GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD
SIMULATION DATA

Zhenmin Pengd, Robert S. Larameé, Guoning Cher?, Eugene Zhang

lvisual and Interactive Computing Group, Department of Computer Science,
Swansea University, Swansea, UK. Emaflcszp,r.s.larameg@swansea.ac.uk

2School of Electrical Engineering and Computer Science, OregoState University,
Corvallis, OR 97331. Email: f chengu,zhangg@eecs.oregonstate.edu.

THEME
Virtual Reality, Visualization

KEYWORDS
glyph placement, streamline placement, streamline sgedw visualization, vector eld
visualization, CFD simulation data

SUMMARY

Visualization of ow on boundary surfaces from computatbrow dynamics (CFD) is chal-
lenging due to the complex, adaptive resolution nature @itieshes used in the modeling
and simulation process. Part one of this paper presentg arfdssimple glyph placement
algorithm in order to investigate and visualize ow data®asn unstructured, adaptive res-
olution boundary meshes from CFD. The algorithm has severardages: (1) Glyphs are
automatically placed at evenly-spaced intervals. (2) Tégr gan interactively control the
spatial resolution of the glyph placement and their pretsation. (3) The algorithm is
fast and supports multi-resolution visualization of thev at surfaces. The implementation
supports multiple representations of the ow—some optedifor speed others for accuracy.
Furthermore the approach doesn't rely on any pre-procgssirthe data or parameteriza-
tion of the surface and handles large meshes ef ciently. f@selt is a tool that provides
engineers with a fast and intuitive overview of their CFD diation results.

In part two, we introduce an automatic streamline seediggrahm for vector elds de ned
on surfaces in 3D space. The algorithm generates evenbedpgtreamlines fast, simply,
and ef ciently for any general surface-based vector eld.isl general because it handles
large, complex, unstructured, adaptive resolution gridh fwles and discontinuities, does
not require a parameterization, and can generate bothespadsdense representations of the
ow. It is ef cient because streamlines are only integrated visible portions of the sur-
face. Itis simple because the image-based approach reni@/ased to perform streamline
tracing on a triangular mesh, a process which is complicatdebst. And it is fast because
it makes effective, balanced use of both the CPU and the GP& k& to the algorithm's
speed, simplicity, and ef ciency is its image-based segditrategy. We demonstrate our
algorithm on complex, real-world simulation data sets froemputational uid dynamics
and compare it with object-space streamline visualization

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

: s A
Figure 1:The unstructured adaptive resolution boundary grid of a cooling jdoiet a CFD sim-
ulation. The rst image is an overview of the boundary mesh, and the seisoa close-up. These
images illustrate how complex a typical mesh from CFD can be.

1 Introduction

Ever increasing attention is invested in order to nd readsda and ef cient solutions for
analyzing and visualizing the ow from computational uid/damics in last three decades.
As the size of simulation data sets increases, so does thdoresffective visualizations that
provide insight into the data. A tremendous amount of tingkranney is spent on simulation
in order to speed up the manufacturing process. Construchjggts in software should be
faster than building their real hardware counterparts.

Out of all the possible visualization techniques that camuged to investigate the simula-
tion results, vector glyphs and color-coding are the mogufar tools used by engineers.
Vector glyphs offer several advantages. They are intuititlee depiction of the underlying
ow is universally understood. Secondly, they do not acclateierror in the same way that
geometric techniques do. Integration-based visualinatguch as streamlines have in an
inherent error associated with them stemming from the agpEitions made in the underly-
ing computation. Thirdly, glyphs are easy to implement. Mmplicated algorithms or data
structures are needed. Thus they are featured in everyasefapplication. However, glyphs
also have their drawbacks. Optimal vector eld glyph plaesmis a challenge, especially
in the context of CFD applications. Figure 1 shows a typiga@ngulated boundary mesh
produced from a CFD model. Its unstructured, adaptive résolcharacteristics make the
placement of vector glyphs dif cult. If we naively place acter glyph at every sample point
on the surface, then the glyphs are either too small to see large that they overlap and
result in clutter. Another drawback is that the density gfpgis corresponds with the density
of mesh polygons. This variation is unrelated to the vectues themselves. Also, the
user has no control over the glyph placing. Furthermorejegang so many glyphs degrades
performance time greatly. Most of the glyphs would be ocetud

