlier [11].

present a fast and simple glyph placement algorithm to tigege and visualize flow data
based on unstructured, adaptive resolution boundary reéstra CFD yielding the follow-
ing benefits:

e Glyphs are automatically placed at evenly-spaced inteyuadlependent of how com-
plex or dense the underlying adaptive resolution mesh is.

e The user can interactively and intuitively control the sgatesolution of the glyph
placement as well as their precise location.

e Multi-resolution visualization of the flow at surfaces camdpplied to increase detail

in areas deemed interesting by the user.
e Glyphs are never generated for occluded or otherwise Iteisegions of the surfaces.

e The algorithm is fast, enabling novel user interaction sas&khooming, translating and
rotation.

e Our approach enables various representations of the flawmiapd for either speed
or accuracy, in a natural way.

The algorithm relies neither on pre-processing of the dataom parameterization of the
surface. It also handles large numbers of polygons effigiefithe key to the algorithms

speed and simplicity is transferring computation that wloubrmally take place in object

space to image space. The approach is especially usefuldeeeagineers often start their
investigation of simulation results by looking at the sagdor an overview.

A second family of visualization techniques is based arcstnemlines; curves in the do-
main that are tangent to the velocity of the flow field. The Ustareamlines to depict motion
in vector fields is of key interest in many areas of flow viszatiion. The low visual com-

plexity of the technique coupled with scalable density nsedmat important flow features
and behavior may be expressed elegantly and intuitivelypth static and interactive appli-
cations. Since one of the primary appeals of using streasimtheir visual intuitiveness, a
great deal of prior research has focussed on effectivesgadd placement within the vector

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

field. All streamline-based flow visualization techniquasdto face the seeding problem,
that is, finding the optimal distribution of streamlines lsdicat all the features in the vector
field are visualized. One popular approach to this problamstfrom the use of evenly-

spaced streamlines, i.e. streamlines that are distriburigdrmly in space. Specifically, this

work has centred around ensuring streamlines are evenlyesp of an optimal length and
are spatio-temporally coherent (Figure 2).

Until relatively recently, the task of distributing strelames uniformly onto 3D surfaces has
received comparatively little attention. This is due intgarthe numerous difficulties en-
countered when performing particle tracing in 3D space.hls paper we describe a con-
ceptually simple method of seeding and integrating evepbeed streamlines for surfaces
by making use of image space. In previous approaches, dinesnare first seeded and in-
tegrated in object space. The result is then projected tvetartiage plane. In our approach,
we reverse the classic order of operations by projectingéhtor field onto the image plane,
then seeding and integrating the streamlines. The advestEghis approach are that:
e Streamlines are always evenly-spaced in image space dtegsirof the resolution,
geometric complexity or orientation of the underlying mesh
e Streamlines are never generated for occluded or othermiggble regions of the sur-
face.
e Various stages of the process are accelerated easily usiggagpnmable graphics hard-
ware.
e The user has a precise and intuitive level of control ovestieeing and density of the
streamlines.
e The algorithm is fast, resulting in support for user-int¢i@n such as zooming, pan-
ning and rotation.
e The distribution of the streamlines remains constant,pedéent of the user’s view-
point, e.g. zoom level.
e The algorithm decouples the complexity of the underlyingsimom the streamline
computation and so does not require any parameterizatitrecfurface.
e The algorithm is simple and intuitive and thus could be ipooated into any visual-
ization library.

However, in order to obtain these characteristics, cediaallenges, both technical and per-
ceptual, must first be overcome. We describe these in dettiiki sections that follow.

2 Reated Work

Ward [23] states that glyph-based visualization has bedelwused to convey various infor-
mation simultaneously by employing intuitive graphs toideporresponding various vari-
ables from abstract data sets. Our work focuses on applgiagituitive depiction in image-
space as well as developing an efficient and fast glyph planeaigorithm to illustrate the
vector field accurately. Previously, related techniquegst@een proposed in order to im-
prove glyph-based visualization. In this section we désctinese related techniques.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

