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Abstract—Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems

these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical

integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable

visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces

numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps,

permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold.

Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision,

enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and

temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error

quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the

additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Index Terms—Vector Fields, Error Quantification, Edge Maps.

F

1 MOTIVATIONS

V ECTOR fields are a common form of simulation data

appearing in a wide variety of applications ranging from

computational fluid dynamics (CFD) and weather prediction

to engineering design. Visualizing and analyzing the flow

behavior of these fields can help provide critical insights into

simulated physical processes. However, achieving a consistent

and rigorous interpretation of vector fields is difficult, in part

because traditional numerical techniques for integration do not

preserve the expected invariants of vector fields.

To better understand this challenge inherent in traditional

numerical techniques, we reconsider the most common way

to store vector fields. Both a discretization of the domain

of the field (often in the form of a triangulated mesh) as

well as a set of sample vectors (defined at the vertices of

the mesh) are required. The vector field on the interior of a

triangle is approximated by interpolating vector values from

the samples at the triangle’s corners. Subsequently, computing

properties that require integrating these vector values presents

a significant computational challenge. For example, consider

computing the flow paths (streamlines) of massless particles

that travel using the instantaneous velocity defined by the field.

Naive integration techniques may violate the property that

every two of these paths are expected to be pairwise disjoint
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(i.e. the uniqueness of the solution of an ordinary differential

equation). Fig. 1 gives one such example, where a fourth-

order Runge-Kutta integration technique creates two crossing

streamlines.

Fig. 1. Left: Two streamlines are seeded traveling clock-

wise around this sink (red ball) in a domain [−1,1]×
[−1,1]. Right bottom: Initially, the magenta streamline is

seeded outside of the blue streamline with respect to the

center of the domain. Right top: After integration with a

step size of 0.025 the streamlines cross, now the magenta

streamline is inside the blue streamline with respect to the

center.

Despite these problems, many of the standard techniques

used for vector fields rely on variants of Runge-Kutta methods.

Consequently, robustly computing flow becomes a formidable

task. Integration is confounded by numerical errors at each
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step, in particular near unstable regions where the flow bifur-

cates or spirals slowly. These errors can compound quickly

to produce inconsistent views of the vector field, resulting in

inaccurate visualization and analysis of the field.

Apart from the obvious problem of potentially including an

unknown structural error in the analysis, traditional techniques

can cause a more subtle yet equally important problem. By

hiding the errors inherent in the numerical integration these

techniques create the perception of certainty. The user is

presented with crisp lines and clean segmentations which

imply a false level of accuracy. Instead, a more nuanced

approach that clearly indicates which information is known

and where possible instabilities might arise would provide a

more candid view of the data.

Considering these motivations, we propose a new data

structure, called edge maps, to represent vector fields. Edge

maps provide an explicit representation of flow by mapping

entry and exit points of flow paths on the edges of the

triangle. Thus, they encode the property most often needed

by common analysis tools to compute visualizations and

topological decompositions. We show how to compute many

of the same primitives robustly and directly on the edge maps

themselves. Moreover, the edge map data structure encodes

numerical error, presenting a more complete view of the

data illuminating the major features that demonstrate where

numerically unstable regions exist. This encoding enables

refinement of the maps to bound the amount of error incurred

by this representation.

While a method is required to compute the initial flow

within each triangle, any subsequent computation assumes

the edge map to be ground truth. Such a strategy is akin to

recent techniques that robustly compute scalar field topology.

Gyulassy et al. [11], for example, convert a scalar field into

a discrete gradient from which global properties such as the

topology can be extracted consistently. In both scalar and

vector fields the initial conversion can create discretization

artifacts. However, the net gain is significant. Using edge

maps, we can accumulate the error while performing compu-

tation. Where discretization artifacts have occurred, we show

these unavoidable errors explicitly to the user. Consequently,

instead of providing a black box representation of the data that

ignores the impact of discretization, we can provide analysts

a visualization of the data that accounts for these artifacts

and indicates how errors may have affected the apparent flow

behavior.

Contributions

This research focuses on a new representation of vector fields,

called edge maps, aiming at encoding the flow behavior with a

bounded error. Edge maps encode the inflow/outflow behavior

over the boundary of a triangle, allowing the replacement

of integration with a simple map lookup. The analysis and

visualizations generated using edge maps are guaranteed to

be consistent up to floating point precision, as a byproduct of

the removal of numerical integration of streamlines.

A preliminary discussion on edge maps without a notion of

time appeared in [1], and a discussion on the mathematical

properties of edge maps, a proof of their consistency, and

a list of the possible configurations of flow within each

triangle can be found in [17]. In the current paper, we discuss

edge maps, and explain how edge maps enable consistent

visualization of flow augmented by visualization of errors. The

main contributions of this work are:

• The definition of edge maps, with time, for vector fields

defined on triangulated surfaces, and an algorithm to

compute their approximation;

• Quantification of both spatial and temporal error bounds

due to this approximation;

• A refinement procedure for reducing both spatial and

temporal mapping error; and

• New visualizations of flow that highlight instabilities by

showing manifestations of these errors in space and time.

2 RELATED WORK

Since vector-valued data is a natural way to represent fluid

flow in simulations as well as other dynamical systems [15],

analyzing vector fields has received a significant amount of

attention in the visualization community. In addition, computer

graphics researchers have used vector fields for applications

ranging from texture synthesis and non-photorealistic ren-

dering [6], [44] to mesh generation [2], [30]. Regardless of

the application, there is a universal need to represent large,

complex fields concisely. A reliable visualization must encode

the important features of the field and ensure that the methods

used do not create contradictory views.

