
 1

Bullet Ray Vision
Lee A. Butler† Abe Stephens*

US Army Research Laboratory SCI Institute
 University of Utah

Figure 1. Bullet Vision

ABSTRACT
Prior to 2000 ray tracing was typically considered an expensive

computation. As a result, many developers strove to minimize the
cost of ray tracing in their applications. Today many older appli-
cations can be substantially improved by being re-designed to take
advantage of modern, faster ray tracing algorithms. This work
examines the integration of modern ray tracing techniques with a
classic ballistic penetration algorithm and demonstrates the benefit
gained. We also present a unique visualization of the ballistic
penetration.

Keywords: Ballistics, projectile, penetration, THOR, ray trac-
ing, visualization.

Index Terms: J.2.7 [Computer Applications]: Physical Sci-
ences and Engineering — Engineering.

1 RELATED WORK

The interactive visualization performed by our prototype makes
extensive use of transparent rendering, which has been used for
ray trace based massive model visualization [8]. Although the
images we produce are similar, the rendering problem is slightly
different; in our system opacity is view dependent and computed
using a ballistics penetration simulation instead of a constant,
arbitrarily assigned opacity value.

2 BACKGROUND
Ballistic penetration simulations are conducted to predict the

outcome of one or more threats against a target. The threat may
be a single projectile, or one of many fragments from a source
munition. The target is anything in the path of the threat. The
term does not imply anything about intent to aim.

The two common objectives of ballistic simulation are to char-
acterize how lethal a given threat is against a particular type of
target (lethality) or the ability of a target to survive being sub-
jected to a particular type of threat (survivability). The computa-
tion may be performed for a single threat path, such as when plan-
ning field experiments or supporting war-game simulations or it
may be performed for a large number of threats to look for trends
in ballistic performance and explore the set of all possible out-
comes. This work focuses on the latter category of analysis.

2.1 Genesis
The origins of ray tracing for ballistic penetration analysis can

be traced back to a contract from the U.S. Army Ballistic Re-
search Laboratory to the Mathematical Applications Group Inc.
(MAGI) in 1956. The purpose of the contract was to adapt a
technique used in optical lens design for ballistic penetration
analysis [1]. As a result, there are strong similarities between the
optical rendering process and the ballistic simulation process.

For lens design, light rays are traced from air to the lens sur-
face. At the surface, a shading algorithm determines if the light
path is bent due to the change in the index of refraction from the
air to the lens glass. The shading algorithm may consider the
quality of the glass to determine how much light of each wave-
length is passed through the lens to the exit surface. At the exit
surface, refraction may take place again and the light ray departs
into the new medium.

In ballistic ray tracing, projectiles replace photons. The path of
the projectile is referred to as the shotline. When the shotline
reaches a target surface, a penetration algorithm determines what
happens. A variety of factors such as the target and projectile
materials, their relative velocity, area of interaction, mass, and
incident angle may be used to determine if penetration will occur.
If there is penetration, it may or may not be on the original path of
the projectile. The amount of projectile and target material along
the path as well as the factors mentioned above determine how
much (if any) of the projectile arrives at the exit surface, and the
new orientation, direction and velocity of the projectile.

Many aspects of optical rendering have their analogues in bal-
listic ray tracing. Participating media and global illumination both
involve scatter as a result of photons interacting with the envi-
ronment. In ballistic computation fragmentation, and behind-
armor debris are similar effects. Reflection becomes ricochet. The
ballistic analysis ray generation process is identical to ortho-
graphic projection rendering. For a particular ballistic simulation,
the analyst/user typically selects a small number of threat direc-
tions (called views) to compute. To keep execution time of the
simulation reasonable, the number of views is typically between 3
and 42.

2.2 Evolution of Applications
The design of many existing ballistic simulation applications

separates the geometric interrogation from the ballistic interaction
calculations. This separation was driven by two design choices.
First, a single threat would be represented by a single shotline.

† butler@arl.army.mil
* abe@sci.utah.edu

 2

Second, shotlines and the resultant target intersections would be
pre-computed, saved, and thus available for re-use. The ballistic
penetration computation is run as a separate step after the shotline
process. This design allows simulation using different penetration
algorithm parameters (or even different penetration algorithms)
while reusing the same shotlines. A byproduct of this design is
that shotlines are traced all the way through the target geometry
because there is no way of knowing what point along the path the
threat is stopped.

A benefit of these design principles is that the development of
penetration equations and algorithms is completely separated from
the geometric intersection calculations. This modularity means
that the ballistician needs to know very little about the nature of
the shotline process. For simple penetration algorithms, this is
convenient. However, more modern algorithms may generate
fragments and other effects that require tracing additional rays.
As a result, these algorithms are actually hampered in their design
and performance by the architecture of the application.

The following conditions were once true, but are no longer
valid:

• Ray tracing is expensive and slow.
• It is cheaper to save the shotlines and reuse them than to

re-compute them.
• Penetration algorithms need only a single shotline

through the geometry for their computation.

