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Abstract—Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed

points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make

such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust

with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse

connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCGs,

while fast, are overly conservative and usually result in MCGs that are too coarse to be useful for the applications. To address this

issue, we present a new technique for performing Morse decomposition based on the concept of �-maps, which typically provides

finer MCGs than existing techniques. Furthermore, the choice of � provides a natural trade-off between the fineness of the MCGs and

the computational costs. We provide efficient implementations of Morse decomposition based on �-maps, which include the use of

forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the

triangles in the meshes used for simulation. Furthermore, we propose the use of spatial �-maps in addition to the original

temporal �-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation.

We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

Index Terms—Vector field topology, uncertainty, Morse decomposition, �-maps, Morse connection graph, flow combinatorialization.

Ç

1 INTRODUCTION

EXTRACTING and visualizing vector field topology
has important applications in Computational Fluid

Dynamics (CFD) [15], weather prediction, tsunami and
hurricane modeling, and airplane design and control. For
instance, the existence of recirculation zones (periodic
orbits) can indicate stagnant flow, which may be undesir-
able in engine design, because stagnant flows indicate
trapped heat in the engine [16].

Past work defines the topology of two-dimensional (2D)
vector fields as fixed points and periodic orbits, as well as
the separatrices that connect them [10], [4]. This leads to a
graph representation of the vector field, which is referred to
as Entity Connection Graph (ECG). However, analysis and
visualization of vector field topology based on individual
trajectories can raise questions with respect to interpretation
as the discrete nature of fluid flow data poses several
challenges. First, data samples are only given at discrete
locations such as cell vertices or cell centers. Interpolation
schemes are then used to reconstruct the vector field
between the given samples. Second, the given data samples

themselves are numerical approximations, e.g., approxi-
mate solutions to a set of partial differential equations.
Third, the given flow data are often only a linear
approximation of the underlying dynamics. Finally, the
visualization algorithms themselves, e.g., streamline inte-
grators, have a certain amount of inherent error associated
with them. In short, how can we be sure that what we see is
authentic when extracting and visualizing the topological
skeleton of the flow field? Could the error inherent to
multiple numerical approximations produce misleading
information? Fig. 1 provides examples in which proper
interpretation can be difficult when performing analysis
based on individual trajectories.

Fig. 1a shows an analytical vector field that contains
pitchfork bifurcation [9]. The results shown in the two
columns of (a) are obtained by computing sample vector
values using two different meshes: (left) a regular triangu-
lated mesh with 6,144 triangles and (right) a triangulated
mesh with 1,000 triangles. Notice that using different meshes
leads to different ECGs (third row in Fig. 1a). Fig. 1b
demonstrates a saddle-saddle connection bifurcation [9].
The images to the left in Fig. 1b show the original flow, while
the images to the right show the flow that was obtained from
the original one after introducing a small amount of
perturbation (we have randomly perturbed the vector
direction at each vertex by an angle between 0 degree and
1 degree). Notice that ECGs (third row in Fig. 1b) are sensitive
to noise. Fig. 1c provides a case of Hopf-bifurcation [15]. The
image to the left in Fig. 1c (second row) shows the resulting
topology using an adaptive fourth-order Runge-Kutta inte-
gration, while the image to the right illustrates the topology of
the same vector field using a second-order Runge-Kutta
integration [2], [23]. This clearly demonstrates that the ECGs
rely on the employed numerical scheme. (The ECGs in all the
example flows are computed using the algorithms proposed
by Chen et al. [4].) These observations motivate the study of a
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more reliable way of defining and extracting vector field
topology than the existing techniques. We point out that
addressing such uncertainty in visualization was identified as
one of the most important future challenges by Johnson [12].

In order to address this important challenge, we present a
rather different approach to the representation, extraction,
and visualization of flow topology. The representation of the
global dynamics is done in terms of an acyclic directed
graph called the Morse connection graph (MCG). The nodes in
this graph, which we refer to as Morse sets, correspond to
polygonal regions in the phase space, which we define to be
Morse neighborhoods. All the recurrent dynamics is contained
in the Morse neighborhoods. The edges in an MCG indicate
how the flow moves from one Morse neighborhood to
another. In contrast to trajectory-based topological analysis
such as vector field skeleton and ECG, an MCG is stable with
respect to perturbations, i.e., given sufficient information on

errors of the vector field, it is possible to make rigorous
interpretations about the underlying dynamics [14]. In other
words, a well-defined error, " > 0, can be bounded and
included into the map of the flow domain. We demonstrate
the stability of MCGs in Fig. 1 (the last two rows).

To perform Morse decomposition, i.e., compute MCGs,
Chen et al. [4] first construct another directed graph by
considering the behaviors of the vector field along edges of
the triangles, which we refer to as the geometry-based method.
We refer to the process of encoding the flow dynamics into
a directed graph as flow combinatorialization. Because the
triangulation is not adapted to the vector field, this can
result in coarse Morse sets (Fig. 2b). In this paper,
we exploit a temporal discretization, which we refer to as
a �-map, that is obtained by integrating a finite set of points
for a finite amount of time. Theoretically, this method can
produce as detailed an MCG as is desired, and in practice, it
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Fig. 1. Examples of the instability of individual trajectory-based vector field topology analysis (i.e., ECGs) due to the choice of (a) discretization scheme,
(b) noise, and the error from (c) numerical integration scheme. (a) Shows a vector field containing pitchfork bifurcation ðk ¼ 0:05Þ. It illustrates the
deviated ECGs obtained under two different discretization schemes. The vector field shown in (b) is an example flow having a saddle-saddle
connection. The two ECGs are computed based on the original result flow and its perturbation version. It illustrates the possible influence of the
unexpected noise in the data. (c) uses a vector field with Hopf-bifurcation ðk ¼ 0:0025Þ to illustrate that ECGs can be different using different numerical
schemes. The image to the left shows the resulting topology using the adaptive fourth-order Runge-Kutta integration, whereas the image to the right
shows the topology of the same flow using a second-order Runge-Kutta integration. In the ECGs of all the example fields, green dots indicate the
sources or repelling periodic orbits, red dots refer to sinks or attracting periodic orbits and blue dots represent saddles. The two bottom rows provide the
results of Morse decompositions and the associated MCGs of these fields using the idea of �-maps proposed in this paper. The � ’s for these fields are
40, 20, and 80, respectively. Note that for all the examples shown here, the MCGs are stable. The colored regions in the flowlike images (the fourth row)
are the Morse neighborhoods of the extracted Morse sets. Different colors indicate different Morse sets. The color-dotted regions indicate the
connection between Morse neighborhoods. Constrained to the underlying mesh, the Morse neighborhoods and the regions showing the connections
between Morse neighborhoods may look irregular (e.g., the Morse neighborhoods in (a) right and (c) left, and the connection regions in (b)). In the
MCGs, green dots stand for the source Morse sets, red dots for the sink Morse sets, and blue dots for the saddle Morse sets.



produces a finer MCG (Figs. 2c and 2d) than the geometry-

based method. The key challenges with the �-map guided

approach are choosing an appropriate temporal discretiza-

tion of the flow and constructing a high-quality flow

combinatorialization, which is the discrete outer approx-

imation of a �-map. In our implementations, we will

compute it as a directed graph, denoted by F � under a

time � . From it, we extract the Morse sets.
The work presented here yields the following benefits

and contributions:

1. We present a theoretically sound framework based
on Morse decompositions from which more rigorous
statements can be made with respect to the extrac-
tion of flow topology than the individual trajectory-
based analysis (Fig. 1).

