
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

Generalized Swept Mid-structure for Polygonal Models

Tobias Martin†1, Guoning Chen2, Suraj Musuvathy1, Elaine Cohen1 and Charles Hansen1,2

1School of Computing, University of Utah, USA
2SCI, University of Utah, USA

(a) (b) (c)

Choice of Harmonic Function                   Compute Mid-structure for each Slice             Generalized Swept Mid-structure

Slice Object Match Mid-structures

Figure 1: Pipeline for the Generalized Swept Mid-structure (GSM): (a) User choice of harmonic function. (b) Object is
decomposed into (curved) slices, and a medial axis is computed for each slice. (c) Slices are iteratively matched into a GSM
(colored surface sheets).

Abstract
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal
shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent
sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain
this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose
the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced.
The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation
and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid
mid-structure representation. The construction and topology of the GSM allows for local and global simplification,
used in further applications such as parameterization, volumetric mesh generation and medical applications.

1. Introduction

Many applications in the field of computer graphics and visu-
alization require interior mid-structures of three dimensional
objects that represent their form or shape with lower dimen-
sional entities. One dimensional curve skeletons [ATC∗08],
and the 3D medial axis [SP08], are such examples that have

† martin@cs.utah.edu

been used for mesh generation, animation, registration, and
segmentation applications. Curve skeletons faithfully repre-
sent an object in tubular regions. For more general geom-
etry, a medial axis is preferred since it consists of surface
sheets [SP08] and they better capture the shape than curve
skeletons.

However, a medial axis is very sensitive to small changes in
shape and it produces nearly degenerate polygons in tubular
regions. Our quest for a new type of mid-structure is moti-
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Figure 2: Sheet based simplification using GSM (left) vs.
global simplification using DSA (right). Magnified regions
compare triangulations in a region where surfaces meet. Only
the GSM shows 3 distinct sheets (red, blue, yellow) while the
DSA shows similar polygons. The yellow GSM sheet (top left)
is removed (mid left GSM). To simplify DSA in this region
requires removal of additional structures in other regions
(mid right DSA). Bottom row illustrates removal of a large
blue sheet on one side of the GSM, whereas simplification of
the DSA results in removal of polygons from both sides.

vated by three reasons. (1) In some situations, it is desirable
for a user to design a skeleton. Since a user might be aware
of which regions require higher fidelity elements and a re-
duced number of extraordinary points in later simulations,
the user can design a midstructure to yield the appropriate
mesh layout. This is similar to the motivation of the approach
presented in [MCK08] and [MC10] and is difficult to achieve
with medial axis computation algorithms. (2) The topologi-
cal structure and connectivity information of mid-structure
components is often required for the aforementioned appli-
cations. However, existing techniques for medial axis com-
putation of polygonal models (e.g. tight co-cone [DG03],
powercrust [ACK01], discrete scale axis (DSA) [MGP10])
do not classify surface sheets of the medial axis as illustrated
in the magnified view in Figure 2. Given a polygonal me-
dial axis representation, identifying surface sheets requires
post-processing that often includes topological fixing and es-
tablishing connectivity information. This is a tedious process
as it requires extensive human input. (3) Neither curve skele-
tons nor 3D medial axes have an embedded parameterization
(see Figure 3). Such a parameterization can be useful for 3D
cross field design [NRP11, HTWB11].

This paper introduces the Generalized Swept Mid-structure
(GSM) (Figure 1) with the three properties:
(1) The GSM is a hybrid mid-structure consisting of both
curve and surface elements, that is suitable for an input shape
consisting of both general and tubular regions (e.g., hand
model in Figure 8).

GSM

Tight Co-cone

sweeping

direction

Figure 3: The tight co-cone is intrinsic to the object, consist-
ing of accurate but complex medial topology. A GSM iden-
tifies sheets (blue, red and white) and because of its swept
generation, it has a natural parameterization.

