
Scalable Nonparametric Tensor
Decomposition

Shandian Zhe(zhe@cs.utah.edu)

School of Computing

University of University

07/30/2019

mailto:zhe@cs.utah.edu

Agenda
• Bayesian learning

• Bayesian nonparametric tensor analysis

– Distributed infinite Tucker decomposition

– Distributed flexible nonlinear tensor

decomposition

– Nonparametric event-tensor

decomposition

 2

Bayesian Learning

 3

Prior distribution

p(✓)
Posterior distribution

p(✓|D)
Data likelihood

p(D|✓)

p(✓|D) =
p(✓,D)

p(D)
=

p(✓)p(D|✓)R
p(✓)p(D|✓)d✓

Bayes’
Rule

Advantages
• Unified, principled mathematical framework

• Seamless, flexible uncertainty reasoning
Raining: 70%

Sunny: 30%Heart disease: 30%

Asthma: 60%

 4

Healthy: 10%

Priors Data Posteriors
✓ ⇠ p(✓) D|✓ ⇠ p(D|✓) p(✓|D)

Computational Challenge

 5

p(✓|D) =
p(✓)p(D|✓)R
p(✓)p(D|✓)d✓

High dimensional integration

Approximate Inference

Infeasible to compute!

• MCMC Sampling

• Variational Approximation

• Belief Propagation

Complicated forms

• Bayesian Nonparametrics: Complex patterns

My Research

• Bayesian Sparse Learning: Succinct patterns

 6

Genes

Big Data Analytics

 7

Rich Knowledge Big Noise

Bayesian Nonparametrics Bayesian Sparse Learning

 8

Bayesian Nonparametric Tensor Analysis

 9

Tensors

(i, j, k)

 10

Customers

Items

loc
ati

on
s

Whether customer purchased item

at store-location ?

i j
k

 11

(User, Item, Online-store)

 12

(User, Movie, TV Series, Month)

 13

Key Problem: How to infer the
underlying multiway relationships
between the entities?

Relationship (Customer, Item, Online-store)

Relationship (User, Movie, TV Series, Month)
……

Tensor: Interaction records between multiple entities

(i, j, k)

 14

Overview of Tensor Analysis

 15

[AAAI’16]
[NIPS’16]

[AISTATS’15]

Small Large
Simple

Complex

Data Size

Model Capability

multilinear

Nonlinear [NIPS’18]

Tensor Analysis — Factorization

Item factor matrix

…

1. Factor representation

…

Customer

Item

Matrix factorization review

Customer factor matrix

 16

1
2 2

Interests: Attributes: I II III a b c

Customer 1 Item 2? ? ? ? ? ?

50

1

35

U V

Matrix Factorization
2.Construction model

3. Latent factor estimation
2

 17

i

j

(i, j)

U V>

Minimize

U⇤,V⇤

0.5 0.1 0.2

Usage of Factors

•Prediction

•Patterns

Customer 1

Item 2

?

 18

0.1 0.2 0.3

Tensor Factorization

1. Factor representation 2. Construction model

3. Latent factor estimation

 19

U
V

W
m

n

r

m

n

r

m

n

r

Multilinear Tensor Factorization

Tensor-matrix multiplication

1

2

1

 20

G ⇥1 U = T

G U T

2
1

3

Multilinear Tensor Factorization

Tucker decomposition

1

2

3

CP decomposition

2

 21

GU

V

W

Multilinear Factorization: Limitation

Mutilinear mapping

Complex interactions/Relationships: Customer, location, items

Infinite Tucker decomposition

Nonlinear mapping

Gaussian Process

Complex interactions/Relationships

customer location

item
customer

loca
tio

n

item

 22

U
V

W

U
V

W

Gaussian Process Models: Nonlinear
Mapping Estimator

Observations

 23

X =

2

664

x>
1

x>
2

. . .
x>
n

3

775 Y =

2

664

y1

y2

. . .
yn

3

775

k(X,X) =

2

6664

k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
. . .

...
k(xn,x1) k(xn,x2) · · · k(xn,xn)

3

7775

p(Y |X) = N
�
Y |0, k(X,X)

�

k(xi,xj) = �e�kxi�xjk2
e.g.,

Gaussian Process Learning Examples

 24

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

●
●

●

Tensor-Variate Gaussian Process

1
3

2

 25

N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

U

V

W
G F

Probabilistic sampling procedure
Applying kernel function

From Tucker to Infinite Tucker

Infinite Tucker: Scalability Problem

100
100

10
0

1000000

1000000

Flatten

1000000

Covariance

 26

N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

Global GP ➔ Huge Covariance Matrix

 Distributed Infinite Tucker Decomposition

Think globally: Assume
globally shared latent factors

Act locally: Each subtensor is
sampled from a local tensor-
varaite GP

Divide and Conquer

 27

[Zhe et. al., AAAI’16]

DinTucker: Distributed Infinite Tucker on Map-Reduce

…

…

MAP: Update local factors

Reduce: Update global factors

 28

…

Mappers Reducers

U V

W

Hadoop Implementation on Large Data
Data I J K # of entries
Access Log 2,000 179 199,800 71.5 billions

DinTucker

 29

DinTucker (Local GP) vs. InfTucker (Global GP)

DinTucker with a
specific sampling
strategy

DinTucker InfTucker

 30

Local GP vs. Global GP?  
A Theoretical Analysis

 infTucker — Global GP DinTucker — Local GP
• Covariance Structure

• Model Evidence (- Loss Function)

(under certain conditions)

global local

Block matrix decomposition + Jensen’s inequality

• Conclusion

Local training Global training with lower bound surrogate
 31

2

6664

⌃11 ⌃12 · · · ⌃1n

⌃21 ⌃22 · · · ⌃2n
...

. . .
...

⌃n1 ⌃n2 · · · ⌃nn

3

7775

2

6664

⌃11

⌃22

. . .
⌃nn

3

7775

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Some Write-ups

Anonymous Author(s)
Affiliation
Address
email

Abstract

This write-up records some results of the derivation in some machine learning
algorithm.

