Scalable Nonparametric Tensor Decomposition

Shandian Zhe(<u>zhe@cs.utah.edu</u>) School of Computing University of University 07/30/2019

Agenda

- Bayesian learning
- Bayesian nonparametric tensor analysis
 - Distributed infinite Tucker decomposition
 - Distributed flexible nonlinear tensor decomposition
 - Nonparametric event-tensor decomposition

Bayesian Learning

Prior distribution Data likelihood Posterior distribution $p(\boldsymbol{\theta})$ $p(\mathbf{D}|\boldsymbol{\theta})$ $p(\boldsymbol{\theta}|\mathbf{D})$ Bayes' $p(\boldsymbol{\theta}|\mathbf{D}) = \frac{p(\boldsymbol{\theta}, \mathbf{D})}{p(\mathbf{D})} = \frac{p(\boldsymbol{\theta}, \mathbf{D})}{\int p(\boldsymbol{\theta})p(\mathbf{D}|\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}}_{3}$

Advantages

• Unified, principled mathematical framework

• Seamless, flexible uncertainty reasoning

Asthma: 60%

Heart disease: 30%

Healthy: 10%

Raining: 70%

Sunny: 30%

Approximate Inference

- MCMC Sampling
- Variational Approximation
- Belief Propagation

My Research

Bayesian Nonparametrics: Complex patterns

Bayesian Sparse Learning: Succinct patterns

Big Data Analytics

Rich Knowledge

Bayesian Nonparametrics

Bayesian Sparse Learning

Bayesian Nonparametric Tensor Analysis

Whether customer i purchased item j at store-location k ?

(User, Item, Online-store)

(User, Movie, TV Series, Month)

Tensor: Interaction records between multiple entities

Key Problem: How to infer the underlying multiway relationships between the entities?

.....

Relationship (Customer, Item, Online-store)

Relationship (User, Movie, TV Series, Month)

Other Movies You Might Enjoy

Overview of Tensor Analysis

Model Capability

Tensor Analysis — Factorization

Customer 1	?	?	?	Item 2	?	?	?
Interests:	1	11	<i>III</i>	Attributes:	а	b	С

Customer factor matrix

Item factor matrix

Matrix Factorization

2.Construction model

3. Latent factor estimation

Usage of Factors

Patterns

Tensor Factorization

1. Factor representation

2. Construction model

3. Latent factor estimation

Multilinear Tensor Factorization

Tensor-matrix multiplication

 $\mathcal{G} \times_1 \mathbf{U} = \mathcal{T}$

Multilinear Tensor Factorization

Tucker decomposition \implies CP decomposition

Multilinear Factorization: Limitation

Gaussian Process Models: Nonlinear Mapping Estimator

Observations

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \dots \\ \mathbf{x}_n^\top \end{bmatrix} \qquad Y = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \dots \\ \mathbf{y}_n \end{bmatrix}$$

$$p(Y|\mathbf{X}) = \mathcal{N}(Y|\mathbf{0}, k(\mathbf{X}, \mathbf{X}))$$

$$k(\mathbf{X}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \cdots & k(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & k(\mathbf{x}_n, \mathbf{x}_2) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

e.g.,
$$k(\mathbf{x}_i,\mathbf{x}_j)=\sigma e^{-\|\mathbf{x}_i-\mathbf{x}_j\|^2}$$

Gaussian Process Learning Examples

From Tucker to Infinite Tucker

Probabilistic sampling procedure

Applying kernel function

Tensor-Variate Gaussian Process

$\mathcal{N}ig(ext{vec}(\mathcal{F})|\mathbf{0},k(\mathbf{U},\mathbf{U})\otimes k(\mathbf{V},\mathbf{V})\otimes k(\mathbf{W},\mathbf{W})ig)$

Infinite Tucker: Scalability Problem

 $\mathcal{N}(\operatorname{vec}(\mathcal{F})|\mathbf{0}, k(\mathbf{U}, \mathbf{U}) \otimes k(\mathbf{V}, \mathbf{V}) \otimes k(\mathbf{W}, \mathbf{W}))$

Global GP → Huge Covariance Matrix

Distributed Infinite Tucker Decomposition [Zhe et. al., AAAI'16]

Divide and Conquer

Think globally: Assume *globally shared* latent factors

Act locally: Each subtensor is sampled from a *local* tensor-varaite GP

DinTucker: Distributed Infinite Tucker on Map-Reduce

MAP: Update local factors

Hadoop Implementation on Large Data

Data	1	J	К	# of entries
Access Log	2,000	179	199,800	71.5 billions

DinTucker (Local GP) vs. InfTucker (Global GP)

DinTucker with a specific sampling strategy

Local GP *vs.* Global GP? A Theoretical Analysis

Covariance Structure

Conclusion

Local training

Global training with lower bound surrogate

DinTucker

Divide & Conquer

Every element is used in training Every element is observed

Real-World Tensor: Partially observed

Many 0s: Missing/Unobserved

Use all -> bias results

Flexibility

Flexible Gaussian Process Factorization Model [Zhe et. al., NIPS'16]

Entry input vector: Factor concatenation

$$y_{(i,j,k)} = f(\mathbf{x}_{(i,j,k)})$$

Flexibility in Using Arbitrary Entries

Small Data

Large Data: Scalability Issue

Model Estimation: Infeasible

Variational Estimation Procedure

Variational Model Evidence \leq Model Evidence

Continuous

 $L_1(\mathcal{U}, \mathbf{B})$

Binary

 $L_2(\mathcal{U}, \mathbf{B}, \boldsymbol{\lambda})$

Variational Model Evidence

Continuous $L_1(\mathcal{U}, \mathbf{B})$ Binary $L_2(\mathcal{U}, \mathbf{B}, \boldsymbol{\lambda})$