Kipfer et al. [20], following the lead of Nielson and

Jung [26], propose a local exact method (LEM) to trace

a particle on linearly interpolated vector fields defined on

unstructured grids. LEM solves an ODE representing the

position of the particle as a function of time, starting at a

given position. Consequently, it removes the need to perform

step-wise numerical integration, and hence is free from the

cumulative integration error and is as accurate as numerical

precision. Given an entry point of a particle to a simplex,

LEM gives its exit point from the simplex. We use this exact

method during the construction of edge maps, which removes

the need for on-the-fly numerical integration.

Consistency is particularly desirable when computing struc-

tural properties of vector fields. Helman and Hesselink [14]

compute a vector field’s topological skeleton by segment-

ing the domain of the field using streamlines traced from

each saddle of the field along its eigenvector directions. The

nodes of the skeleton are critical points of the vector field

and streamlines that connect them are called separatrices.

Subsequently, the skeleton extraction has been extended to

include periodic orbits [42]. By detecting closed streamlines,

Wischgoll and Scheuermann [42] propose a technique to detect

limit cycles in planar vector fields. Scheuermann et al. [34]

look for the areas of non-linear behavior in the field, and

use higher order methods to preserve such features, which

otherwise would have been destroyed due to linear assumption.

Three dimensional variants of the topological skeleton have

also been proposed [10], [18], [38], [41]. The readers should

refer to [22], [35] for more detailed surveys.
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However, it is well known that computing the topological

skeleton can be numerically unstable due to errors inherent

in the integration of separatrices and inconsistencies among

neighboring triangles [9], [16], [26], [33]. As a result, some

of the fundamental topological invariants of a vector field may

not be preserved, such as the Poincaré-Hopf index formula or

the fact that streamlines are pairwise disjoint. Consequently,

computing the topological skeleton numerically is adequate

for visualizing the resulting structures but less suitable for

further analysis. A number of techniques have been proposed

to extract the topological skeleton in a stable and efficient

manner. Chen et al. [3] introduce the ECG (Entity Connec-

tion Graph) as a more complete topological representation

of vector fields on piecewise linear manifolds. They further

introduced the MCG (Morse Connection Graph) as a more

robust representation of vector field topology [4] based on

Morse decomposition. Recently, Szymczak and Zhang [37]

propose an algorithm to compute the Morse decomposition

for piecewise constant (PC) vector fields by representing the

set of all trajectories in the field as a finite transition graph.

Szymczak [36] extends this technique to produce a superset of

transition graphs to reflect the error in the field. While the PC

field is created from the original piecewise linear (PL) field,

there is no guarantee that the resulting Morse decomposition

reflects the original vector field.

Recent work of Reininghaus and Hotz [31] construct a

combinatorial vector field based on Forman’s discrete Morse

theory [8]. Using combinatorial fields allows the extraction

of a consistent topological structure. However, the application

of the original solve for the combinatorial vector fields is

limited by the high computational complexity, leading to

later improvements to the algorithm [32]. While provably

consistent, it is unclear how close the resulting combinatorial

field is to the original field. By comparison, this work proposes

an integration technique that is both consistent and has a

bounded error with respect to the LEM.

A large section of visualization community concentrates

on error and uncertainty visualization [19]. Pang et al. [29]

identified three sources of uncertainty: (a) Uncertainty in data,

(b) Uncertainty due to derivation, (c) Uncertainty due to visu-

alization. The earlier work on vector field uncertainty visual-

ization concentrated on visualizing extended glyphs for vector

samples to represent uncertainty [29], [43] and comparisons of

streamlines using different integration schemes, step sizes and

data resolutions [40]. Recently, Otto et al. described a method

to obtain uncertain topological segmentations by sampling in a

random 2D vector field [27], and later extending it to 3D vector

fields [28]. While their method tries to simulate the uncertainty

in data probabilistically, disregarding the uncertainty due to the

computation and visualization itself, the edge maps assume the

given data as certain, and enable visualization of uncertainty

introduced during computation and visualization only.

3 EDGE MAPS

In the following, we define edge maps, describe their construc-

tion, and discuss how edge maps can be used for a consistent

propagation.

3.1 Foundations

Let ~V be a tangential vector field defined on a 2-manifold M

embedded in R
3. ~V is represented as the set of vector values

sampled at the vertices of a triangulation of M . Specifically,

each vertex pi has the vector value ~V (pi) associated with it.

The vector values on the interior of each triangle ∆ with ver-

tices {pi, p j, pk} in the triangulation are interpolated linearly

using ~V (pi),~V (p j),~V (pk). Fig. 2 depicts the field defined in

this way for a single triangle. Note that we require that these

three vectors reside in the plane of the triangle. A suitable

projection might be needed for this, while ensuring that the

vector field is consistent across edges1.

Fig. 2. Flow through

a triangle with vec-

tors defined on its

vertices.

Given a vector field ~V , we can

define the flow x(t) of ~V . Treating ~V
as a velocity field, the flow describes

the parametric path that a massless

particle travels according to the in-

stantaneous velocity defined by ~V .

x(t) can be defined as the solution

of the differential equation:

dx(t)

dt
=~V (x(t)).

The path x(t) with x(0) = x0 is

called the streamline starting at x0.

Since generally, the analytic form of the vector field is unavail-

able, solving this differential equation for a single streamline

is typically accomplished using numerical integration such as

Euler or Runge-Kutta methods.

For a PL vector field defined by the three vector samples

at the vertices of a triangle, we begin with assuming that:

(1) the vectors at all the vertices of the triangle are non-zero,

(2) the vectors at any two vertices sharing an edge are not

antiparallel, and (3) the vectors at two vertices on an edge e

are not both parallel to e. Any such configuration violating one

of these conditions is unstable, and can be avoided by a slight

perturbation. This perturbation ensures that no critical point

lies on the boundary of the triangle and there is no streamline

along any edge of the triangle, which significantly simplifies

the analysis of edge maps, as will be clear in the following

sections.