1 Temp

log
�
pI(vec(Y)|U)

�
� ↵ · log

�
pD(vec(Y)|U)

�
+O(↵)

log
�
pI(vec(Y)|U)

�
� 1

↵
log

�
pD(vec(Y)|U)

�
� nd

2
log(↵)� nd

2↵
(1� ↵)

q(z) =
Y

i

q(zi)

q(z1) q(z2) q(zn)

q(v), q(z)

q(z1), . . . , q(zn)

y = f(x)

Y1, Y2, Y3, Y4, Y5, . . . , Yn . . .

x1, x2, x3, x4, x5, . . . , xn . . .
"

Y1

Y3

Y4

#
⇠ N

�
"

m(x1)
m(x2)
m(x4)

#
,

"
k(x1, x1) k(x1, x3) k(x1, x4)
k(x3, x1) k(x3, x3) k(x3, x4)
k(x4, x1) k(x4, x3) k(x4, x4)

#
�

m(x) = 0

k(xi, xj) = � exp(� 1

2⌧
(xi � xj)

2) + w · �(xi � xj)

x1

x2

...

xn

y1
y2
...

yn

1

Local GP

 32

DinTucker

Divide & Conquer

Kronecker product

in covariance

elements in total

 33

Tensor-Variate GP:  
Fully observed assumption

U
V

W

k(U,U)⌦ k(V,V)⌦ k(W,W)
m⇥m n⇥ n r ⇥ r

m

n
r

mnr

Every element is used in training
Every element is observed

mnr

mnr

Many 0s: Missing/Unobserved

Use all —> bias results

Flexibility
 34

Real-World Tensor: Partially observed

e.g., (customer , item, location)
nonzeros < 1%

Flexible Gaussian Process Factorization Model

Nonlinear Mapping

Entry input vector: Factor concatenation

 35

[Zhe et. al., NIPS’16]

y(i,j,k)

i j k

i j k
x(i,j,k)

y(i,j,k) = f(x(i,j,k))

Flexibility in Using Arbitrary Entries

 36

k2

in jn kn

Kronecker Product Structure

i1 j1 k1
i2 j2

…… …

y(i1,j1,k1)

y(i2,j2,k2)

y(in,jn,kn)

…

y X

N
�
y|0, k(X,X)

�

Observed entries Entry input vectors

k(·, ·)

Small Data

 37

Continuous Binary
CP NNCP HOSVD Tucker InfTucker InfTuckerEx CP-2 Ours-GD Ours-LBFGS

Number of Factors
3 5 8 10M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.65

1.5

2

2.5

3

(a) Alog
Number of Factors

3 5 8 10M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.3

0.8

1.2

1.9

(b) AdClick
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(c) Enron
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(d) NellSmall

Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.

Number of Machines
5 10 15 201

 /
 R

u
n

n
in

g
T

im
e

 X
 C

o
n

st

1

3

5

(a) Scalability

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.1

0.5

0.7

0.9
GigaTensor
DinTucker
InfTuckerEx
Ours-GD
Ours-LBFGS

(b) ACC

A
U

C

0.82

0.9

0.95

(c) DBLP

A
U

C

0.82

0.9

0.95

1

(d) NELL

Figure 2: Prediction accuracy (averaged on 50 test datasets) on large tensor data and the scalability.

6.3 Evaluation on Large Tensor Data

We then compared our approach with three state-of-the-art large-scale tensor factorization methods:
GigaTensor [8], Distributed infinite Tucker decomposition (DinTucker) [22], and InfTuckerEx [23].
Both GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online inference.
Our model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

We set the number of latent factors to 3 for ACC and DBLP data set, and 5 for NELL data set.
Following the settings in [23, 22], we randomly chose 80% of nonzero entries for training, and then
sampled 50 test data sets from the remaining entries. For ACC and DBLP, each test data set comprises
200 nonzero elements and 1, 800 zero elements; for NELL, each test data set contains 200 nonzero
elements and 2, 000 zero elements. The running of GigaTensor was based on the default settings
of the software package. For DinTucker and InfTuckerEx, we randomly sampled subtensors for
distributed or online inference. The parameters, including the number and size of the subtensors and
the learning rate, were selected in the same way as [23]. The kernel form and parameters were chosen
by a cross-validation on the training tensor. For our model, we used the same setting as in the small
data. We set 50 MAPPERS for GigaTensor, DinTucker and our model.

Figure 2(b)-(d) shows the predictive performance of all the methods. We observe that our approach
consistently outperforms GigaTensor and DinTucker on all the three datasets; our approach outper-
forms InfTuckerEx on ACC and DBLP and is slightly worse than InfTuckerEx on NELL. Note again
that InfTuckerEx uses DPM prior to enhance the factorization while our model doesn’t; finally, all the
nonlinear factorization methods outperform GigaTensor, a distributed CP factorization algorithm by a
large margin, confirming the advantages of nonlinear factorizations on large data. In terms of speed,
our algorithm is much faster than GigaTensor and DinTucker. For example, on DBLP dataset, the
average per-iteration running time were 1.45, 15.4 and 20.5 minutes for our model, GigaTensor and
DinTucker, respectively. This is not surprising, because (1) our model uses the data sparsity and can
exclude numerous, meaningless zero elements from training; (2) our algorithm is based on SPARK,
a more efficient MAPREDUCE system than HADOOP; (3) our algorithm gets rid of data shuffling and
can fully exploit the memory-cache mechanism of SPARK.

7 Conclusion

In this paper, we have proposed a novel flexible GP tensor factorization model. In addition, we have
derived a tight ELBO for both continuous and binary problems, based on which we further developed
an efficient distributed variational inference algorithm in MAPREDUCE framework.

Acknowledgement

Dr. Zenglin Xu was supported by a grant from NSF China under No. 61572111. We thank IBM T.J.
Watson Research Center for providing one dataset. We also thank Jiasen Yang for proofreading this
paper.

8

CP NNCP HOSVD Tucker InfTucker InfTuckerEx CP-2 Ours-GD Ours-LBFGS

Number of Factors
3 5 8 10M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.65

1.5

2

2.5

3

(a) Alog
Number of Factors

3 5 8 10M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.3

0.8

1.2

1.9

(b) AdClick
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(c) Enron
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(d) NellSmall

Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.

Number of Machines
5 10 15 201

 /
 R

u
n

n
in

g
T

im
e

 X
 C

o
n

st

1

3

5

(a) Scalability

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0.1

0.5

0.7

0.9
GigaTensor
DinTucker
InfTuckerEx
Ours-GD
Ours-LBFGS

(b) ACC

A
U

C

0.82

0.9

0.95

(c) DBLP
A

U
C

0.82

0.9

0.95

1

(d) NELL

Figure 2: Prediction accuracy (averaged on 50 test datasets) on large tensor data and the scalability.

6.3 Evaluation on Large Tensor Data

We then compared our approach with three state-of-the-art large-scale tensor factorization methods:
GigaTensor [8], Distributed infinite Tucker decomposition (DinTucker) [22], and InfTuckerEx [23].
Both GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online inference.
Our model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

We set the number of latent factors to 3 for ACC and DBLP data set, and 5 for NELL data set.
Following the settings in [23, 22], we randomly chose 80% of nonzero entries for training, and then
sampled 50 test data sets from the remaining entries. For ACC and DBLP, each test data set comprises
200 nonzero elements and 1, 800 zero elements; for NELL, each test data set contains 200 nonzero
elements and 2, 000 zero elements. The running of GigaTensor was based on the default settings
of the software package. For DinTucker and InfTuckerEx, we randomly sampled subtensors for
distributed or online inference. The parameters, including the number and size of the subtensors and
the learning rate, were selected in the same way as [23]. The kernel form and parameters were chosen
by a cross-validation on the training tensor. For our model, we used the same setting as in the small
data. We set 50 MAPPERS for GigaTensor, DinTucker and our model.