2. We provide a means to obtain finer Morse decom-
positions of a given vector field than the geometry-
based method by using the idea of �-maps. A directed
graph F � obtained using flow combinatorialization
based on a �-map is introduced, which we use to
perform Morse decomposition and compute the
MCG. We also explore the effect of the values of �
on the level of details of the Morse decompositions
(Fig. 2).

3. We introduce a computationally tractable imple-
mentation of the efficient construction of the F �

and consequently fine Morse decompositions
(Section 4.2).

4. We explore the use of spatial �s versus temporal � , i.e.,
tracing particle for a finite distance instead of time,
which provides domain experts an alternative to the
temporal �-maps to analyze their data (Section 5).

5. We apply the proposed topological analysis techni-
que to both analytical data and application-oriented
data sets, including engine simulation data from
CFD on 3D surfaces (Section 6).

The rest of this paper is organized as follows: Section 2

provides a brief review of related work on vector field

topology analysis. Section 3 introduces the methodology of
vector field analysis using Morse decompositions and the
concept of �-maps. The pipeline of Morse decomposition is
also presented in Section 3. Section 4 describes a number of
practical algorithms to perform flow combinatorialization.
Section 5 proposes the use of spatial �s in order to achieve
faster construction of flow combinatorialization. Section 6
shows the utility of our approach to the engine simulation
data followed by a summary and discussion of future work
in Section 7.

2 RELATED WORK

Helman and Hesselink introduced to the visualization
community the notion of flow topology [10], [11]. Since
then, much research has been done on the topological
analysis of vector fields in the past two decades. To review
all of it is beyond the scope of this paper. Here, we briefly
review the most closely related work to this paper. We refer
interested readers to a number of surveys [15], [22].

2.1 Vector Field Topology

Much work has been done to address the extraction of
vector field topology in 2D vector fields. Tricoche et al. [30]
and Polthier and Preuß [21] give efficient methods to
locate fixed points in a vector field. Scheuermann et al. use
Clifford algebra to study the nonlinear fixed points of a
vector field [25] and present the approaches of visualizing
higher order fixed points and nonlinear topology of a given
vector field [24], [25]. Wischgoll and Scheuermann [34]
present an algorithm for detecting periodic orbits in planar
flows. They also extend this work to 3D vector fields [35]
and time-dependent flows [36]. Theisel et al. [28] present a
mesh independent approach to compute periodic orbits.

In general, previous topology-based techniques are based
on individual trajectories. As we have seen in Fig. 1, this may
lead to ambiguous interpretation of the given data. To
address this issue, we advocate the use of Morse decomposi-
tion. Compared to the individual trajectory-based methods,
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Fig. 2. This figure shows the various analysis results of an experimental field using ECG and MCGs, respectively: (a) ECG, (b) MCG (geometry-based
method), (c) MCG ð� ¼ 6Þ, and (d) MCG ð� ¼ 24Þ. The computation time for (b)-(d) is 0.14 second, 1.78 seconds, and 4.31 seconds, respectively.
Observe that the larger the � used, the better (closer to optimal) the Morse decompositions, but the time for computing the Morse decomposition
increases accordingly. The coloring scheme of the MCG is described in Fig. 1. Notice that the graphs shown in (a) and (d) are essentially the same
although they are labeled differently. The execution time was measured on a 3.0-GHz PC with 1.0 Gbyte of RAM. The color-dotted regions indicate
the connections between a saddle Morse set to another Morse set: source (green), sink (red), and saddle (blue).



Morse decomposition takes the errors introduced during

simulation and analysis into consideration given a certain

error bound and leads to a more rigorous interpretation of the

given data.

2.2 Morse Decomposition and Conley Theory

Conley index theory and Morse decomposition have been
introduced to the scientific visualization community by
Zhang et al. [38] and Chen et al. [4], respectively. Morse
decomposition focuses on the extraction and analysis of the
invariant sets of a flow. Fixed points and periodic orbits are
examples of invariant sets. An index called the Conley index
[4], [19] identifies the type of the invariant set. Efficient
algorithms also exist for identifying the neighborhoods of the
invariant sets [14]. Chen et al. [4] implement a Morse
decomposition algorithm using the geometry-based method.
This approach guarantees to produce Morse decompositions,
but it is typically coarser than what is required (Fig. 2b). We
address this by employing the idea of �-maps (Section 3.4).
Compared to the geometry-based method, the �-map guided
method introduced in this paper gives rise to a directed graph
ðF � Þ that encodes the dynamics of the given data more
accurately [14]. The MCGs extracted from F � are finer than
those from the geometry-based method (Fig. 2d).

3 BACKGROUND

In this section, we present a compact summary of the

theories of dynamical systems upon which our work is

built. Our discussion will focus on time-independent flow

only in this paper.

3.1 Entity Connection Graphs

A vector field defined on a manifold M can be expressed in
terms of a differential equation _x ¼ fðxÞ. The set of
solutions to it gives rise to a flow on M; that is a continuous
function ’ : R�M !M satisfying ’ð0; xÞ ¼ x, for all
x 2M, and

’ t; ’ðs; xÞð Þ ¼ ’ðtþ s; xÞ; ð1Þ

for all x 2M and t, s 2 R. Given x 2M, its trajectory is

’ðR; xÞ :¼ [t2R’ðt; xÞ: ð2Þ

S �M is an invariant set if ’ðt; SÞ ¼ S for all t 2 R. Observe

that for every x 2M, its trajectory is an invariant set. A

point x 2M is a fixed point if ’ðt; xÞ ¼ x for all t 2 R. More

generally, x is a periodic point if there exists T > 0 such that

’ðT; xÞ ¼ x. The trajectory of a periodic point is called a

periodic orbit.
Because we are considering systems with invariant sets

such as periodic orbits, the definition of the limit of a
solution with respect to time is nontrivial. The alpha and
omega limit sets of x 2M are

�ðxÞ :¼ \t<0cl ’ ð�1; tÞ; xð Þð Þ; !ðxÞ :¼ \t>0cl ’ ðt;1Þ; xð Þð Þ;

respectively (cl stands for the closure).
Given a point x0 2M, its trajectory is a separatrix if the

pair of limit sets ð�ðx0Þ; !ðx0ÞÞ consists of a saddle fixed

point and another object that can be a source, a sink, or a

periodic orbit.

The graph illustrating the connectivity between fixed
points and periodic orbits is called the ECG [4] (Fig. 1
(second row), Fig. 2a). As Fig. 1 indicates, ECGs are sensitive
to noise, as well as the choices of interpolation scheme,
numerical integration technique, and sampling patterns.

