Robust Structural Inference
A simple example

- A perfect circle
- A noiseless point cloud sample from the circle
- A point cloud sample with noise
- A point cloud sample with noise and outliers
Another example
Robust Structural Inference

- Kernel distance, kernel density estimate
- Distance to a measure
Structural Inference using KDE
Geometric inference

Given:
- An unknown object (e.g. a compact set) $S \subset \mathbb{R}^d$
- A finite point cloud $P \subset \mathbb{R}^d$ that comes from S under some process

Aim: Recover topological and geometric properties of S from P,
e.g. # of components, dimension, curvature...
- e.g. preserve homeomorphism, homotopy type, or homology of S
- from P.
- e.g. homotopy equivalence: two spaces can be deformed
- continuously into one another.

[Chazal Cohen-Steiner Merigot 2011]
Distance function based geometric inference

Sample points P from a triangle S with noise; Reconstructs an approximation of S by offsets from P (i.e. union of balls).

Distance function: $f_P(x) = \inf_{y \in P} \| x - y \|

Offset: $(P)^r = f_P^{-1}([0, r])$

Hausdorff distance (measures sampling quality):

$d_H(S, P) := \| f_S - f_P \|_\infty = \inf_{x \in \mathbb{R}^d} | f_S(x) - f_P(x) | \leq \epsilon$

i.e. smallest $\epsilon \geq 0$ s.t. $S \subseteq (P)^\epsilon$ and $P \subseteq (S)^\epsilon$.

[Chazal, Cohen-Steiner, Lieutier 2009]
Distance function based geometric inference

Sample points P from a figure-eight S with noise; Reconstructs an approximation of S by offsets from P (i.e. union of balls).

Distance function: $f_P(x) = \inf_{y \in P} \|x - y\|
Offset: \ (P)^r = f_P^{-1}([0, r])

Hausdorff distance (measures sampling quality):
\[d_H(S, P) := \|f_S - f_P\|_\infty = \inf_{x \in \mathbb{R}^d} |f_S(x) - f_P(x)| \leq \epsilon \]
i.e. smallest $\epsilon \geq 0$ s.t. $S \subseteq (P)^\epsilon$ and $P \subseteq (S)^\epsilon$.

[Image courtesy: Paul Bruillard]
Distance function based geometric inference: the intuition

[Hausdorff stability w.r.t. distance functions]

If $d_H(S, P)$ is small, thus f_S and f_P are close, and subsequently, S, $(S)^r$ and $(P)^r$ carry the same topology for an appropriate scale r.

Theorem (Reconstruction from f_P)

Let $S, P \subset \mathbb{R}^d$ be compact sets such that $\operatorname{reach}(S) > R$ and $\varepsilon := d_H(S, P) \leq R/17$. Then $(S)^\eta$ and $(P)^r$ are homotopy equivalent for sufficiently small η (e.g. $0 < \eta < R$), if $4\varepsilon \leq r \leq R - 3\varepsilon$. [Chazal Cohen-Steiner Lieutier 2009] [Chazal Cohen-Steiner Merigot 2011]

R ensures topological properties of S and $(S)^r$ are the same; ε ensures $(S)^r$ and $(P)^r$ are close, $\varepsilon \approx$ density of the sample.
Not robust to outliers.

\[\text{If } S' = S \cup x \text{ and } f_S(x) > R \text{, then } |f_S - f_{S'}|_\infty > R : \]
offset-based inference methods fail...
Desirable properties for g to be useful in geometric inference:

(D1) g is 1-Lipschitz: for all $x, y \in \mathbb{R}^d$, $|g(x) - g(y)| \leq ||x - y||$.

(D2) g^2 is 1-semiconcave: $x \in \mathbb{R}^d \mapsto (g(x))^2 - ||x||^2$ is concave.

(D3) g is proper: $g(x)$ tends the infimum of its domain (e.g., ∞) as x tends to infinity.