2.1 Vector Fied Glyph Placement

Vector field glyph placement has received comparativetieliattention. A vector glyph
placement approach is described by Klassen and Harrin§lo hree-dimensional glyphs
are placed at regularly-spaced intervals on a 2D plane.®Vsdn the plane are added to the
glyphs to highlight their orientation. In order to depicettector fields on curvilinear and
unstructured grids, Dovey [3] presents a vector glyph pteard algorithm for slices through
3D curvilinear and unstructured grids. He describes twiediht object-space approaches
for resampling a vector field defined on a 3D unstructured orilioear grid onto a regular
planar slice. The most computationally expensive part efgtocedure for interpolating a
simulation result value onto an arbitrary new point is laggthe cell that contains the point.
This process can be very costly in terms of processing tiraa ehen spatial data structures
are used to accelerate the search. Hong et al [5] use volumdenexd vector glyphs which
are generated from pre-voxelized icon templates to descegular, structured vector fields
in 3D space. Incremental image updates which re-computetbabe pixels on the image
plane affected by user input make visualization of the s@ald vector field faster and more
interactive. Laramee describes an object-space appraant) tesampling and vector glyph
placement for slices through unstructured, 3D CFD meshgsTh@ algorithm we describe
here is conceptually similar but raises the spatial dinwradity to surfaces (as well as planar
slices). Our algorithm is also faster, simpler, and moreieffit. In fact we are surprised not
to find any previous work that provides an elegant and fasitisol to the basic problem we
are addressing.

2.2 Evenly-Spaced Streamlinesin 2D and 3D

Turk and Banks introduce the first evenly-spaced streamtiagegly [21]. The algorithm is
based on an iterative optimization process that uses agyeherction to guide streamline
placement. Their work is extended to parametric surfacesyvilinear grids) by Mao et
al. [15]. They adapt the aforementioned energy functionddkvin 2D computational space
analogous to the way that Forssell and Cohen [4] extendedidieal LIC algorithm [1] to
curvilinear grids. The Turk and Banks algorithm [21] is enteth by Jobard and Lefer [6]
who introduce an accelerated version of the automaticrsirea seeding algorithm. This
algorithm uses the streamlines to perform what is essgnfiadearch process for spaces in
which streamlines have not already been seeded. Animakaa{i/multiresolution versions
of the algorithm [8] have been implemented. Mebarki et ar] [ihtroduce an alternative
approach to that of Jobard and Lefer [6] by using a searckeglydhat locates the largest
areas of the spatial domain not containing any streamlibiesand Moorhead [14] present
another alternative approach capable of detecting cloeddspiraling streamlines. Li et
al. [12] describe a seeding approach that resembles hawdiditreamlines for a flow field.

Mattausch et al. [16] implement an evenly-spaced streansi@eding algorithm for 3D flow

data and incorporate illumination. The technique does roegate evenly-spaced stream-
lines in image space however, but object space. Li and Stsmmide an image-based stream-
line seeding strategy for 3D flows [13]. The goal of their wagko improve the display of

3D streamlines and reduce visual cluttering in the outpaiges. Their algorithm does not
however, necessarily, result in evenly-spaced streaslm@nage space. Streamlines may
overlap one another after projection from 3D to 2D. Furthaen unnecessary complexity

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

is introduced by performing the integration in object spatfe also note the closely related,
automatic streamline seeding strategies of Verma et al.d8a& Ye et al. [24]. These tech-

niques seed streamlines first by extracting and classifsimgularities in the vector field and

then applying a template-based seeding pattern that pamds to the shape of the singular-
ity. Chen et al. [2] also use a topology-based seeding sirateg

3 Glyph and Streamline Placement Algorithms

CFD SimUIation
Data
Scan image space and get
next viable seedpoint
Vector Field
Encoding

Reached end
Vector Field
Projection

of image space?
Yes
No
Trace streamline and push
seedlings to queue
Decoding and
Reconstruction
Glyph
Placement

Is queue empty?
Image Overlay
Application

Viewpoint
Changes?

Figure 3: (first) An overview chart of the glyph placement algorithm for the fastegation and
simple placement of vector field glyphs for surfaces. (second) Arvwerdiagram for generating
evenly-spaced streamlines on surfaces. Heis the frame number.