Figure 2(b)-(d) shows the predictive performance of all the methods. We observe that our approach
consistently outperforms GigaTensor and DinTucker on all the three datasets; our approach outper-
forms InfTuckerEx on ACC and DBLP and is slightly worse than InfTuckerEx on NELL. Note again
that InfTuckerEx uses DPM prior to enhance the factorization while our model doesn’t; finally, all the
nonlinear factorization methods outperform GigaTensor, a distributed CP factorization algorithm by a
large margin, confirming the advantages of nonlinear factorizations on large data. In terms of speed,
our algorithm is much faster than GigaTensor and DinTucker. For example, on DBLP dataset, the
average per-iteration running time were 1.45, 15.4 and 20.5 minutes for our model, GigaTensor and
DinTucker, respectively. This is not surprising, because (1) our model uses the data sparsity and can
exclude numerous, meaningless zero elements from training; (2) our algorithm is based on SPARK,
a more efficient MAPREDUCE system than HADOOP; (3) our algorithm gets rid of data shuffling and
can fully exploit the memory-cache mechanism of SPARK.

7 Conclusion

In this paper, we have proposed a novel flexible GP tensor factorization model. In addition, we have
derived a tight ELBO for both continuous and binary problems, based on which we further developed
an efficient distributed variational inference algorithm in MAPREDUCE framework.

Acknowledgement

Dr. Zenglin Xu was supported by a grant from NSF China under No. 61572111. We thank IBM T.J.
Watson Research Center for providing one dataset. We also thank Jiasen Yang for proofreading this
paper.

8

Flexible GP factorization

Large Data: Scalability Issue

entries

Model Estimation: Infeasible

 38

n n⇥ n

N
�
y|0, k(X,X)

�

e.g., 1 million

 39

Variational Estimation Procedure

Maximize Model Evidence w.r.t latent factors

N
�
y|0, k(X,X)

�
log

�
p(y)

�
U = {U,V,W}

L1(U ,B)

L2(U ,B,�)

 Model Evidence

Continuous

Binary

 Variational Model Evidence

(i.e., Objective function)

 40

Variational Model Evidence

L1(U ,B)

L2(U ,B,�)

Continuous

Binary

•Decomposed mathematical structure

•Parallel computation

Maximize Variational Model Evidence
(i.e., Objective function)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

Variational Form

 41

Additive Structure Over Tensor Entries

 42

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4

+
�

2
tr(K�1

BBA1) + CONST

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a2 + a3

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

�(t+1)
= (KBB +A1)

�1
(A1�

(t)
+ a6)

a6 =

X

j

k(B,xij)(2yij � 1)
N
�
k(B,xij)

>�(t)|0, 1
�

�
�
(2yij � 1)k(B,xij)

>�(t)�

L1(U ,B, q(v)) = log(p(U)) +
Z

q(v) log
p(v|B)

q(v)
dv +

X
j

Z
q(v)Fv(yij ,�)dv

L1

�
y,U ,B, q(v)

�

B,U
L⇤
1(y,U ,B)

L1

�
y,U ,B, q(v)

�

(A1,rA1)

(a2,ra2)

(a3,ra3)

(a4,ra4)

(a5,ra4)

L1(y,U ,B, q(v)) = log(p(U)) +H
�
q(v)

�

+

Z
log

�
N (v|0, k(B,B)

�

+

X
j

Z
q(v)Fv(yij ,�)dv

4

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

k(X,X) =

2

664

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
. . .

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)

3

775

F ⇠ N (vec(F)|0,UU> ⌦VV> ⌦WW>
)

UU> ⇢ k(U,U), VV> ⇢ k(V,V), WW> ⇢ k(W,W)

F ⇠ N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

�(X)�(X)
>
=

2

6664

�(x1)
>�(x1) �(x1)

>�(x2) · · · �(x1)
>�(xn)

�(x2)
>�(x1) �(x2)

>�(x2) · · · �(x2)
>�(xn)

...
. . .

...
�(xn)

>�(x1) �(xn)
>�(x2) · · · �(xn)

>�(xn)

3

7775

p(Y |X) = N
�
Y |0,�(X)�(X)

>�

KSS = k(XS ,XS)

KBB = k(B,B)

KSB = k(XS ,B)

p(y|XS) = N (y|0,KSS)

log(p(m|))
y

N
�
y|0, k(XS ,XS)

�

p(y,v|U ,B) = N
� y

v

�
;

0
0

�
,

KSS KSB

K>
SB KBB

� �

log
�
p(y,U)

�

q(v), {q(z1), . . . , q(zn)}
L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�

L̂2

�
U ,B, {q(z1), . . . , q(zn)}

�

L̃2

�
U ,B, {q(z1), . . . , q(zn)},�

�

|�| =

L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�
= log(p(U)) +

Z
q(v) log(

p(v|B)

q(v)
)dv +

X
j
q(zj) log(

p(yij |zj)
q(zj)

)

+

X
j

Z
q(v)q(zj)Fv(zj , 1)dzjdv

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3 +

�

2
tr(K�1

BBA1)

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4 +
n

2
log(

�

2⇡
)

A1 =

X
j
k(B,xij)k(xij ,B), a2 =

X
j
y2ij , a3 =

X
j
k(xij ,xij)

a4 =

X
j
k(B,xij)yij , a5 =

X
j
log

�
�((2yij � 1)�>k(B,xij))

�

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a3 + a5

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

k(X,X) =

2

664

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
. . .

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)

3

775

F ⇠ N (vec(F)|0,UU> ⌦VV> ⌦WW>
)

UU> ⇢ k(U,U), VV> ⇢ k(V,V), WW> ⇢ k(W,W)

F ⇠ N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

�(X)�(X)
>
=

2

6664

�(x1)
>�(x1) �(x1)

>�(x2) · · · �(x1)
>�(xn)

�(x2)
>�(x1) �(x2)

>�(x2) · · · �(x2)
>�(xn)

...
. . .

...
�(xn)

>�(x1) �(xn)
>�(x2) · · · �(xn)

>�(xn)

3

7775

p(Y |X) = N
�
Y |0,�(X)�(X)

>�

KSS = k(XS ,XS)

KBB = k(B,B)

KSB = k(XS ,B)

p(y|XS) = N (y|0,KSS)

log(p(m|))
y

N
�
y|0, k(XS ,XS)

�

p(y,v|U ,B) = N
� y

v

�
;

0
0

�
,

KSS KSB

K>
SB KBB

� �

log
�
p(y,U)

�

q(v), {q(z1), . . . , q(zn)}
L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�

L̂2

�
U ,B, {q(z1), . . . , q(zn)}

�

L̃2

�
U ,B, {q(z1), . . . , q(zn)},�

�

|�| =

L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�
= log(p(U)) +

Z
q(v) log(

p(v|B)

q(v)
)dv +

X
j
q(zj) log(

p(yij |zj)
q(zj)

)

+

X
j

Z
q(v)q(zj)Fv(zj , 1)dzjdv

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3 +

�

2
tr(K�1

BBA1)

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4 +
n

2
log(

�

2⇡
)

A1 =

X
j
k(B,xij)k(xij ,B), a2 =

X
j
y2ij , a3 =

X
j
k(xij ,xij)

a4 =

X
j
k(B,xij)yij , a5 =

X
j
log

�
�((2yij � 1)�>k(B,xij))

�

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a3 + a5

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

k(X,X) =

2

664

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
. . .