2.3 Change in Simulation Objectives
Over time the goal of ballistic simulations has shifted. From

1960–1980 the emphasis was on looking for trends in results:
what are all the possible outcomes for projectile A vs. target B?
More recently the emphasis has shifted towards probability analy-
sis: of the possible outcomes of this interaction, what are the prob-
abilities of each and which will be chosen this time? This drive
towards sampling the statistical outcome space has driven up the
number of shotlines needed to compute a given simulation run.

Like other areas of computing, the ballistic analysis sector has
seen a shift over the last 20 years from ballistic analysts as soft-
ware and algorithm implementers to one where they are software
package users. The community has taken advantage of increased
speed in computers. As a result, very few analysts reuse shotlines,
even when it would be possible. It is more convenient to rerun the
entire simulation from start to finish than to identify the shotline
file and reuse it.

The combination of acceleration in ray-tracing algorithms with
the changing nature of analysis design makes reusing the ray path
less attractive than it was a quarter century ago.

2.4 THOR Penetration Equations
Ballistic penetration equations are developed from data ob-

tained from physical test measurements and experiments. The
THOR equations [2] are an example of a ballistic penetration
algorithm. They roughly correspond to the Phong [3] illumination
model. From [2] the THOR equations are:

(eq 1) V50(ft/sec) = 10c • (h(in) • Af(in
2
))
α
• Wf

β
(grains)

 • sec θγ

(eq 2) Vr(ft/sec) = V(ft/sec) – 10c • (h • Af)
α• Wf

β• sec θγ • Vλ
(ft/sec)

(eq 3) Wr(grains) = Wf – 10c • (h • Af)α• Wf
β• sec θγ • Vλ

Equation 1 calculates V50: the velocity where there is a prob-

ability of 0.5 that the projectile penetrates the material of the tar-
get. Equation 2 calculates the residual velocity of the projectile
after passing through the target. Equation 3 calculates the residual

weight of the projectile. The terminology used for the projectile is
usually fragment; hence, the subscript f in the equations.

The terms c, α, β, γ and λ are coefficients for the individual ma-
terials and are empirically derived. From [2], we have the values
in Table 1 as coefficients for 2024-T3 aluminum:

Eqn Coefficients
 c α β γ λ
V50 6.185 0.903 -0.941 1.098
Vr 7.047 1.029 -1.072 1.251 -0.139
Wr -6.663 0.227 0.694 -0.361 1.901

Table 1. Material Coefficients for 2024-T3 Aluminum

The other terms in the equations are velocity V, thickness h,
impact area Af, weight Wf and angle of obliquity θ.

An example from [2] considers a 200 grain fragment impacting
a 0.08-inch-thick 2024-T3 aluminum plate at an angle of 20o and a
velocity of 5000 ft/sec, with an impact area of 0.25in

2. In this in-
stance equations 1 through 3 become:

V50 = 106.185 ⋅ (0.08 ⋅ 0.25)0.903 ⋅ 200-0.941 ⋅ sec(20deg)1.098

 = 327.5 ft/sec

Vr= 5000 – 107.047 ⋅ (0.08 ⋅ 0.25)1.029 ⋅ 200-1.072 ⋅
 sec(20deg)1.251 ⋅ 5000-0.139

= 5000 – 225
= 4775 ft/sec

Wr= 200 – 10-6.663 ⋅ (0.08 ⋅ 0.25)0.227 ⋅ 2000.694 ⋅
 sec(20deg)-0.361 ⋅ 50001.901

 = 162.8 grains

After impact and penetration, the fragment is travelling at 4775

ft/sec, and is 162.8 grains. If the V50 velocity had been greater
than the fragment velocity, the simulation would not perform
penetration computation.

3 BENCHMARKS
For this work a reference implementation of THOR was created

in the BRL-CAD CSG-based ray-tracing engine. This engine was
selected because it is used by many ballistic analysis applications.
THOR penetration was run on each of four views: top, right, front,
and an off-axis view along an azimuth of 35o and an elevation 25o
from the target. The target chosen was a simple pickup truck (see
Figure 2). Each view consisted of a 512x512 grid of rays with a
single shot per grid location. All tests were run on the same
hardware: a MacBook Pro running a 2.33GHz Intel Core Duo
CPU. Each test was run three times.

The first test run represents the traditional execution flow,
where rays are passed all the way through the geometry before
penetration equations are performed. The second test was run with
the penetration equation computation interspersed with the ge-
ometry intersection.

The average run times in seconds for each execution are shown
in Table 2. The first row is for the classic, full ray traversal before
penetration computation. The second performs penetration as the
ray traverses the geometry.

Overall, computing penetration during ray traversal resulted in a
27% speed improvement. For front views the difference is a 50%
reduction in runtime.

 3

Figure 2. Target geometry

Figure 3. Bullet vision rendering

This is because the projectile is stopped significantly before pass-
ing through the rest of the target. In other views, the projectile
passes through a significant amount of the target, and less speedup
is achieved. There is no significant difference in the timing for the
right view.