(2) Analogously to [HXS09] for curve skeletons or [NGH04]
in computing fair morse functions to extract the topological
structure of a surface mesh, the user determines a sweeping
strategy by choosing a harmonic function that conforms natu-
rally to an object’s shape. Apart from this specification, the
construction of the GSM is automatic. From this harmonic
function a 3D harmonic function is computed. In this work,
mid-structures (i.e. simplified medial axes) of level sets of
the 3D harmonic function are swept across the input object
(Figure 1 (a) and (b)) to generate a GSM. The level sets are
typically non-planar regions. This generality reduces the num-
ber of connected components and therefore enables the ap-
proach to be used for a wide variety of objects. A theoretical
framework for a swept medial axis was proposed in [Dam08].
The goal of that work was to present theoretical results on
geometric properties of the object in terms of medial axes of
the planar slices. In our work, we present practical algorithms
for an implementation of a generalization of that framework
and demonstrate several results.
(3) The swept nature of a GSM suggests a parameterization
strategy. Namely, one parameter is assigned as the harmonic
function value and the second parameter is obtained by as-
signing parameter values to the mid-structure of each slice.
Figure 3 shows an example. Furthermore, the GSM construc-
tion approach automatically classifies the various sheets of
the mid-structure, computed by tracking transitions of curve
segments of the mid-structures of the level sets. Given the
sheet-by-sheet topology of the GSM (see colored sheets in
Figure 1 c), the user can select sheets of the GSM that are to
be preserved or removed in a simplification procedure (see
Figure 2). A simplified mid-structure can be used in subse-
quent applications, such as generation of 3D cross fields or
volumetric parameterization.

The contributions of this paper include: 1. Introduction of
the GSM, a novel mid-structure based on sweeps of mid-
structures of non-planar level sets, and a pipeline to compute
it (Section 3). 2. A novel planar medial axis computation algo-
rithm, from which the mid-structure is computed (Section 5).
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3. A matching algorithm for consecutive mid-structures to
create a GSM with consistent topology (Section 6).

2. Related Work

There have been vast research on mid-structures related to the
proposed GSM. 1D curve skeletons and 3D medial axes are
special types of mid-structures. Algorithms for computing
them are reviewed in the surveys [SP08, BAB∗08].

In a similar fashion to the GSM construction, level set dia-
grams [LV99] are constructed by connecting barycenters of
isocontours of a scalar function defined on a surface. Curve
skeletons are extracted by improving Reeb graphs of har-
monic functions in [HXS09]. Mesh contraction using con-
strained Laplacian smoothing is used to construct curve skele-
tons in [ATC∗08].

Exact arithmetic is used to compute medial axes of polyhedra
in [CKM04]. Approximations of the medial axis of polygo-
nal meshes are computed using distance fields in [FLM03]
and Voronoi diagrams in [SFM05]. Algorithms for com-
puting medial axes from point-sampled surfaces based on
Voronoi graphs are [ACK01,DG03,CL04]. The discrete scale
axis [MGP10] is a variant of the medial axis that computes
connected polygons of medial surfaces corresponding to dom-
inant shape features at a user specified simplification scale.

Voronoi based medial axis computation algorithms are com-
putationally efficient. However, since there is no sheet topol-
ogy information, there is no explicit relationship between
medial axis regions and object shape features. Furthermore,
in contrast to a GSM, global methods do not suggest a strat-
egy to parameterize the resulting medial axis, at least in part
because sheet structure is undetermined. With an explicit
sweeping direction, the GSM identifies sheets, and has a natu-
ral parameterization that can be used for later applications as
discussed in Section 8. Figure 3 shows a comparison between
the tight co-cone and GSM.

A hybrid structure is derived via topological analysis of the
3D medial axis of an object in [GDB06] and is used to anno-
tate tubular and more general regions of the object. However,
the derived structure is susceptible to problems associated
with medial axis computation. Thinning algorithms such as
those presented in [JBC07] are used to derive skeletons of
objects represented as sub-regions of volumetric grid data.
The derived skeletons consist of discrete voxels without topol-
ogy. The topology must be inferred in a post process, and is
susceptible to errors stemming from sampling density and
object orientation within the grid. Our proposed approach
automatically generates curve and surface sheet skeletons in
appropriate areas with consistent topology at the transition
regions and sheet topology in surface regions.

3. The GSM

The generalized swept mid-structure (GSM) is a mid-
structure obtained by joining mid-structures of nonplanar

slices of a polygonal representation of a closed 3D object.
The GSM, a connected structure lying in the interior of the
object, is a generalization of the swept medial axis as pro-
posed in [Dam08]. The GSM consists of triangulated surfaces
and curves represented as polylines. The GSM is invariant
under rigid body transformations and scaling.

3.1. Computational Pipeline Overview

This section provides an overview of our methodology to
construct a mid-structure for a closed surface triangle mesh.
Let (T ,VT ,CT ) define the bounding triangle mesh, where T
is the set of triangles, VT is the set of vertices, and CT is the
connectivity of the mesh. Based on T , a volumetric represen-
tation Ω⊂ R3 is constructed, represented as an unstructured
tetrahedral mesh, denoted by (H,VH ,CH), whereH⊂ R3 is
the set of tetrahedra, VH the set of vertices defining the tetra-
hedra, and CH the connectivity of the tetrahedral mesh.H is
constructed using a tetrahedral meshing method, e.g. [Si05],
and has T as its boundary.

