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Figure 1: We provide a novel, unified interaction for pairwise image boundaries that combines both paint and constraint-based
user edits. (a) Input image. (b) Desired segmentation. (c) Using only painting edits, a user can use include (green striped) and
exclude (red) annotations to select the object. These annotations can be numerous and tedious for fine features such as the legs
and antennae. (d) Using only constraints (or anchors), a user can click (red) control points to form the object’s boundary. Even
with automatic constraints (yellow), many clicks are required. (e) Our unified approach allows users to mix the complementary
editing metaphors, leading to a more flexible and faster experience. Image courtesy of Flicker user tonrulkens.

Abstract

Image boundaries are a fundamental component of many interactive digital photography techniques, enabling ap-
plications such as segmentation, panoramas, and seamless image composition. Interactions for image boundaries
often rely on two complementary but separate approaches: editing via painting or clicking constraints. In this
work, we provide a novel, unified approach for interactive editing of pairwise image boundaries that combines
the ease of painting with the direct control of constraints. Rather than a sequential coupling, this new formulation
allows full use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary edit-
ing. To enable this new approach, we provide technical advancements. In particular, we detail a reformulation of
image boundaries as a problem of finding cycles, expanding and correcting limitations of the previous work. Our
new formulation provides boundary solutions for painted regions with performance on par with state-of-the-art
specialized, paint-only techniques. In addition, we provide instantaneous exploration of the boundary solution
space with user constraints. Finally, we provide examples of common graphics applications impacted by our new
approach.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques

1. Introduction transition between regions, removing the need to metic-

ulously edit boundaries pixel by pixel. In particular, our

We provide a novel, unified approach for interactively edit-
ing pairwise image boundaries, combining the ease of paint-
ing interactions with the direct control of constraints. Bound-
aries that define where one image region ends and an-
other begins are crucial in image composition and editing
applications. These boundaries are often automatically or
semiautomatically computed to minimize or maximize the

(© 2015 The Author(s)
Computer Graphics Forum (©) 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

work targets user interaction for the automatic and semi-
automatic construction of pairwise boundaries (boundaries
between two images or an image with itself), which have
been used with great success for a variety of research areas
such as texture synthesis [EF01, CSHDO3], digital panora-
mas [Dav98, LZPW04, STP12], seamless pasting [JSTS06],
and image segmentation [MB95, MB98, LSTS04].
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User interaction for image boundaries often takes one of
two forms, defined by the underlying core algorithm. First,
minimum cut approaches allow users to edit boundaries by
painting and, second, minimum path approaches allow users
to edit boundaries by the creation and manipulation of con-
straints. Figure 1c illustrates Adobe Photoshop’s quick se-
lection painting interactions being used to select the beetle of
Figure 1a; similar interactions are often used for minimum
cut implementations. Selecting the beetle requires over 30
interactions, which are most challenging in areas with fine
features, such as the antennae and legs. These features re-
quire a user to carefully trace their interior and/or exterior,
which can be tedious and error-prone. Figure 1d illustrates
adding constraints via Photoshop’s magnetic lasso tool, an
approach similar to most minimum path implementations.
Red constraints are user clicks and yellow constraints are
automatically added by the software. For areas such as the
beetle’s body in Figure 1d, the amount of points needed to be
added by the user can be excessive and the interaction pro-
cess slow. As the example in Figure 1 illustrates, the benefits
and drawbacks of the two approaches are often complemen-
tary. For example, the antennae that need tedious painting
require only a small number of user constraints and the la-
borious constraints on the beetle’s body are easily avoided
with a simple painting annotation.

The complementary nature of painting and constraints
speaks to the need for a unified approach to image bound-
aries. For ease of implementation, most methods support
painting and constraint schemes independently. After com-
puting a boundary for a given interaction scheme (painting
or constraints), the boundary is finalized and the paintings
or constraints are discarded. Such a step-by-step pipeline
leads to new edits overruling previous edits. As shown in our
companion video, successive painting may remove a well-
placed boundary formed by constraints or a previous paint-
ing. Painting and constraints, working together in a single
approach, lead to fewer interactions overall. For example, an
initial coarse painting of the beetle’s body reduces the con-
straints needed to select its legs to just a few clicks, since the
operation moves only an already semioptimal boundary.