While glyph-based visualization has been widely appliecttsor eld and medical visual-
ization [19] [23], glyphs for vector eld visualization haueceived relatively little attention.
This may be due to the dif culties in placing glyphs evenlywmstructured, adaptive resolu-
tion boundary meshes from the complex CFD data sets and peatg@poblems like visual
complexity and occlusion (as indicated above). In orderddress these challenges, we

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 2:Visualization of ow at the surface of a cooling jacket. The rstimage preésen overview

of the surface. The second image focuses on the bottom left-hand odihe jacket. The mesh is
comprised of approximately 227,000 adaptive resolution polygons. Detaileges of sample grids
have been presented earlier [11].

present a fast and simple glyph placement algorithm to tigege and visualize ow data
based on unstructured, adaptive resolution boundary rmésita CFD yielding the follow-
ing bene ts:

Glyphs are automatically placed at evenly-spaced inteyuadlependent of how com-
plex or dense the underlying adaptive resolution mesh is.

The user can interactively and intuitively control the satesolution of the glyph
placement as well as their precise location.

Multi-resolution visualization of the ow at surfaces cage hpplied to increase detail

in areas deemed interesting by the user.
Glyphs are never generated for occluded or otherwise bieisegions of the surfaces.

The algorithm is fast, enabling novel user interaction sackhooming, translating and
rotation.

Our approach enables various representations of the owmiged for either speed
or accuracy, in a natural way.

The algorithm relies neither on pre-processing of the dataom parameterization of the
surface. It also handles large numbers of polygons ef ¢yenthe key to the algorithms

speed and simplicity is transferring computation that wloubrmally take place in object

space to image space. The approach is especially usefuldeeeagineers often start their
investigation of simulation results by looking at the sagdor an overview.

A second family of visualization techniques is based arostnemlines; curves in the do-
main that are tangent to the velocity of the ow eld. The udestreamlines to depict motion
in vector elds is of key interest in many areas of ow visuadition. The low visual com-

plexity of the technique coupled with scalable density nseduat important ow features

and behavior may be expressed elegantly and intuitivelypth static and interactive appli-
cations. Since one of the primary appeals of using streasimtheir visual intuitiveness, a
great deal of prior research has focussed on effectivesgadd placement within the vector

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

eld. All streamline-based ow visualization techniquesve to face the seeding problem,
that is, nding the optimal distribution of streamlines $uihat all the features in the vector
eld are visualized. One popular approach to this probleens from the use of evenly-
spaced streamlines, i.e. streamlines that are distributgdrmly in space. Speci cally, this
work has centred around ensuring streamlines are evealyesp of an optimal length and
are spatio-temporally coherent (Figure 2).

Until relatively recently, the task of distributing strelames uniformly onto 3D surfaces has
received comparatively little attention. This is due intgarthe numerous dif culties en-
countered when performing particle tracing in 3D space.hls paper we describe a con-
ceptually simple method of seeding and integrating evepbeed streamlines for surfaces
by making use of image space. In previous approaches, dinesnare rst seeded and in-
tegrated in object space. The result is then projected tvetartiage plane. In our approach,
we reverse the classic order of operations by projectingé¢ltor eld onto the image plane,
then seeding and integrating the streamlines. The advestghis approach are that:

Streamlines are always evenly-spaced in image space ditegsirof the resolution,

geometric complexity or orientation of the underlying mesh

Streamlines are never generated for occluded or othermiggble regions of the sur-

face.

Various stages of the process are accelerated easily usiggaggnmable graphics hard-

ware.

The user has a precise and intuitive level of control ovesgiaeing and density of the

streamlines.

The algorithm is fast, resulting in support for user-intdi@n such as zooming, pan-

ning and rotation.

The distribution of the streamlines remains constant, pedeent of the user's view-

point, e.g. zoom level.

The algorithm decouples the complexity of the underlyingsmi&om the streamline

computation and so does not require any parameterizatitrecfurface.

The algorithm is simple and intuitive and thus could be ipooated into any visual-

ization library.

However, in order to obtain these characteristics, cediaallenges, both technical and per-
ceptual, must rst be overcome. We describe these in detdiie sections that follow.