(D1) ensures that f_S is differentiable almost everywhere and the medial axis of S has zero d-volume;
(D2) is crucial, e.g. in proving the existence of the flow of the gradient of the distance function for topological inference.
A kernel is a similarity measure, more similar points have higher value,

$$K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$$

We focus on the Gaussian kernel (positive definite):

$$K(p, x) = \sigma^2 \exp(-\|p - x\|^2/2\sigma^2)$$
A kernel density estimate represents a continuous distribution function over \mathbb{R}^d for point set $P \subset \mathbb{R}^d$:

$$\text{KDE}_P(x) = \frac{1}{|P|} \sum_{p \in P} K(p, x)$$

More generally, it can be applied to any measure μ (on \mathbb{R}^d) as

$$\text{KDE}_\mu(x) = \int_{\mathbb{R}^d} K(p, x) \mu(p) dp$$
For two point sets P and Q, define similarity

$$\kappa(P, Q) = \frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q)$$

If $Q = \{x\}$, $\kappa(P, x) = \text{KDE}_P(x)$.

The kernel distance (a metric between P and Q):

$$D_K(P, Q) = \sqrt{\kappa(P, P) + \kappa(Q, Q) - 2\kappa(P, Q)}$$

Self similarity minus cross similarity... [Phillips, Venkatasubramanian 2011]
Kernel distance

For two point sets \(P \) and \(Q \), define similarity

\[
\kappa(P, Q) = \frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q)
\]

If \(Q = \{x\} \), \(\kappa(P, x) = \text{KDE}_P(x) \).

The kernel distance (a metric between \(P \) and \(Q \)):

\[
D_K(P, Q) = \sqrt{\kappa(P, P) + \kappa(Q, Q) - 2\kappa(P, Q)}
\]

Self similarity minus cross similarity... [Phillips, Venkatasubramanian 2011]
Kernel distance

For two point sets P and Q, define similarity

\[
\kappa(P, Q) = \frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q)
\]

If $Q = \{x\}$, $\kappa(P, x) = \text{KDE}_P(x)$.

The kernel distance (a metric between P and Q):

\[
D_K(P, Q) = \sqrt{\kappa(P, P) + \kappa(Q, Q) - 2\kappa(P, Q)}
\]

Self similarity minus cross similarity… [Phillips, Venkatasubramanian 2011]
Kernel distance (w.r.t. any measure μ on \mathbb{R}^d)

For $D_K(\mu, \nu)$ between two measures μ and ν, define similarity

$$\kappa(\mu, \nu) = \int_{p \in \mathbb{R}^d} \int_{q \in \mathbb{R}^d} K(p, q) \mu(p) \mu(q) dp dq$$

The kernel distance (a metric between μ and ν):

$$D_K(\mu, \nu) = \sqrt{\kappa(\mu, \mu) + \kappa(\nu, \nu) - 2\kappa(\mu, \nu)}$$

If $\nu = \text{unit Dirac mass at } x$, $\kappa(\mu, x) = \text{KDE}_\mu(x)$,

$$D_K(\mu, x) = \sqrt{\kappa(\mu, \mu) + \kappa(x, x) - 2\kappa(\mu, x)}$$

$$= \sqrt{c_\mu - 2\text{KDE}_\mu(x)}$$

Kernel distance (current distance or maximum mean discrepancy) is a metric, if the kernel K is characteristic (a slight restriction of being positive definite, e.g. Gaussian and Laplace kernels).
Geometric inference from a point cloud can be calculated by examining its kernel density estimate (KDE) of Gaussians. Such an inference is made possible with provable properties through the vehicle of kernel distance. Such an inference is robust to noise and scalable. We provide an algorithm to estimate the topology of kernel distance using weighted Vietoris-Rips complexes.
Geometric inference using the kernel distance, in place of the distance to a measure [Chazal Cohen-Steiner Merigot 2011].

1. **Robustness** Kernel distance is distance-like: 1-Lipschitz, 1-semiconcave, proper and stable.

2. **Scalability** Kernel distance has a small coreset, making efficient inference possible on 100 million points.

3. **Relation to KDE** Geometric inference based on kernel distance works naturally via superlevel sets of KDE: sublevel sets of the kernel distance are superlevel sets of KDE.