Our unified technique provides users with the ability to
mix interactions and choose the interaction that best fits their
current task without loss of previous edits. As supplemental
material, we provide video captures of our new approach,
which reduces the time to select the beetle in Figure 1 by
almost half when comparing our unoptimized research code
to pure constraints and painting with Photoshop. Even when
compared to combining both interactions independently, our
new approach improves editing time significantly.

In this paper, we detail our new, unified approach for im-
age boundaries, describe how to compute boundaries effi-
ciently, and provide example image processing applications.
Several technical innovations were necessary to achieve our
approach. In particular, the contributions of this paper are:

e Robust formulation of the optimal boundary problem
guaranteed to find the minimum boundary;

e Fast & parallel algorithm to find the minimum boundary;

e Novel extension of our boundary mechanics allowing
users to add constraints to the minimum boundary with
instant feedback;

e Strategy to combine independent minimum boundaries
that allows users intuitive editing with multiple painting
annotations;

e Practical applications for our new unified approach.

2. Related Work

Given its fundamental use in image processing, the auto-
matic computation of image boundaries has an extensive
body of work. Below, we concentrate on how interaction has
been used to aid automatic solutions or provide boundary
solutions semiautomatically.

Painting Interaction. Minimum cut algorithms, such as
Graph Cuts [BVZ01,BK04,KZ04], compute boundaries via
an optimization often with a user’s initial painted anno-
tations as input. A painting interaction [RKB04, LSTS04,
LSGXO05, JSTS06, NFK07, WAC07, VNO8, AP08, XLJ*09,
XYJ13, LSS09, LS10, TGVB13] has the benefit of a
metaphor (include and exclude painting) easily understood
by most users. Paint-based interactions provide a user with
quick manipulations, but are often only a front-end to an ex-
pensive, iterative optimization. Additional annotations and
edits result in a full solution recomputation, which can be
time consuming over many edits. Even if a solution can be
produced quickly, more annotations may be required to re-
solve ambiguous boundaries [LSTS04], an ill-defined en-
ergy specification, or places where multiple aesthetically
valid solutions are possible [STP12]. The previous work of
Li et al. [LSTS04] has shown the need for constraints in
painting-based approaches for resolving boundary ambigui-
ties. With fine features, the additional careful annotation can
be tedious and require almost the same effort as the manual
editing of the image masks. Our work provides a fast and
robust algorithm for painting interactions with constraints.

Constraint Interaction. Interaction using minimum paths
and constraints, first seen in Mortensen and Barrett [MB95,
MB98], involves the computation of minimum path trees
from user-defined points (constraints). Adding new con-
straints simply requires a traversal of the precomputed
trees. Accordingly, the minimum boundary with the given
constraints can be provided instantly and the constraints
can be manipulated interactively. Recent work on panora-
mas [STP12] uses a variation on this approach to combine
the ease of an automatic solution along with the direct, semi-
automatic editing of the boundary. The previous work is lim-
ited to panoramas, since it assumes that the overlaps are
small and that each image has unique areas outside the over-
lap. Therefore the technique of Summa et al. [STP12] is
incapable of handling inset images. Our constraint interac-
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(a), (b)
Figure 2: (a) Input image. (b) Drag-and-Drop Past-
ing [JSTS06] boundary solution fails to properly find the
dancer’s left leg (inset), due to minimum distance separat-
ing cut (red). (¢) Our minimum energy separating path (red)
is guaranteed to find the minimum boundary. Image courtesy
of Richard Calmes Photography.

tion approach achieves the Summa et al. ease of use without
limitations and their supported cases are simply a subset of
the cases handled by our work. Lazy Snapping [LSTS04]
provides a polyline approximation of an automatically com-
puted boundary for a user to adjust. After edits, additional
automatic solutions are produced, guided by edited polyline.
In contrast, a user can interactively explore the boundary so-
lution space with our approach without the need for addi-
tional optimizations or approximations.

3. Paint and Click

The core of our algorithm consists of painting annotations,
finding the minimum cycle, and the addition of constraints.

Painting Annotation: To compute boundaries for an im-
age, the user begins by labeling the pixels to include and/or
exclude from the selection via a painting metaphor. Multi-
ple, coincident, “like” painting strokes are computed as a
single annotation. Similar to other boundary techniques, at
least one annotation must be defined; otherwise the bound-
ary problem is ill posed. Our base algorithm assumes that
each annotation is independent and therefore, for the remain-
der of this section, we discuss solutions for a single annota-
tion. In Section 3.4, we show how to intuitively combine the
independent solutions.