2 Related Work

Ward [23] states that glyph-based visualization has bedelwused to convey various infor-
mation simultaneously by employing intuitive graphs toideporresponding various vari-
ables from abstract data sets. Our work focuses on applgiagituitive depiction in image-
space as well as developing an ef cient and fast glyph plaggralgorithm to illustrate the
vector eld accurately. Previously, related techniquesenaeen proposed in order to im-
prove glyph-based visualization. In this section we désctinese related techniques.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

2.1 \ector Field Glyph Placement

Vector eld glyph placement has received comparativelitditattention. A vector glyph
placement approach is described by Klassen and Harrin§lo hree-dimensional glyphs
are placed at regularly-spaced intervals on a 2D plane.®Vsdn the plane are added to the
glyphs to highlight their orientation. In order to depicetihector elds on curvilinear and
unstructured grids, Dovey [3] presents a vector glyph pteard algorithm for slices through
3D curvilinear and unstructured grids. He describes twiediht object-space approaches
for resampling a vector eld de ned on a 3D unstructured onglinear grid onto a regular
planar slice. The most computationally expensive part efgtocedure for interpolating a
simulation result value onto an arbitrary new point is laagthe cell that contains the point.
This process can be very costly in terms of processing tirea ehen spatial data structures
are used to accelerate the search. Hong et al [5] use volumdenexd vector glyphs which
are generated from pre-voxelized icon templates to descegular, structured vector elds
in 3D space. Incremental image updates which re-computetbake pixels on the image
plane affected by user input make visualization of the scald vector eld faster and more
interactive. Laramee describes an object-space appraaoy) tesampling and vector glyph
placement for slices through unstructured, 3D CFD meshgsTh@ algorithm we describe
here is conceptually similar but raises the spatial dinmradity to surfaces (as well as planar
slices). Our algorithm is also faster, simpler, and moreieit. In fact we are surprised not
to nd any previous work that provides an elegant and fasttsah to the basic problem we
are addressing.

2.2 Evenly-Spaced Streamlines in 2D and 3D

Turk and Banks introduce the rst evenly-spaced streamliregegyy [21]. The algorithm is
based on an iterative optimization process that uses agyhe@rction to guide streamline
placement. Their work is extended to parametric surfacesyxvilinear grids) by Mao et
al. [15]. They adapt the aforementioned energy functionddkwin 2D computational space
analogous to the way that Forssell and Cohen [4] extendedrifieal LIC algorithm [1] to
curvilinear grids. The Turk and Banks algorithm [21] is enteth by Jobard and Lefer [6]
who introduce an accelerated version of the automaticrsiiea seeding algorithm. This
algorithm uses the streamlines to perform what is essgnfiaearch process for spaces in
which streamlines have not already been seeded. Animakaa{i/multiresolution versions
of the algorithm [8] have been implemented. Mebarki et ar] [ihtroduce an alternative
approach to that of Jobard and Lefer [6] by using a searckeglydhat locates the largest
areas of the spatial domain not containing any streamlibiesand Moorhead [14] present
another alternative approach capable of detecting cloeddspiraling streamlines. Li et
al. [12] describe a seeding approach that resembles hawdiditreamlines for a ow eld.

Mattausch et al. [16] implement an evenly-spaced streansi@eding algorithm for 3D ow

data and incorporate illumination. The technique does roegate evenly-spaced stream-
lines in image space however, but object space. Li and Stsmmibde an image-based stream-
line seeding strategy for 3D ows [13]. The goal of their waskto improve the display of

3D streamlines and reduce visual cluttering in the outpaiges. Their algorithm does not
however, necessarily, result in evenly-spaced streaslim@nage space. Streamlines may
overlap one another after projection from 3D to 2D. Furthaen unnecessary complexity

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

is introduced by performing the integration in object spatfe also note the closely related,
automatic streamline seeding strategies of Verma et al.d@a Ye et al. [24]. These tech-
niques seed streamlines rst by extracting and classifgingularities in the vector eld and
then applying a template-based seeding pattern that pamds to the shape of the singular-
ity. Chen et al. [2] also use a topology-based seeding sirateg

3 Glyph and Streamline Placement Algorithms

CFD Simulation
Data

Vector Field
Encoding

Vector Field

Projection

Decoding and
Reconstruction
Glyph
Placement
Image Overlay
Application

Optional
Enhancements

User
Options

Viewpoint
Changes?