4. **Algorithm** to approximate the sublevel set filtration of kernel distance from a point cloud sample.
People love and are familiar with KDE, especially with Gaussian kernel.

Kernel distance provides a proper way to relate KDE with properties that are crucial for geometric inference.

We could approximate the topology of kernel distance via point cloud samples.
Experiments

An example with 25% of P as noise, $\sigma = 0.05$
Experiments

An example with 25% of P as noise, $\sigma = 0.003$
An example with 25% of P as noise, $\sigma = 0.001$
Kernel Distance is Distance-Like

Similar properties hold for the kernel distance defined as

\[
\begin{align*}
d^K_\mu(x) &= D_K(\mu, x) = \sqrt{\kappa(\mu, \mu) + \kappa(x, x) - 2\kappa(\mu, x)} \\
&= \sqrt{c^2_\mu - 2\text{KDE}_\mu(x)}
\end{align*}
\]

For the point cloud setting,

\[
\begin{align*}
d^K_P(x) &= D_K(P, x) = \sqrt{\kappa(P, P) + \kappa(x, x) - 2\kappa(P, x)} \\
&= \sqrt{c^2_P - 2\text{KDE}_P(x)}
\end{align*}
\]

Specifically, the following properties of \(d^K_\mu\) allow it to inherit the reconstruction properties of \(d^{\text{CCM}}_{\mu, m_0}\).

(K1) \(d^K_\mu\) is 1-Lipschitz on its input.

(K2) \((d^K_\mu)^2\) is 1-semiconvave: the map \(x \mapsto (d^K_\mu(x))^2 - \|x\|^2\) is concave.

(K3) \(d^K_\mu\) is proper.

(K4) [Stability] \(\|d^K_\mu - d^K_\nu\|_\infty \leq D_K(\mu, \nu)\).
Advantages of the kernel distance summary

(I) Small coreset representation for sparse representation and efficient, scalable computation.

(II) Its inference is easily interpretable and computable through the superlevel sets of a KDE.
There exists a small ϵ-coreset $Q \subset P$ s.t. $\|d^K_P - d^K_Q\|_\infty \leq \epsilon$ and $\|\text{KDE}_P - \text{KDE}_Q\|_{\infty} \leq \epsilon$ with probability at least $1 - \delta$.

- Size $O(((1/\epsilon) \sqrt{\log(1/\epsilon \delta)})^{2d/(d+2)})$ [Phillips 2013].
- The same holds under a random sample of size $O((1/\epsilon^2)(d + \log(1/\delta)))$ [Joshi Kommaraju Phillips 2011].
- Operate with $|P| = 100,000,000$ [Zheng Jestes Phillips Li 2013].
- Stability of persistence diagram is preserved: $d_B(\text{Dgm(KDE}_P), \text{Dgm(KDE}_Q)) \leq \epsilon$.

...
There exists a small ϵ-coreset $Q \subset P$ s.t. $\|d^K_P - d^K_Q\|_\infty \leq \epsilon$
and $\|\text{KDE}_P - \text{KDE}_Q\|_\infty \leq \epsilon$ with probability at least $1 - \delta$.

Size $O(((1/\epsilon)\sqrt{\log(1/\epsilon\delta)})^{2d/(d+2)})$ [Phillips 2013].

The same holds under a random sample of size $O((1/\epsilon^2)(d + \log(1/\delta)))$ [Joshi Kommaraju Phillips 2011].

Operate with $|P| = 100,000,000$ [Zheng Jestes Phillips Li 2013].

Stability of persistence diagram is preserved:

$d_B(\text{Dgm(KDE}_P), \text{Dgm(KDE}_Q)) \leq \epsilon$.
Recall $d^K_P(x) = \sqrt{c^2_P - 2\text{KDE}_P(x)}$ where c^2_P is a constant that depends only on P. Perform geometric inference on noisy P by considering the super-level sets of KDE_P,

$$\{x \in \mathbb{R}^d \mid \text{KDE}_P(x) \geq \tau\}$$

Key:

- $d^K_P(\cdot)$ is **monotonic** with $\text{KDE}_P(\cdot)$; as $d^K_P(x)$ gets smaller, $\text{KDE}_P(x)$ gets larger.

