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Figure 1. Bullet Vision 

ABSTRACT 
Prior to 2000 ray tracing was typically considered an expensive 

computation. As a result, many developers strove to minimize the 
cost of ray tracing in their applications. Today many older appli-
cations can be substantially improved by being re-designed to take 
advantage of modern, faster ray tracing algorithms. This work 
examines the integration of modern ray tracing techniques with a 
classic ballistic penetration algorithm and demonstrates the benefit 
gained. We also present a unique visualization of the ballistic 
penetration. 
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1 RELATED WORK 

The interactive visualization performed by our prototype makes 
extensive use of transparent rendering, which has been used for 
ray trace based massive model visualization [8]. Although the 
images we produce are similar, the rendering problem is slightly 
different; in our system opacity is view dependent and computed 
using a ballistics penetration simulation instead of a constant, 
arbitrarily assigned opacity value. 

2 BACKGROUND 
Ballistic penetration simulations are conducted to predict the 

outcome of one or more threats against a target.  The threat may 
be a single projectile, or one of many fragments from a source 
munition.  The target is anything in the path of the threat.  The 
term does not imply anything about intent to aim.  

The two common objectives of ballistic simulation are to char-
acterize how lethal a given threat is against a particular type of 
target (lethality) or the ability of a target to survive being sub-
jected to a particular type of threat (survivability). The computa-
tion may be performed for a single threat path, such as when plan-
ning field experiments or supporting war-game simulations or it 
may be performed for a large number of threats to look for trends 
in ballistic performance and explore the set of all possible out-
comes. This work focuses on the latter category of analysis. 

 
 

2.1 Genesis 
The origins of ray tracing for ballistic penetration analysis can 

be traced back to a contract from the U.S. Army Ballistic Re-
search Laboratory to the Mathematical Applications Group Inc. 
(MAGI) in 1956.  The purpose of the contract was to adapt a 
technique used in optical lens design for ballistic penetration 
analysis [1].  As a result, there are strong similarities between the 
optical rendering process and the ballistic simulation process. 

For lens design, light rays are traced from air to the lens sur-
face.  At the surface, a shading algorithm determines if the light 
path is bent due to the change in the index of refraction from the 
air to the lens glass.  The shading algorithm may consider the 
quality of the glass to determine how much light of each wave-
length is passed through the lens to the exit surface.  At the exit 
surface, refraction may take place again and the light ray departs 
into the new medium. 

In ballistic ray tracing, projectiles replace photons.  The path of 
the projectile is referred to as the shotline.  When the shotline 
reaches a target surface, a penetration algorithm determines what 
happens.  A variety of factors such as the target and projectile 
materials, their relative velocity, area of interaction, mass, and 
incident angle may be used to determine if penetration will occur.  
If there is penetration, it may or may not be on the original path of 
the projectile.  The amount of projectile and target material along 
the path as well as the factors mentioned above determine how 
much (if any) of the projectile arrives at the exit surface, and the 
new orientation, direction and velocity of the projectile.  

Many aspects of optical rendering have their analogues in bal-
listic ray tracing.  Participating media and global illumination both 
involve scatter as a result of photons interacting with the envi-
ronment.  In ballistic computation fragmentation, and behind-
armor debris are similar effects.  Reflection becomes ricochet. The 
ballistic analysis ray generation process is identical to ortho-
graphic projection rendering.  For a particular ballistic simulation, 
the analyst/user typically selects a small number of threat direc-
tions (called views) to compute.  To keep execution time of the 
simulation reasonable, the number of views is typically between 3 
and 42. 

2.2 Evolution of Applications 
The design of many existing ballistic simulation applications 

separates the geometric interrogation from the ballistic interaction 
calculations.  This separation was driven by two design choices.  
First, a single threat would be represented by a single shotline.  
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Second, shotlines and the resultant target intersections would be 
pre-computed, saved, and thus available for re-use.  The ballistic 
penetration computation is run as a separate step after the shotline 
process. This design allows simulation using different penetration 
algorithm parameters (or even different penetration algorithms) 
while reusing the same shotlines.  A byproduct of this design is 
that shotlines are traced all the way through the target geometry 
because there is no way of knowing what point along the path the 
threat is stopped. 

A benefit of these design principles is that the development of 
penetration equations and algorithms is completely separated from 
the geometric intersection calculations.  This modularity means 
that the ballistician needs to know very little about the nature of 
the shotline process.  For simple penetration algorithms, this is 
convenient.  However, more modern algorithms may generate 
fragments and other effects that require tracing additional rays.  
As a result, these algorithms are actually hampered in their design 
and performance by the architecture of the application. 