Figure 3: (rst) An overview chart of the glyph placement algorithm for the fashgetion and
simple placement of vector eld glyphs for surfaces. (second) Anvager diagram for generating
evenly-spaced streamlines on surfaces. Heis the frame number.

For the glyph placement algorithm, rst the vector eld isgpected from 3D object space
to 2D image space, this is done by exploiting graphics harewahe vector eld on the
boundary surface from the CFD data set is encoded into theeftarfier. This is followed
by both ow reconstruction and glyph placement. The vecteld is reconstructed based
on the user-de ned resolution of an image-based Cartesisshme&hen the vector glyphs
are rendered along with the original surface geometry intagelay. An overview of this
process is depicted in Figure 3. Several enhancements cadadiee including various inter-
action techniques as well as multi-resolution visual@adi Many different user options are
available following the reconstruction and glyph placetprases in order to depict the vec-
tor eld accurately and interactively. It's also worth meariing that if viewpoint is changed
after the nal glyph rendering, the next pass will start freime encoding phase. Only a sub-
set of the algorithm is required, starting with decoding eewbnstruction if the user-de ned
resampling parameters are changed. More details are gwBeiig and Laramee [18].

The streamline placement algorithm overcomes many difiealby performing streamline
integration in image space utilizing a multi-pass techaithat is both conceptually simple

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

and computationally ef cient. It operates by projectingwadata onto the view plane, se-
lecting and tracing seed candidates to generate the stremnand nally rendering both
geometry and streamlines to the framebuffer. To generatemages we use a 3D polygonal
model of a ow data set. Technically, the velocity is de ned @ at the boundary (no slip
condition) so we have extrapolated the velocity from justde the boundary for visualiza-
tion purposes. Each vertex describes the direction and imo@gof the ow at that point on
the surface. An overview diagram describing each concéptage of the algorithm can be
seen in Figure 3. More details are given by Spencer et al. [20]

4 Performance and Results

Data Set Resampling Rate (FPS)
Sub-sampling Average| Linear | Gaussian
Ring 59(29) 2.5(2.0)| 30(17) | 30(16)

(10K)
Combustion] 59(20) 1.9(1.8)] 29(11) | 29(12)
Chamber
(79K)
Intake Port| 59(11) 2(1.5) | 29(8) | 30(7.5)
(221K)
Cooling 59(9.5) | 1.9(1.7)| 29(8.2)| 29(7.8)
Jacket
(228K)

Table 1:Sample frame rates for the glyph placement algorithm applied 1#thxed resolution of
user-de ned resampling grid with about 75% image space area covAreiinage of512 pixels is
used.

Figure 4: The comparison of brute-force hedgehog visualization (rst) and outtiresolution
glyph-based visualization which is using a Gaussian lter (second) appliedier to depict the ow
at a surface of an intake port mesh composed of unstructured, aslagsivlution 221K polygons.
Notice how the glyphs are cluttered using the hedgehog approach (rgfeimaAlso notice that
artifacts appear resulting from the underlying mesh that have nothing toitdathve actual ow.
Glyphs are color-coded according to velocity magnitude.

As our glyph-based visualization is focused on unstructuaglaptive resolution boundary
meshes from the complex CFD data sets, we evaluate our \aatiah on simulation data
sets with these characteristics. Figure 4 shows a companisorute-force hedgehog place-
ment and our glyph-based method applied on a surface of akemgort mesh composed
of 221K polygons. The intake port has highly adaptive resofuboundary surface and for
which no global parameterization is easily computed. As amr see from the rst picture,

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 5: Another comparison of brute-force hedgehog ow visualization (ratpeglyph-based
ow visualization which is powered by Gaussian Iter and multi-resolution ¢(set) applied at the
surface of a cooling jacket - a composite of 228K unstructured, agapsolution polygons.

most glyphs overlap or are occluded. Using a hedgehog apip&@dk glyphs are rendered.
However, our approach renders only about 400 glyphs. Alsadistribution of glyphs is
uneven. These artifacts are a result of the underlying medlhave no relation to the ow
itself. In the second, our method places glyphs in an imeiigind ef cient fashion enabling
engineers to get a fast and clear overview of the ow on théaser. At the same time, with
the help of a multi-resolution option, more details on thielasting areas can be obtained.
The vector eld on the complex cooling jacket boundary mesffiieem Figure 1) can be also
ef ciently visualized by our intuitive glyph-based meth@gigure 5), especially compared
to a hedgehog visualization. Because of the fast speed of etivad this glyph-based vi-
sualization allows users to translate, rotate and zoomemHtject interactively to get better
insight of the CFD data sets. We encourage the reader to viewupplementary video for
more results.