Minimum Cycle: Our algorithm finds the minimum closed
path that optimally separates the annotated pixels from the
rest of the input. We refer to this path as our minimum cy-
cle. Our technique differs in two ways from the previous
work [JSTS06]. (1) We provide a new solution to the mini-
mum cycle calculation that is robust and guaranteed to find
the minimum cycle. Figure 2 demonstrates where the previ-
ous work fails to properly segment the dancer. (2) Our al-
gorithm has significantly less complexity than that of Jia et
al. [JSTS06]. Our complexity provides a practical improve-
ment of up to a 48 times speedup in our test data and allows
our unified approach to be on par with the fastest paint-only
boundary technique [STCO09].

Adding Constraints: Our approach for calculating the min-
imum cycle enables the user to quickly and interactively add
multiple constraints in order to refine the boundary while
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Figure 3: (a) A user annotation (green striped) for over-
lapping images A and B. (b) and (c) O, the solution space,
contains the boundary of overlap (blue) and the region an-
notated by the user (green), and a minimum cycle (black).

keeping it minimal. We perpetually stay one step ahead of
the user with quick precalculations, thereby keeping all in-
teractions fluid and instantaneous.

The next three sections provide details on our algorithm
and describe how our implementation enables a unified for-
mulation. Section 3.1 defines the parameters of our input and
basic definitions for the exposition of our technique. We de-
tail how to compute the minimum cycle in Section 3.2 and
how to easily and efficiently add interactive user constraints
in Section 3.3.

3.1. Pairwise Boundaries

For ease of explanation, we assume that two overlapping im-
ages, A and B, serve as the input to our technique. In the
case of object selection or foreground/background segmen-
tation, A and B are the same image and the following for-
mulation still applies. Given the two input images, we want
to compute the pairwise boundary, boundaries between two
images, or an image with itself, such that there is a discrete
labeling L for all pixels in their overlap. The labeling deter-
mines the image that contributes a pixel to the final compos-
ite or the pixel that is selected. The labeling is defined as
L(p) = {A,B} for location p in the overlap. Input for this
procedure is typically an initial labeling provided by user
annotations, another algorithm, or a partial overlap. For pur-
poses of illustrating such labeling in this paper’s figures, all
include annotations are shown in striped green and exclude
annotations are shown in red. Each annotation can have a
single component or multiple connected components

The labeling can be computed by minimizing the transi-
tion [ADA*04], E;, between images based on a piecewise
smoothness Es(p,q), where (p,q) € A and A is the set of
all neighboring pixels in the overlap.

E(L) = Z Es(p,q)-
(ra)EN

The smoothness energy can vary based on the type of tran-
sition required. For example, equations can minimize:

Es(p.q) = Iz (p)(P) — Ir(q) (PN + () (@) — Ir(q) (@) II-

or maximize the transition in pixel values:

Ey(p.q) = e MO 1@I )
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when L(p) # L(q) and Es(p,q) = 0 otherwise.

Given an initial labeling of the pixels, the problem is to
find a new labeling that minimizes the transition between la-
bels. Towards enabling the minimization, we represent the
pixels as a planar, 4-neighborhood, energy-weighted pixel
graph G = (V,E), where V are pixel locations in the over-
lap and E are edges that connect pixel neighbors. Edges
are weighted by the energy function Es. We chose 4 pixel
neighborhood because 4-neighborhood minimum paths can
only cross once. An 8 pixel neighborhood does not have the
same property, has lower performance, and a larger neigh-
borhood search area was not necessary to produce high qual-
ity boundaries.

Most previous techniques produced a new minimal la-
beling via minimum cut of the graph, such as in Li et
al. [LSTS04]. As this previous work has shown, mini-
mum cuts are insufficient for a fully unified technique since
boundary edits require approximations and repetitive op-
timizations. In contrast, minimum paths have been shown
to provide user control of the boundary without approx-
imations [MB95, MB98, STP12], resulting in a what you
see is what you get (WYSWIG) interaction. In addition,
Summa et al. [STP12] showed that a dual graph between
pixels can be formed, on which the minimum path can pro-
duce the same solution as a minimum cut. We overcome
the deficiencies of minimum cut boundary interactions and
the limitations of the open paths of previous minimum path
work [MB95, MB98, STP12] by providing a unified ap-
proach based on closed minimum paths.