3.2 Morse Connection Graphs (MCGs)

We are interested in describing the topological structures of
the flow generated by a vector field _x ¼ fðxÞ defined on a
triangulated surface X �M. However, the information we
are given consists of a finite set of vectors:

fdðviÞ j vi a vertex of Xf g; ð3Þ

obtained either by a numerical simulation or from experi-
ment. This means that at best, we can assume that we have a
uniform bound on the errors of the observed vector field
versus the true vector field, that is, for each vi

fðviÞ � fdðviÞk k � ": ð4Þ

In addition, since we are only given the data (3), we extend
fd to a vector field on X by some means of interpolation
(typically linear interpolation). Assuming that f is well
approximated by fd, it is reasonable to assume that the
bounds of (4) are global, that is, kfðxÞ � fdðxÞk � " for
all x 2 X.

The easiest way to encode the aforementioned informa-
tion is to consider a family of vector fields F defined on the
surface X and parameterized by some abstract parameter
space �. We assume that for each � 2 �, the vector field
_x ¼ F ðx; �Þ gives rise to a flow ’� : IR�X ! X.

In this setting, we assume that there exist parameter values
�0, �1 2 � such that fðxÞ ¼ F ðx; �0Þ and fdðxÞ ¼ F ðx; �1Þ.
The Bifurcation theory tells us that even if �0 � �1, the orbits,
i.e., fixed points, periodic orbits, separatrices, of ’�0

and ’�1

need not agree [9]. The implication is that computing such
orbits for the vector field fd does not imply that these
orbits exist for the true vector field f . This leads us to weaken
the topological structures, which we use to classify the
dynamics.

A Morse decomposition ofX for a flow’� is a finite collection
of disjoint compact invariant sets, called Morse sets, [14]:

MðX;’Þ :¼ M�ðpÞ j p 2 ðP�;��Þf g;

where �� is a strict partial order on the indexing set P�
such that for every x 2 X n [p2P�M�ðpÞ, there exist indices
p �� q such that

!ðxÞ �M�ðqÞ and �ðxÞ �M�ðpÞ:

It is easy to verify that any structures associated with
recurrent dynamics of ’�, i.e., fixed points, periodic orbits,
chaotic dynamics, must lie in the Morse sets [14].
The dynamics outside the Morse sets is gradientlike.
Morse decompositions of invariant sets always exist, though
they may be trivial, i.e., consisting of a single Morse set X.

Observe that since P� is a strictly partially ordered set, a
Morse decomposition can be represented as an acyclic
directed graph. The nodes of the graph correspond to the
Morse sets, and the edges of the graph are the minimal order
relations, which through transitivity generate�� . This graph
is called the MCG and denoted by MCG� [4] (Figs. 1 and 2
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bottom rows). Moreover, without worrying about the
potential noise and numerical errors, an ECG indicates the
finest MCG when the vector field has a finite number of fixed
points and periodic orbits, all of which have an isolating
neighborhood of their own [4]. Though, there may not exist a
finest Morse decomposition. Consider the flow generated by
the differential equation x0 ¼ x2 sinð1=xÞ. It has an infinite
number of isolated fixed points, and hence, there is no finest
Morse decomposition (remember that there can only be a
finite number of Morse sets). Any Morse decomposition of it
can be refined further.

3.3 Morse Connection Graph Construction

We now summarize the pipeline of constructing an MCG
given the vector field V defined on a triangulated surface X.

First, we perform flow combinatorialization. That is, we
encode the flow dynamics into a directed graph, denoted by
F , whose nodes represent the elements (e.g., triangles) of
the underlying mesh and edges indicate the flow dynamics,
i.e., an edge from triangle Ti to triangle Tj indicates that
’ðTiÞ

T
Tj 6¼ ; (Fig. 4a). The details of this will be described

in Section 3.4.
Second, we find the strongly connected components

of the directed graph F , which gives rise to the
Morse neighborhoods that are the polygonal regions
constrained by the given mesh in the phase space. They
contain the Morse sets MðX;V Þ of the flow and have a
nontrivial Conley index [14] (Fig. 3, middle top).

Third, we compute a quotient graph F from F by

treating each strongly connected component of F as a node

(Fig. 3, middle bottom). The nodes in this quotient graph F
include Morse sets (nontrivial Conley index) and the

intermediate nodes corresponding to the polygonal regions

with gradientlike flow behaviors (i.e., trivial Conley index).

An edge mn
�!

in F indicates that there is at least one edge kl
!

in F such as k ¼ m and l ¼ n.
Finally, we extract the MCG from F by removing

intermediate nodes from F , as illustrated in Fig. 3 (the

bottom graph). The algorithm for MCG construction can be

found in [13].
To visualize the MCG, we classify the nodes of the MCG

into three types: Source Morse sets, Ri, are nodes absent of
incoming edges in the MCG; Sink Morse sets, Ai, are nodes
without outgoing edges in the MCG; Saddle Morse sets, Si,
are neither source Morse sets nor sink Morse sets. The Ri’s
are colored green, the Ai’s are colored red, and the Si’s are
colored blue. According to the partial order determined by
the edges in the MCG, we lay out the nodes such that the
source Morse sets appear at the top of the graph, the sink
Morse sets are placed at the bottom of the graph, and the
saddle Morse sets are placed between the source and sink
Morse sets. Figs. 1, 2, and 12 display the MCGs of a number
of analytical vector fields. Compared to the three-layer
structure of an ECG, an MCG has a multilayer structure,
which provides more information than the ECG. Further-
more, unlike ECGs, saddle-saddle connection is a generic
case in MCGs (Figs. 1b and 12b). Note that finer classifica-
tion of Morse sets, e.g., Saddle Morse sets, can be realized
based on Conley index theory [19].

We wish to emphasize that some graphics applications

may pursue the individual trajectory-based vector field

topology without being concerned with the fact that the

obtained ECGs may not be topologically rigorous such as

the applications in texture synthesis [31], [33] and fluid

simulation [27]. For such applications, an ECG can still

be extracted from Morse decomposition as an additional

step [4].
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Fig. 3. This figure illustrates the pipeline of MCG construction. We first
compute F (top) based on the underlying flow. The edges in the
multivalued map demonstrate the mapping relations of the polygons.
Based on the F , we extract the strongly connected components, which
represent either the Morse sets (middle top, inside colored boxes) or
intermediate nodes that describe gradientlike behaviors (middle top, T3,
T7, and T8). We then collapse each strongly connected component of
the F into a single node to obtain a quotient graph F . Note that the
nodes in this graph correspond to either Morse sets or the polygonal
regions of gradientlike flow behaviors (i.e., trivial Conley index). Finally,
the MCG (the bottom graph) is obtained by collapsing nodes with trivial
Conley index and removing redundant edges.

Fig. 4. This figure compares two ways of performing flow
combinatorialization: (a) geometry-based method and (b) �-maps. In
the directed graphs, each node corresponds to a triangle of the
mesh. In (b), the red triangle T ¼ T1 is the starting triangle, the light
brown curved closure is the real image of T , the blue dashed triangle
is the approximation of the real image.



