Advanced Data Visualization

- CS 6965
- Fall 2019
- Prof. Bei Wang Phillips University of Utah

Structural Inference of High-dim Data

HD+TOP

"Data has shape, and shape matters." – Gunnar Carlsson

Linear regression

Linear regression

Cubic polynomial regression

Cubic polynomial regression

Clustering

Shape of data?

Clusters.

Clustering

Shape of data?

Clusters.

Time series analysis

Shape of data?

Time series analysis

Shape of data?

Discrete samples: a point cloud

• Shape of data?

Depending on the scale (or the reso

lution).

Discrete samples: a point cloud

Shape of data?

• Depending on the scale (or the resolution).

Discrete samples: a point cloud

• Shape of data?

• Depending on the scale (or the resolution).

A scalar function defined on a manifold

A Reeb graph

A scalar function defined on a manifold

• A Reeb graph.

• Shape of data?

A contour tree

• Shape of data?

• A contour tree.

• Shape of data?

A Morse-Smale complex.

• A Morse-Smale complex.

Some basic tools in topological data analysis (TDA)

- Abstraction of the data: topological structures and their combinatorial representations
- Separate features from noise: persistent homology

Reeb Graph/Contour Tree/Merge Tree

Fundamental Tasks in Topological Data Analysis Topology + Point Cloud = Magic Happens!

Task 1

RECONSTRUCTION

How to assemble discrete point samples into a global structure?

Task 2

INFERENCE

How to infer high-dimensional structures from low-dimensional representations?

Key idea 1: coordinate free

Key idea 2: deformation invariant

Key idea 3: compressed representation

Inference: stratification learning

Inferring circular structures in high dimensions

Inferring circular structures in high dimensions

Inferring circular structures in high dimensions

Persistent homology: an artistic view point

Persistent homology: inferring the continuous from the discrete.

Persistent homology: a multi-scale view of data

Persistent homology: quantifying the shape of data.

Persistent Homology

A really old joke...

Who thinks the coffee mug and a donut is the same? Topologist!

- tunnels, voids, etc.
- Formally, these correspond to the notions of homology.

• Topologists care about topological structures of a space: connected components,

A really old joke...

Who thinks the coffee mug and a donut is the same? Topologist!

- tunnels, voids, etc.
- Formally, these correspond to the notions of homology.

• Topologists care about topological structures of a space: connected components,
What are topological features? Homological features:

- Dim 0 Connected Components
- Dim 1 Tunnels / Loops
- Dim 2 Voids
- How to compute them (in a nutshell)?
 - Begin with a point cloud
 - Grow balls of diameter *t* around each point
 - Track features of the union of balls as t increases

Persistence diagrams

Homological features encoded as barcodes or persistent diagrams

Figure: Barcode

Figure: Persistence Diagram

Interpretation of connected components

Dim 0 features: hierarchical clustering

Cluster Dendrogram

Simplicial complex

Different types of simplicial complexes

- Abstract simplicial complex
- Čech complex
- Vietoris-Rips complex
- Delaunay triangulation (related to Voronoi diagram)
- Alpha complex
- Sparsified versions:
 - Witness complex
 - Graph induced complex

Čech complex vs. Vietoris-Rips complex

Persistent homology with Čech complex

To apply persistent homology

• A filtration of spaces with maps between them • A scale parameter

- Stability of persistence diagrams
- Bottleneck distance
- Wasserstein distance

Beyond Persistent Homology

Persistent local homology: applications

(a) Local Structures

Road network comparison; stratification learning...

(b) Signature restricted to \mathbb{X}

TDA and dimensionality reduction (DR)

Detecting circular and branching structures for DR

Persistence simplification of Morse-Smale complex

(a)

(b)

Discussions

Research directions in TDA and visualization

- Reeb graphs, Reeb Spaces, and Mappers.
- Topological analysis and visualization of multivariate data.
- New opportunities for vector field topology.
- Category theory: theory and applications.
- Multidimensional persistent homology.
- Singularity theory and fiber topology in multivariate data analysis.
- Scalable computation.
- Software tools and libraries.