In order to compare the various reconstruction options @mgnted in our framework, we
evaluated sub-sampling, averaging, the linear lIter fimetand the Gaussian Iter function
on a PC with an Nvidia Geforce 8600GT graphics card, a 2.66 Gtt-processor and 4
GB of RAM. The performance times reported in Table 1 were oleiusing a xedl1%
resolution resampling grid with about 75% image space @gerThe rst times illustrated
in the FPS column are for the static case of (no change to tve point) only changes to
the user options. The times shown within parenthesis dépéctlynamic case of changes
to the viewpoint. In terms of the overview chart presente#figure 3, the construction of
a velocity image, image overlay, reconstruction of vecteld, as well as glyph placement
need to be computed in the dynamic case. From Table 1, we eathaesub-sampling is
the fastest while averaging is the slowest. Linear and Gamisker functions are in the
middle as a balance between computation speed and highaagcore detail about the
performance of the glyph placement algorithm can be fouriteing and Laramee [18].

We tested the streamline placement algorithm on a rangetatels taken from complex
CFD simulations. To obtain high-quality results, we use asdeorder Runge-Kutta par-

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

dsep (pixels)

Scene % 1.0 2.0 4.0 8.0 16.0
Gas Engine | 39.3%| 1977.6ms| 627.49ms| 244.21ms| 95.27ms| 46.76ms
Diesel Engine| 39.6% | 1455.08ms 456.58ms| 166.28ms| 73.44ms| 29.69ms
Ring Surface | 41.3%| 1392.65ms 368.39ms| 132.23ms| 53.79ms | 24.41ms
Cooling Jacket 39.3% | 3774.56mg 1345.37mg 592.95ms| 250.81ms| 126.44ms

Table 2: Streamline generation timing gures for a variable valuedgf,. In these examples, the
integration step size is set to 1 pixel. Foreshortening and edge detecticabie@nThe dimensions
of the framebuffer upon which each mesh is renderégD¥ pixels. % is the amount of the image
plane covered by the geometry after projection.

ticle tracer with an adaptive step size in the sub-pixel ean@Qur test system included an
Intel Core 2 Duo 6400 processor with 2GB RAM and an nVidia Ge&@@00 GS graphics

card. Given that the ow projection and mesh rendering paisse handled by the GPU,
we found that increasing the complexity of the underlyingdedadid not adversely affect

the time taken to generate an image. Except when the numbmalyfons was relatively

high, our graphics card capped the frame rate at 60Hz. Inr dodeender the streamlines
to the framebuffer, however, the memory associated withddwace needed to be locked
at each frame. Reading from video memory typically incursa+#eack penalty (we en-

countered it to be approximately 570ms per megabyte of foarffer data) which adversely
affects performance. However the net gain of off-loadingipatationally expensive tasks
onto the graphics hardware meant that this was an acceptateeoff. In all our examples,

the underlying colour gradient is mapped to ow velocity.

Figure 6 uses high-detail data from the computed ow throtwb intake ports. Here, the
color scheme has been chosen to highlight slow-moving owtid¢ how the streamlines
t well around the small holes on top of each of the two intaket. We also compare our
algorithm with an object-based approach (middle imagekr&hs no visible difference in
terms of the accuracy between each method of streamlingratien. Further results are
illustrated in the accompanying video.

The dataset in Figure 2 is a snapshot from a simulation of oM through an engine
cooling jacket. The adaptive resolution mesh is composeavef 227,000 polygons and
contains many holes, discontinuities and seeding zonespiethe high level of geomet-
ric complexity, our algorithm computes evenly-spacedastiénes cleanly and ef ciently.
In this instance, using a technique based on surface pagaration would be especially
dif cult owing to the complex topology of the shape.

In Figure 7 we demonstrate the exibility of our algorithm handling arbitrary levels of
magni cation. The left-most image shows a pro le view of asgangine simulation cut-away
with object-based streamlines. The nextimage shows the dataset rendered using image-
based streamlines. The remaining images show progresbigtler factors of magni cation
with the small square in the rst frame corresponding to tledéd of view in the nal frame.
Note how the spacing of the streamlines automatically rasnaniform, independent of the
level of magni cation.