3.2 Definition

To understand and represent the flow behavior through a tri-

angle, we first summarize the formal definitions given in [17].

Let ∆ be a triangle with boundary ∂∆. An origin-destination

(o-d) pair is a pair of points (p,q), where both p and q lie

on ∂∆ and there exists a streamline between them which lies

entirely in the interior of ∆. We call p an origin point and q

a destination point. Let P be the set of all the origin points

on ∂∆, and Q be the set of all the destination points on ∂∆.

The edge map of ∆, ξ : P → Q, is defined as the point-to-

point mapping between the boundary of the triangle, such that

1. For each vertex pi, we use mean value coordinates in 3D [7] to project
the star of pi, S (pi) onto a 2D plane. The vector V (pi) is then projected
onto every triangle in S (pi), and an average vector is computed in 2D. The
inverse projection (to 3D) of the average vector is then computed for every
triangle in S (pi) giving a consistent representation of V (pi).
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ξ (p) = q if (p,q) is an o-d pair. q is called the image of p

under ξ . If there exists a critical point in the interior of the

triangle, some points on ∂∆ will not be a part of any o-d pair,

since they flow to or emerge from the critical point.

Edge maps provide a point-to-point mapping between entry

and exit points of streamlines through a triangle. Fig. 3(a)

visualizes an edge map as a graph of the point-to-point

mappings. To efficiently represent the edge maps, we merge

adjacent origin points that have adjacent destination points.

This merging creates a more compact representation of the

point-to-point mapping as a mapping between connected sub-

sets of the boundary of a triangle, called intervals. The interval

obtained by merging adjacent origin points is called the origin

interval, while the interval obtained by merging their respec-

tive destination points is called the destination interval. Pairing

up of an origin and its corresponding destination interval forms

a link. A link is an interval-interval map, representing a region

of unidirectional flow. Fig. 3 depicts the results of this merging

process.
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Fig. 3. Edge map for the triangle from Fig. 2. (a) The

edge map visualized as a plot, mapping the origin points

(horizontal axis) to destination points (vertical axis). Each

point on the plot represents a streamline between an o-d

pair. Since the edge map is only defined for origin points

on the boundary, the plot is disconnected at the points

where the boundary switches from inflow to outflow, or

vice-versa. (b) Edge maps subdivide the boundary into a

set of links, which map inflow to outflow for a triangle.

To facilitate practical applications like streamline integra-

tion, the edge map needs to account for the critical points

as well. We define a forward edge map ξ+ : P → ∆ such that

given a point p where a streamline enters the triangle, the map

gives us the unique point where it exits the triangle. If a critical

point exists within the triangle, the flow may never exit, and

ξ+ returns the location of the critical point. Hence the range

of ξ+ can include the interior of the triangle. On the points

on the boundary, where flow does not enter the triangle, but

instead, exits it, we define a backward edge map ξ− : Q → ∆.

For a point q on the boundary of ∆, ξ−(q) describes the unique

point where flow entered the triangle on its path to q, or the

critical point where p originated from.

We note that the edge map ξ as defined in [17] is a bijection

and its inverse ξ−1 represents the edge map of inverted flow.

However, according to the definition presented here, ξ+ (or

ξ−) is a bijection if and only if there is no critical point present

in the triangle. For such triangles, ξ− = (ξ+)−1, since for

points p,q ∈ ∂∆, ξ+(p) = q if and only if ξ−(q) = p. As for

triangles with critical point, this inverse relationship does not

hold because ξ+ (or ξ−) is no more a one-to-one map. In

either case, for a triangle ∆, ξ+ and ξ− completely describe

the behavior of the flow through ∆.

3.3 Edge Map Generation

To generate a compact representation of the flow, edge maps

subdivide ∂∆ into connected maps of flow between origin

and destination interval, called links. While the endpoints

of the links represent the flow accurately, an approximation

can be made to represent the flow at the interior of links.

To ensure consistent integration, any approximation can be

chosen as long as it preserves the ordering of streamlines

within a link. In this work, we use a linear approximation

of the links. Thus, the flow representation in edge maps is

approximate but consistent. Edge maps, however, do not ignore

this approximation error, but represent it explicitly (as will be

discussed in Section 4).

An edge map (forward and backward) can be encoded

concisely as a collection of links of a triangle, such that the

intervals are non-intersecting other than at their endpoints,

and covers the entire boundary of the triangle (see Fig. 3). If

there is a critical point present in the triangle, some links may

include the critical point as a source or destination interval.

Thus, to store the edge map for a triangle, we only need to

encode a collection of links.

As discussed in Section 3.2, intervals are constructed by

merging adjacent origin points whose destinations are also

adjacent. At the maximum level of merging, the intervals are

bounded by either: (i) vertices of the triangle; (ii) images of

vertices (Fig. 4(a)); (iii) transition points: points where the

flow changes between inflow and outflow (Fig. 4(b)); (iv)

images of transition points and (v) sepx points, where the

separatrices of a saddle exit or enter (Fig. 4(c)).

(a) (b) (c)

Fig. 4. Splitting of the boundary of a triangle into intervals:

(a) A triangle with a forward vertex image (grey dot) of the

lower right vertex; (b) A triangle with a single transition

point (white circle) from internal flow and its forward and

backward image (grey dots); (c) A triangle with a saddle

point (black dot), its four sepx points (grey dots), and a

transition point from external flow (white square). Note

that in most cases, vertices also act as external transition

points.

Fig. 5 gives the algorithm for computing the edge map for

a triangle without a critical point. When the triangle has a

critical point (detected using [24]), the algorithm is similar

except that there can be additional cuts (from separatrices)

and the critical point itself can act as an interval.