As an added benefit, minimum paths provides the option
to operate and minimize on the boundary pixels themselves,
an extremely useful operation for color correction applica-
tions. In particular, for seamless composition it is desirable
to minimize the pixel color difference on the boundary:

E(L)="Y |a(p)—1s(p)l, )
pEIL;
where 0L; is a set of points such that if p € dL; then L(p) =
i and L(q) # i for some ¢ such that (p,q) € N and i would
correspond to the image that is to be seamlessly composed.

We assume in our exposition that the minimum bound-
aries occur on the pixels themselves. In other words, each
boundary is a sequence of pixels (pi,..., pn) and the nodes
of our graph are the pixel locations with edges connecting
nodes corresponding to adjacent pixels.

3.2. Computing the Minimum Cycle

For clarity in the illustrations in the paper, we describe the
computation of the minimum cycle via the planar annulus,
shown in Figure 3. A planar annulus represents the solution
domain for a single annotation and is defined as the area be-
tween two concentric boundaries. As shown in Figure 3c,
the interior boundary (green) of the annulus represents the

A\

(a) (b) (© (d)

Figure 4: (a) Computation of a minimum cycle illustrated
via a planar annulus. (b) The minimum separating path (red
C) from interior (green) to exterior (blue) boundary nodes.
(c) Compute the set of minimum paths from the separating
path nodes to their replicated selves. The minimum path of
the set is the minimum cycle (d)

annotation boundary and the exterior boundary (blue) repre-
sents the solution domain boundary. We will also describe a
separating path, consisting of the pixels or nodes in the pixel
graph that joins the interior and exterior boundaries.

Our approach for computing the minimum cycle makes
two major improvements to the work of Jia et al. [JSTS06],
including a robust separating path for splitting the planar
annulus defined by the boundaries and a lower complexity
divide-and-conquer approach for generating an optimal min-
imal cycle between the interior and exterior boundaries. Our
method results in a fast computation and the correct minimal
cycle, as we describe in the next subsection.

3.2.1. Robust Separation of the Domain

In order to compute a minimum cycle between these bound-
ary paths, we first create a separating path, C, that trav-
els from the nodes of the exterior boundary to the interior
boundary (Figure 4b). We then replicate the nodes of the
separating path to split our solution domain. The minimum
cycle is found via a search through the collection of all mini-
mum paths from the separating path nodes, n;, to their repli-
cated selves, 7/ [IS79,Rei83],

MinCycle = min(MinPath(n;,n})).
ni

Figures 4c and d illustrate the search for a minimum cycle.

In our work, we make a critical adjustment to the mini-
mum distance cut technique used by Jia et al. [JSTS06]. In
the previous work, the separating cut was based upon the
minimum distance from the interior to the exterior of the an-
nulus, which does not account for the underlying energy. Jia
et al. assumed that a minimum boundary would not cross the
separating cut more than once, a safe assumption for simple
color correction boundaries. However, when this assump-
tion does not hold, such as in the case of a more general
image segmentation or object selection, their technique will
not find the minimum boundary. As shown in Figure 2b, a
minimum distance cut bisects one of the legs of the dancer.
Therefore, any boundary produced using such a separating
cut cannot trace the inside of this leg completely.

As shown in Figure 4, we compute our separating path

(© 2015 The Author(s)
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Level 0

Level 1

Figure 5: Divide and conquer strategy to find the minimum
cycle. First compute the cycle associated at the separating
path’s midpoint. Split the separating path at the midpoint.
Recurse on the two subpaths. Partition recursion solution
domain by the midpoint’s cycle and includes the cycle itself.
Grey regions denote areas excluded from the computation.

as the minimum path on the underlying energy, not dis-
tance, between all nodes on the exterior boundary to the
nodes on the interior boundary. The separating path can be
computed by connecting the nodes of the exterior bound-
ary with zero-weighted edges to a source dummy node
and connecting all interior boundary nodes to a destina-
tion dummy node. The separating path is then computed
as the minimum path between the source and destination
nodes [IS79,Rei83]. Since the separating path connects inte-
rior and exterior boundaries, the minimum cycle must cross
it once and only once [SGSP14].