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)

3

775

F ⇠ N (vec(F)|0,UU> ⌦VV> ⌦WW>
)

UU> ⇢ k(U,U), VV> ⇢ k(V,V), WW> ⇢ k(W,W)

F ⇠ N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

�(X)�(X)
>
=

2

6664

�(x1)
>�(x1) �(x1)

>�(x2) · · · �(x1)
>�(xn)

�(x2)
>�(x1) �(x2)

>�(x2) · · · �(x2)
>�(xn)

...
. . .

...
�(xn)

>�(x1) �(xn)
>�(x2) · · · �(xn)

>�(xn)

3

7775

p(Y |X) = N
�
Y |0,�(X)�(X)

>�

KSS = k(XS ,XS)

KBB = k(B,B)

KSB = k(XS ,B)

p(y|XS) = N (y|0,KSS)

log(p(m|))
y

N
�
y|0, k(XS ,XS)

�

p(y,v|U ,B) = N
� y

v

�
;

0
0

�
,

KSS KSB

K>
SB KBB

� �

log
�
p(y,U)

�

q(v), {q(z1), . . . , q(zn)}
L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�

L̂2

�
U ,B, {q(z1), . . . , q(zn)}

�

L̃2

�
U ,B, {q(z1), . . . , q(zn)},�

�

|�| =

L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�
= log(p(U)) +

Z
q(v) log(

p(v|B)

q(v)
)dv +

X
j
q(zj) log(

p(yij |zj)
q(zj)

)

+

X
j

Z
q(v)q(zj)Fv(zj , 1)dzjdv

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3 +

�

2
tr(K�1

BBA1)

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4 +
n

2
log(

�

2⇡
)

A1 =

X
j
k(B,xij)k(xij ,B), a2 =

X
j
y2ij , a3 =

X
j
k(xij ,xij)

a4 =

X
j
k(B,xij)yij , a5 =

X
j
log

�
�((2yij � 1)�>k(B,xij))

�

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a3 + a5

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

k(X,X) =

2

664

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
. . .

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)

3

775

F ⇠ N (vec(F)|0,UU> ⌦VV> ⌦WW>
)

UU> ⇢ k(U,U), VV> ⇢ k(V,V), WW> ⇢ k(W,W)

F ⇠ N
�
vec(F)|0, k(U,U)⌦ k(V,V)⌦ k(W,W)

�

�(X)�(X)
>
=

2

6664

�(x1)
>�(x1) �(x1)

>�(x2) · · · �(x1)
>�(xn)

�(x2)
>�(x1) �(x2)

>�(x2) · · · �(x2)
>�(xn)

...
. . .

...
�(xn)

>�(x1) �(xn)
>�(x2) · · · �(xn)

>�(xn)

3

7775

p(Y |X) = N
�
Y |0,�(X)�(X)

>�

KSS = k(XS ,XS)

KBB = k(B,B)

KSB = k(XS ,B)

p(y|XS) = N (y|0,KSS)

log(p(m|))
y

N
�
y|0, k(XS ,XS)

�

p(y,v|U ,B) = N
� y

v

�
;

0
0

�
,

KSS KSB

K>
SB KBB

� �

log
�
p(y,U)

�

q(v), {q(z1), . . . , q(zn)}
L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�

L̂2

�
U ,B, {q(z1), . . . , q(zn)}

�

L̃2

�
U ,B, {q(z1), . . . , q(zn)},�

�

|�| =

L2

�
U ,B, q(v), {q(z1), . . . , q(zn)}

�
= log(p(U)) +

Z
q(v) log(

p(v|B)

q(v)
)dv +

X
j
q(zj) log(

p(yij |zj)
q(zj)

)

+

X
j

Z
q(v)q(zj)Fv(zj , 1)dzjdv

L1(U ,B) =
1

2
log |KBB |�

1

2
log |KBB + �A1|�

1

2
�a2 �

1

2
�a3 +

�

2
tr(K�1

BBA1)

� 1

2

KX

k=1

kU(k)k2F +
1

2
�2a4

>
(KBB + �A1)

�1a4 +
n

2
log(

�

2⇡
)

A1 =

X
j
k(B,xij)k(xij ,B), a2 =

X
j
y2ij , a3 =

X
j
k(xij ,xij)

a4 =

X
j
k(B,xij)yij , a5 =

X
j
log

�
�((2yij � 1)�>k(B,xij))

�

L2(U ,B,�) =
1

2
log |KBB |�

1

2
log |KBB +A1|�

1

2
a3 + a5

� 1

2
�>KBB�+

1

2
tr(K�1

BBA1)�
1

2

KX

k=1

kU(k)k2F

3

Distributed Optimization Procedure

…

Optimization
Routine

 43

(L⇤,rL⇤)

B,U

B,U

B,U

B,U
B⇤,U⇤

(A1,rA1)
(a2,ra2)
(a3,ra3)
(a4,ra4)
(a5,ra4)

Entries
1, …, 20K

Entries
20K, …, 40K

Entries
980K, …, 1M

Map-Reduce Implementation

Standard Key-Value Map-Reduce

 44

(k1,v1), (k2, v2), (k3, v3), ….,
Mapper-1

Mapper-2

….

Reducers

Mapper-m

Key-Value sorting: Disk sorting

Key-Free Map-Reduce

…

Calculate a full gradient

 on each mapper

No sorting

Spark, 16 nodes

30x speed up
Key-Free vs Key-Value

Fully use

memory cache

Simple summation

 45

100⇥ 100⇥ 100

CP NNCP HOSVD Tucker InfTucker InfTuckerEx CP-2 Ours-GD Ours-LBFGS

Number of Factors
3 5 8 10M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r
(M

S
E

)

0.65

1.5

2

2.5

3

(a) Alog
Number of Factors

3 5 8 10M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

0.3

0.8

1.2

1.9

(b) AdClick
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(c) Enron
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(d) NellSmall

Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.

Number of Machines
5 10 15 201

 /
 R

u
n

n
in

g
T

im
e

 X
 C

o
n

st

1

3

5

(a) Scalability

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

0.1

0.5

0.7

0.9
GigaTensor
DinTucker
InfTuckerEx
Ours-GD
Ours-LBFGS

(b) ACC
A

U
C

0.82

0.9

0.95

(c) DBLP

A
U

C

0.82

0.9

0.95

1

(d) NELL

Figure 2: Prediction accuracy (averaged on 50 test datasets) on large tensor data and the scalability.