3.4 Flow Combinatorialization Based on �-Maps

We now turn to the issue of flow combinatorialization,
i.e., the process of generating the graph F based on a vector
field V defined on a triangulated mesh X. Chen et al. [4]
present a geometry-based approach. The vertices of the
directed graph F generated by this approach correspond to
the triangles of the mesh. The edges of F are obtained by
considering the flow behavior across each edge of each
triangle. An edge Ti ! Tj in F indicates that the flow can
enter from Ti to Tj, where Ti and Tj are neighboring triangles
(Fig. 4a). We refer to the resulting directed graph as F g. An
MCG can then be obtained from F g using the pipeline
described in Section 3.3.

Since the mesh is not fitted to the flow, this approach is
not guaranteed to obtain the correct dynamics of the flow.
In our experiments, we have found that it often results in a
rather coarse outer approximation of the underlying
dynamics, i.e., Morse sets that contain multiple fixed points
and periodic orbits (Fig. 2b) or no structures at all (Fig. 15
left column). This makes subsequent analysis and physical
interpretation less effective. To obtain the Morse decom-
position that are closer to optimal, we introduce the concept
of �-maps, which allows us to move from the continuous
time of a flow to discrete time of a map. This leads to the
following definition.

Definition 3.1. Let � : X ! ð0;1Þ be a continuous map. A
�-time discretization of the flow ’ is a map f� : X ! X
defined by

f� ðxÞ :¼ ’ �ðxÞ; xð Þ:

We refer to this map as a �-map. Thus, finding Morse
decompositions for the flow ’ is equivalent to finding
Morse decompositions for f� .

The fact that X is a triangulated surface provides us with
an appropriate discretization in space. Let X be the
triangulation of X (i.e., a set of triangles). We will approx-
imate f� using a combinatorial multivalued map F : X�!�!X ,
which is a map such that for each triangle T 2 X , its image is
a set of triangles, i.e., FðT Þ � X .

The correct notion of approximation is given by
the following definition. Consider f� : X ! X. The combi-
natorial multivalued map F : X�!�!X is an outer approxima-
tion of f� if

f� ðT Þ � int FðT Þj jð Þ;

for every T 2 X , where jFðT Þj :¼ [R2FðT ÞR, int denotes
the interior. As an example, we refer readers to Fig. 4b. In
this example, we assume that the true image of the triangle
T ¼ T1 is IT . It is obtained by advecting T according to the
underlying flow over a time � . According to the definition,
the outer approximation of IT is the set of triangles T4, T5,
T6, T7, T8, T9, and T10. Mathematically, we say that T has
been mapped to multiple triangles of the same mesh by a
function (or a map) f� that is determined by the underlying
flow over a certain time � .

From the point of view of computation, it is useful to
view F as a directed graph, which we denote as F �

(Fig. 4b). Similar to F g, the vertices, Ti, of an F � are the
triangles of the underlying mesh, and the edges indicate
the outer approximation of the images of the triangles over
time � . For instance, an edge Ti ! Tj indicates that the

image of the triangle Ti over time � will intersect with the
triangle Tj (Fig. 4b).

Observe that the definition of an outer approximation
requires a lower bound on the set of triangles in FðT Þ but
not an upper bound. In general, larger images of F are
easier to compute. For example, one can obtain an outer
approximation by declaring FðT Þ ¼ X for all T 2 X .
However, the larger the image, the poorer the approxima-
tion of the dynamical system of interest, f� . We discuss how
to compute an F � in Section 4.

3.5 The Stability of Morse Connection Graphs

The definition of an outer approximation and the fact that
the triangles in the strongly connected components of
F form isolating neighborhoods for the Morse sets
demonstrate why the MCG remains constant under small
perturbations of the vector field (Fig. 1b). Since f� is a
continuous map, and each triangle T is compact, the image
f�ðT Þ is a compact set. If F is an outer approximation, then
by definition, f�ðT Þ is contained in the interior of the set
jFðT Þj. Thus, this property will also hold for any suffi-
ciently small perturbation of f� , which means that given a
multivalued map for f� , we have the same F � for any
sufficiently small perturbation of f� . Fig. 5 provides an
illustrative example to explain this property of an outer
approximation. In this figure, A triangle T ¼ T1 is advected
according to the original flow (represented by the black
arrows). Its image IT is shown as the closure bounded by a
blue curve. It intersects with a set of triangles (the shaded
triangles) T4, T5, T6, T7, T8, T9, and T10 of the mesh, which
forms the outer approximation of IT . When we artificially
introduce a random perturbation for each vector value
(shown as magenta arrows) and advect the triangle T under
the new flow, we obtain a new image I0T of it (shown as
magenta dashed curved closure). If we bound the perturba-
tion of each vector to guarantee that the new obtained
image I0T will intersect the same set of the triangles as the
IT obtained under the original vector field, we will obtain
the same outer approximation of the image of T . Hence, the
corresponding portion of the directed graph F � will not
change. The MCG is consequently stable. In other words,
the outer approximation provides more space for error in
the given data. We also point out that the MCGs obtained
using the geometry-based method are also stable. Consider
the example shown in Fig. 5. Note that the flow behavior
across each edge of the mesh does not change after a smaller
perturbation, neither does the corresponding portion of F g.
Therefore, the MCG remains the same. On the other hand,
in this setting, this need not be the case for any particular
trajectory such as a periodic orbit or even a fixed point. That
is, a particular trajectory may be changed after any
perturbation. Of course, we can go one step further and
insist that an "-neighborhood of f� ðT Þ be contained in jFðT Þj.
We will in general get a coarser F � , but the resulting Morse
decompositions will be valid for any vector field whose
�-map lies within the " of f� .

After applying the idea of �-map-based Morse decom-
position to the analytical field shown in Fig. 2, we obtain a
finer Morse decomposition (Fig. 2d). The colored regions
there indicate the isolating neighborhoods of the Morse sets.
Different color regions indicate different Morse sets. The
flowlike texture regions without color indicate the regions of
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gradientlike flow (Section 3.2). The color-dotted regions
indicate the connections between a saddle Morse set to
another Morse set: a source (green), a sink (red), or a saddle
(blue).

4 OUR ALGORITHM FOR FLOW

COMBINATORIALIZATION

In this section, we describe a practical algorithm for
performing flow combinatorialization based on �-maps.
First, we explain the computational model used in this
paper. The underlying domain of this model is represented
by a triangulated mesh. Vector values are defined at the
vertices, and interpolation is used to obtain values on the
edges and inside the triangles. For the planar case, we use
piecewise linear interpolation. On curved surfaces, we
adopt the interpolation scheme by Zhang et al. [38], which
guarantees vector field continuity across the vertices and
edges of the mesh. Vector field continuity is required for
rigorous topological analysis.

As we have seen in Section 3, when employing the idea of
�-maps, computing the correct flow combinatorialization F �

is the most crucial step in the pipeline of the Morse
decomposition. To obtain an accurate F � , it is essential to
compute the accurate (sufficient) outer approximation of
the image of each triangle of the given mesh and obtain the
directed edges of F � accordingly. In this section, we
introduce several methods to compute the outer approx-
imation efficiently.