Recently, we showed that there exist 23 equivalent classes

of edge maps for linearly varying flow [17]. Here equivalence
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ConstructEdgeMap(∆):

1) Identify the transition points on ∂∆. Advect the

internal transition points forward and backward to

find their images.

(There can be at most 6 transition points in a

triangle: 1 per edge and 1 per vertex. [17])

2) Advect any vertices of ∆ that are not transition

points forward (resp. backward) to find their im-

ages.

(The transitions points, vertices, and their images

cut ∂∆ into intervals of unidirectional flow.)

3) Using the direction (inflow/outflow), and connec-

tivity implied by advecting, pair intervals to form

links.

(Collection of these links compose the edge map.)

Fig. 5. Algorithm for creating the edge map for a triangle.

The advection of vertices and transition points are com-

puted using LEM [26].

is defined as invariance under rotation of triangle and inversion

of flow. Linearity of the flow implies that there is a bounded

number of intervals on the boundary of a triangle, which can

be connected only in a limited number of ways to create a

valid edge map. Since the number of classes is limited, the

overhead for storing the edge maps of a single triangle is both

bounded and relatively low.

3.4 Encoding Time in Edge Maps

While some flow properties like the topological segmentation

are invariant to the vector magnitudes, others like streamline

propagation are not. To represent the flow accurately, it is

important that the edge maps encode the speed of the flow as

well.

Every origin point on ∂∆, whose destination is also on ∂∆,

takes a finite time to reach its respective destination point. We

define a time-edge map, ξt , as the mapping between origin

points on ∂∆ to the time they take to reach their corresponding

destination, i.e. ξt : P→R. Thus, a complete description of the

flow through ∆ is encoded using ξ and ξt . Fig. 6(b) shows the

time-edge map for the triangle in Fig. 3.

During the generation of edge maps, LEM also computes

the time taken by the vertices and transition points to reach

their images. This time information can be stored in edge maps

for every point that is advected. Thus, the endpoints of origin

intervals are assigned the time they take to reach the endpoints

of their respective destination intervals.

Note that, however, if a triangle contains a critical point

C, the origin points that flow in to the critical point take

an infinite amount of time to reach the critical point. Edge

maps replace the infinite time with an approximation at the

endpoints p of the links, t = dp/|~vp|, where dp = ‖p−C‖,

and ~vp is the vector at p. During the analysis or visualization

of a streamline, this approximation assumes a constant speed

of the particle between p and C, and is important to ensure a

computationally feasible termination of the streamlines going

to critical points. The error due to this approximation is limited

to the last step of propagation.
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Fig. 6. (a) Edge map from Fig. 3. (b) The forward time-

edge map (ξ+
t ) maps origin points to the time taken by

them to reach their respective destinations.

The forward time-edge map is then extended to ξ+
t : P→R,

such that for an origin point, it defines a unique destination

point, and the time taken to reach the destination point

ξ+
t (p) = t.

3.5 Linear Approximation of Edge Maps

The encoding of flow as edge maps ultimately allows us to

determine structural properties of the flow through the triangle

using a simple lookup. Consequently, this leads to computing

flow-based properties efficiently. For example, we can query

the edge maps to determine destinations of points under the

flow by trivially performing lookup and composition on the

maps. At each lookup, we have preserved the property that

origin intervals are mapped onto the same destination intervals

they would have in the original PL flow in a consistent manner.

In particular, streamlines can be approximated on a per-

link level by linearly interpolating between the origin and

destination intervals. Hence, edge maps provide a way to

approximate streamlines. As Fig. 7(a) shows, for an origin

point on ∂∆, its path to its destination can be approximated by

linearly interpolating in the origin interval corresponding to the

origin point and projecting that point to the same barycentric

coordinate in the destination interval.

Using the precomputed edge maps, any numerical inte-

gration to calculate streamlines (such as the simplest Euler

integration) given by

xn+1 = xn +(tn+1 − tn) ·~V (xn)

can be replaced by a simple lookup

xn+1 = ξ+(xn) (1)

tn+1 = tn +ξ+
t (xn)

Hence, edge maps enable computation of streamlines in a

consistent manner, and as will be discussed below, have a

bounded error that can be explicitly computed and reduced.

4 REPRESENTING ERROR

The most common approach for tracing streamlines is numer-

ical integration. From a given starting point these techniques

repeatedly take small steps to approximate the next position

in the path. The resulting error is controlled only indirectly by
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Fig. 7. (a) Linear approximation of the edge map from Fig. 3(b) (b) We reproduce the plots of ξ and ξt from Figs. 3(a)

and 6(b) here, and compare them (solid) with their linear approximation made by edge maps (dashed). The deviation

between the two curves is the error of edge maps due to this approximation, shown in Fig. 8.

choosing a step size [12]. Since typically the true streamline

is not known, this error cannot be quantified explicitly. While

some schemes are more accurate than others and sophisticated

techniques exist to locally adapt the step size, the indirect

control over an unknown error represents a fundamental re-

striction. On the contrary, edge maps represent and control

the error in representation explicitly and do not require setting

a step size.

Furthermore, integrating streamlines numerically can also

lead to inconsistencies, such as intersecting streamlines and

significant differences between forward and backward traced

lines. Edge maps replace integration with a one dimensional

barycentric mapping that guarantees non-intersecting stream-

lines and consistency between forward and backward traces

up to the floating point precision of the linear interpolation.

Here we study the approximation errors in edge maps, and

provide tools to quantify and visualize them.

Approximation Errors in Edge Maps

As discussed in Section 3.5, streamline propagation can be

performed with a bounded error using edge maps as given in

Eq. 1. Since the edge map approximates the true exit point q

and the true exit time t of a point p by linearly interpolating

within the link as q′ and t ′ respectively, it incurs some error.