6.3 Evaluation on Large Tensor Data

We then compared our approach with three state-of-the-art large-scale tensor factorization methods:
GigaTensor [8], Distributed infinite Tucker decomposition (DinTucker) [22], and InfTuckerEx [23].
Both GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online inference.
Our model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

We set the number of latent factors to 3 for ACC and DBLP data set, and 5 for NELL data set.
Following the settings in [23, 22], we randomly chose 80% of nonzero entries for training, and then
sampled 50 test data sets from the remaining entries. For ACC and DBLP, each test data set comprises
200 nonzero elements and 1, 800 zero elements; for NELL, each test data set contains 200 nonzero
elements and 2, 000 zero elements. The running of GigaTensor was based on the default settings
of the software package. For DinTucker and InfTuckerEx, we randomly sampled subtensors for
distributed or online inference. The parameters, including the number and size of the subtensors and
the learning rate, were selected in the same way as [23]. The kernel form and parameters were chosen
by a cross-validation on the training tensor. For our model, we used the same setting as in the small
data. We set 50 MAPPERS for GigaTensor, DinTucker and our model.

Figure 2(b)-(d) shows the predictive performance of all the methods. We observe that our approach
consistently outperforms GigaTensor and DinTucker on all the three datasets; our approach outper-
forms InfTuckerEx on ACC and DBLP and is slightly worse than InfTuckerEx on NELL. Note again
that InfTuckerEx uses DPM prior to enhance the factorization while our model doesn’t; finally, all the
nonlinear factorization methods outperform GigaTensor, a distributed CP factorization algorithm by a
large margin, confirming the advantages of nonlinear factorizations on large data. In terms of speed,
our algorithm is much faster than GigaTensor and DinTucker. For example, on DBLP dataset, the
average per-iteration running time were 1.45, 15.4 and 20.5 minutes for our model, GigaTensor and
DinTucker, respectively. This is not surprising, because (1) our model uses the data sparsity and can
exclude numerous, meaningless zero elements from training; (2) our algorithm is based on SPARK,
a more efficient MAPREDUCE system than HADOOP; (3) our algorithm gets rid of data shuffling and
can fully exploit the memory-cache mechanism of SPARK.

7 Conclusion

In this paper, we have proposed a novel flexible GP tensor factorization model. In addition, we have
derived a tight ELBO for both continuous and binary problems, based on which we further developed
an efficient distributed variational inference algorithm in MAPREDUCE framework.

Acknowledgement

Dr. Zenglin Xu was supported by a grant from NSF China under No. 61572111. We thank IBM T.J.
Watson Research Center for providing one dataset. We also thank Jiasen Yang for proofreading this
paper.

8

CP NNCP HOSVD Tucker InfTucker InfTuckerEx CP-2 Ours-GD Ours-LBFGS

Number of Factors
3 5 8 10M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r
(M

S
E

)

0.65

1.5

2

2.5

3

(a) Alog
Number of Factors

3 5 8 10M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

0.3

0.8

1.2

1.9

(b) AdClick
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(c) Enron
Number of Factors

3 5 8 10

A
U

C

0.7

0.8

0.9

1

(d) NellSmall

Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.

Number of Machines
5 10 15 201

 /
 R

u
n

n
in

g
T

im
e

 X
 C

o
n

st

1

3

5

(a) Scalability

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

0.1

0.5

0.7

0.9
GigaTensor
DinTucker
InfTuckerEx
Ours-GD
Ours-LBFGS

(b) ACC
A

U
C

0.82

0.9

0.95

(c) DBLP

A
U

C

0.82

0.9

0.95

1

(d) NELL

Figure 2: Prediction accuracy (averaged on 50 test datasets) on large tensor data and the scalability.

6.3 Evaluation on Large Tensor Data

We then compared our approach with three state-of-the-art large-scale tensor factorization methods:
GigaTensor [8], Distributed infinite Tucker decomposition (DinTucker) [22], and InfTuckerEx [23].
Both GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online inference.
Our model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

We set the number of latent factors to 3 for ACC and DBLP data set, and 5 for NELL data set.
Following the settings in [23, 22], we randomly chose 80% of nonzero entries for training, and then
sampled 50 test data sets from the remaining entries. For ACC and DBLP, each test data set comprises
200 nonzero elements and 1, 800 zero elements; for NELL, each test data set contains 200 nonzero
elements and 2, 000 zero elements. The running of GigaTensor was based on the default settings
of the software package. For DinTucker and InfTuckerEx, we randomly sampled subtensors for
distributed or online inference. The parameters, including the number and size of the subtensors and
the learning rate, were selected in the same way as [23]. The kernel form and parameters were chosen
by a cross-validation on the training tensor. For our model, we used the same setting as in the small
data. We set 50 MAPPERS for GigaTensor, DinTucker and our model.

Figure 2(b)-(d) shows the predictive performance of all the methods. We observe that our approach
consistently outperforms GigaTensor and DinTucker on all the three datasets; our approach outper-
forms InfTuckerEx on ACC and DBLP and is slightly worse than InfTuckerEx on NELL. Note again
that InfTuckerEx uses DPM prior to enhance the factorization while our model doesn’t; finally, all the
nonlinear factorization methods outperform GigaTensor, a distributed CP factorization algorithm by a
large margin, confirming the advantages of nonlinear factorizations on large data. In terms of speed,
our algorithm is much faster than GigaTensor and DinTucker. For example, on DBLP dataset, the
average per-iteration running time were 1.45, 15.4 and 20.5 minutes for our model, GigaTensor and
DinTucker, respectively. This is not surprising, because (1) our model uses the data sparsity and can
exclude numerous, meaningless zero elements from training; (2) our algorithm is based on SPARK,
a more efficient MAPREDUCE system than HADOOP; (3) our algorithm gets rid of data shuffling and
can fully exploit the memory-cache mechanism of SPARK.

7 Conclusion

In this paper, we have proposed a novel flexible GP tensor factorization model. In addition, we have
derived a tight ELBO for both continuous and binary problems, based on which we further developed
an efficient distributed variational inference algorithm in MAPREDUCE framework.

Acknowledgement

Dr. Zenglin Xu was supported by a grant from NSF China under No. 61572111. We thank IBM T.J.
Watson Research Center for providing one dataset. We also thank Jiasen Yang for proofreading this
paper.