Decomposed mathematical structure Parallel computation

Maximize Variational Model Evidence

(*i.e.*, Objective function)

Variational Form

$$L_{1}(\mathcal{U}, \mathbf{B}) = \frac{1}{2} \log |\mathbf{K}_{BB}| - \frac{1}{2} \log |\mathbf{K}_{BB} + \beta \mathbf{A}_{1}| - \frac{1}{2} \beta \mathbf{a}_{2} - \frac{1}{2} \beta \mathbf{a}_{3}$$
$$- \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{U}^{(k)}\|_{F}^{2} + \frac{1}{2} \beta^{2} \mathbf{a}_{4}^{\top} (\mathbf{K}_{BB} + \beta \mathbf{A}_{1})^{-1} \mathbf{a}_{4}$$
$$+ \frac{\beta}{2} \operatorname{tr}(\mathbf{K}_{BB}^{-1} \mathbf{A}_{1}) + \operatorname{CONST}$$

Additive Structure Over Tensor Entries

$$\mathbf{A}_{1} = \sum_{j} k(\mathbf{B}, \mathbf{x}_{\mathbf{i}_{j}}) k(\mathbf{x}_{\mathbf{i}_{j}}, \mathbf{B})$$
$$\mathbf{a}_{2} = \sum_{j} y_{\mathbf{i}_{j}}^{2}$$
$$\mathbf{a}_{3} = \sum_{j} k(\mathbf{x}_{\mathbf{i}_{j}}, \mathbf{x}_{\mathbf{i}_{j}})$$
$$\mathbf{a}_{4} = \sum_{j} k(\mathbf{B}, \mathbf{x}_{\mathbf{i}_{j}}) y_{\mathbf{i}_{j}}$$

Distributed Optimization Procedure

Map-Reduce Implementation

Standard Key-Value Map-Reduce

Key-Free Map-Reduce

Flexible GP Factorization

1. Factor Concatenation

2. Decomposed Variational Form

3. Key-Free Map-Reduce

How to Deal with Temporal Information

6:20pm

Interaction time series (events)

An Example

User id	Item id	Page id	Buy	Time-stamp
100	25	35	1	23:00/05/06/2010
23	21	56	0	20:00/05/07/2010
100	25	32	1	22:10/05/08/2010
32	33	46	0	23:00/05/20/2010

Existing Approaches

Existing Approaches

Ignore or over-simplify temporal inferences!

Nonparametric Event-Tensor Decomposition

[Zhe et. al., NIPS'18 spotlight]

	user	item	page	time-stamp	- Event-Tensor	
	100	25	35	23:00/05/06/2010		
	23	21	56	20:00/05/07/2010		
	100	25	35	22:10/05/08/2010		
C						
	32	33	46	23:00/05/20/2010		
	in	dex		time-stam	ps	
	(100,25,35)		$\{s_1,s_2$	$\{s_n\}$		

Mutually Excited Hawkes Processes

Mutually Excited Hawkes Processes (HPs)

Entry i: $\lambda_i(t) = \lambda_i^0 + \sum_{s_n < t} h_{i_n \to i}(t - s_n)$ A function of the factors with GP prior

Static nonlinear relationships

Mutually Excited Hawkes Processes (HPs)

 $\lambda_{\mathbf{i}}(t) = \lambda_{\mathbf{i}}^{0} + \sum h_{\mathbf{i}_{n} \to \mathbf{i}}(t - s_{n})$

Entry *i*:

$$h_{\mathbf{i}_n \to \mathbf{i}}(t - s_n) = k(\mathbf{x}_{\mathbf{i}_n}, \mathbf{x}_{\mathbf{i}})h_0(t - s_n)$$

associated factors with the entry

base triggering kernel

 $\mathbb{1}(s_n \in A_t)\beta e^{-\frac{1}{\tau}(t-s_n)}$

Help discover triggering clusters!

Stronger mutual excitations within in the cluster

Hybrid of GPs and HPs

Scalable Inference

Poisson process super-position theorem + variational **sparse GP framework**

$$\mathcal{L} = \mathbb{E}_{p(k), p(l)} (\tilde{\mathcal{L}}_{k, l}) \quad \tilde{\mathcal{L}}_{k, l} = \mathbb{E}_{q(\mathbf{g})} (\log \frac{p(\mathbf{g})}{q(\mathbf{g})}) + \sum_{j \in N_k} \phi_{s_j, \bar{A}_{s_j}} \frac{N}{|N_k|} + \sum_{j \in N_k} \sum_{\mathbf{i} \in M_l} \psi_{s_j, \mathbf{i}, \mathbf{i}_j} \frac{N}{|N_k|} \frac{M}{|M_l|}$$

entries events

Develop a *doubly stochastic optimization* algorithm to maximize the bound

Predictive Performance

Structure Discovery

- 911 EMS dataset (EMS title, township) 12/10/2015 - 04/10/2017 in Montgomery County, PA.
- UFO sightings (UFO shape, city) in last century

Structure Discovery

Nonparametric Event-Tensor Decomposition

1. Hybrid of GP and HP

2. Superposition for decomposable variational bound

Bayesian Learning

As an elegant mathematical framework

- Intuitive model design
- Convenient prior knowledge incorporation
- Excellent interpretation
- Flexible uncertainty reasoning

Could be useful for **numerous** applications

Collaborative filtering, social activities analysis, anomaly detection, community discovery, intelligent decision, disease diagnosis, computational forensic tools, personalized medicine....

Thanks!

Shandian Zhe zhe@cs.utah.edu University of Utah