“Data has shape, and shape matters.”
– Gunnar Carlsson
Linear regression

Shape of data?

A line.
Linear regression

- Shape of data?
- A line.
Cubic polynomial regression

- Shape of data?
- A curve.
Cubic polynomial regression

- Shape of data?
 - A curve.
Clustering

- Shape of data?
- Clusters.
Clustering

- Shape of data?
- Clusters.
Shape of data?

Depends on the mapping.
Time series analysis

- Shape of data?
- Depends on the mapping.
Discrete samples: a point cloud

- Shape of data?
- Depending on the scale (or the resolution).
Discrete samples: a point cloud

- Shape of data?
 - Depending on the scale (or the resolution).
Discrete samples: a point cloud

- Shape of data?
- Depending on the scale (or the resolution).
A scalar function defined on a manifold

- Shape of data?
- A Reeb graph.
A scalar function defined on a manifold

- Shape of data?
- A Reeb graph.
Elevation on terrain: a scalar function on a 2D domain

- Shape of data?
- A contour tree.
Elevation on terrain: a scalar function on a 2D domain

- Shape of data?
- A contour tree.
Elevation on terrain: a scalar function on a 2D domain

- Shape of data?
- A Morse-Smale complex.
Elevation on terrain: a scalar function on a 2D domain

- Shape of data?
- A Morse-Smale complex.
Some basic tools in topological data analysis (TDA)

- **Abstraction of the data**: topological structures and their combinatorial representations
- **Separate features from noise**: persistent homology

![Diagram showing 2D Scalar Function, Reeb Graph/Contour Tree/Merge Tree, and Morse-Smale Complex]
Fundamental Tasks in Topological Data Analysis
Topology + Point Cloud = Magic Happens!
Task 1

Reconstruction

How to assemble discrete point samples into a global structure?
Inference

How to infer high-dimensional structures from low-dimensional representations?
Key idea 1: coordinate free
Key idea 2: deformation invariant
Key idea 3: compressed representation
Inference: stratification learning
Inferring circular structures in high dimensions
Inferring circular structures in high dimensions
Inferring circular structures in high dimensions
Persistent homology: an artistic viewpoint

Persistent homology: inferring the continuous from the discrete.
Persistent homology: quantifying the shape of data.
Persistent Homology
A really old joke...

Who thinks the coffee mug and a donut is the same? **Topologist!**

- Topologists care about **topological structures** of a space: connected components, tunnels, voids, etc.
- Formally, these correspond to the notions of **homology**.
A really old joke...

Who thinks the coffee mug and a donut is the same? **Topologist!**

- Topologists care about **topological structures** of a space: connected components, tunnels, voids, etc.
- Formally, these correspond to the notions of **homology**.
What are topological features? Homological features:
- Dim 0 - Connected Components
- Dim 1 - Tunnels / Loops
- Dim 2 - Voids

How to compute them (in a nutshell)?
- Begin with a point cloud
- Grow balls of diameter t around each point
- Track features of the union of balls as t increases
Persistent homology
Persistent homology
Persistent homology
Persistent homology
Persistent homology
Persistent homology
Homological features encoded as barcodes or persistent diagrams

Figure: Barcode

Figure: Persistence Diagram
Interpretation of connected components

Dim 0 features: hierarchical clustering

Cluster Dendrogram
Simplicial complex

$k = 0$ $k = 1$ $k = 2$ $k = 3$
Different types of simplicial complexes

- Abstract simplicial complex
- Čech complex
- Vietoris-Rips complex
- Delaunay triangulation (related to Voronoi diagram)
- Alpha complex
- Sparsified versions:
 - Witness complex
 - Graph induced complex
Čech complex vs. Vietoris-Rips complex
Persistent homology with Čech complex

(a)

(b)

(c)
To apply persistent homology

- A filtration of spaces with maps between them
- A scale parameter
Sublevel set filtration
Distance between persistence diagrams

- Stability of persistence diagrams
- Bottleneck distance
- Wasserstein distance
Beyond Persistent Homology
Persistent local homology: applications

(a) Local Structures
(b) Signature restricted to X

Road network comparison; stratification learning...
TDA and dimensionality reduction (DR)

Detecting circular and branching structures for DR
Persistence simplification of Morse-Smale complex
Discussions
Research directions in TDA and visualization

- Reeb graphs, Reeb Spaces, and Mappers.
- Topological analysis and visualization of multivariate data.
- New opportunities for vector field topology.
- Category theory: theory and applications.
- Multidimensional persistent homology.
- Singularity theory and fiber topology in multivariate data analysis.
- Scalable computation.
- Software tools and libraries.