The following steps describe the construction of GSM from
the input shape T , as shown in Figure 1,

1. Compute a harmonic function u(x,y,z) onH (Section 4).

2. DecomposeH into a sequence of non-planar slices Li (Li
are level sets of u(x,y,z)) (Section 4.1).

3. Extract a simplified 2D mid-structure for each Li (Sec-
tion 5).

4. Starting from the first slice, iteratively construct the mid-
structure by matching the mid-structures of two adjacent
slices until the last slice is reached (Section 6).

4. Harmonic Functions

The GSM framework can be used if the dataset already con-
tains a slicing strategy (e.g. segmented data from a volumetric
scan). In this case we proceed to step 2 in the GSM construc-
tion pipeline. Otherwise, we compute a harmonic function.

A harmonic function is a function u ∈ C2(H),u : H→ R,
satisfying Laplace’s equation,

∇2u = 0, (1)

where∇2 = ∂
2/∂x2

1 +∂
2/∂x2

2 +∂
2/∂x2

3. u satisfies the maxi-
mum principle, i.e. it does not exhibit any local minima and
maxima, and therefore can be used to define a sweeping strat-
egy to decomposeH into an ordered set of slices. Harmonic
functions have been used earlier in the domain of meshing
and volumetric parameterization [DKG05, MCK08] or for
skeleton extraction [HXS09].

Galerkin’s formulation [Hug00] is used to discretize Equa-
tion 1. VH can be decomposed into the set VB for which
the solution is known (Dirichlet boundary) and the set VI ,
for which a solution is sought. A solution has the form

c© 2012 The Author(s)
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Figure 4: Two different harmonic functions on kitten model
result in different GSMs.

u(x,y,z) = ∑v∈V ûk φk(x,y,z), where φk(x,y,z) are linear hat
functions associated with vertex vk ∈ V . The gradient field
∇u overH is therefore piecewise constant.

In our framework, many methods can be used to create the
slicing strategy, such as [DBG∗06], but we chose approaches
similar to [NGH04, DKG05, HXS09], where the user deter-
mines the points in the set VB. The user therefore has control
over u(x,y,z) and the resulting sweeping strategy. Figure 4 il-
lustrates two harmonic functions on the genus-1 kitten model.
While u(x,y,z) in Figure 4a has two saddles, u(x,y,z) in Fig-
ure 4b follows a torus-like sweep. Both are valid, Figure 4
also shows the corresponding GSMs for these two distinct
choices.

4.1. Decomposition ofH

Given the harmonic function u(x,y,z), a slice Li (Figure 1b),
at value ui ∈ R is the level set satisfying u(x,y,z) = ui. Li is
extracted using marching tetrahedra [CFM∗94]. Depending
on the choice of VB and resulting saddle points [NGH04],
Li can consist of multiple disjoint non-planar 2-manifolds
represented with triangle meshes with boundaries.

Once the user specifies the harmonic function u(x,y,z), which
determines the cutting strategy, the object is decomposed into
a set of slices Li such that every triangle in T is intersected
by at least one slice which captures the global features in T .
For each vertex pk

i of Li, a path can be constructed from pk
i

to a new point pk
j , the projection of pk

i on level set L j, by
following∇u(x,y,z). Let lk

i, j be the length of this path.

Then, given this set of slices, let εi = max∀k{lk
i,i+1} be the dis-

tance between slice i and i+1. Due to distortions of u(x,y,z)
and triangulation of T , εi varies across the slices. To achieve
a cutting of the object such that εi varies slowly, the input
surface is remeshed into a triangle mesh where triangles have
approximately the same size and shape. These parameters
can be chosen by the user to maintain a specific feature size.
Such a triangulation can be computed using, for instance,
Afront [SSS06]. Section 7 presents an example that shows
GSMs of different versions of an input object.

Each component of Li is flattened using the CGAL [cga]
implementation of the LSCM [LPRMt02]. The boundary of
the flattened Li is approximated with a periodic B-spline

curve using the method proposed in [MCK08]. A medial axis
with topological structure is computed for the planar region
enclosed by this curve, using a novel technique presented in
Section 5. This medial axis is simplified, yielding the mid-
structure which is mapped onto the respective component of
Li and incrementally matched with that of an adjacent slice
to construct the GSM (Section 6).