For the glyph placement algorithm, first the vector field isjgcted from 3D object space
to 2D image space, this is done by exploiting graphics harelwahe vector field on the
boundary surface from the CFD data set is encoded into theeftarfier. This is followed
by both flow reconstruction and glyph placement. The vectid fis reconstructed based
on the user-defined resolution of an image-based Cartesiah.nTéen the vector glyphs
are rendered along with the original surface geometry intagelay. An overview of this
process is depicted in Figure 3. Several enhancements caddee including various inter-
action techniques as well as multi-resolution visual@adi Many different user options are
available following the reconstruction and glyph placetprases in order to depict the vec-
tor field accurately and interactively. It's also worth mentng that if viewpoint is changed
after the final glyph rendering, the next pass will start frim@ encoding phase. Only a sub-
set of the algorithm is required, starting with decoding sewbnstruction if the user-defined
resampling parameters are changed. More details are gwBeiig and Laramee [18].

Optional
Enhancements

User
Options

n=n+1

The streamline placement algorithm overcomes many diffesiby performing streamline
integration in image space utilizing a multi-pass techaithat is both conceptually simple

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

and computationally efficient. It operates by projectingvfldata onto the view plane, se-
lecting and tracing seed candidates to generate the stremnand finally rendering both
geometry and streamlines to the framebuffer. To generatemages we use a 3D polygonal
model of a flow data set. Technically, the velocity is definedat the boundary (no slip
condition) so we have extrapolated the velocity from justde the boundary for visualiza-
tion purposes. Each vertex describes the direction and imo@gof the flow at that point on
the surface. An overview diagram describing each concéptage of the algorithm can be
seen in Figure 3. More details are given by Spencer et al. [20]

4 Performance and Results

Data Set Resampling Rate (FPS)
Sub-sampling Average| Linear | Gaussian
Ring 59(29) 2.5(2.0)| 30(17) | 30(16)

(10K)
Combustion] 59(20) 1.9(1.8)] 29(11) | 29(12)
Chamber
(79K)
Intake Port| 59(11) 2(1.5) | 29(8) | 30(7.5)
(221K)
Cooling 59(9.5) | 1.9(1.7)| 29(8.2)| 29(7.8)
Jacket
(228K)

Table 1:Sample frame rates for the glyph placement algorithm applied MitHixed resolution of
user-defined resampling grid with about 75% image space area coveréshage of5122 pixels is
used.

Wl
R RAda

x
X
%
"

b
!
33y

KRRt

B e

ff—b-b-vffﬁ’ A ALY

RS S S S e

LS SR SR DR R TR SR SR R

K Ve Ve W A A
R e e e e e

t?

Figure 4: The comparison of brute-force hedgehog visualization (first) and outi-resolution
glyph-based visualization which is using a Gaussian filter (second) applegder to depict the flow
at a surface of an intake port mesh composed of unstructured, asapsivlution 221K polygons.
Notice how the glyphs are cluttered using the hedgehog approach (firgejma&lso notice that
artifacts appear resulting from the underlying mesh that have nothing toittathve actual flow.
Glyphs are color-coded according to velocity magnitude.

As our glyph-based visualization is focused on unstructuaelaptive resolution boundary
meshes from the complex CFD data sets, we evaluate our \aatiati on simulation data
sets with these characteristics. Figure 4 shows a companisorute-force hedgehog place-
ment and our glyph-based method applied on a surface of akemgort mesh composed
of 221K polygons. The intake port has highly adaptive resafuboundary surface and for
which no global parameterization is easily computed. As are see from the first picture,

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

£

e e A e = = »H%V_..'
h T ‘-L-t-i-+—l::-:¢-¢-a. TRECEL m

«uwa.—ad.—t;t;ayﬂv e
bbbk e e
Tiss

Figure 5: Another comparison of brute-force hedgehog flow visualization (first) glyph-based
flow visualization which is powered by Gaussian filter and multi-resolutionofsdicapplied at the
surface of a cooling jacket - a composite of 228K unstructured, agapsolution polygons.

most glyphs overlap or are occluded. Using a hedgehog apip&@dk glyphs are rendered.
However, our approach renders only about 400 glyphs. Alsmdistribution of glyphs is
uneven. These artifacts are a result of the underlying medhhave no relation to the flow
itself. In the second, our method places glyphs in an imeiigind efficient fashion enabling
engineers to get a fast and clear overview of the flow on thacewr At the same time, with
the help of a multi-resolution option, more details on theilasting areas can be obtained.
The vector field on the complex cooling jacket boundary megfiem Figure 1) can be also
efficiently visualized by our intuitive glyph-based meth@dgure 5), especially compared
to a hedgehog visualization. Because of the fast speed of etivaad this glyph-based vi-
sualization allows users to translate, rotate and zoomemtject interactively to get better
insight of the CFD data sets. We encourage the reader to viewupplementary video for
more results.