The spatial error can be calculated as the deviation of the exit

point given by the map, from that given by the exact method

(ε = ‖q−q′‖). Similarly, the temporal error can be calculated

as the deviation of the exit time given by the map, from that

given by the exact method (δ = t − t ′). Fig. 7(b) shows this

deviation using a comparison between the true flow and its

linear approximation using edge maps, and Fig. 8 shows shows

the error plots for the spatial and temporal error.

The errors for both the spatial and temporal deviations are

computed by sampling the link. Fig. 8 plots the spatial and

temporal errors as a function of the boundary of the triangle.

We use the maximum spatial error in a link l as the spatial

error of the link, εl . Similarly, we can define the temporal

error of the link δ l as the maximum temporal error within a

link.

To account for the amount of error incurred during the

propagation, we define ξ+
ε : P →R and ξ+

δ : P →R such that

ξ+
ε (p) = εl

ξ+
δ (p) = δl
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Fig. 8. The error plots for (top) spatial and (bottom)

temporal errors for the linearly approximated map shown

in Fig. 7(a). Note that the average edge length of the

triangle in consideration (Fig. 3) is 0.03.

where εl and δ l are the spatial and temporal errors of the link

l which contains p. Thus, two floating-point values are stored

per link to represent the mapping error in edge maps.

As explained in Section 3.3, the vertices, saddle separatrices,

and transition points are advected to split the triangle perimeter

into intervals. Since we use the LEM for this advection, the

endpoints of the intervals are accurate up to the floating point

precision of the system. These intervals are paired into links

to construct the edge map. Hence, the mapping errors (both

the spatial and temporal errors) are zero at the endpoints of

the link.

In our experiments, we found that typically the spatial error

is unimodal in a link. However, the error can also be bimodal,

as shown in Fig. 9(a). Similarly, the temporal error can be

both positive and negative within the same link, as shown in

Fig. 9(b).

We observe that certain types of flow are less prone to error

than others. For example, consider concentric circular orbits

or a linear flow where any two streamlines do not diverge

from or converge to each other. The mapping error is zero for

such a case since the actual flow agrees to the linear mapping

within each link. Fig. 10 corroborates this intuition by testing

the edge map propagation in a purely rotational flow. Hence,
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Fig. 9. (a) A (forward) edge map with bimodal spatial

error in the green link). Note the horizontal axis has

been scaled to the range [x,C] to illustrate the error. (b)

A (forward) edge map with both positive and negative

temporal error within the green link. The horizontal axis

has been scaled to range [A,C] to illustrate the mapping

error. In the destination interval on edge AB, there is no

temporal error defined under the forward edge map. The

average edge length of both the triangles in consideration

are 0.3.

Fig. 10. Comparison between propagation using RK45

(blue) and edge maps (magenta) on a vector field defined

by a counter-clockwise orbit seeded at the same point

(yellow). The magenta and blue lines overlap in the be-

ginning but a substantial deviation in RK45 streamline is

observed after only one revolution around the critical point

(purple). In the absence of mapping error, the mapped

lines are accurate up to floating-point precision.

in the absence of mapping error, the propagation using edge

maps is as accurate as the underlying method for advection

used for map generation.

An upper limit to the mapping errors can be imposed by

user parameters, εMAX and δ MAX . If for a link, εl > εMAX

or δ l > δ MAX , we split the link at the point of maximum

error to improve the accuracy of the map. We call this process

refinement of edge maps. Fig. 12 shows the effect of spatial

(Fig. 12(b)) and temporal (Fig. 12(c)) refinement on the edge

map shown in Fig. 12(a).

The level of refinement needed for a given flow is subject to

the nature and magnitude of flow and the triangle size. Thus,

the computation time and memory consumption of refined

maps depend upon these factors.

5 VISUALIZING SPATIAL ERROR

Explicit representation of error in edge maps enables error

visualizations of flow. Here, we discuss how to generate

visualizations of spatial error using edge maps.

5.1 Expansion of Exit Points

A

B

C

p

Q

Fig. 11. Expansion

of exit points

represents error as

a range of possible

destinations.

We have been using the forward

(ξ+) and backward (ξ−) edge maps

as tools to look up the streamlines

of individual particles. However, we

can also represent the spatial er-

ror explicitly by redefining the edge

maps as a one-to-many map.

ξ+(p,ω) = Q

where, for an entry point p, instead

of a single exit point q the map

gives a range of possible exit points,

a segment Q, under the expansion

factor ω . This is illustrated in Fig. 11. The length of the

segment Q is directly proportional to the expansion factor.

Thus, we call Q the expansion of the exit point q.

The spatial error ε for p encodes the deviation of its exit

point q̃ defined by the edge map from the true exit point q.

Therefore, the expansion of the exit point Q calculated using

ω = ξ+
ε (p) provides an upper bound on the possible exit points

of p. Furthermore, since the streamlines at the endpoints of

the links are accurate, the expansion cannot span across links

and thus is truncated at the endpoints of the link containing

both p and q.

5.2 Streamwaves

The one-to-many mapping given by edge maps under the con-

sideration of spatial error can be visualized by a streamwave,

which is defined as the set of possible destinations that a

massless particle may reach when accounting for possible

expansions. Alternatively, a streamwave can be seen as the

expansion of a streamline due to spatial uncertainties. In

the current work, we quantify and visualize the spatial error

as streamwaves propagate, by setting ω = εl . However, any

other kind of error can be modeled as the expansion ω for

streamwaves.