5. Computing Mid-structure of Slices

In order to construct reliable GSMs, we require mid-
structures to consist of smooth curves and smoothly changing
geometry and topology between adjacent slices. Several tech-
niques for computing the medial axis of a planar region from
piecewise smooth [RG03, AAA∗09] or discrete boundary
representations [SP08, BAB∗08] exist. However, such ap-
proaches introduce artifacts, due to the nature of the represen-
tation, and human interaction is required to remove them to
compute a suitable mid-structure. We present a new method
to automatically and accurately compute the medial axis with
topology of the parametric B-spline curve that approximates
the boundary of the flattened level set Li. A suitable mid-
structure is then computed by simplifying the medial axis
based on its topology.

The medial axis of a planar region enclosed by a bounding
curve γ is the locus of centers of maximally inscribed circles
that are tangent to two points on γ, with the limit points
of the locus [GK03]. The contact points of each maximal
circle with the boundary curve are called foot points for the
corresponding medial axis point. A limit point is either an end
point or a junction point at which the maximally inscribed
circle has one or three foot points, respectively. Three medial
curve segments meet at a junction point. Figure 5 shows an
example of the medial axis of a planar region computed using
our proposed approach. Our approach also computes foot
points and distance to the boundary for each medial axis
point, thereby giving the complete medial axis transform.
Foot points, end points and junction points are not explicitly
produced in previous medial axis computation algorithms.
These points are necessary for the matching stage proposed
in Section 6.

5.1. Algorithm Overview

The proposed approach is based on the eikonal flow (also
called grassfire flow) of the boundary curve toward the inte-
rior. Let B be the boundary of a region in R2 represented by
a parametric B-spline curve γ(u). The inward directed curve
normal is defined as N(u,v) = [0 0 1]T × ∂γ(u)

∂u , which avoids
flips of normal vector directions at inflection points. The off-
set curve resulting from the eikonal flow at a time t is given by
C(u, t) = γ(u)+ t N(u)

‖N(u)‖ , t ≥ 0. As the curve evolves under
the eikonal flow, different regions start intersecting with each
other at distinct points, and the intersection points evolve
as t increases. The trace of each such point is the medial
axis. Note that only the first intersection points of any two

c© 2012 The Author(s)
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boundary points belong to the medial axis. The eikonal flow
results in the occurrence of two kinds of transition points:
1) source points, at which medial curves are created, and 2)
sink points, at which medial curves are annihilated. The pro-
posed approach presents techniques to accurately compute
all transition points using properties of the B-spline represen-
tation. Medial curves are then computed using a numerical
tracing algorithm. This topology structure and connectivity
is required in the mid-structure matching stage, to establish
consistent topology for the GSM.

5.2. Transition Points

We present geometric criteria for computing transition points,
where the resulting nonlinear B-spline equations are solved
using state-of-the-art methods [EK01,EG08] that guarantee
robust computation of all solutions where accuracy is chosen
to be 1/10 of the current slicing distance εi, using their imple-
mentation in the IRIT library [Elb08]. Let γi(ui), i = 1,2,3
be three representations of the boundary curve to denote dif-
ferent regions, and let Ni denote the unnormalized normals
of γi respectively that are directed toward the interior of the
region of interest.

End points are source points of the medial axis correspond-
ing to curvature maximum points of γ(u). The parameter
values of critical points of curvature (κ(u)) are computed
by solving Equation 2. End points are those solutions that
correspond to maximum values of κ, and are computed at
offset 1

κ
.

∂κ(u)
∂u = ∂

∂u

(‖ ∂γ

∂u×
∂
2

γ

∂u2 ‖
‖ ∂γ

∂u‖3

)
= 0 (2)

Distance critical points are points where the distance be-
tween two points on γ corresponding to a medial axis point
is a critical value. The critical point is a source point when
the distance function has a local minimum, and a sink point
when the distance function has a local maximum. Define
D(u1,u2) =‖ γ1− γ2 ‖2= 〈γ1− γ2,γ1− γ2〉 as the squared
distance function between any two points on the curve. The
parameter values corresponding to critical points of D are
obtained by computing solutions of Equation 3. Distance
critical points are given by (γ(u1)+ γ(u2))/2.

∂D
∂ui

= 〈γ1− γ2,
∂γi

∂ui
〉 = 0, i = 1,2 (3)

A junction point is either a sink point for three curves or a
sink for two curves and a source for a third one [GK03]. For
a point P ∈R2 to be a junction point, the following equations
must be satisfied.