[Dagstuhl Seminar 17292 Report 2017]

More case studies...

Study of low-dimensional of dimensional data

Study of low-dimensional data inspires techniques for high-

Handles of 3D models

[DeyFanWang2013]

http://web.cse.ohio-state.edu/~wang.1016/papers/sig2013-loops.pdf

Review: Reeb Graph

A generalization of contour tree

[K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci, 2004]

Graph obtained by continuos contraction of all the contours in a scalar field, where each contour is collapsed to a distinct point.

High-level techniques

Using optimization to find the ideal ones

Using Reeb Graph to find initial nontrivial loops/tunnels/handles

Figure 2: γ_1 is a handle loop and γ_2 a tunnel loop. γ_3 is neither.

Figure 1: (a) – (d) shows the pipeline of our algorithm: (a) The height function on the input surface. (b) Reeb graph w.r.t. the height function. (c) Initial handle and tunnel loops. (d) Final handle / tunnel loops after geometric optimization. (e) The output is stable under noise.

Fast processing with original mesh

(a)

(b)

Figure 3: The output of (a) our algorithm and (b) the algorithm of [Dey et al. 2008] for an input mesh with 449 vertices. Note that due to the tetrahedral meshing, the algorithm of [Dey et al. 2008] changes the input surface mesh and significantly increases its complexity to 7943 vertices. Our algorithm obtained handle and tunnel loops of good quality from the original sparse mesh.

Figure 6: Various examples. From left to right: KNOTTY-CUP, FILIGREE, HEPTOROID and CASTING.

Circular and Branching Structures in High-dim

[WangSummaPascucci2011]

http://www.sci.utah.edu/~beiwang/publications/Branching_BeiWang_2011.pdf

Inferring circular structure

Persistent homology (PH), persistent cohomology (dual version) Circular parametrization

High-level techniques

 $Rips(X,\varepsilon_0) \subseteq Rips(X,\varepsilon_1)$

 $Rips(X,\varepsilon_0) \subseteq Rips(X,\varepsilon_1)$

 $Rips(X, \varepsilon_0) \subseteq Rips(X, \varepsilon_1)$

Parameter Space:

igodol

Born: ε_1 Died: ε_2 Persistence: $\varepsilon_2 - \varepsilon_1$

 $Rips(X,\varepsilon_0) \subseteq Rips(X,\varepsilon_1) \subseteq Rips(X,\varepsilon_2)$

Inferring branching structure

Branching and parametrization

Give atta neig vert In th feat

- Given a neighborhood around a point, attach simplicies which cross the neighborhood threshold to a dummy
- vertex ω .
- In this way, we turn local branching features into circular structures.

Voting Data

1995 House of Representatives Voting Record 885 votes (dimension) 205 Democratic congresspeople (points) Record: (Yea/Nay/Absent) 94.27 seconds to compute (92.15 Rips, 1.76 Persistence)

Outliers: switched party or resigned

Virus Data

1045 nucleotides (dimensions) 58 mutated genetic sequences (points) 0.09 seconds to compute (0.05 Rips, 0.02 Persistence)

Motion Capture: Ballet

54 joint angles (dimensions) 471 frames (points) 417.38 seconds to compute (363.67 Rips, 30.47 Persistence)

Motion Capture: Ballet

Laplacian Eigenmaps

Motion Capture: Ballet

Local Branching Illusion

Motion Capture - Walk/Hop/Walk

66 joint angles (dimensions) 189 frames (points) 0.08 seconds to compute (0.08 Rips)

You can find me at: beiwang@sci.utah.edu

Thanks!

Any questions?

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Vector Icons by Matthew Skiles

Presentation template designed by <u>Slidesmash</u>

Photographs by <u>unsplash.com</u> and <u>pexels.com</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used