The following conditions were once true, but are no longer 
valid:   

• Ray tracing is expensive and slow. 
• It is cheaper to save the shotlines and reuse them than to 

re-compute them. 
• Penetration algorithms need only a single shotline 

through the geometry for their computation. 

2.3 Change in Simulation Objectives  
Over time the goal of ballistic simulations has shifted.  From 

1960–1980 the emphasis was on looking for trends in results: 
what are all the possible outcomes for projectile A vs. target B?  
More recently the emphasis has shifted towards probability analy-
sis: of the possible outcomes of this interaction, what are the prob-
abilities of each and which will be chosen this time?  This drive 
towards sampling the statistical outcome space has driven up the 
number of shotlines needed to compute a given simulation run. 

Like other areas of computing, the ballistic analysis sector has 
seen a shift over the last 20 years from ballistic analysts as soft-
ware and algorithm implementers to one where they are software 
package users. The community has taken advantage of increased 
speed in computers.  As a result, very few analysts reuse shotlines, 
even when it would be possible.  It is more convenient to rerun the 
entire simulation from start to finish than to identify the shotline 
file and reuse it. 

The combination of acceleration in ray-tracing algorithms with 
the changing nature of analysis design makes reusing the ray path 
less attractive than it was a quarter century ago. 

2.4 THOR Penetration Equations 
Ballistic penetration equations are developed from data ob-

tained from physical test measurements and experiments.  The 
THOR equations [2] are an example of a ballistic penetration 
algorithm.  They roughly correspond to the Phong [3] illumination 
model.  From [2] the THOR equations are: 

(eq 1)  V50(ft/sec) = 10c • (h(in) • Af(in
2
))
α 
• Wf

β
(grains)

 • sec θγ 

(eq 2)  Vr(ft/sec) = V(ft/sec) – 10c • (h • Af)
α• Wf

β• sec θγ • Vλ
(ft/sec) 

(eq 3)  Wr(grains)  =  Wf – 10c • (h • Af)α• Wf
β• sec θγ • Vλ 

 
Equation 1 calculates V50: the velocity where there is a prob-

ability of 0.5 that the projectile penetrates the material of the tar-
get.  Equation 2 calculates the residual velocity of the projectile 
after passing through the target.  Equation 3 calculates the residual 

weight of the projectile.  The terminology used for the projectile is 
usually fragment; hence, the subscript f in the equations. 

The terms c, α, β, γ and λ are coefficients for the individual ma-
terials and are empirically derived.  From [2], we have the values 
in Table 1 as coefficients for 2024-T3 aluminum: 

 
Eqn Coefficients 
 c α β γ λ 
V50 6.185 0.903 -0.941 1.098  
Vr 7.047 1.029 -1.072 1.251 -0.139 
Wr -6.663 0.227 0.694 -0.361 1.901 

Table 1. Material Coefficients for 2024-T3 Aluminum 

The other terms in the equations are velocity V, thickness h, 
impact area Af, weight Wf and angle of obliquity θ. 

An example from [2] considers a 200 grain fragment impacting 
a 0.08-inch-thick 2024-T3 aluminum plate at an angle of 20o and a 
velocity of 5000 ft/sec, with an impact area of 0.25in

2.  In this in-
stance equations 1 through 3 become: 

 
V50 = 106.185 ⋅ (0.08 ⋅ 0.25)0.903 ⋅ 200-0.941 ⋅ sec(20deg)1.098 

  = 327.5 ft/sec 
 

Vr= 5000 – 107.047 ⋅ (0.08 ⋅ 0.25)1.029  ⋅ 200-1.072 ⋅  
                   sec(20deg)1.251 ⋅ 5000-0.139 

= 5000 – 225  
= 4775 ft/sec 
 

Wr= 200 – 10-6.663 ⋅ (0.08 ⋅ 0.25)0.227 ⋅ 2000.694 ⋅  
                    sec(20deg)-0.361 ⋅  50001.901 

  = 162.8 grains 
 
After impact and penetration, the fragment is travelling at 4775 

ft/sec, and is 162.8 grains.  If the V50 velocity had been greater 
than the fragment velocity, the simulation would not perform 
penetration computation.   

3 BENCHMARKS 
For this work a reference implementation of THOR was created 

in the BRL-CAD CSG-based ray-tracing engine. This engine was 
selected because it is used by many ballistic analysis applications.  
THOR penetration was run on each of four views: top, right, front, 
and an off-axis view along an azimuth of 35o and an elevation 25o 
from the target.  The target chosen was a simple pickup truck (see 
Figure 2). Each view consisted of a 512x512 grid of rays with a 
single shot per grid location.  All tests were run on the same 
hardware: a MacBook Pro running a 2.33GHz Intel Core Duo 
CPU.  Each test was run three times. 