8

Large Tensor with Millions of Nonzero Elements

Continuous tensor Binary tensor

 46

Flexible GP factorization with Spark

1. Factor Concatenation

 47

3. Key-Free Map-Reduce

2. Decomposed Variational Form

Flexible GP Factorization

How to Deal with Temporal Information

 48

3:10pm
10:10am

6:20pm

Interaction time series (events)

 49

User id Item id Page id Buy Time-stamp

100 25 35 1 23:00/05/06/2010

23 21 56 0 20:00/05/07/2010

100 25 32 1 22:10/05/08/2010

… … … … …
32 33 46 0 23:00/05/20/2010

An Example

 50

Existing Approaches

user

item

(i1, i2, i3)
<latexit sha1_base64="zMPzi3yWFkUyZVRZ+VKsskf2mmc=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iEClKSKuiy6MZlBfuANoTJdNIOnUzCzESooV/ixoUibv0Ud/6NkzYLbT1wL4dz7mXuHD/mTGnb/rYKa+sbm1vF7dLO7t5+uXJw2FFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nN/O4jlYpF4kFPY+qGeCRYwAjWRvIq5RrznHPEvEbWLs68StWu23OgVeLkpAo5Wl7lazCMSBJSoQnHSvUdO9ZuiqVmhNNZaZAoGmMywSPaN1TgkCo3nR8+Q6dGGaIgkqaERnP190aKQ6WmoW8mQ6zHatnLxP+8fqKDazdlIk40FWTxUJBwpCOUpYCGTFKi+dQQTCQztyIyxhITbbIqmRCc5S+vkk6j7th15/6y2rzJ4yjCMZxADRy4gibcQQvaQCCBZ3iFN+vJerHerY/FaMHKd47gD6zPH5sRkRg=</latexit><latexit sha1_base64="zMPzi3yWFkUyZVRZ+VKsskf2mmc=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iEClKSKuiy6MZlBfuANoTJdNIOnUzCzESooV/ixoUibv0Ud/6NkzYLbT1wL4dz7mXuHD/mTGnb/rYKa+sbm1vF7dLO7t5+uXJw2FFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nN/O4jlYpF4kFPY+qGeCRYwAjWRvIq5RrznHPEvEbWLs68StWu23OgVeLkpAo5Wl7lazCMSBJSoQnHSvUdO9ZuiqVmhNNZaZAoGmMywSPaN1TgkCo3nR8+Q6dGGaIgkqaERnP190aKQ6WmoW8mQ6zHatnLxP+8fqKDazdlIk40FWTxUJBwpCOUpYCGTFKi+dQQTCQztyIyxhITbbIqmRCc5S+vkk6j7th15/6y2rzJ4yjCMZxADRy4gibcQQvaQCCBZ3iFN+vJerHerY/FaMHKd47gD6zPH5sRkRg=</latexit><latexit sha1_base64="zMPzi3yWFkUyZVRZ+VKsskf2mmc=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iEClKSKuiy6MZlBfuANoTJdNIOnUzCzESooV/ixoUibv0Ud/6NkzYLbT1wL4dz7mXuHD/mTGnb/rYKa+sbm1vF7dLO7t5+uXJw2FFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nN/O4jlYpF4kFPY+qGeCRYwAjWRvIq5RrznHPEvEbWLs68StWu23OgVeLkpAo5Wl7lazCMSBJSoQnHSvUdO9ZuiqVmhNNZaZAoGmMywSPaN1TgkCo3nR8+Q6dGGaIgkqaERnP190aKQ6WmoW8mQ6zHatnLxP+8fqKDazdlIk40FWTxUJBwpCOUpYCGTFKi+dQQTCQztyIyxhITbbIqmRCc5S+vkk6j7th15/6y2rzJ4yjCMZxADRy4gibcQQvaQCCBZ3iFN+vJerHerY/FaMHKd47gD6zPH5sRkRg=</latexit><latexit sha1_base64="zMPzi3yWFkUyZVRZ+VKsskf2mmc=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iEClKSKuiy6MZlBfuANoTJdNIOnUzCzESooV/ixoUibv0Ud/6NkzYLbT1wL4dz7mXuHD/mTGnb/rYKa+sbm1vF7dLO7t5+uXJw2FFRIgltk4hHsudjRTkTtK2Z5rQXS4pDn9OuP7nN/O4jlYpF4kFPY+qGeCRYwAjWRvIq5RrznHPEvEbWLs68StWu23OgVeLkpAo5Wl7lazCMSBJSoQnHSvUdO9ZuiqVmhNNZaZAoGmMywSPaN1TgkCo3nR8+Q6dGGaIgkqaERnP190aKQ6WmoW8mQ6zHatnLxP+8fqKDazdlIk40FWTxUJBwpCOUpYCGTFKi+dQQTCQztyIyxhITbbIqmRCc5S+vkk6j7th15/6y2rzJ4yjCMZxADRy4gibcQQvaQCCBZ3iFN+vJerHerY/FaMHKd47gD6zPH5sRkRg=</latexit>