3.2.2. Zero Constraints — Divide and Conquer

Additionally, our method improves upon the performance of
the Jia et al. [JSTS06] boundary solution by introducing a
new divide and conquer algorithm. Our algorithm reduces
the runtime of our zero constraints solve from O(MN) to O(N
log M) for integer energy [MB95,MB98] and O(MN log N)
to O(N log N log M) for floating point energy [Dij59], where
M is the length of the separating path and N is the number
of pixels in the annulus. The complexity improvement pro-
vides as high as a 48 times speedup in our test data. The
complexity of the Jia et al. algorithm fits their desired of-
fline boundary solution, but our goal is to produce image
boundaries with interactive feedback. Moreover, the previ-
ous work assumed the separating path length, M, is small,
an assumption that does not hold for our robust separating
path in applications such as object selection.

Our recursive binary divide and conquer strategy, moti-
vated by the work of Reif [Rei83], exploits the fact that the
minimum paths computed in finding the minimum cycle can
be coincident but cannot cross [SGSP14]. Figure 5 illustrates
a step of our recursive algorithm. First, the minimum path
from the middle node of the current separating path is com-
puted to its replicated self. The separating path then is split
about the midpoint and the algorithm recurses on the two
subpaths. The solution domain in the binary recursion can
be partitioned by the midpoint’s minimum path with each
partition including the path itself.

(© 2015 The Author(s)
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3.3. Adding Interactive User Constraints

Our unified approach provides the ability to easily add user
constraints since adding a single constraint is equivalent to
finding the minimum cycle between the interior and exterior
boundaries that must pass through a specific node. Adding
additional constraints simply requires the examination of
current constraints and their minimum path trees, as we ex-
plain in the following subsections.

3.3.1. Single Constraints

Adding a single constraint includes building clockwise
(CW) and counterclockwise (CCW) minimum path trees
for all separating path nodes, finding the minimum cy-
cle through the constraint, and creating a separating path
through the constraint as a preprocess for additional con-
straints.

For every node of the separating path, we compute the
minimum path tree in both clockwise and counterclockwise
orientations with the node (or its replicated self) as the root.
See Figure 6a. Each tree can be encoded as a step-direction
and cost buffer. The step-direction buffer encodes the direc-
tion of a node’s parent in one byte whereas the cost buffer
stores the minimum path cost for each node at a desired pre-
cision. This preprocess has a complexity of O(2NM).

We define the constraint-minimum cycle as the minimum
cycle that must pass through the constraint(s). To find the
constraint-minimum cycle, we find the oriented paths from
a separating path node, n;, and its replicated self, n}, to the
constraint whose sum gives the minimum cost:

MinCycle(c) = min(MinPath(n;,c) + MinPath(n,c)),
n;

where c is the constraint location (Figures 6b, 6¢, and 6d).
The cost buffer can be dropped after computation by keeping
track of the minimum cycle cost along with the index of the
separating path node whose trees provide the cycle.

After the initial constraint is positioned (Figure 6e), a min-
imum path between the exterior and interior boundaries con-
taining the constraint can be used to separate the annulus
into a disk. We call this the constraint-separating path. As
a preprocess to enable the addition of more constraints, two
oriented minimum path trees (CW and CCW) with roots be-
ing the first constraint node and its replicated self (Figure 6f)
are computed with a cost of O(2N).

3.3.2. Two or More Constraints

Given the two oriented precomputed minimum path trees,
finding the boundary with a second constraint is simply
a tree traversal (Figure 6g). Additional constraints operate
similarly, as illustrated in Figures 6h and 6i; after each con-
straint is set, a similar preprocess of generating oriented trees
occurs for the next constraint.