〈P− γi,
∂γi

∂ui
〉= 0, i = 1,2,3 (4a)

‖ P− γ1 ‖ = ‖ P− γ j ‖, j = 2,3 (4b)

Since P = (x,y) is unknown, Equations 4(a)-(b) form a sys-
tem of five equations in five unknowns. This system is sim-
plified in a way similar to that in [EK01]. Let P = γ1 +αN1.

J D

E

Figure 5: Medial axis of a region bounded by a B-spline
curve. Along with their maximal circles, end points (E) are
shown in orange, junction points (J) in blue, and distance
critical points (D) in red. The arrows point to the foot points.

Substitute for P in ‖ P− γ1 ‖=‖ P− γ2 ‖, to obtain α =
−〈γ1− γ2,γ1− γ2〉

2〈γ1− γ2,N1〉
. Denote γ1− γi by γ1mi, i = 2,3. Substi-

tuting for P and α in Equations 4(a)-(b) and simplifying
yields a system of 3 equations in 3 variables. For i = 2,3,

2〈γ1m2,N1〉〈γ1mi,
∂γi

∂ui
〉− ‖ γ1m2 ‖2 〈N1,

∂γi

∂ui
〉= 0 (5a)

〈γ1m2,N1〉 ‖ γ1m3 ‖2 − ‖ γ1m2 ‖2 〈N1,γ1m3〉= 0 (5b)

Equation 4(a) for i = 1 is automatically satisfied after sub-
stitutions for P and α. From the corresponding parameter
values and solutions, junction points are computed as offsets
at distance given by α ‖ N(u1) ‖. Among all solutions of
Equations 3 and 5, only those that satisfy the maximality
condition are retained. Trivial solutions where ul = um, l 6= m
are ignored.

5.3. Medial Curves

Suppose Ci, i = 1,2 are two representations of eikonal offset
curves of γi(ui) at time t. Define a mapping F : R3

u1,u2,t→R2,
where R3

u1,u2,t is the augmented parameter space consisting
of the parametric directions of the two curves and the time
domain, as follows

F(u1,u2, t) = C1(u1, t)−C2(u2, t),u1 6= u2 (6)

The parametric domain, I, of F(u1,u2, t) = [0 0]T is the set
of all intersection points of the two offset curves over all
time values. Away from transition points, F is a differentiable
function, and hence I is a well-defined 1-manifold in R3

u1,u2,t .
Let F(x) and F(y) represent the first and second vector com-
ponents of F . I is an implicit space curve that is the locus
of intersection points of the two hypersurfaces F(x) = 0 and
F(y) = 0. The tangent to the intersection curve I is given by

TI =∇F(x)×∇F(y) (7)

c© 2012 The Author(s)
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where∇F(x) and∇F(y) are the normals to the hypersurfaces.
The medial axis curve segments are numerically traced from
source (PSRC) to sink points in the augmented parameter
space by solving the differential equation (Equation 8).

dχ

dt
= TI(χ), χ(0) = PSRC, χ(t) ∈ R3

u1,u2,t (8)

Sink points are detected during numerical tracing when they
are within a specified distance. This distance is a percentage
of the diagonal of bounding box of γ. For the results shown
in this paper, a distance tolerance of 1% worked well.

5.4. Medial Axis Simplification

The mid-structure is constructed by simplifying the computed
medial axis. Leaf segments are deleted and internal segments
are merged. Medial segments incident at distance critical
points are merged. These operations are performed when the
respective segment length is smaller than the slicing distance
(εi). Note that this procedure may result in more than three in-
cident curves at a junction point, but does not add complexity
to the matching algorithm presented in the next section.

If all segments of the medial axis are smaller than εi, the
medial axis is contracted to the centroid of the region. This
situation occurs when the boundary is nearly circular and
therefore the medial axis consists of small segments near the
center of the region. These contractions result in 1D curve
segments in the GSM. We will denote a topological graph of
the mid-structure of the level set Li as Mi = G(Ni,Ei), where
Ni is the set of the end points and junction points, and Ei is the
set of edges that connect these points. These edges correspond
to the curved segments in the original mid-structures that are
densely sampled for later GSM representation. p j

i is used to
denote the jth node in Ni, and (p j

i , pk
i ) ∈ Ei represents the

edge between those nodes .