Using edge maps, we can compute the streamwaves as

follows

Xn+1 = ξ+(Xn,ω)

where X0 = {xo} represents the seed point of the wave and

Xn the set of points currently at the front of the wave. Since

a streamwave models the spatial error only, the speed of the

wave is reflective of the linear time approximation of the edge
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Fig. 12. Reducing the mapping error (middle row: spatial error, bottom row: temporal error) by refinement of edge

maps (top row). Level of refinement increases from left to right. The length of the edge AC is 0.0354, and the average

time taken by a particle to travel across the triangle is 1.7. (a) No refinement. (b) Spatial refinement with εMAX = 0.003

splits the green link into two, creating two new links (green and blue) with smaller spatial and temporal errors. (c)

Temporal refinement with δ MAX = 0.06 splits the red link twice, creating three new links (red, cyan and magenta) with

even smaller spatial and temporal errors.

maps. The temporal error in the edge maps is ignored. Using

traditional techniques to compute streamwaves as a collection

of streamlines can become computationally expensive and

requires delicate processing in regions of high divergence.

Using edge maps, however, propagating a wave is only as

expensive as the number of links in the triangles currently at

the front.

Furthermore, if there exist no bifurcations in a triangle,

then only extremes of the range of exit points Xn+1 are of

interest, and all intermediate points are handled implicitly. For

triangles with bifurcation, a streamwave may split into two

streamwaves, each of which can be propagated independently.

Fig. 13 shows streamwaves computed on simulation of a

slice of a homogeneous charge compression ignition (HCCI)

engine combustion [13]. The computation of edge maps for

816642 triangles in the dataset took 223 seconds and 200

MB. As shown in the figure, a streamwave is the superset

of a single streamline, so analyzing only the streamline in the

presence of error is an incomplete analysis. Since expansion

of a streamwave in the presence of error may cause it to

revisit a certain region, we truncate the streamwave so as to

avoid going into infinite flow loops. This is consistent with our

definition of streamwave since we only want to visualize the

region that can be visited (at least once) by the streamwave.

The shape of streamwave reflects the nature of the underlying

flow. A ‘linear’ streamwave will be obtained if the flow is

mostly linear (little or no rotation), e.g. Fig. 14. If the flow is

highly rotational, the streamwave revisits certain regions and

becomes ‘blob-like’, e.g. Fig. 13. The color of the streamwave

progresses from green to red as it propagates forward in time,

as an indication of the speed of the streamwave.

Streamwaves also present a method to visualize error

bounds of other integration techniques. For example, Fig. 14

shows the integration of a streamline connecting a source

to a sink using three different techniques. By showing a

streamwave, whose expansion is set larger than the maximum

error for Euler integration, we can visualize a comparison be-

tween Euler integration, fourth-order Runge-Kutta, and LEM.

5.3 Visualization of Fuzzy Topology

Topological structures in vector fields, such as their topological

skeleton [14], are one of the key features used to analyze

vector field data. Traditionally, the skeleton is computed by

tracing four separatrices out of each saddle (two forward and

two backward) by computing streamlines starting in the direc-

tions of the eigenvectors of all the saddles. These separatrices

terminate when they arrive at another critical point or leave

the boundary of the domain. However, this approach faces

challenges since compound integration error can cause the

trace to end at an incorrect critical point. In particular, unstable

topologies, such as when a pair of saddles is connected by a

separatrix, suffer from this form of inconsistency.

We can use the streamwave construction to study the robust-

ness of topological representations. By growing a streamwave

with ω = 0, in the forward direction from all sources and in

the reverse direction from all sinks we can perform a partial

topological decomposition of a vector field that is analogous

to stable and unstable manifolds in scalar field topology [5].
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Fig. 13. Visualizations of streamwaves on HCCI

dataset [13]. The 640 x 640 data is mapped to a [-1,1]

x [-1,1] plane. Top left: original vector field visualized with

IBFV [39]. Top right: two streamlines, one near a saddle’s

separatrix. Bottom: Two images show streamwaves at

different levels of error (0.0001 and 0.0002). Streamwaves

are colored from green to red, showing the distance the

flow has propagated as a measure of the number of maps

the streamwave has travelled through. Note that the error

levels have been exaggerated to illustrate expansion and

bifurcation of streamwaves.

These streamwaves are initiated from the segments of the

boundary flowing out of and in to the triangles containing the

sources and sinks respectively. While we cannot account for

centers, streamwaves can provide important information about

the structure of the flow. In particular, in the absence of closed

orbits, the union of the forward and backward streamwaves

creates a covering of domain similar to the segmentation

induced by traditional vector field topology.

However, in our construction for ω > 0, each point in the

domain may be part of several streamwaves creating a notion

of fuzzy topology as shown in Fig. 15. Setting ω = εl highlights

the regions of the domain that are unstable/uncertain under the

approximation errors of edge maps as thick red bands. This

provides important information about any potential instabilities

in the topological segmentation. In particular it provides users

with an intuitive measure of how certain a given structure is.

To illustrate the new concept of fuzzy topology we com-

pare streamwaves with traditional scalar field techniques, see

Fig. 16. Laney et al. [21] use topological analysis on the

interface surfaces between heavy and light fluids in a Rayleigh-

Taylor instability. In particular, the unstable manifolds of the

height function segment the surfaces into bubbles, the primary

feature of interest. Similarly, we can compute the gradient

field of the same dataset, and construct the manifolds using

streamwaves. Both techniques provide a similar view of the

data but our representation is richer by also showing the

Fig. 14. A streamline using RK4 (black dashed) using

stepsize ∆t = 0.005, Euler (black dotted) using stepsize

∆t = 0.005 and local exact method (LEM) (white solid),

and a streamwave using edge maps with ω = 0.0001 were

seeded at the same point. Considering the local exact

method to be the ground truth, some deviation is ob-

served in Euler and RK4 streamlines. It is also observed

that the streamwave, centred around the LEM streamline,

bounds the two erroneous streamlines at all the times.

Fig. 15. Visualization of the (left) topology and (right)

fuzzy topology for a synthetic dataset containing 3

sources (green), 2 sinks (red) and 3 saddles (blue).