4.1 Explicit Outer Approximation Computation

4.1.1 A Rigorous Method

This method is applicable to any �-time discretization and
produces a rigorous outer approximation assuming that a

bound " on the errors in the underlying vector field is
known. Given a triangleT , one covers it with squares of size ".
For each square S, define ��ðSÞ ¼ minf�ðxÞjx 2 Sg and
��ðSÞ ¼ maxf�ðxÞjx 2 Sg. Using rigorous enclosure techni-
ques [1], [20], one obtains an outer enclosure IS of the true
image of the square S integrated forward for all times
��ðSÞ � t � ��ðSÞ. Then, IT ¼ [IS , where the union is taken
over all squares S is an outer approximation for f�ðT Þ.

This method is computationally costly. First, the number
of squares needed to cover the triangle T is of order "�2,
which for a small " is large. Second, due to the Gronwall
inequality [9], the size of the image of IS grows exponen-
tially as a function of the integration time. Thus, to get tight
outer approximations, one must choose small ". On the
other hand, the variants of this method have been used to
obtain rigorous computer assisted proofs in dynamics [1].

4.1.2 An Accurate Outer Approximation through

Outer Boundary Tracking

Because we are working with flows, if we use a �-time
discretization, which is a constant function, then f� is a
diffeomorphism that is homotopic to the identity map.
Consider a triangle T and its boundary @T . Then, f� ð@T Þ is
the boundary of f�ðT Þ. Thus, it is sufficient to have a
rigorous outer approximation of f� ð@T Þ to obtain a rigorous
outer approximation of f� ðT Þ.

To compute the outer approximation of f�ð@T Þ, we first
consider using the three vertices of a triangle as the sample
points. For instance, in Fig. 4, we trace the three vertices v1,
v2, and v3 of T with � time and obtain v01, v02, and v03. They
form an imaginary triangle T 0, which intersects with a set of
triangles Ti. They form an outer approximation of the true
image, IT (region inside the light brown dashed curve in
Fig. 4b), of T . Although this method can avoid placing
dense samples inside a triangle, it poses challenges. First,
the approximation may lead to a smaller image than
desired. For instance, in Fig. 4b, IT intersects with triangle
T4, T5, and T7, but T 0 does not. Second, it may fail to
produce an outer approximation when using a large �
under a highly curled field. In Fig. 6, the vertices (v1, v2,
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Fig. 5. This figure illustrates that using outer approximation, Morse
decomposition is stable under certain error bound ". The original image
of triangle T is IT (region inside the blue curve), and the outer
approximation of that is the set of shaded triangles T4, T5, T6, T7, T8,
T9, and T10. After a random perturbation (shown by magenta arrows) of
the original field (shown by black arrows), we recalculate the image I0T of
triangle T , which is shown as the magenta curved closure. Although it is
different from IT , the outer approximation consists of the same set of the
triangles. Therefore, the corresponding portion of the direction graph F �

remains the same. Hence, we say that Morse decomposition is
stable under an error bound ", which here is the maximal allowed
perturbation that will not change the outer approximation of the image of
each triangle.

Fig. 6. This figure demonstrates a case of a distorted image of a triangle T
consisting of v1, v2, and v3 using a large � . The red closed loop
represents a periodic orbit. The colored dash lines in the left figure show
the trajectories of the three vertices. The light brown curved closure in the
right figure shows the real image IT of the original triangle T , while the
dash triangle T 0 is the approximate image.



and v3) of a triangle have been advected according to the
underlying flow whose images are v01, v02, and v03, respec-
tively. Using this method, we will obtain a triangle T 0

(the black dash triangle), while the real image should be the
light brown curved closure IT . A more rigorous method is
needed.

A rigorous outer approximation of f�ð@T Þ can be
obtained by covering @T by squares of size " and repeating
the procedure in 1. This is less costly than directly
computing f�ðT Þ since the number of squares needed to
cover @T is of order ��1. One still has to pay the cost of the
rigorous enclosure integration methods, which is higher
than the standard numerical methods for integrating a
single initial point.

It should also be noted that if one uses an arbitrary �-time
discretization, then f� may cease to be a homeomorphism.
In this case, this method fails to guarantee that the resulting
image is an outer approximation. Thus, to use this method
for the general �-time discretization and to maintain rigor,
one needs to monitor that the image of @T remains a simple
curve for all times up to time � .

The following variant, though not rigorous, is reasonably
safe as long as the image of @T remains a simple curve.
It computes the outer approximation of the image of a
triangle T :

1. Start from the two ending points of an edge, and
trace them for the same small time r� ðr� 	 �Þ,
respectively.

2. Compute the distance between the images of the two
points. If it is larger than the threshold (e.g., half of
the length of the original edge), compute the middle
point between the two image points, then start
tracing from it as well.

3. Repeat 2 until reaching the limit of time � .
4. After completing the aforementioned steps, we

obtain the approximate image of the edge. Repeat
the same procedure to get the images of the other
two edges of T . Computing the intersection of the
underlying mesh with the closure formed by the
images of the three edges gives rise to the outer
approximation of the image of T .

This method still poses several difficulties. First, it is
difficult to choose a proper r� to guarantee a small amount
of advection of each sample. Second, monitoring the image
of an edge incurs a high cost that makes it computationally
prohibitive for large data sets and for data sets defined on
curved surfaces that typically lack a global parameteriza-
tion. For some applications, better performance is desired.

4.2 Our Method for Computing Outer
Approximations

In this section, we describe a method that can obtain
enough information of the image IT through the tracing of
vertices and the heuristically chosen samples on the edges
of the given mesh without having to compute the outer
approximation explicitly. While this method is not rigorous
in theory, it works for all the applications we have applied it
to in practice.

Our method is based on the following observation: the
image of a connected object under a continuous map is still

connected. More specifically, the image of a triangle under a
�-map, which is a continuous map is either a connected
region, a simple curve or a point. Moreover, the image of a
line segment (e.g., an edge of the mesh) is a simple curve or
a point. In the following, we discuss our method in detail.

We start with the study of some possible scenarios of the
outer approximation of the image of a triangleT . Assume that
T consists of three vertices v1, v2, and v3 and three edges e1, e2,
and e3, where e1 ¼ ðv2; v3Þ, e2 ¼ ðv3; v1Þ, and e3 ¼ ðv1; v2Þ.
Considering the definition of an outer approximation in
Section 3.4, we let IðT Þ represent the outer approximation of
T obtained using certain numerical integration (such as the
Runge-Kutta method). Similarly, let IðviÞ represent the outer
approximations of the images of the three vertices, and IðeiÞ
represent the outer approximations of the images of the three
edges of T , respectively. Typically, IðviÞ is a single triangle
that contains the image of vi if the integration error is smaller
than the diameter of the triangle. To guarantee obtaining a
sufficient outer approximation, if the image of vi is located at a
vertex vp, we set IðviÞ to be the one-ring neighborhood of vp
(Figs. 7c and 7f). If the image of vi is located on an edge ej, we
set IðviÞ to be the two triangles that have ej as the common
edge (Fig. 7c).