Constraints are stored in a circular array and are inserted
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Figure 6: User constraints. (a) Compute a CW and CCW minimum path tree for every node in the separating path. (b and c)
Minimum cost cycle through a constraint is the path with the minimum cost (d). (e) After the first constraint is added, the domain
can be separated via the minimum path that passes through the constraint. (f) Compute a CW and a CCW oriented minimum
path trees at the constraint. (g) An additional constraint is a lookup on the two trees. (h) Each constraint has its own separated
domain for computation. (i) New constraints are simple lookups on the constraint minimum path trees. Constraint ordering can

be evaluated during any user interaction to allow for fluid movement of the constraints.

as follows. Let us assume we have three constraints, ¢y, ¢,
and c3, and wish to insert c¢4. The first three constraints
are stored in a circular array as cj, c2, ¢3, ¢;. When the
user adds cg4, the algorithm evaluates the best place for
c4 by adding it between each pair of current constraints
((c1,¢2),(c2,¢3),(c3,¢1)) and examining whether the result
is the smallest cost boundary that encloses the annotation
label. To find this, we simply compute the total cost for a
boundary in all possible orientations. Multiple combinations
of oriented paths are possible (4 in the standard case and up
to 16 due to node replication if the new constraint is on the
constraint-separating path of both constraints in the pair).
The cost calculations are a simple lookup and the search
rarely needs to test more than a few boundaries. The per-
formance cost of this calculation is nominal in our testing.

Our scheme evaluates the constraint array position on both
addition and movement, allowing a user to add and move
constraints instantly and fluidly without restriction. Be-
cause the minimum path can cross the constraint-separating
path once and only once on a subpath containing the con-
straint [SGSP14], the boundary is guaranteed to be minimal
under the constraints.

3.4. Multiple Annotations

Users often make multiple annotations in order to interac-
tively add and carve pieces of an image until the desired
boundary is found (see the supplemental video captures).
The discussion of our technique up to this point considers
only a single annotation. In this section, we detail our pro-
cess for combining multiple annotations.

Given multiple boundaries, we create the pixel labeling
for each by rasterizing the boundary geometry. We union in-
clude labels and remove exclude labels to form the selection
using a hierarchical tree structure, similar to 2D constructive
geometry, describing the nesting of labels. We will detail our
scheme using the examples of Figure 7.

During the minimal cycle calculation and constraint ma-
nipulation, discussed in Subsections 3.2 and 3.3, our ap-
proach treats each connected component of the annotations
as an independent, single annotation, but applies the other
annotations as areas of high energy. The high energy areas
guarantee a cycle does not split another annotation.

User Paint Annotation Annuli/Boundaries Composited Boundaries

00
=

Figure 7: Combining minimum cycles for multiple annota-
tions; include regions in green stripes and exclude regions in
red. (Row a) Treat each annotation as independent; the solu-
tion is the union of like annotations. Non-simply connected
regions without the presence of an opposite annotation are
treated as simply connected. (Row b) Treat opposite annota-
tions independently and subtract them from the boundary so-
lution. Reduce solution domain if an annotation is enclosed
by a different annotation. (Row ¢) Combining annotations
allows intuitive addition/removal of regions.

Figure 7a illustrates the case of an annotation that is not
simply connected and lacks a different label in its interior.
In this case, the annotation is treated as simply connected
and provides the proper solution. As in Figure 7b, if an an-
notation is enclosed by another we can restrict the solution
domain to be only inside the enclosure. The combination of
the different labels provides the final solution.

If a boundary is not nested, then it can be simply applied
to the composite image because the boundary is a distinct
partition of space, shown in Figure 7a. To combine nested
boundaries (Figures 7b and 7c), we traverse the hierarchy
bottom up and remove each boundary’s labeling from the
hierarchically lowest parent of the opposite label.

The boundary computations for applications with on-
boundary optimizations have a subtle, yet important, distinc-
tion. In the final labeling, we retain the minimum boundaries
when removing a label. For instance, the image to be color
corrected in seamless composition should retain the mini-
mum boundaries. Therefore, to maintain the proper bound-
ary when removing the boundaries of the opposite label, the
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Figure 8: (a) Coarse painting selects the eagle’s body:
select fine features with simple clicks (talons and feathers)
and avoids tedious pixel-wide painting (inset purple). Image
courtesy of Parasaran Raman. (b) Coarse annotation of the
snowboarder: user-added constraints refine fine features (his
hand) and fix other ambiguous regions, avoiding pixel-wide
painting (inset purple). Image courtesy of Alain Carpentier.

technique must not remove the labeling of the boundary it-
self.

Nested initial boundaries, shown in Figures 7b, cannot
cross [SGSP14]. However, for cases such as Figure 7c, the
addition of user constraints may break this rule. To keep
our scheme simple, we consider the crossing an unsupported
state since it implies an ambiguous labeling and present the
problem to a user. In practice, the unsupported state does not
commonly occur.