pa
ge

=<latexit sha1_base64="NXXyo5YwHjQEa14yJBBpMTmsH6Q=">AAACHnicbVDLSsNAFJ34rPEVdelmsARakJJURTdC0Y0boYJ9QFvCZDpph04mYWYilNAvceOvuHGhiOBK/8ZJm4W2HpjhcM693HuPHzMqleN8G0vLK6tr64UNc3Nre2fX2ttvyigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXWd+64EISSN+r8Yx6YVowGlAMVJa8qwzu0Q99xhSr5p9J2XT7oZIDTFi6e1kwQtKpl02Lz2r6FScKeAicXNSBDnqnvXZ7Uc4CQlXmCEpO64Tq16KhKKYkYnZTSSJER6hAeloylFIZC+dnjeBtlb6MIiEflzBqfq7I0WhlOPQ15XZ6nLey8T/vE6igoteSnmcKMLxbFCQMKgimGUF+1QQrNhYE4QF1btCPEQCYaUTNXUI7vzJi6RZrbhOxb07Ldau8jgK4BAcgRJwwTmogRtQBw2AwSN4Bq/gzXgyXox342NWumTkPQfgD4yvH7CenJY=</latexit><latexit sha1_base64="NXXyo5YwHjQEa14yJBBpMTmsH6Q=">AAACHnicbVDLSsNAFJ34rPEVdelmsARakJJURTdC0Y0boYJ9QFvCZDpph04mYWYilNAvceOvuHGhiOBK/8ZJm4W2HpjhcM693HuPHzMqleN8G0vLK6tr64UNc3Nre2fX2ttvyigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXWd+64EISSN+r8Yx6YVowGlAMVJa8qwzu0Q99xhSr5p9J2XT7oZIDTFi6e1kwQtKpl02Lz2r6FScKeAicXNSBDnqnvXZ7Uc4CQlXmCEpO64Tq16KhKKYkYnZTSSJER6hAeloylFIZC+dnjeBtlb6MIiEflzBqfq7I0WhlOPQ15XZ6nLey8T/vE6igoteSnmcKMLxbFCQMKgimGUF+1QQrNhYE4QF1btCPEQCYaUTNXUI7vzJi6RZrbhOxb07Ldau8jgK4BAcgRJwwTmogRtQBw2AwSN4Bq/gzXgyXox342NWumTkPQfgD4yvH7CenJY=</latexit><latexit sha1_base64="NXXyo5YwHjQEa14yJBBpMTmsH6Q=">AAACHnicbVDLSsNAFJ34rPEVdelmsARakJJURTdC0Y0boYJ9QFvCZDpph04mYWYilNAvceOvuHGhiOBK/8ZJm4W2HpjhcM693HuPHzMqleN8G0vLK6tr64UNc3Nre2fX2ttvyigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXWd+64EISSN+r8Yx6YVowGlAMVJa8qwzu0Q99xhSr5p9J2XT7oZIDTFi6e1kwQtKpl02Lz2r6FScKeAicXNSBDnqnvXZ7Uc4CQlXmCEpO64Tq16KhKKYkYnZTSSJER6hAeloylFIZC+dnjeBtlb6MIiEflzBqfq7I0WhlOPQ15XZ6nLey8T/vE6igoteSnmcKMLxbFCQMKgimGUF+1QQrNhYE4QF1btCPEQCYaUTNXUI7vzJi6RZrbhOxb07Ldau8jgK4BAcgRJwwTmogRtQBw2AwSN4Bq/gzXgyXox342NWumTkPQfgD4yvH7CenJY=</latexit><latexit sha1_base64="NXXyo5YwHjQEa14yJBBpMTmsH6Q=">AAACHnicbVDLSsNAFJ34rPEVdelmsARakJJURTdC0Y0boYJ9QFvCZDpph04mYWYilNAvceOvuHGhiOBK/8ZJm4W2HpjhcM693HuPHzMqleN8G0vLK6tr64UNc3Nre2fX2ttvyigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXWd+64EISSN+r8Yx6YVowGlAMVJa8qwzu0Q99xhSr5p9J2XT7oZIDTFi6e1kwQtKpl02Lz2r6FScKeAicXNSBDnqnvXZ7Uc4CQlXmCEpO64Tq16KhKKYkYnZTSSJER6hAeloylFIZC+dnjeBtlb6MIiEflzBqfq7I0WhlOPQ15XZ6nLey8T/vE6igoteSnmcKMLxbFCQMKgimGUF+1QQrNhYE4QF1btCPEQCYaUTNXUI7vzJi6RZrbhOxb07Ldau8jgK4BAcgRJwwTmogRtQBw2AwSN4Bq/gzXgyXox342NWumTkPQfgD4yvH7CenJY=</latexit>f(
<latexit sha1_base64="HtlbdolTZQFq43eOq2hXhuNOZ0I=">AAACGHicbVDLSsNAFL2prxpfUZduBkuhgtSkCrosunEjVLAPaEuYTCft0MmDmYlQQj/Djb/ixoUibrvzb5y0WWj1wAyHc+7l3nu8mDOpbPvLKKysrq1vFDfNre2d3T1r/6Alo0QQ2iQRj0THw5JyFtKmYorTTiwoDjxO2974JvPbj1RIFoUPahLTfoCHIfMZwUpLrnVWrjDXOUXMrWXf+YlZ7gVYjQjm6d102fMrrlWyq/Yc6C9xclKCHA3XmvUGEUkCGirCsZRdx45VP8VCMcLp1OwlksaYjPGQdjUNcUBlP50fNkVlrQyQHwn9QoXm6s+OFAdSTgJPV2ZLy2UvE//zuonyr/opC+NE0ZAsBvkJRypCWUpowAQlik80wUQwvSsiIywwUTpLU4fgLJ/8l7RqVceuOvcXpfp1HkcRjuAYKuDAJdThFhrQBAJP8AJv8G48G6/Gh/G5KC0Yec8h/IIx+wZXMpuW</latexit><latexit sha1_base64="HtlbdolTZQFq43eOq2hXhuNOZ0I=">AAACGHicbVDLSsNAFL2prxpfUZduBkuhgtSkCrosunEjVLAPaEuYTCft0MmDmYlQQj/Djb/ixoUibrvzb5y0WWj1wAyHc+7l3nu8mDOpbPvLKKysrq1vFDfNre2d3T1r/6Alo0QQ2iQRj0THw5JyFtKmYorTTiwoDjxO2974JvPbj1RIFoUPahLTfoCHIfMZwUpLrnVWrjDXOUXMrWXf+YlZ7gVYjQjm6d102fMrrlWyq/Yc6C9xclKCHA3XmvUGEUkCGirCsZRdx45VP8VCMcLp1OwlksaYjPGQdjUNcUBlP50fNkVlrQyQHwn9QoXm6s+OFAdSTgJPV2ZLy2UvE//zuonyr/opC+NE0ZAsBvkJRypCWUpowAQlik80wUQwvSsiIywwUTpLU4fgLJ/8l7RqVceuOvcXpfp1HkcRjuAYKuDAJdThFhrQBAJP8AJv8G48G6/Gh/G5KC0Yec8h/IIx+wZXMpuW</latexit><latexit sha1_base64="HtlbdolTZQFq43eOq2hXhuNOZ0I=">AAACGHicbVDLSsNAFL2prxpfUZduBkuhgtSkCrosunEjVLAPaEuYTCft0MmDmYlQQj/Djb/ixoUibrvzb5y0WWj1wAyHc+7l3nu8mDOpbPvLKKysrq1vFDfNre2d3T1r/6Alo0QQ2iQRj0THw5JyFtKmYorTTiwoDjxO2974JvPbj1RIFoUPahLTfoCHIfMZwUpLrnVWrjDXOUXMrWXf+YlZ7gVYjQjm6d102fMrrlWyq/Yc6C9xclKCHA3XmvUGEUkCGirCsZRdx45VP8VCMcLp1OwlksaYjPGQdjUNcUBlP50fNkVlrQyQHwn9QoXm6s+OFAdSTgJPV2ZLy2UvE//zuonyr/opC+NE0ZAsBvkJRypCWUpowAQlik80wUQwvSsiIywwUTpLU4fgLJ/8l7RqVceuOvcXpfp1HkcRjuAYKuDAJdThFhrQBAJP8AJv8G48G6/Gh/G5KC0Yec8h/IIx+wZXMpuW</latexit><latexit sha1_base64="HtlbdolTZQFq43eOq2hXhuNOZ0I=">AAACGHicbVDLSsNAFL2prxpfUZduBkuhgtSkCrosunEjVLAPaEuYTCft0MmDmYlQQj/Djb/ixoUibrvzb5y0WWj1wAyHc+7l3nu8mDOpbPvLKKysrq1vFDfNre2d3T1r/6Alo0QQ2iQRj0THw5JyFtKmYorTTiwoDjxO2974JvPbj1RIFoUPahLTfoCHIfMZwUpLrnVWrjDXOUXMrWXf+YlZ7gVYjQjm6d102fMrrlWyq/Yc6C9xclKCHA3XmvUGEUkCGirCsZRdx45VP8VCMcLp1OwlksaYjPGQdjUNcUBlP50fNkVlrQyQHwn9QoXm6s+OFAdSTgJPV2ZLy2UvE//zuonyr/opC+NE0ZAsBvkJRypCWUpowAQlik80wUQwvSsiIywwUTpLU4fgLJ/8l7RqVceuOvcXpfp1HkcRjuAYKuDAJdThFhrQBAJP8AJv8G48G6/Gh/G5KC0Yec8h/IIx+wZXMpuW</latexit>