Figs. 7a, 7b, and 7c show the first scenario. In this
scenario, IðT Þ 
 [3

i¼1IðviÞ. That is, we only need to trace
from the three vertices of T , the union of the outer
approximations of them will give rise to the outer
approximation of T .

Figs. 7d and 7e provide examples of Scenario 2. In this
scenario, IðT Þ 
 [3

i¼1IðeiÞ. Therefore, the union of IðviÞ will
not provide us a sufficient outer approximation (for
instance, triangles T1, T3, and T5 in Fig. 7d will be missing),
but the union of IðeiÞ will. This requires us to keep track of
the image of an edge. Section 4.1.2 presents an accurate
solution, but it is computationally expensive. A more
efficient method is desired.
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Algorithm 1 Adaptive sampling on an edge.

Routine: adaptive_edge_sampling(v1, v2, T1, original T ,

neighbor T , V , X, � , L)
Input: v1, v2: two vertices;

T1, original T , neighbor T : triangles

V : vector field; X: surface; L: recursion level;

� : user specified integral time

Output: the edges in the graph F � related to the

two triangles original T and neighbor T

Global variables: F � : the directed graph

Local variables: T2: a triangle; s: a vertex
Begin

L Lþ 1;

if ðL > maximum recursion level k
kv1 � v2k2

< minimum distanceÞ
v1  v2; T1  T2;

new_edge(original T , T1, F � );

new_edge(neighbor T , T1, F � );

return;
T2  traceðv2; �Þ;
if(T1 ¼¼ T2 k share common edgeðT1; T2ÞÞ
v1  v2; T1  T2;

new_edge(original T , T1, F � );

new_edge(neighbor T , T1, F � );

return;

else

v1  v2; s v2;
v2  ðv1 þ v2Þ=2;

call adaptive_edge_sampling(v1, v2, T1, original T ,

neighbor T , V , X, � , L);

v2  s;

call adaptive_edge_sampling(v1, v2, T1, original T ,

neighbor T , V , X, � , L);

return;

End

Since we are interested in the outer approximation of an
edge instead of the exact image of it, the connected triangle
strip that contains the image of the edge is sufficient. The
connected triangle strip, we refer to here is a triangle strip in
which each pair of neighboring triangles shares a common
edge due to the aforementioned observation of the image of
an edge under a continuous map (�-map here) (for example,
Fig. 8). To compute the triangle strip, we introduce the idea of
adaptive edge sampling (Algorithm 1). The basic idea is that
we first trace from the two vertices of an edge eðv1; v2Þ (Fig. 8,

right). If the two triangles T1 and T2 containing the two
advected vertices are the same triangle or they share a
common edge, then we do not process e further. Otherwise,
more samples are then used until we obtain a connected
triangle strip containing the image of e. To compute new
samples, we make use of a binary search along the edge e. In
detail, if the two triangles containing the images of the two
vertices v1 and v2 are neither the same nor neighbors, we then
trace from the middle point vm of the line segment ðv1; v2Þ and
determine whether the triangle T3 that contains the image of
vm and the two triangles T1 and T2 form a connected triangle
strip or not. If they are not, assume that among themT1 andT3

are not neighbors. It means that we need more samples on the
line segment ðv1; vmÞ to obtain the connected triangle strip
between T1 and T3. Therefore, we compute the middle point
of the line segment ðv1; vmÞ and trace from it to obtain the
triangle containing the image of it. Repeat this process until a
connected triangle strip is found. Fig. 8 demonstrates the idea
of this algorithm. The indexing of the triangles indicates the
order of computation. We wish to point out that due to a
discrete representation, there is no guarantee of finding a
continuous map under a highly divergent flow with a large � ,
even though we sample densely along the edges. However,
we have not experienced this problem in practice.

Using the adaptive edge-sampling scheme, we success-
fully compute the outer approximation of scenario 2.
However, we will fail under Fig. 7f, which is an example
of scenario 3. In this scenario, IðT Þ � [3

i¼1IðeiÞ. Therefore,
keeping track of the images of the three edges is not
sufficient. More specifically, consider the image IT of a
triangle T under a flow V over time � (Fig. 9a). In this case,
we can find all the triangles that contain the images of the
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Fig. 8. This figure provides the notion of adaptive sampling on an edge
eðv1v2Þ. T is the original triangle. The image of edge v1v2 is v01v

0
2. The

dash lines show the mapping of the samples to the points on the image.
The indexing of the triangles indicates the order of computation.

Fig. 9. A general example of the image of a triangle under a flow
showing the scenario in Fig. 7f. Through this example, we introduce the
idea of backward mapping. The image in the top row illustrates the
forward mapping. The red, green, and black dashed curves indicate
the forward mapping. Using adaptive edge sampling, we can find the
connected triangle strip (the shaded region) that contains the image of
the boundary of the triangle T . The bottom row image illustrates the idea
of backward mapping. The interior vertices have been traced over the
same time � based on the inversed flow. The images of them will fall in
the triangle T . The brown dashed curves indicate the backward
mapping. Thus, we can obtain the remaining edges in the directed
graph. Note that the boundary of the forward image IT of T intersects
with one vertex (highlighted by an orange circle). To obtain a sufficient
outer approximation, we add the one-ring neighborhood of the vertex to
the outer approximation.



three edges of T using the adaptive edge-sampling
algorithm. However, we are not able to find the interior
triangles intersecting with IT . We observe that any sample
inside T will be mapped to the image IT , and any sample
inside IT should be able to be mapped back to the interior
of T as well (Fig. 9b). That is, if we sample any point inside
each inner triangle and trace the sample point with respect
to the inverse flow �V over the same time � , the image of it
should fall in T . These observations motivate us to
introduce the backward mapping as the complement of
forward mapping when computing the outer approxima-
tion of the image of a triangle. Fig. 9b illustrates the idea of
the backward mapping. For the updating of the graph F � , if
we trace backward from any sample of a triangle Ti over
time � and its image falls in triangle Tj, we add an edge
Tj ! Ti to F � .

With the assistance of backward tracing combined with
the adaptive sampling scheme, we now can compute a
sufficient outer approximation for that in Fig. 7f. Further-
more, a more difficult case could be handled as well.
Consider Fig. 7g, IT intersects with two triangles. There-
fore, the outer approximation should include these
two triangles, even though the images of the three vertices
fall in the same triangle. Using both adaptive edge sampling
and backward mapping, we can compute the outer
approximation of this case correctly as follows: We first
perform forward tracing, which will eventually generate an
edge from triangle T to Ti. When we perform backward
tracing, we first trace the two vertices of edge ðv1v2Þ (step (1)
in Fig. 10) of the edge and determine whether the
two triangles containing the images of the vertices of the
edge are not neighbors. In here, they are not. We then
choose the middle point of the edge and trace from it
over time � (step (2) in Fig. 10). It ends at triangle T .
Therefore, we obtain the edge from T to Tj, since the edge
ðv1; v2Þ is shared by both Ti and Tj.