To ensure proper computation of minimum cycle bound-
aries, we require at least one pixel space between opposite
annotations when optimizing on the boundary. When opti-
mizing between pixels, we require a two pixel space.

Our new combination scheme provides good, intuitive re-
sults by mimicking the natural adding and removing of im-
age pieces with its one-to-one correspondence between an-
notations and the components/holes of the final selection.

4. Results

In this section and in the accompanying video, we show our
new unified interaction for examples in object selection and
seamless composition. All timings were performed on an i7
3.5 GHz desktop using wall clock time. For illustration, con-
straints and boundaries have been coarsely outlined.

Object Segmentation/Selection. Figures 1 and 8, along
with the companion video, provide examples of our tech-
nique being used for interactive object selection. Specifi-
cally, the energy from Equation 1 is minimized on the dual
of the 4-neighbor pixel graph.

(© 2015 The Author(s)
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Figure 1 illustrates the benefits of our algorithm in select-
ing a beetle on a leaf. Using our unified environment (Fig-
ure le), a user can avoid the careful painting of the anten-
nae and legs and the many clicks required for constraints on
the beetle’s body. In addition, the figure demonstrates how
few constraints are needed, due to refining an already well-
placed initial boundary provided by the painting. In our sup-
plemental videos, we provide an example of the significant
time savings granted by our new approach when compared to
pure painting and pure constraints. We have tested our pro-
totype with several experienced photo editors and have re-
ceived unanimously positive feedback on the quickness and
intuitiveness of our unified approach. All users would like to
use this tool in an interactive photo editing suite.

Like the previous example, often the fastest selection is
the result of an initial, quick coarse painting that is refined
with constraints. In Figure 8a, a user selects an eagle with
easy broad painting strokes. The feathers and talons would
be tedious to paint; therefore, a user clicks and adds a few
constraints to adjust the boundary for the talons and the
wings. As the purple inset images show, these constraints
avoid careful pixel-wide paintings. In Figure 8b, a user se-
lects a snowboarder with a quick include (green striped) and
exclude (red) stroke. Like the eagle, the athlete’s right fingers
would be difficult to paint. They can be selected with a few
clicks. In addition, there are areas the initial painting missed
such as his foot and left hand. Either additional painting an-
notations could be added, or as this example shows, a few
clicks can fix the selection.

Seamless Composition. Another application of our tech-
nique is the creation of a seamless composition. In this ap-
plication, the boundaries are combined with a color correc-
tion technique such as gradient domain blending [PGBO03,
LZPWO04] to produce a seamless image. The foreground im-
age is seamlessly blended into the background by match-
ing the foreground boundary’s pixels to the background and
solving a Poisson system to blend the color difference into
the foreground’s interior. A logical foreground boundary
would be one that deviates from the background as little
as possible. In particular, we use the energy from Equa-
tion 2 on the 4-neighborhood pixel graph. The work of Jia
et al. [JSTSO06] targets both offline boundary and color cor-
rection, but in our work we have focused on providing inter-
active boundaries with quick color correction after manipu-
lation. The boundary interaction is important since problems
in the final composition can be easily caused by boundaries.
A minimum boundary may intersect with a very distinct part
of the scene, leading to bad color correction and a poor fi-
nal composition. Our software allows users to see and/or
edit boundaries while manipulating the foreground images.
In addition, users can edit boundaries and suppress the color
correction to preserve hard edges, such as the top of the fins
of Figure 9. Figure 9 provides a complex seamless cloning
example, compositing an orca statue, Figure 9a, with a pho-
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Figure 9: Seamlessly composite areas bounded by green in
realistic image (b) into abstract image(a) via unified inter-
actions (c) to create a composite (d). Orca image courtesy
of Flicker user milan.boers.

tograph of a real orca, Figure 9b. Composited portions are
highlighted in green. With our unified interaction, Figure 9c,
we can produce a quality final image, Figure 9d. The bound-
ary editing and color correction can work in tandem to pro-
vide the best quality image.