[Dagstuhl Seminar 17292 Report 2017]
More case studies...

- Study of low-dimensional data inspires techniques for high-dimensional data
Handles of 3D models

[DeyFanWang2013]

Graph obtained by continuous contraction of all the contours in a scalar field, where each contour is collapsed to a distinct point.

Review: Reeb Graph

A generalization of contour tree

High-level techniques

- Using Reeb Graph to find initial nontrivial loops/tunnels/handles
- Using optimization to find the ideal ones

Figure 2: γ_1 is a handle loop and γ_2 a tunnel loop. γ_3 is neither.
Figure 1: (a) – (d) shows the pipeline of our algorithm: (a) The height function on the input surface. (b) Reeb graph w.r.t. the height function. (c) Initial handle and tunnel loops. (d) Final handle / tunnel loops after geometric optimization. (e) The output is stable under noise.
Fast processing with original mesh

Figure 3: The output of (a) our algorithm and (b) the algorithm of [Dey et al. 2008] for an input mesh with 449 vertices. Note that due to the tetrahedral meshing, the algorithm of [Dey et al. 2008] changes the input surface mesh and significantly increases its complexity to 7943 vertices. Our algorithm obtained handle and tunnel loops of good quality from the original sparse mesh.
Figure 6: Various examples. From left to right: Knotty-cup, Filigree, Heptoroid and Casting.
Circular and Branching Structures in High-dim

[WangSummaPascucci2011]

Inferring circular structure
High-level techniques

- Persistent homology (PH), persistent cohomology (dual version)
- Circular parametrization
PH and parametrization

$$Rips(X, \varepsilon_0)$$
PH and parametrization

\[\text{Rips}(X, \varepsilon_0) \subseteq \text{Rips}(X, \varepsilon_1) \]
PH and parametrization

\[\text{Rips}(X, \varepsilon_0) \subseteq \text{Rips}(X, \varepsilon_1) \]
PH and parametrization

Parameter Space:

\[\text{Rips}(X, \varepsilon_0) \subseteq \text{Rips}(X, \varepsilon_1) \]

Born: \(\varepsilon_1 \)
PH and parametrization

Born: ε_1 Died: ε_2
Persistence: $\varepsilon_2 - \varepsilon_1$

$Rips(X, \varepsilon_0) \subseteq Rips(X, \varepsilon_1) \subseteq Rips(X, \varepsilon_2)$
Inferring branching structure
Given a neighborhood around a point, attach simplicies which cross the neighborhood threshold to a dummy vertex ω.

In this way, we turn local branching features into circular structures.
1995 House of Representatives Voting Record
885 votes (dimension)
205 Democratic congresspeople (points)
Record: (Yea/Nay/Absent)
94.27 seconds to compute
(92.15 Rips, 1.76 Persistence)
Outliers: switched party or resigned
Virus Data

1045 nucleotides (dimensions)
58 mutated genetic sequences (points)
0.09 seconds to compute (0.05 Rips, 0.02 Persistence)
Motion Capture: Ballet

54 joint angles (dimensions)
471 frames (points)
417.38 seconds to compute
(363.67 Rips, 30.47 Persistence)
Motion Capture: Ballet

Laplacian Eigenmaps

3D Isomap
Motion Capture: Ballet

Local Branching Illusion
Motion Capture - Walk/Hop/Walk

66 joint angles (dimensions)
189 frames (points)
0.08 seconds to compute
(0.08 Rips)
Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu
CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Presentation template designed by Slidesmash
- Photographs by unsplash.com and pexels.com
- Vector Icons by Matthew Skiles
Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:
https://www.fontsquirrel.com/fonts/open-sans

Colors used