The logic of the complete algorithm is shown in
Algorithm 2. We first trace each vertex v of a triangle T
forward for the time � . If it falls in triangle Ti, we add the
edges from the triangles of the one-ring neighbors of v to Ti in
F � . Second, we trace each vertex v of T backward with � and
find the triangle T 0i , containing the advected vertex of v. We
then add the edges from T 0i to the one-ring neighbors of v.
Note that if the image of v is located at a vertex v0 or on an
edge e, Ti (or T 0i ) becomes a set of one-ring triangle of v0 or the
two triangles sharing the edge e. Third, we compute the
image of each edge following the original flow and inversed

flow, respectively. The adaptive edge-sampling algorithm is
employed to produce an outer approximation in a practical
and effective manner. The directed edges are added
accordingly during the process. Note that the algorithm
does not deal with the interior triangles of an image (Fig. 9)
explicitly, since the backward tracing using the same manner
of forward tracing stage (i.e., proceed the vertices
and edges, respectively) will eventually take care of those
interior triangles.

Algorithm 2 An efficient outer approximation computation.

Routine: construct_multivaluemap(V , X, � , L)

Input: V : vector field; X: surface; � : integral time

L: maximum recursion level

Output: F � : the completed graph

Local variables: T : current triangle; e: current edge;

N T : the triangle sharing the edge e with T ;

v1, v2: the two vertices of e

Begin

for each vertex v of X

T  trace forwardðv; �Þ;
new_edges(one ring of v, T );

for each vertex v of X

T  trace backwardðv; �Þ;
new_edges(T , one ring of v);

for each triangle T of X

for each edge e of T
if e is visited

continue;

else

e visited;

v1, v2  two vertices of e;

N T  the triangle sharing e with T ;

/*forward mapping*/

call adaptive_edge_sampling(v1, v2, T , T ,
N T , V , X, � , L);

/*backward mapping*/

call adaptive_edge_sampling(v1, v2, T , T ,

N T , �V , X, � , L);

End

4.3 Result and Discussion

We have applied this algorithm to a number of analytical
vector fields. Fig. 2 provides the comparison of different
Morse decompositions of a designed vector field using the
geometry-based method (Fig. 2b) and the �-maps with
different time � ’s (c), (d). The ECG of the vector field is
shown in Fig. 2a. The corresponding MCGs of the obtained
Morse decompositions (Figs. 2b, 2c, and 2d) are shown in
the second row. From the results, we observe that the
geometry-based mapping approach is fast (0.14 second), but
tends to result in a Morse decomposition that is too coarse
(only four Morse sets have been extracted), while the MCG
derived from an F � has a finer Morse decomposition
(Fig. 2d, 10 Morse sets have been found). Note that the MCG
in (d) matches the ECG (a), although they are labeled
differently. We also observe that the larger the � , the finer
the Morse decomposition is (i.e., closer to the optimal).
Larger � can provide more detailed information of the flow
behavior. On the other hand, larger � requires more
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Fig. 10. This figure describes how the backward mapping and the
adaptive edge sampling help to find the complete edges of the directed
graph under a highly stretched flow V . The edge ðv1v2Þ has been
sampled to obtain the continuous triangle strip that contains the image of
it using Algorithm 1. The brown dashed curves illustrate the backward
tracing along �V . (1)-(7) Indicate the sampling and tracing order. Note
that step (2) (the green dashed curve) gives rise to the edge T ! Tj that
is missed in Fig. 7g.



computation time to construct MCGs, and larger integration
errors may be introduced as well (Fig. 6).

As is indicated in Fig. 4, the �-map approach leads to a
combinatorial multivalued map F with smaller images
(than the geometry-based method) and, hence, a finer
Morse decomposition. An important point that can easily be
overlooked is the freedom of choice in the construction of
F . We have chosen an approach that is a compromise
between accuracy of F and speed of computation. For
problems in which computational time is not a concern, one
can expand on the adaptive sampling technique and the
choice of � to refine the images. Alternatively, if one knows
that the original vector field contains significant errors, and
since the F needs only to be an outer approximation, these
errors can be incorporated into the construction of the
images of F (Fig. 5). Thus, even in the presence of
considerable small perturbation (Fig. 5), one can ascertain
that the resulting MCG is valid.

An interesting observation is that to compute the
sufficient outer approximation, our algorithm tends to use
more samples for the flow regions with divergent behaviors
(sources under forward mapping and sinks under back-
ward mapping) and stretching behaviors (separatrices and
periodic orbits). Fig. 11 provides the density maps of
sample rates of the two analytic fields using our algorithm.
The color coding of the density map uses red for the region
with a larger sampling rate and blue for a lower sampling
rate. We observe that the regions having a larger sampling
rate tend to coincide with the regions with highly stretched
flow behavior. This verifies that our backward and forward
mapping framework combined with adaptive sampling
technique locates the flow regions with high distortion
correctly.

5 TEMPORAL � VERSUS SPATIAL �s
The �-map introduced previously refers to a time discretiza-
tion, i.e., every particle travels for a time � . We refer to it as a
temporal �-map. In many scientific data sets, the vector field
magnitude of the underlying flow varies significantly. If a
constant time � is used, the advection of some triangles
corresponding to the flow region with a slow speed may not
be advected far enough in order to construct the edges of F � .
One solution is to choose a � that makes sure every triangle is
advected sufficiently far. However, this is likely to affect the
overall performance and introduce errors. Similar problems
have appeared in texture- and streamline-based flow

visualization. One popular approach is to normalize the
vector field before generating the streamlines or advecting
the textures. Under these normalized vector fields, the vector
values at the vertices are scaled to have the same magnitude
except for fixed points. Therefore, the streamline computa-
tion can be executed efficiently. Motivated by this
observation, we propose the idea of a spatial �-map, which
we refer to �s-map.

More specifically, a �s-map is defined on a spatial
discretization �s. When computing a �s-map in the compu-
tational domain (a triangle mesh X here), for each sample of
the triangle T in X, we keep track of the integral length of
the sample following the flow until the accumulated
integral length reaches the spatial constraint �s. Since all
the particles will travel the same distance in the same speed
(e.g., the maximum speed) everywhere except for the
neighborhoods of the fixed points, one can expect a faster
computation than tracing with respect to the original (non-
normalized) vector field. When considering spatial �s, we
still can reuse the framework in Algorithm 2 to compute the
F � with the only difference being that we now accumulate
integral length instead of integral time. One important
concern is how to compute the correct trajectory when the
tracing enters the neighborhood of a fixed point. The basic
rule is that the trajectory should not cross any fixed point.
Fortunately, the flow will slow down in those neighbor-
hoods according to the properties of fixed points (where
vector magnitude equals zero) and the continuous approx-
imation of the flow guaranteed by the interpolation
schemes we are using (Section 4). Hence, we stop tracing
when the vector magnitude is below a certain threshold
(for instance, 0.01 times the uniform vector magnitude). We
point out that after normalization, we have artificially
introduced deviation to the original vector field.