In order to compare the various reconstruction options emgnted in our framework, we
evaluated sub-sampling, averaging, the linear filter fioncand the Gaussian filter function
on a PC with an Nvidia Geforce 8600GT graphics card, a 2.66 @Qldg-processor and 4
GB of RAM. The performance times reported in Table 1 were oleiusing a fixed 5>
resolution resampling grid with about 75% image space @merThe first times illustrated
in the FPS column are for the static case of (no change to tve point) only changes to
the user options. The times shown within parenthesis dépéctlynamic case of changes
to the viewpoint. In terms of the overview chart presente#figure 3, the construction of
a velocity image, image overlay, reconstruction of vecteldfias well as glyph placement
need to be computed in the dynamic case. From Table 1, we eathaesub-sampling is
the fastest while averaging is the slowest. Linear and Gawudster functions are in the
middle as a balance between computation speed and highaagcMore detail about the
performance of the glyph placement algorithm can be fourieeing and Laramee [18].

We tested the streamline placement algorithm on a rangetatels taken from complex
CFD simulations. To obtain high-quality results, we use asderder Runge-Kutta par-

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

0y (PIXEIS)
Scene % 1.0 2.0 4.0 8.0 16.0
Gas Engine | 39.3%| 1977.6ms| 627.49ms| 244.21ms| 95.27ms| 46.76ms
Diesel Engine| 39.6% | 1455.08ms 456.58ms| 166.28ms| 73.44ms| 29.69ms
Ring Surface | 41.3%| 1392.65ms 368.39ms| 132.23ms| 53.79ms | 24.41ms
Cooling Jacket 39.3% | 3774.56mg 1345.37mg 592.95ms| 250.81ms| 126.44ms

Table 2: Streamline generation timing figures for a variable valuégf. In these examples, the
integration step size is set to 1 pixel. Foreshortening and edge detecticable@nThe dimensions
of the framebuffer upon which each mesh is rendere@# pixels. % is the amount of the image
plane covered by the geometry after projection.

ticle tracer with an adaptive step size in the sub-pixel ean@Qur test system included an
Intel Core 2 Duo 6400 processor with 2GB RAM and an nVidia Ge&@@00 GS graphics

card. Given that the flow projection and mesh rendering gaase handled by the GPU,
we found that increasing the complexity of the underlyingdedadid not adversely affect

the time taken to generate an image. Except when the numhmlyons was relatively

high, our graphics card capped the frame rate at 60Hz. Inr dodeender the streamlines
to the framebuffer, however, the memory associated withddwgce needed to be locked
at each frame. Reading from video memory typically incursaa#eack penalty (we en-

countered it to be approximately 570ms per megabyte of foarffer data) which adversely
affects performance. However the net gain of off-loadingipatationally expensive tasks
onto the graphics hardware meant that this was an acceptatéeoff. In all our examples,

the underlying colour gradient is mapped to flow velocity.

Figure 6 uses high-detail data from the computed flow thraughintake ports. Here, the
color scheme has been chosen to highlight slow-moving floatice how the streamlines
fit well around the small holes on top of each of the two intaked. We also compare our
algorithm with an object-based approach (middle imagekr&hs no visible difference in
terms of the accuracy between each method of streamlingratien. Further results are
illustrated in the accompanying video.

The dataset in Figure 2 is a snapshot from a simulation of fleid through an engine
cooling jacket. The adaptive resolution mesh is composeavef 227,000 polygons and
contains many holes, discontinuities and seeding zonespi2ethe high level of geomet-
ric complexity, our algorithm computes evenly-spacedastrénes cleanly and efficiently.
In this instance, using a technique based on surface pagamration would be especially
difficult owing to the complex topology of the shape.

In Figure 7 we demonstrate the flexibility of our algorithmhandling arbitrary levels of
magnification. The left-most image shows a profile view of agagine simulation cut-away
with object-based streamlines. The nextimage shows the dataset rendered using image-
based streamlines. The remaining images show progresbigtler factors of magnification
with the small square in the first frame corresponding to thle Bf view in the final frame.
Note how the spacing of the streamlines automatically resnaniform, independent of the
level of magnification.