Performance. We compare the object selection perfor-
mance for our zero constraints solution against the fastest
Graph Cuts implementation for planar graphs [STC09]. Our
technique for image segmentation may have slightly higher
complexity than the previous work [STC09], but has com-
parable running times on our 4-core machine. Our tech-
nique will improve as more cores are added due to the par-
allel elements of the algorithm. The beetle in Figure 1 with
715x1023 pixels took 0.66s in the planar Graph Cuts tech-
nique and 0.67s with our zero constraints solution. The im-
ages in Figure 8 were 0.36s and -0.08s faster with our tech-
nique for images that range between 984K and 2.5M pixels.
Additionally, the average cost after addition or movement of
a constraint, as discussed in Section 3.3.2 (Figure 6f), taken
from a typical editing session ranges between 158ms for a
490K pixel image to about 798ms for a 2.5M pixel image.

5. Discussion and Limitations

Our approach can be adapted for partial overlaps between
two images, as commonly seen in panoramas. If we connect
each intersection point to a dummy node with zero-weighed
edge and connect, round-robin, pairs of dummy nodes with
zero-weighed edges, we form a solution domain equivalent
to a collapsed annulus. The dashed line in Figure 10b is the
collapsed region. The boundaries that contain o] or 0, can
be considered the interior and exterior boundaries, or vice
versa. Either choice would produce the same solution. Odd
numbers of intersections and raster artifacts can be handled
as specified in the algorithm of Summa et al. [STP12]

Our unified interaction targets pairwise image boundaries.
For more than two images, painting approaches using algo-

(b)

Figure 10: (a) Partial overlap boundaries are provided by
connecting the image boundary interaction nodes to dummy
nodes. (b) By connecting, round-robin, pairs of dummy
nodes with zero-weighed edges, we form a solution domain
equivalent to a collapsed annulus.

rithms such as Graph Cuts provide the most common solu-
tion. Interactive constraints for more than two images work
only in specialized applications [STP12]. Seamless compo-
sitions of multiple images or photomontages [ADA*04] can
be constructed with our technique by sequentially compos-
ing each image into the background. We believe that the new
unified interaction provides good results in these cases, but
we acknowledge this may not always be the case. If users
want a minimum boundary with more than two images with-
out any interaction beyond painting, then techniques such
as Graph Cuts are the best option. However, iterative tech-
niques such as Graph Cuts are prone to local minima and use
pairwise boundaries as the core of their optimizations. We
believe our approach can aid these techniques by allowing
user interaction to avoid these suboptimal states. We focus
primarily on hard boundaries but soft, feathered boundaries
can also be desired by users. Paint-only techniques like Soft
Scissors [WACO7] provide a good solution for these bound-
aries. Though our work could be easily used as the initializa-
tion for a soft technique, especially where painting is tedious
in fine features.

We have identified several methods for reducing the com-
putational and/or memory complexity via novel strategies
or approximations. Our optimization methods include the
use of hierarchical boundaries and improve initial constraint
initialization, including discussions on automatically setting
the initial constraint(s), tree computation halting, cycle com-
pression to reduce storage, and a subsampled separating path
approximation [SGSP14].

Minimum cut algorithms allow for a data energy term ap-
plied per pixel for a given label. Future extensions of our
technique will deal with how to integrate such data costs.
Due to our pixel 4-neighborhood, in areas of smooth energy
the path may take a "Manhattan" walk rather than an equiv-
alent straight walk depending on the order neighbor pixels
are traversed in the optimization. We have found that this
effect is noticeable only in contrived examples. As outlined
in the text, after a constraint is added, movement is possible
before its oriented trees are computed, but we have found, in
practice, a user often adds several constraints at once in the
paint-and-click model. Therefore, in our prototype we have
chosen to compute a constraint’s oriented trees as soon as it

(© 2015 The Author(s)
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is added. Although precomputing the trees adds a delay, it
keeps the system intuitive for users.

6. Conclusion

We provide a novel, unified approach for interactive editing
of image boundaries that combines the ease of painting with
the direct control of constraints. Our zero constraints bound-
ary based on a painting annotation is faster and more robust
than the previous work and is on par with the performance
of the best paint-only solvers. A user can add multiple con-
straints and instantly edit the boundary. Our interactive user
flow allows for the full exploration of the solution space,
even at a fine level. Our unified approach leads to more flex-
ible and faster editing sessions for users. Finally, we have
provided examples of the real and immediate impact our new
strategy has in digital photography applications.
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