We apply the idea of spatial �s to a designed vector field
(Fig. 12). The geometry domain of the vector field consists
of 6,144 triangles. Ten Morse sets have been extracted
using a temporal � ¼ 12. The extraction took 2.42 seconds on
a 3.0-GHz PC with 1.0 Gbytes of RAM. With a spatial
�s-map ð�s ¼ 0:049Þ, we extract the similar Morse sets using
only 1.57 seconds. The result of the geometry-based method
is also shown (Fig. 12b). The corresponding MCGs and ECG
of the field are also shown in the bottom row in Fig. 12.
Based on the results, we observe that using a spatial �s, we
can achieve faster Morse decomposition (Fig. 12d). The use
of �s also extends our understanding of �-maps. In the
previous section, we set a constant � for all flow regions
during the F � computation. It is not necessary and may lead
to the distortion of the outer approximation when large � is
used. The success of �s-maps shows that it is possible to use
different � ’s in different flow regions. This is because given a
constant distance �s and different flow speed vs, we will
obtain different tracing time t ¼ �s=vs in different flow
regions (Fig. 13). Therefore, more heuristic information from
the dynamics of the flow can be employed to guide the
choice of a proper � for a specific flow region. This is the
challenge we plan to address in future research.

6 APPLICATIONS

In this section, we provide the vector field analysis results
using the efficient Morse decomposition framework for
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Fig. 11. This figure shows the density maps of the sample rates of the
two analytic fields using our algorithm. The color coding of the density
map uses red for the region with a larger sampling rate and blue for a
lower sampling rate.



two engine simulation data sets. They are the extrapolated
boundary velocity fields that are obtained through a
simulation of an in-cylinder flow. Engineers are interested
in knowing whether or not the flows on the surface follow
the ideal patterns [17].

Fig. 14 shows the results of the gas engine simulation
data. The first column shows the results using the
geometry-based method. The second and third columns
provide the results using the temporal �-maps with � ¼ 0:1
and � ¼ 0:3, respectively. The corresponding MCGs are also
displayed under the flow images. We observe that a Morse
set has been extracted at the back of the chamber. It shows a
recurrent pattern that indicates the flow starting to
approximate the ideal tumble motion. The Morse sets
obtained based on a �-map capture regions that are more
faithful to important features, while the approach using the
geometry-based map could give rise to fewer Morse sets
that cover large regions, which makes the identification of
important features more difficult.

The results shown in Fig. 15 are from the diesel engine
simulation. The first column shows the results using the
geometry-based method. Notice that the rainbowlike regions
indicate the recurrence behavior that does not actually exist.
That is, the geometry-based method generates a Morse
decomposition with misleading information. In the remain-
ing columns, we provide two Morse decomposition results of

the same data using a temporal �-map ð� ¼ 0:3Þ and a spatial
�s-map ð�s ¼ 0:08Þ, respectively. For the temporal case, the
obtained Morse decomposition contains 200 Morse sets. It
took 1,146.807 seconds to obtain the result. For the spatial
case, the number of the extracted Morse sets of the
Morse decomposition is 201. The time for computing this
Morse decomposition is 740.826 seconds. Either temporal �
method or spatial �s method provides accurate information of
the recurrence behavior of the bottom of the in-cylinder of the
diesel engine, but the spatial �s-map shows faster F �

computation than the temporal �-map scheme.
Table 1 provides the performance information of the

two data sets using different F �s.

7 CONCLUSION

In this paper, we have demonstrated the fundamental
difficulties associated with the definition of vector field
topology based on individual trajectories. As a solution, we
advocate the use of an MCG to represent the topology of a
vector field. Moreover, we have described an efficient
framework for computing Morse decompositions of vector
fields. Compared to individual trajectory-based vector field
analysis, Morse decomposition and the associated MCG
accounts for the numerical errors inherent in the vector field
data. This makes it more suitable for a rigorous interpreta-
tion of vector field topology. To obtain a finer MCG than
previous methods (i.e., the geometry-based method), we
employ the idea of �-maps to perform flow combinator-
ialization and encode the flow dynamics into a directed
graph F � , upon which we perform Morse decomposition.
In order to compute F � efficiently, we make use of both
forward and backward tracing and introduce an adaptive
sampling algorithm along the edges to account for the
discontinuity problem while computing the approximate
image. As an alternative to the temporal �-map, we present
the use of a spatial �s-map, which typically provides faster
computation than temporal �-map scheme with similar
fineness in the MCGs. We show the utility of our approach
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Fig. 13. The visualization of the integral time of different flow regions
under a constant spatial �s. A rainbow coloring scheme is used, where
the red regions indicate larger tracing time is used, and blue means
smaller time.

Fig. 12. This figure shows various analysis results of an analytical data set: (a) ECG, (b) MCG (geometry-based method), (c) MCG (temporal � ¼ 12),
and (d) MCG (spatial �s ¼ 0:049). The computational time for (b)-(d) is 0.17 second, 2.42 seconds, and 1.57 seconds, respectively. Notice how the
Morse sets are refined by using the idea of �-maps. We also observe that using a spatial �s-map for the analysis of this field can give rise to a
comparable Morse decomposition (having the same Morse sets) to the one using a temporal � with a faster performance. The visualization scheme
of ECGs and MCGs is described in Fig. 1.
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Fig. 15. A comparison of various Morse decompositions of the diesel engine simulation data set. The first column shows the Morse neighborhoods
obtained using the geometry-based mapping. The color rainbowlike regions indicate the possible recurrent flow behavior. The second column
provides the results using a temporal �-map with � ¼ 0:3, while the third column gives the results using a spatial �s map with �s ¼ 0:08. Note how
much more refined the topological regions become. We also observe that using a proper spatial �s, we can obtain comparable Morse decomposition
with higher performance (see Table 1).

Fig. 14. This figure compares the results of the Morse decompositions of the gas engine simulation data obtained using (a) geometry-based method,
(b) a temporal �-map with � ¼ 0:1, and (c) a temporal �-map with � ¼ 0:3, respectively. Note that the colored disklike region at the back of the cylinder
bounds the area of recirculating flow corresponding to the tumble motion, which indicates an ideal pattern of motion with good mixing properties.
Notice that using the �-maps can greatly improve the quality of the Morse decomposition (the zoom in images). The corresponding MCGs of different
Morse decompositions, and the ECG of the data are also shown.



in a number of applications, including analytical data and
two engine simulation data sets on surfaces. We should
point out that the limitation of our approach is that the
optimal Morse decomposition of a vector field under a
given mesh is constrained by the resolution of the mesh.
This can potentially be fixed by using other graphics
techniques such as flow-guided remeshing or subdivision.
Our framework allows engineers to choose between
individual trajectory-based topology analysis given its
instability and relatively stable analysis or choose between
higher performance and higher quality when applying the
more stable analysis.

There are a number of future directions. First, MCGs
have the potential of enabling a multiscale representation of
the flow, which can be used to guide vector field clustering,
vector field compression, and automatic simplification.
Second, the exploration of � magnitude in different regions
of the domain is important. Third, exploring a discrete
integration scheme to compute the discrete function
(i.e., the multivalued map, F ) may further improve the
performance of our method as well. Finally, there is a need
to extend the work to time-dependent vector fields.
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