Streamwaves with (left) ω = 0 and (right) ω > 0 are used

for such a construction.

inevitable inconsistencies at the boundaries of the bubbles.

Fig. 17 shows an additional example of fuzzy topology

computed on a combustion chamber dataset [23] with refined

maps, indicating the swirling structure on its surface. Since,

the spatial error in the maps is very low, the fuzzy regions are

negligible.

6 VISUALIZING TEMPORAL ERROR

For a streamline that is computed assuming error-free propa-

gation, there is a unique time instant given for every position,

and vice versa. While all numerical integration techniques

have some associated error, however small or big, this error

is generally ignored [29]. Using edge maps, we can bound

and visualize the temporal error in streamlines, as discussed

below. Here, we consider the temporal errors in the map only,

and assume no spatial error.



FLOW VISUALIZATION WITH QUANTIFIED SPATIAL AND TEMPORAL ERRORS USING EDGE MAPS, VOL. X, NO. Y, ZZZZ 2011 10

Fig. 16. Visualizations of a Rayleigh-Taylor instability.

Top row: We reproduce the results from Laney et al. [21]

(left) side-by-side with our edge map computation of the

unstable manifolds using ω = 0 (right). Bottom row: when

the error factor, ω > 0 is accounted for (left) we can

observe the emerging overlaps (right).

Fig. 17. Visualization of the stable (left) and unstable

(right) manifolds of the flow defined on the surface of

a combustion chamber [23]. The flow has 13 sources

(green), 15 sinks (red) and 27 saddles (blue). With suf-

ficiently refined maps, the fuzzy regions are negligible

indicating a more accurate representation.

6.1 Temporal Error in Streamlines

The temporal error of a link (δ l) represents the maximum

possible deviation in edge map’s approximation of time from

the true time. The points on the streamline corresponding to a

temporal error will span across triangles. Since an edge map

is not aware of the vector field in neighboring triangles, it can

not return a temporal expansion of points as in the case of

the spatial expansion (see Section 5.1). Instead, the temporal

expansion of points is computed indirectly using the temporal

error. When a streamline is integrated using edge maps, the

temporal error of the links it passes through is accumulated.

δn+1 = δn +ξ+
δ (xn)

Thus, every point xn on the streamline is associated with a

time tn, and a temporal error δ n.

T
im

e

Streamline

Fig. 18. The accumulation of temporal error shown as an

error plot for a streamline in time space. Every point on

the streamline has an associated temporal error, shown

by the vertical thickness of the dashed envelope. (The

vertical thickness of the envelope is twice the amount of

temporal error)

Fig. 19. The accumulated temporal error in streamlines

is shown for the ocean dataset on a regular grid of 573

x 288 vertices. The flow contains 3 repelling foci (green

balls), 2 attracting foci (red ball) and 4 saddles (blue balls).

The seed points of the streamlines are shown as small

magenta balls. The color map cyan-dark blue is mapped

to increasing temporal error along the streamline. A sharp

increase in accumulated errors near the saddle at the

center of the field indicates a region of high temporal error.

Fig. 18 illustrates the accumulation of temporal error along

a streamline. Given a point p on the streamline, the time and

the temporal error can be easily found by interpolating the

data stored in the streamline. The accumulated temporal error

is visualized as an error field along the streamline in Fig. 19.

6.2 Visualizing Temporal Error Spatially

The temporal error δ n for a point xn on a streamline defines

a range of possible values of time [tn − δ n, tn + δ n] that can

be associated with xn. This range is shown as the vertical

thickness of the error envelope in Fig. 18. Another way

to visualize the temporal error is to understand its spatial

manifestation, which gives a more intuitive understanding of

flow behavior under error.
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Fig. 20. Computation of the spatial range corresponding

to the temporal error in a streamline. For every time

instant τi, represented by the (dashed blue) horizontal

line, its intersections with the temporal error envelope

(black dashed) are computed, and then projected on to

horizontal axis (the streamline). This gives the spatial

range of points (p′i, p′′i ) on the streamline, shown in green.

To compute the true position (considering no error), the

intersection with the actual time curve (black solid) is

projected (pi), shown in magenta.

Fig. 21. Visualization of temporal error in streamlines

on vector field from Fig. 13. Two streamlines are seeded

in the flow: one in the bottom left (exiting from top left),

and the other in the upper center (exiting from the bottom

right). Increasing time steps are shown with increasing

size of the magenta ball, and thickness of the green tube.

With increasing time, the magenta ball travels along the

streamline representing the movement of the particle.

The green tube represents the spatial range due to the

temporal error in the propagation. Spatial range is shown

for 10 equidistant time steps starting from 0.

A streamline generated using edge maps can be queried

for all the points which could be visited at a given time τ .

This query returns every point whose time range contains

τ . However, since an edge map streamline contains only the

points lying on the edges of the triangulation, we interpolate

the time ranges between adjacent points on streamline to

include the points on the interior of triangles. This is analogous

to intersection a horizontal line representing some value of

time, with the time envelope, and projecting this intersection

onto the horizontal axis as shown in Fig. 20. Thus, we get a

spatial range centered around the true (in absence of temporal

error) position of the particle at every time instant.

Fig. 21 shows the visualization of the spatial range due to

temporal error. The spatial range presents a way to visualize

the error bounds on the uncertainty in the position of the

particle at a given time. Note that the extracted spatial range

is only a spatial manifestation of temporal error. An equal

amount of temporal error will produce a longer spatial range

for higher vector magnitudes. By showing the positional ex-

tents of these temporal errors, we can investigate the interplay

between velocity magnitude and time.

7 DEMONSTRATIONS

We demonstrate each of the visualization techniques discussed

above on a 200 x 200 tile of a larger depth slice of a 3D

simulation of global oceanic currents as shown in Fig. 22.