6. Matching Successive 2D Mid-Structure

After computing mid-structures for each level set (Section 5),
we next find correspondence between two neighboring 2D
mid-structures and construct a surface to connect them. Given
the two successive mid-structures represented as two graphs
(Section 5), we match the edges of the graphs. A triangu-
lation is used to connect these matching pairs based on the
samples along the original mid-structure (see figure below).
A number of existing graph
matching techniques can be
applied to accomplish this
step [GT91,SSDZ98,KSK01].
However, these methods typ-
ically deal with more general
graph matching problems without knowing the relation be-
tween the two graphs that are matched. Thus, their algorithms
are usually complicated and computationally expensive. In
contrast, in the present problem, one graph is evolved from

the other through a small change and hence the generic transi-
tions between the two graphs are well-defined [GK03]. There-
fore, a simpler matching technique can be devised by finding
the correspondences along the section boundary curves from
which the mid-structures are computed (Section 5).

6.1. Topological Changes

For smoothly changing geometry of the boundary, there are
only two generic transitions of the mid-structures [GK03]:
Leaf creation/annihilation (Type 1) and Flip configu-
ration (Type 2). Type 1 corresponds to the creation
(or destruction) of a feature (e.g. a protrusion) on
the boundary. To illustrate Type 2, consider the junc-
tion points, p j

i and pk
i in Mi and pl

i+1 and pr
i+1

Type 1 Type 2

in Mi+1, respectively.
Each pair is connected
by an edge. In the
continuous case, edge
(p j

i , pk
i ) will first col-

lapse into a single node
before growing to edge
(pl

i+1, pr
i+1). However,

the discrete cutting will
likely not capture the degenerate point as shown in the figure
to the right.

During matching, we assume at most one topoligical change
on an edge (including its two end points) of the graph when
evolving from one level set to the next. If this assumption is
not satisfied, additional level sets between the original pair
must be added until it is satisfied. Other cases are investigated
in a future work.

6.2. Matching

Let {cpi} be the set of foot points of Mi. We match two
graphs Mi and Mi+1 according to the distance of {cpi} and
{cpi+1} on ∂Li+1. We first project {cpi} (on ∂Li) to ∂Li+1
as discussed in Section 4.1. On the boundary of the level
set Li+1, the distance between any two foot points cp and
cp′ is defined as the shortest arc-length between them along
∂Li+1, ̂(cp,cp′). Assume that all foot points are sorted along
∂Li+1 (either clockwise or counter clockwise). Given a foot
point cp j

i of Mi, there are exactly two points cpl
i+1 and cpr

i+1

from Mi+1 that enclose cp j
i along the 1D boundary ∂Li+1.

Therefore, finding the closest point to a given foot point can
be done in constant time. Two end points p j

i , pr
i+1 (Figure 6,

bottom left) from the two graphs are called close if their foot
points are the closest pair on ∂Li+1. We then pair them in
the matching, denoted as p j

i ↔ pr
i+1. Two junction points pg

i ,
pb

i+1 (Figure 6, middle left) from the two graphs are called
close if the foot points of pg

i are directly next to the ones of
pb

i+1 pairwisely on ∂Li+1 or their leaf nodes are all close to
each other.

Given the above distance and similarity metric, our matching

c© 2012 The Author(s)
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4. handle topology
1. match end points

2. match junction points 3. match edges

change

Figure 6: Illustration of matching algorithm. The top row
shows two consecutive slices, Li and Li+1 and their mid-
structures, Mi and Mi+1. The foot points of the end points
(orange dots) and junction points (blue dots) are highlighted
on the boundaries. Each point in the mid-structure and its foot
points are linked through straight lines. The bottom figures
illustrates the matching steps 1–4. Note that all the foot points
in level Li have been projected to level Li+1. For illustration
purpose, we overlap the mid-structure Mi (skeleton with light
colors) with Mi+1 (skeleton with dark colors).

algorithm can be described as follows (Figure 6). 1. Match
two closest end points. 2. Match two closest junction points.
3. Match two edges if their end points are matched pairwise.
4. Handle topological changes and match remaining edges.

Handling topological changes proceeds as follows. 1) for
Type 1, a junction point pl+1

i+1 is introduced (or removed)
if a new branch edge (pl+1

i+1 , ps
i+1) is growing out from (or

collapsing onto) an existing edge (pk
i , pk+1

i ) that is split
to two edges (pl

i+1, pl+1
i+1) and (pl+1

i+1 , pl+2
i+1). We then match

(pk
i , pk+1

i )↔
(
(pl

i+1, pl+1
i+1),(pl+1

i+1 , pl+2
i+1)

)
. Note that if the

new branch edge is growing from an existing junction point,
we do nothing. 2) for Type 2, there are two unmatched junc-
tion points for each graph, e.g. p j

i and p j+1
i at Mi, pr

i+1 and
pr+1

i+1 at Mi+1. They are connected by an edge in their corre-
sponding graph. In the meantime, all their connecting end
points are matched pairwisely (see the four end points in
the illustrative example of Type 2 above). It is this configu-
ration that allows us to identify Type 2 topological change.
To handle that, we insert four matching pairs: p j

i ↔ pr
i+1,

p j
i ↔ pr+1

i+1 , p j+1
i ↔ pr

i+1, and p j+1
i ↔ pr+1

i+1 . Note that if a
skeleton graph contains only a single node, everything in the
successive graph will be mapped to this node. This guarantees

the continuous transition between 1D curve and 2D surface
structures of a GSM.