Table 2 compares the time taken to integrate streamlinestiogerelocity image for each of

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

Figure 6: The visualization of ow at the boundary surface of two intake ports. ftjL'@/ith our
novel, image-based streamlines. (Middle) With full-precision, object-bsisedmlines computed on
the CPU. (Right) High-contrast, image-based streamlines. This mesh is cethpfiapproximately
222,000 polygons at an adaptive resolution.

the four models described above. The gures describing itteeaf the ow eld are calcu-
lated by summing the number of visible pixels belonging ® ttw mesh that are rasterized
onto the framebuffer. Our performance times are comparahpeevious 2D seeding algo-
rithms. Furthermore, our algorithm is approximately twdens of magnitude faster than the
CPU, object-based method owing to the reduced computatoomaplexity.

The CPU, object-based method requires more than 60 secorndspltation time (several

minutes). It is worth noting that our implementation of thrggmal evenly-spaced stream-
line algorithm is not fully optimized. Several enhancensesmd improvements have been
proposed that both speed up and re ne seeding and placewfesiteamlines [14], however

we have deliberately kept our implementation simple so astwentrate on extending it to
a higher spatial dimension.

Figure 7:Zooming: Visualization of the ow at the surface of a gas engine simulationa@gngs-
sively higher levels of magni cation. The left-most image was generatedyusiall oating-point,
object-based algorithm computed on the CPU. The successive imagegamerated using our novel,
image-based technique.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

5 Conclusion and Future Work

In the rst part of this paper we propose a fast and simple glpfcement algorithm for
investigating and visualizing boundary ow data based ostuwrctured, adaptive resolu-
tion boundary meshes from CFD. We show that the algorithncedey and automatically
places glyphs at evenly-spaced intervals, independerarhigtric and topological complex-
ity of the underlying adaptive resolution mesh. We have dismonstrated that the spatial
resolution and precise location of the glyph placement @aimteractively and intuitively
adjusted by the user in order to gain better visualizatisalts. In addition, multi-resolution
visualization can be applied to highlight details in areasrded interesting by the user. Fur-
thermore, the ef ciency of our algorithm is reinforced byetfact that no computation time
is wasted on occluded polygons or polygons covering less ¢im& pixel. Due to the ef -
ciency and speed of the algorithm user interaction such asirg, translating and rotation
is enabled. The framework supports various representattbthe ow optimized for both
speed and accuracy. No pre-processing of the data or paamadibn is required.

The second constituent of this paper describes an, imaggdbi@chnique for generating
evenly-spaced streamlines over surfaces. We have showrodhalgorithm effectively
places streamlines on datasets with arbitrary topologiedlgeometric complexity. We have
also demonstrated how a sense of depth and volume can beyednwéile preserving the
desirable evenly-spaced property of the algorithm's 2Dntexpart. Our results show that
an image-based projection approach and seeding strategut@amatically handle zooming,
panning and rotation at arbitrary levels of detail. The efricy of the technique is also high-
lighted by the fact that streamlines are never generateth¥sible regions of the dataset.
The accuracy of the visualization is demonstrated by comg@ahe results of image- and
object-based approaches.

As future work we would like to extend the work to visualizatiof unsteady, 3D (volu-
metric) ow. Challenges stem from both the resampling parfance time and perceptual
issues. Future work also includes using oating-point tiegtin order to encode and decode
the vector eld.

6 Acknowledgements
This work was supported by EPSRC research grant EP/F002335/1

References

[1] B. Cabral and L. C. Leedom. Imaging Vector Fields Using Line Inte@anvolution. In
Poceedings of ACM SIGGRAPH 19%nual Conference Series, pages 263-272, 1993.

[2] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. gharector Field Editing and
Periodic Orbit Extraction Using Morse DecomposititBEE Transactions on Visualization and
Computer Graphicsl3(4):769—-785, Jul/Aug 2007.

[3] D. Dovey. Vector Plots for Irregular Grids. IRroceedings IEEE Visualization '9%ages
248-253, 1995.

[4] L. K. Forsselland S. D. Cohen. Using Line Integral ConvolutionFtow Visualization: Curvi-
linear Grids, Variable-Speed Animation, and Unsteady FIO®WEE Transactions on Visualiza-
tion and Computer Graphi¢4.(2):133-141, June 1995.