Table 2 compares the time taken to integrate streamlinestlogevelocity image for each of

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 6: The visualization of flow at the boundary surface of two intake ports ft\Mgith our
novel, image-based streamlines. (Middle) With full-precision, object-bsisedmlines computed on
the CPU. (Right) High-contrast, image-based streamlines. This mesh is cethpfiapproximately
222,000 polygons at an adaptive resolution.

the four models described above. The figures describingizbeo§the flow field are calcu-
lated by summing the number of visible pixels belonging ®ftow mesh that are rasterized
onto the framebuffer. Our performance times are compatahbbeevious 2D seeding algo-
rithms. Furthermore, our algorithm is approximately twdems of magnitude faster than the
CPU, object-based method owing to the reduced computatiamaplexity.

The CPU, object-based method requires more than 60 secorndspltation time (several
minutes). It is worth noting that our implementation of thregmal evenly-spaced stream-
line algorithm is not fully optimized. Several enhancensesmid improvements have been
proposed that both speed up and refine seeding and placemfistrisamlines [14], however
we have deliberately kept our implementation simple so astzentrate on extending it to
a higher spatial dimension.

Figure 7:Zooming: Visualization of the flow at the surface of a gas engine simulatiorogtes-
sively higher levels of magnification. The left-most image was generated adl floating-point,
object-based algorithm computed on the CPU. The successive imageagamerated using our novel,
image-based technique.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

5 Conclusion and Future Work

In the first part of this paper we propose a fast and simplergplacement algorithm for
investigating and visualizing boundary flow data based ostruntured, adaptive resolu-
tion boundary meshes from CFD. We show that the algorithncedey and automatically
places glyphs at evenly-spaced intervals, independerarfigtric and topological complex-
ity of the underlying adaptive resolution mesh. We have dismonstrated that the spatial
resolution and precise location of the glyph placement @aimteractively and intuitively
adjusted by the user in order to gain better visualizatisalts. In addition, multi-resolution
visualization can be applied to highlight details in areasrded interesting by the user. Fur-
thermore, the efficiency of our algorithm is reinforced bg tact that no computation time
is wasted on occluded polygons or polygons covering less ¢im& pixel. Due to the effi-
ciency and speed of the algorithm user interaction such asirg, translating and rotation
is enabled. The framework supports various representatbthe flow optimized for both
speed and accuracy. No pre-processing of the data or paaradéibn is required.

The second constituent of this paper describes an, imaggdhbi@chnique for generating
evenly-spaced streamlines over surfaces. We have showrodhaalgorithm effectively
places streamlines on datasets with arbitrary topologiedlgeometric complexity. We have
also demonstrated how a sense of depth and volume can beyednwéile preserving the
desirable evenly-spaced property of the algorithm’s 2Dntepart. Our results show that
an image-based projection approach and seeding strategyit@matically handle zooming,
panning and rotation at arbitrary levels of detail. The &fficy of the technique is also high-
lighted by the fact that streamlines are never generateth¥gsible regions of the dataset.
The accuracy of the visualization is demonstrated by comg@ahe results of image- and
object-based approaches.

As future work we would like to extend the work to visualizatiof unsteady, 3D (volu-
metric) flow. Challenges stem from both the resampling peréorce time and perceptual
issues. Future work also includes using floating-pointuexin order to encode and decode
the vector field.

6 Acknowledgements
This work was supported by EPSRC research grant EP/F002335/1

References

[1] B. Cabral and L. C. Leedom. Imaging Vector Fields Using Line Inte@anvolution. In
Poceedings of ACM SIGGRAPH 19%nual Conference Series, pages 263-272, 1993.

[2] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. gharector Field Editing and
Periodic Orbit Extraction Using Morse DecomposititBEE Transactions on Visualization and
Computer Graphicsl3(4):769—-785, Jul/Aug 2007.

[3] D. Dovey. Vector Plots for Irregular Grids. IRroceedings IEEE Visualization '9ages
248-253, 1995.