6.3. Handling Bifurcations

The aforementioned matching framework works well for level
sets with one connected component. It is not sufficient for the
case where the number of connected components of the level
sets changes at the saddle points of the harmonic function
(e.g. the splitting and merging of level sets), for instance, at
the basis of the ears of the bunny. We extend the framework
to handle the matching at bifurcations as follows.

Let Ci and Ci+1 be the number of connected components in
Li and Li+1, respectively. Assume Ci < Ci+1 (i.e. splitting).
We project cp j

i onto ∂Li+1 (If Ci > Ci+1 (i.e. merging), we

project cql
i+1 onto ∂Li). Each projected foot point cp j′

i+1 is
assigned a component index after projection. All the foot
points of one node p j

i are in the same component after projec-
tion because of the properties of the harmonic function. We
extract sub-graphs from Mi based on the assigned component
indices. These sub-graphs are matched with the correspond-
ing components of Mi+1 using the same algorithm described
in Section 6.2.

Let ei represent the edge (p j
i , p j+1

i ) ∈ Ei of Mi. It
splits into two edges in Mi+1. Assume that p j

i is
matched to pl

i+1. We examine the edges adjacent to
pl

i+1 in Mi+1, and find
out the one whose other
end node pr

i+1 has not
been matched and has
the smallest Euclidean
distance to ei. We then
project pr

i+1 onto ei at
pr′

i and construct a par-
tial matching between (p j

i , pr′
i ) and (pl

i+1, pr
i+1). We process

p j+1
i similarly.

7. Results and Discussion

Figure 7 shows results of our framework for a number of
graphics, medical, and CAD models. The iterative construc-
tion of the GSM allows us to track topological changes of
the mid-structures of level sets along the user desired cutting
orientation. Different color sheets in Figure 7 represent the
evolution of their individual feature components of the mid-
structure (the edges of the simplified medial graph). Figure 8
presents a comparison with 1D curve skeletons [ATC∗08]
and discrete scale axes [MGP10] for a model with tubular
and more general regions (see the middle and right columns).
Both, the curve skeletons and discrete scale axes are com-
puted using the programs provided by the authors of those
papers. This comparison shows that the hybrid structure of
the GSM captures the tubular and more general regions of
each object as curve and surface elements, while the other

c© 2012 The Author(s)
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400, ε = [0.006,0.135] 350, ε = [0.004,0.099] 250, ε = [0.032,0.151]

Figure 7: GSMs for rockerarm, fertility and pelvis models. Different GSM sheets are shown in different colors. The sweeping
strategy is shown for each model on its boundary. For each GSM, the number of slices and the minimum ε and maximum ε are
provided below the respective model.

74, ε = [0.148,0.986]

Figure 8: left column: GSM; middle column: 1D curve skeleton; right column: Discrete Scale Axis. Different GSM sheets are
shown in different colors. Furthermore, the sweeping strategy is shown on its boundary. The number of slices and the minimum ε

and maximum ε for the GSM are provided below the respective model. For the curve skeleton, Laplacian constraint scale and
positional constraint weight are 2 and 1, respectively. For discrete scale axis, δ = 0.01 and s = 1.1.

two approaches contain only either of the two. The topology
of the GSM enables smoothing of sheet boundaries.

The user interaction to compute the harmonic function for
the models presented in this paper did not exceed 5 min-
utes. The remaining pipeline steps to compute the resulting
GSM proceeded automatically. To extract one slice and com-
pute its corresponding mid-structure takes about 1 minute
in our current implementation. Since this computation can
be performed independently per slice, our framework can
leverage multi-core computer architectures. We implemented
the GSM pipeline on an interlinked Intel Xeon X730 Pro-
cessor comprised of 32 cores, where GSM computation for
the examples shown in this paper did not exceed 20 minutes.
In comparison, the representations constructed by global al-
gorithms such as the discrete scale axis [MGP10], the tight
co-cone [DG03] or the skeleton computed through mesh con-
traction [ATC∗08] took less than two minutes for the triangle
meshes used in this paper. However, the GSM automatically
derives the toplogical structure and classifies sheets, whereas
given a medial axis computed from existing techniques, sig-
nificant additional time is required for sheet classification and
other post-processing.