- A clean and natural interpretation of the reconstruction problem through the well-studied lens of KDE. Geometric inference with sublevel sets of d^K_P (superlevel sets of KDE_P).
Experiments
$10K$ points in $[0,1]^2$, noise $N(0,0.005)$, 25\% of P as noise

Persistence diagram using standard distance function (no useful features due to noise) and kernel distance.
Experiments: Coreset

Original data v.s. Coreset, $10K$ vs. 1384 points
Other Kernels
Beyond Gaussian kernels

- More general theory for KDE with systematic understanding of family of kernels: distance to a measure (KNN kernel), kernel distance (a larger class of kernels, e.g. Gaussian, Laplace; triangle kernel may work OK in practice with less perfect properties).
Laplace kernel $K(p, x) = \exp(-2\|x - y\|/\sigma)$
Alternative KDE

Triangle kernel: $K(x, p) = \max \left\{ 0, 1 - \frac{||p-x||}{\sigma=0.05} \right\}$
Epanechnikov kernel: (reconstruction)

\[K(x, p) = \max \left\{ 0, 1 - \frac{||p-x||^2}{(\sigma=0.05)^2} \right\} \]
Ball kernel: $K(x, p) = \begin{cases} 1 & \text{if } \|p - x\| \leq \sigma = 0.05 \\ 0 & \text{otherwise.} \end{cases}$

α-shape can be viewed as using the ball kernel with $\sigma = \alpha$ and $r = 1/n$.
Alternative KDEs
Two parameters r (isolevel) and σ (outlier/bandwidth) that control the scale.

Figure: Sublevel sets for the kernel distance. Left: fix σ, vary r. Right: fix r, vary σ. The values of σ and r are chosen to make the plots similar.
Structural Inference using distance to measure
Distance to a measure [Chazal Cohen-Steiner Merigot 2011]

Intuition: W_2 distance to m_0 fraction of the space.

μ: probability measure on \mathbb{R}^d

$m_0 > 0$: a parameter smaller than the total mass of μ

The distance to a measure $d_{\mu,m_0}^{CCM} : \mathbb{R}^n \to \mathbb{R}^+, \forall x \in \mathbb{R}^d$,

$$d_{\mu,m_0}^{CCM}(x) = \left(\frac{1}{m_0} \int_{m=0}^{m_0} (\delta_{\mu,m}(x))^2 \, dm \right)^{1/2}$$

where $\delta_{\mu,m}(x) = \inf \left\{ r > 0 : \mu(\overline{B}_r(x)) \leq m \right\}$.

Wasserstein-2 distance $W_2(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} ||x - y||^2 \, d\pi(x, y) \right)^{1/2}$
Distance to a measure \(d_{\mu,m_0}^{CCM} \) is distance-like

(D1) 1-Lipschitz
(D2) 1-semiconcave
(D3) Proper (for Groves Isotopy Lemma).
(D4) [Stability] For probability measures \(\mu \) and \(\nu \) on \(\mathbb{R}^d \) and \(m_0 > 0 \), then \(\| d_{\mu,m_0}^{CCM} - d_{\nu,m_0}^{CCM} \|_\infty \leq \frac{1}{\sqrt{m_0}} W_2(\mu, \nu) \).

Stability: two distance to a measure are close if their corresponding measures are close.
Tools for persistent homology computation
Computing PH

- Ripser:
 - https://github.com/Ripser/ripser
 - http://live.ripser.org/
- TDA-R:
 - https://cran.r-project.org/web/packages/TDA/index.html
- DIPHA
 - https://github.com/DIPHA/dipha
- PHAT
 - https://github.com/blazs/phat
- GUDHI
 - https://project.inria.fr/gudhi/software/

https://people.maths.ox.ac.uk/otter/PH_programs
Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu
CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Presentation template designed by Slidesmash
- Photographs by unsplash.com and pexels.com
- Vector Icons by Matthew Skiles
Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:
https://www.fontsquirrel.com/fonts/open-sans

Colors used

[Color Swatches]