GLYPH AND STREAMLINE PLACEMENT ALGORITHMS FOR CFD DATA

[5] L. Hong, X. Mao, and A. E. Kaufman. Interactive Visualization of Mk Scalar and Vector
Fields. InProceedings IEEE Visualization '9pages 240-247, 1995.

[6] B. Jobard and W. Lefer. Creating Evenly—Spaced Streamlines lotrAry Density. InPro-
ceedings of the Eurographics Workshop on Visualization in Scienti ¢ @timg'97, volume 7,
pages 45-55, 1997.

[7] B.Jobard and W. Lefer. Unsteady Flow Visualization by Animating B&paced Streamlines.
In Computer Graphics Forum (Eurographics 200@lume 19(3), pages 21-31, 2000.

[8] B. Jobard and W. Lefer. Multiresolution Flow Visualization. WISCG 2001 Conference Pro-
ceedingspages 33-37, Plzen, Czech Republic, February 2001.

[9] R. V. Klassen and S. J. Harrington. Shadowed hedgehogs: Aitpaffor visualizing 2D slices
of 3D vector elds. InProceedings IEEE Visualization '9pages 148-153, 1991.

[10] R. S. Laramee. FIRST: A Flexible and Interactive Resampling T@oCFD Simulation Data.
Computers & Graphics27(6):905-916, 2003.

[11] R. S. Laramee.nteractive 3D Flow Visualization Using Textures and Geometric Primitives
PhD thesis, Vienna University of Technology, Institute for Computer Gicgpand Algorithms,
Vienna, Austria, December 2004.

[12] L. Li, H.-S. Hsieh, , and H.-W. Shen. lllustrative Streamline Placenaant Visualization. In
IEEE Paci ¢ Visualization Symposium 2008ages 79-85. IEEE Computer Society, 2008.

[13] L. Liand H.-W. Shen. Image-Based Streamline Generation andéRiegd IEEE Transactions
on Visualization and Computer Graphjcs3(3):630-640, 2007.

[14] Z.P.LiuandR. J. Moorhead, Il. An Advanced Evenly-SpaSadamline Placement Algorithm.
IEEE Transactions on Visualization and Computer GraphléX5):965-972, September 2006.

[15] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya. Image-Guideea®line Placement on
Curvilinear Grid Surfaces. IRroceedings IEEE Visualization '9®ages 135-142, 1998.

[16] O. Mattausch, T. Theussl, , H. Hauser, and Eolér. Strategies for Interactive Exploration
of 3D Flow Using Evenly-Spaced llluminated Streamlines.Pmceedings of the 19th Spring
Conference on Computer Graphjggmges 213-222, 2003.

[17] A. Mebarki, P. Alliez, and O. Devillers. Farthest Point Seeding Ebcient Placement of
Streamlines. IfProceedings IEEE Visualization 2008ages 479-486. IEEE Computer Society,
2005.

[18] Z. Peng and R. S. Laramee. Vector Glyphs for Surfaces: A&a$iSimple Glyph Placement
Algorithm for Adaptive Resolution Meshes. Rroceedings of Vision, Modeling, and Visualiza-
tion (VMV) 2008 pages 61-70, 2008.

[19] T. Ropinski and B. Preim. Taxonomy and Usage Guidelines for Ghgded Medical Visu-
alization. InProceedings of the 19th Conference on Simulation and Visualization (SigjVisO
pages 121-138, 2008.

[20] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang. EverdgesipStreamlines for Surfaces:
An Image-Based ApproactComputer Graphics Forun28, 2009. forthcoming.

[21] G. Turk and D. Banks. Image-Guided Streamline PlacemenACIiM SIGGRAPH 96 Confer-
ence Proceedingpages 453-460, August 1996.

[22] V. Verma, D. Kao, and A. Pang. A Flow-guided Streamline Seedingt&ly. InProceedings
IEEE Visualization 2000pages 163-170, 2000.

[23] M.O. Ward. A Taxonomy of Glyph Placement Strategies for Multidimenti@sa Visualiza-
tion. Information Visualization1(3-4):194—-210, 2002.

[24] X. Ye, D. Kao, and A. Pang. Strategy for Seeding 3D StreamlinesPrbceedings IEEE
Visualization 2005pages 471-476, 2005.