Figure 9 shows an example of an object represented with two
different triangulations. The input object in Figure 9 (bottom)
has a coarser and more irregular triangulation than Figure 9

(top). It can be seen that sharper features lead to distortions
of the harmonic function, resulting in larger slicing densities
in these regions, e.g., tips of the dolphin fins in Figure 9.
The GSM of the coarser mesh still captures the global shape
features represented in the GSM of the object with finer mesh.
Since the number of slices for the coarser mesh is a quarter
of the finer one, the computation time for its GSM is roughly
four times faster.

Limitations: The GSM pipeline requires the user to specify
critical points to compute a harmonic function. An appropri-
ate choice of these points could be challenging for models
with more complex geometry and topology. The extremal
points of a 1D curve skeleton are given as hints to the user
to recommend critical points. Note that the resulting GSM
has then a visually similar structure to a medial axis. An-
other limitation is that slices have to be of genus-0 (i.e. no
inner boundaries), which is due to the proposed medial axis
computation algorithm for the slices requiring a closed input
curve. In addition, sharp features in the input object may not
be preserved if the cutting misses the features. Furthermore,
the current graph matching cannot handle complex configura-
tions of topological changes. Finally, the current computation
is relatively slow due to the slow B-spline root solving. We
plan to address these issues in future work.

c© 2012 The Author(s)
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400 GSM slices

106 GSM slices

7866

surface triangles

2448

surface triangles

Figure 9: GSMs computed on a uniform vs. coarse feature-
aware triangle mesh. Both use one minimum and one max-
imum. Curved slices created from the harmonic functions
are swept from tail to nose and capture overhang regions
consistently.

8. Applications

In this section we highlight two potential applications for
which a GSM can be useful. In the first application, a GSM
could be used to generate a semi-structured hexahedral mesh
(Figure 10 (a)) by decomposing the input object into simpler
subvolumes, where subvolumes correspond to sheets in the
GSM. Then, each subvolume is parameterized. Furthermore,
the natural parameterization of the GSM could potentially
be used for 3D cross field design which is used to generate
a hexahedral mesh using a method such as [NRP11]. The
proposed GSM pipeline could help in the following way. A
desired cutting strategy could be chosen by the user, where
the resulting GSM could be used to align hexahedral elements
along the chosen sweeping direction.

The second application lets the user deform the object based
on the GSM. The consistent topology of the GSM has the
potential to produce higher quality deformations compared
to other medial and skeleton based shape deformations. Fig-
ure 10 (b) shows an example of the model in Figure 8. The
fingers could be deformed using skeleton-based deformation,
while the palm could be deformed by editing the surface sheet
of the GSM through Laplacian mesh editing.

9. Conclusions

This paper presents a new hybrid mid-structure called the
Generalized Swept Mid-structure (GSM), containing curve
and surface elements with consistent topology. A pipeline
to incrementally construct the GSM of polygonal objects is
presented that uses a novel planar mid-structure computation
algorithm in conjunction with an algorithm to match two sim-
ilar 2D mid-structures. The result is a connected structure that
the topology of the input surface. The sweeping strategy is

(a)

(b)

Figure 10: (a) Cut through a hexahedral mesh, where the
mesh layout was determined by the GSM for the respective
model; (b) Deformation based on GSM.

determined by a user who selects a small set of critical points
to define a harmonic function that naturally conforms to an
object’s shape. The GSM is then incrementally constructed
by sweeping mid-structures of level sets of the harmonic.

The structure of a GSM is user controlled via the choice
of a sweeping strategy and is therefore flexible to adapt ap-
propriately for specific applications. This is not the case for
existing skeleton and 3D medial axis algorithms that deter-
mine an intrinsic mid-structure. Curve skeletons are more
suitable for tube-shaped objects and 3D medial axes are more
suitable for objects with more general regions. The hybrid
structure of the GSM enables it to be applied for objects
consisting of both region types. Existing hybrid skeletoniza-
tion approaches first compute approximations of 3D medial
axes that are then analyzed to differentiate tubular from non-
tubular regions. However, those approaches are susceptible
to topological issues with the 3D medial axis approximation.
We have demonstrated potential GSM applications, such as
hexahedral meshing and GSM-based shape deformation.
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