These simulations were produced using a technique based on a

boundary impulse response functions [25]. The tile is mapped

to a planar domain of size [−1,1]× [−1,1]. Although the

flow in the original 3D simulation is incompressible, a depth

slice from this 3D domain does not satisfy incompressibility

anymore. The slicing creates sinks and sources due to the flow

across depths. We visualize the streamwaves, spatial range due

to temporal error, and fuzzy topology (unstable manifolds) in

Fig. 23 (left to right) at increasing refinement levels (top to

bottom).

Fig. 23(a) shows a streamwave at two different error thresh-

olds. We notice that the streamwave hits a saddle before exiting

the domain from top-left. At high error, the streamwaves

flows into many slowly rotating critical points. A sudden and

substantial increase in the thickness of the streamwave reveals

the sensitivity of this region to the spatial error.

Fig. 23(b) shows the spatial range corresponding to the

temporal error as a sequence of time instants starting from 0

with a step of 0.3. A steady increase in the lengths of the green

tubes is observed reflecting a steady increase in the temporal

error. This behavior is in conjunction with a steady increase

in the thickness of the streamwave (Fig. 23(a)) until it hits the

saddle. Visualizing both these error together is important to

get a complete understanding of how the flow behaves under

error.

Fig. 23(c) shows the unstable manifolds grown from all the

sources in the flow. These regions overlap with each other

based on the approximation error in the flow. This overlap

indicates the fuzziness in the boundary between them due

to this error. Observe that the overlaps reduce with higher

refinement. There are many sources in the domain with very

low divergence, in which case the corresponding manifold

does not grow enough to be noticeable at this scale, especially

at the higher refinement (bottom). Spatial refinement of edge

maps increases their fidelity to piecewise linear flow. This can

create cycles which were previously absent in the flow. Such
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Fig. 22. The oceanic currents in the Gulf of Mexico

and the Caribbean Sea. This 200 x 200 tile is taken

from a larger simulation of oceanic currents [25] (inset),

and mapped to a [-1,1] x [-1,1] plane. The region has

56 sources (green balls), 63 sinks (red balls) and 117

saddles (blue balls). The increasing speed of the flow is

mapped to color from cyan to purple. We demonstrate

our visualization techniques using edge maps on this flow

data.

cycles bound these growing regions. It is observed that large

regions of the dataset remain untouched by these manifolds,

suggesting that the flow in these regions is not associated with

the sources in the domain. Hence, the flow in these untouched

regions must either be bounded by orbits, or flowing in from

the boundary of the domain.

The computation of edge maps for this dataset containing

63,010 triangles took 19.4 seconds and 19 MB, giving, on

an average 2.23 links per triangle. Spatial refinement (from

unrefined maps) of 0.0001 took 29.5 minutes and 36 MB

giving 4.2 links per triangle, and temporal refinement (from

unrefined maps) of 0.0001 took 25 minutes and 35 MB, giving

4.1 links per triangle.

8 DISCUSSION AND FUTURE WORK

Edge maps establish a novel way to represent and analyze

sampled vector fields. Compared to traditional interpolation

schemes they have several attractive properties: (1) numerical

integration (and thus all error accumulation) is confined to the

map construction; (2) unavoidable errors accumulated during

integration or inherent in the representation can be explicitly

encoded; and (3) flow information extracted from the maps

is guaranteed to be consistent. These advantages translate

into a number of useful visualization and analysis tools such

as streamwaves, topological descriptions, and visualizations

of how temporal errors manifest spatially. The edge map

representation can also reproduce published results (using

integration schemes), as well as provide richer interpretations

that are not possible using existing techniques.

Nevertheless, edge maps have some disadvantages, most

notably the storage overhead per triangle. Furthermore, apply-

ing texture-based flow visualization techniques for edge maps,

such as IBFV, requires some additional effort. Extending the

edge map construction to volumetric domains could pose a

significant challenge given the number of potential map classes

per tetrahedral element. While edge maps remove the need

for numerical integration, the consistency guaranteed by edge

maps is still up to floating-point precision as the round-off

error during map-lookups still needs to be accounted for.

In this work, we have discussed techniques to visualize

spatial and temporal errors using edge maps, independently,

in the form of streamwaves and spatial ranges due to temporal

error. An obvious next step in this research is to integrate the

way errors are propagated to produce a single visualization of

spatio-temporal errors.

We have presented edge maps for triangulated domains;

however, as a general concept, the idea of edge maps is

applicable to other kinds of surface domains as well. For

example, for structured grids and unstructured quadrilaterals

edge maps can be created between the boundaries of the cells.

In these domains, different interpolations in the interior of cells

will be required and the types of flow behaviors shown in [17]

will need to be redefined. However, on a conceptual level of

replacing integration with a boundary mapping, the idea of

edge maps is both extensible as well as applicable to different

discretizations of domain. Also, a different approximation

scheme could be used to approximate the edge maps instead

of the linear scheme used here.

There exist some interesting opportunities to exploit the

consistency and discrete nature of edge maps. One such poten-

tial application of edge maps is in vector field simplification.

Because the flow can be represented discretely and error can

be encoded explicitly, we can merge edge maps to reduce

the complexity of the flow fields, or to perform domain

simplification keeping the error in the flow bounded.
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(a) (b) (c)

Fig. 23. Visualizations using edge maps on the oceanic current data from Figure 22. (a) Streamwave visualization at

spatial error refinement of 0.1 (top) and 0.0001 (bottom). (b) Spatial range due to temporal error at temporal refinement

of 0.01 (top) and 0.0001 (bottom). (c) Unstable manifolds at a spatial refinement of 0.0001 (top) and 0.00001 (bottom).
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