Ray depth Top Right Front A35
Full 9.22 10.52 6.27 12.36

Partial 7.30 10.54 3.15 7.60

Table 2. Computation Time (seconds)

4 BULLET VISION
When such computations are performed the obvious desire is to

visualize the results of the ballistic penetration. The projectile is
deemed to stop if its velocity is below the V50 threshold or if the
weight falls to zero. To facilitate visualization, the penetration
equation routine was modified to perform a Lambertian shading of
the object in which the projectile stopped. This shading allows
the user to see into the target object as if looking with bullets in-
stead of photons. Figure 2 shows the geometry used for the ballis-
tic simulation. Figure 3 shows the results of rendering the objects
in which the projectile stopped.

For these renderings, all objects in the model were treated as
being made of 2024-T3 aluminum. For an actual ballistic simula-
tion the coefficients for each of the materials present should be
used for their respective parts.

One of the interesting qualities of the image is that it visually
reveals that penetration is sensitive to the impact obliquity. For
example, the projectile has no trouble penetrating the front of the
left front fender flare over the tire. On the rear of the fender,
where the incident angle becomes very small, the projectile does
not penetrate. This leaves the rear of the fender in the ballistic
rendering visible. Figure 4 shows the same view but with the
initial velocity set higher.

5 INTERACTIVE RENDERING
To further improve performance, the Manta ray tracer [7] was

substituted for the BRL-CAD ray tracer. This allowed the ballis-
tic penetration simulation to be visualized interactively. For addi-
tional context, transparency was used to shade portions of the
geometry that had been penetrated. The simulation with online
visualization runs at an average 3.9 fps over the camera path pic-

tured in the video on an Intel Core 2 2.66 Ghz processor with four
cores. Solving the THOR penetration computation with 14 expo-
nential calculations after each intersection was particularly expen-
sive. The current version of the code uses ray packets but does
not use SSE instructions during the THOR calculations. SSE code
paths are used throughout other components of the renderer.

The interactive visualization used a fast-building BVH accel-
eration structure [9] because it was readily available within
Manta. BVH traversal time was the dominant component of the
computation. Restarting BVH traversal is necessary between
intersections since leaf nodes might overlap even if an ordered
traversal is used.

Figure 4. Bullet vision with higher initial velocity

6 CONCLUSION
The architecture of many legacy ray-tracing applications inhib-

its the speed of execution. Design choices that were valid 10
years ago or more no longer apply. In particular, excessive parti-
tioning of the computation can have a severe impact on perform-
ance. For efficiency, most optical-rendering engines intertwine
the geometric intersection computation with rendering. Scientific
applications such as ballistic analysis stand to benefit from the
same structure. Modern packet tracing engines can provide sub-

 4

stantial benefit to non-rendering applications, and can produce
online visualization as a by-product of the scientific computation.

6.1 Future Work
The rendering of the last object hit is useful but could be im-

proved by providing the viewer cues as to how far into the object
the projectile stopped.

The kd-tree acceleration structure used by other transparent
rendering systems [8] may offer advantages over BVH during
traversal because leaves are necessarily traversed in order. This
would permit the transparent renderer to collect many intersection
points along a ray without restarting the traversal from the top of
the tree. A more detailed analysis is a topic of future research.

In our system the THOR penetration calculation with 14 expo-
nential operations was the second most significant portion of the
runtime. There is opportunity for eliminating or pre-computing
some terms. In addition, since the THOR equations are a mathe-
matical fit to experimental data, a significant benefit may be
achieved by fitting a less-costly function to the data.

REFERENCES
[1] A Geometric Description Technique Suitable for Computer Analysis

of Both Nuclear and Conventional Vulnerability of Armored Mili-
tary Vehicles, MAGI-6701, AD847576, August 1967.

[2] Robert E. Ball. The Fundamentals of Aircraft Combat Survivability
Analysis and Design.—2nd ed.; AIAA Education Series. American
Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2003,
320-326.

[3] Foley, van Dam, Feiner, and Hughes. Computer Graphics – Princi-
ples and Practice.—2nd ed.; C. Addison Wesley, 1997.

[4] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumina-
tion. Computer Graphics Group, Saarland University, 2004.

[5] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level
ray tracing algorithm. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2005), 24(3):1176-1185, 2005.

[6] Alexander Reshetov Omnidirectional Ray Tracing Traversal Algo-
rithm for kd-trees. In Proceedings of the IEEE Symposium on Inter-
active Ray Tracing, 2006, 57–60.

[7] James Bigler, Abe Stephens, and Steven G. Parker. Design for Par-
allel Interactive Ray Tracing Systems. In Proceedings of the IEEE
Symposium on Interactive Ray Tracing, 2006, 187-196

[8] Abe Stephens, Solomon Boulos, James Bigler, Ingo Wald, and Ste-
ven G. Parker. An Application of Scalable Massive Model Interac-
tion using Shared Memory Systems. In Proceedings of the Euro-
graphics Symposium on Parallel Graphics and Visualization, 2006
pp 19-26

[9] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Heirarchies. In
ACM Transactions on Graphics vol 26 number 1