[4] L. K. Forsselland S. D. Cohen. Using Line Integral ConvolutionFtow Visualization: Curvi-
linear Grids, Variable-Speed Animation, and Unsteady FIO®EE Transactions on Visualiza-
tion and Computer Graphi¢4.(2):133-141, June 1995.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

[5] L. Hong, X. Mao, and A. E. Kaufman. Interactive Visualization of Mk Scalar and Vector
Fields. InProceedings IEEE Visualization '9pages 240-247, 1995.

[6] B. Jobard and W. Lefer. Creating Evenly—Spaced Streamlines lotrAry Density. InPro-
ceedings of the Eurographics Workshop on Visualization in Scientific Gimgg@97, volume 7,
pages 45-55, 1997.

[7] B.Jobard and W. Lefer. Unsteady Flow Visualization by Animating BSpaced Streamlines.
In Computer Graphics Forum (Eurographics 200@lume 19(3), pages 21-31, 2000.

[8] B. Jobard and W. Lefer. Multiresolution Flow Visualization. WISCG 2001 Conference Pro-
ceedingspages 33-37, Plzen, Czech Republic, February 2001.

[9] R. V. Klassen and S. J. Harrington. Shadowed hedgehogs: Aitpeffor visualizing 2D slices
of 3D vector fields. IrProceedings IEEE Visualization '9pages 148-153, 1991.

[10] R. S. Laramee. FIRST: A Flexible and Interactive Resampling T@oCFD Simulation Data.
Computers & Graphics27(6):905-916, 2003.

[11] R. S. Laramee.nteractive 3D Flow Visualization Using Textures and Geometric Primitives
PhD thesis, Vienna University of Technology, Institute for Computer Gicgpand Algorithms,
Vienna, Austria, December 2004.

[12] L. Li, H.-S. Hsieh, , and H.-W. Shen. lllustrative Streamline Placeraant Visualization. In
IEEE Pacific Visualization Symposium 20@8ges 79-85. IEEE Computer Society, 2008.

[13] L. Liand H.-W. Shen. Image-Based Streamline Generation andéRiegd IEEE Transactions
on Visualization and Computer Graphjcs3(3):630—-640, 2007.

[14] Z.P.LiuandR. J. Moorhead, Il. An Advanced Evenly-Spa8adamline Placement Algorithm.
IEEE Transactions on Visualization and Computer Graphl&5):965-972, September 2006.

[15] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya. Image-Guideea®line Placement on
Curvilinear Grid Surfaces. IRroceedings IEEE Visualization '99ages 135-142, 1998.

[16] O. Mattausch, T. Theussl, , H. Hauser, and Eolér. Strategies for Interactive Exploration
of 3D Flow Using Evenly-Spaced llluminated Streamlines Pmceedings of the 19th Spring
Conference on Computer Graphjggmges 213-222, 2003.

[17] A. Mebarki, P. Alliez, and O. Devillers. Farthest Point Seeding Efficient Placement of
Streamlines. IfProceedings IEEE Visualization 2008ages 479-486. IEEE Computer Society,
2005.

[18] Z. Peng and R. S. Laramee. Vector Glyphs for Surfaces: A&a$iSimple Glyph Placement
Algorithm for Adaptive Resolution Meshes. Rroceedings of Vision, Modeling, and Visualiza-
tion (VMV) 2008 pages 61-70, 2008.

[19] T. Ropinski and B. Preim. Taxonomy and Usage Guidelines for Ghged Medical Visu-
alization. InProceedings of the 19th Conference on Simulation and Visualization (Sij)VisO
pages 121-138, 2008.

[20] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang. EverdgesipStreamlines for Surfaces:
An Image-Based ApproactComputer Graphics Forun28, 2009. forthcoming.

[21] G. Turk and D. Banks. Image-Guided Streamline PlacemenACIM SIGGRAPH 96 Confer-
ence Proceedingpages 453-460, August 1996.

[22] V. Verma, D. Kao, and A. Pang. A Flow-guided Streamline Seedingt&ly. InProceedings
IEEE Visualization 2000pages 163-170, 2000.

[23] M.O. Ward. A Taxonomy of Glyph Placement Strategies for Multidimenti@=a Visualiza-
tion. Information Visualization1(3-4):194-210, 2002.

[24] X. Ye, D. Kao, and A. Pang. Strategy for Seeding 3D StreamlinesPrbceedings IEEE
Visualization 2005pages 471-476, 2005.