The first test run represents the traditional execution flow, 
where rays are passed all the way through the geometry before 
penetration equations are performed. The second test was run with 
the penetration equation computation interspersed with the ge-
ometry intersection.   

The average run times in seconds for each execution are shown 
in Table 2.  The first row is for the classic, full ray traversal before 
penetration computation.  The second performs penetration as the 
ray traverses the geometry.  

Overall, computing penetration during ray traversal resulted in a 
27% speed improvement. For front views the difference is a 50% 
reduction in runtime.  
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Figure 2. Target geometry 

 
Figure 3. Bullet vision rendering 

This is because the projectile is stopped significantly before pass-
ing through the rest of the target.  In other views, the projectile 
passes through a significant amount of the target, and less speedup 
is achieved. There is no significant difference in the timing for the 
right view.  

Ray depth Top Right Front A35 
Full  9.22 10.52 6.27 12.36 

Partial  7.30 10.54 3.15 7.60 

Table 2. Computation Time (seconds) 

4 BULLET VISION 
When such computations are performed the obvious desire is to 

visualize the results of the ballistic penetration. The projectile is 
deemed to stop if its velocity is below the V50 threshold or if the 
weight falls to zero. To facilitate visualization, the penetration 
equation routine was modified to perform a Lambertian shading of 
the object in which the projectile stopped.  This shading allows 
the user to see into the target object as if looking with bullets in-
stead of photons.  Figure 2 shows the geometry used for the ballis-
tic simulation.  Figure 3 shows the results of rendering the objects 
in which the projectile stopped. 

For these renderings, all objects in the model were treated as 
being made of 2024-T3 aluminum.  For an actual ballistic simula-
tion the coefficients for each of the materials present should be 
used for their respective parts. 

One of the interesting qualities of the image is that it visually 
reveals that penetration is sensitive to the impact obliquity.  For 
example, the projectile has no trouble penetrating the front of the 
left front fender flare over the tire.  On the rear of the fender, 
where the incident angle becomes very small, the projectile does 
not penetrate.  This leaves the rear of the fender in the ballistic 
rendering visible.  Figure 4 shows the same view but with the 
initial velocity set higher. 

5 INTERACTIVE RENDERING 
To further improve performance, the Manta ray tracer [7] was 

substituted for the BRL-CAD ray tracer.  This allowed the ballis-
tic penetration simulation to be visualized interactively.  For addi-
tional context, transparency was used to shade portions of the 
geometry that had been penetrated.  The simulation with online 
visualization runs at an average 3.9 fps over the camera path pic-

tured in the video on an Intel Core 2 2.66 Ghz processor with four 
cores.  Solving the THOR penetration computation with 14 expo-
nential calculations after each intersection was particularly expen-
sive.  The current version of the code uses ray packets but does 
not use SSE instructions during the THOR calculations. SSE code 
paths are used throughout other components of the renderer. 

The interactive visualization used a fast-building BVH accel-
eration structure [9] because it was readily available within 
Manta.  BVH traversal time was the dominant component of the 
computation.  Restarting BVH traversal is necessary between 
intersections since leaf nodes might overlap even if an ordered 
traversal is used. 

Figure 4. Bullet vision with higher initial velocity 

6 CONCLUSION 
The architecture of many legacy ray-tracing applications inhib-

its the speed of execution.  Design choices that were valid 10 
years ago or more no longer apply.  In particular, excessive parti-
tioning of the computation can have a severe impact on perform-
ance.  For efficiency, most optical-rendering engines intertwine 
the geometric intersection computation with rendering.  Scientific 
applications such as ballistic analysis stand to benefit from the 
same structure.  Modern packet tracing engines can provide sub-
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stantial benefit to non-rendering applications, and can produce 
online visualization as a by-product of the scientific computation. 

6.1 Future Work 
The rendering of the last object hit is useful but could be im-

proved by providing the viewer cues as to how far into the object 
the projectile stopped.  

The kd-tree acceleration structure used by other transparent 
rendering systems [8] may offer advantages over BVH during 
traversal because leaves are necessarily traversed in order.  This 
would permit the transparent renderer to collect many intersection 
points along a ray without restarting the traversal from the top of 
the tree.  A more detailed analysis is a topic of future research. 

In our system the THOR penetration calculation with 14 expo-
nential operations was the second most significant portion of the 
runtime.  There is opportunity for eliminating or pre-computing 
some terms.  In addition, since the THOR equations are a mathe-
matical fit to experimental data, a significant benefit may be 
achieved by fitting a less-costly function to the data.  
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