)
<latexit sha1_base64="lqIbaNKhk/UYMmUKExWnsmvmU4s=">AAACG3icbVDLSsNAFL2prxpfUZduBkuhBSlJFXRZdONGqGBroS1hMp20QycPZiZCCf0PN/6KGxeKuBJc+DdO2iy09cAMh3Pu5d57vJgzqWz72yisrK6tbxQ3za3tnd09a/+gLaNEENoiEY9Ex8OSchbSlmKK004sKA48Tu+98VXm3z9QIVkU3qlJTPsBHobMZwQrLblWvVxhrnOCmFvPvtOqWe4FWI0I5unNdMnzK2bVtUp2zZ4BLRMnJyXI0XStz94gIklAQ0U4lrLr2LHqp1goRjidmr1E0hiTMR7SrqYhDqjsp7PbpqislQHyI6FfqNBM/d2R4kDKSeDpymxvuehl4n9eN1H+RT9lYZwoGpL5ID/hSEUoCwoNmKBE8YkmmAimd0VkhAUmSsdp6hCcxZOXSbtec+yac3tWalzmcRThCI6hAg6cQwOuoQktIPAIz/AKb8aT8WK8Gx/z0oKR9xzCHxhfP3QTnAw=</latexit><latexit sha1_base64="lqIbaNKhk/UYMmUKExWnsmvmU4s=">AAACG3icbVDLSsNAFL2prxpfUZduBkuhBSlJFXRZdONGqGBroS1hMp20QycPZiZCCf0PN/6KGxeKuBJc+DdO2iy09cAMh3Pu5d57vJgzqWz72yisrK6tbxQ3za3tnd09a/+gLaNEENoiEY9Ex8OSchbSlmKK004sKA48Tu+98VXm3z9QIVkU3qlJTPsBHobMZwQrLblWvVxhrnOCmFvPvtOqWe4FWI0I5unNdMnzK2bVtUp2zZ4BLRMnJyXI0XStz94gIklAQ0U4lrLr2LHqp1goRjidmr1E0hiTMR7SrqYhDqjsp7PbpqislQHyI6FfqNBM/d2R4kDKSeDpymxvuehl4n9eN1H+RT9lYZwoGpL5ID/hSEUoCwoNmKBE8YkmmAimd0VkhAUmSsdp6hCcxZOXSbtec+yac3tWalzmcRThCI6hAg6cQwOuoQktIPAIz/AKb8aT8WK8Gx/z0oKR9xzCHxhfP3QTnAw=</latexit><latexit sha1_base64="lqIbaNKhk/UYMmUKExWnsmvmU4s=">AAACG3icbVDLSsNAFL2prxpfUZduBkuhBSlJFXRZdONGqGBroS1hMp20QycPZiZCCf0PN/6KGxeKuBJc+DdO2iy09cAMh3Pu5d57vJgzqWz72yisrK6tbxQ3za3tnd09a/+gLaNEENoiEY9Ex8OSchbSlmKK004sKA48Tu+98VXm3z9QIVkU3qlJTPsBHobMZwQrLblWvVxhrnOCmFvPvtOqWe4FWI0I5unNdMnzK2bVtUp2zZ4BLRMnJyXI0XStz94gIklAQ0U4lrLr2LHqp1goRjidmr1E0hiTMR7SrqYhDqjsp7PbpqislQHyI6FfqNBM/d2R4kDKSeDpymxvuehl4n9eN1H+RT9lYZwoGpL5ID/hSEUoCwoNmKBE8YkmmAimd0VkhAUmSsdp6hCcxZOXSbtec+yac3tWalzmcRThCI6hAg6cQwOuoQktIPAIz/AKb8aT8WK8Gx/z0oKR9xzCHxhfP3QTnAw=</latexit><latexit sha1_base64="lqIbaNKhk/UYMmUKExWnsmvmU4s=">AAACG3icbVDLSsNAFL2prxpfUZduBkuhBSlJFXRZdONGqGBroS1hMp20QycPZiZCCf0PN/6KGxeKuBJc+DdO2iy09cAMh3Pu5d57vJgzqWz72yisrK6tbxQ3za3tnd09a/+gLaNEENoiEY9Ex8OSchbSlmKK004sKA48Tu+98VXm3z9QIVkU3qlJTPsBHobMZwQrLblWvVxhrnOCmFvPvtOqWe4FWI0I5unNdMnzK2bVtUp2zZ4BLRMnJyXI0XStz94gIklAQ0U4lrLr2LHqp1goRjidmr1E0hiTMR7SrqYhDqjsp7PbpqislQHyI6FfqNBM/d2R4kDKSeDpymxvuehl4n9eN1H+RT9lYZwoGpL5ID/hSEUoCwoNmKBE8YkmmAimd0VkhAUmSsdp6hCcxZOXSbtec+yac3tWalzmcRThCI6hAg6cQwOuoQktIPAIz/AKb8aT8WK8Gx/z0oKR9xzCHxhfP3QTnAw=</latexit>

�����

Time-stamp

23:00/05/06/2010

20:00/05/07/2010

22:10/05/08/2010

…

23:00/05/20/2010

count in
Week 1

…

(user, item, page week)

Ignore

Discretize

 51

Ignore or over-simplify temporal
inferences!

Existing Approaches

 52

Nonparametric Event-Tensor Decomposition

user item page time-stamp

100 25 35 ����������������

23 21 �� ����������	�����

100 25 �� ����������
�����

..

32 33 �� ����������������

index time-stamps
(100,25,35) {s1, s2...sn}

<latexit sha1_base64="QrucCBJJT+6UOj+9PBvbDcskOwQ=">AAAC33icjVHLSsNAFD3GV62vqjvdBFvBhYSkG10W3bisYFVopSRx1GCahGQilFJw507c+gNu9W/EP9C/8MwYwQeiEzJz5tx7zsyd6yVhkEnbfh4xRsfGJyZLU+Xpmdm5+crC4kEW56kvWn4cxumR52YiDCLRkoEMxVGSCrfnheLQu9hR8cNLkWZBHO3LfiKOe+5ZFJwGvitJdSvLtVpnYGZdx9zgXDcty+IadYa1WrdStS1bD/MncApQRTGaceUJHZwgho8cPQhEkMQhXGT82nBgIyF3jAG5lCjQcYEhytTmzBLMcMlecD7jrl2wEffKM9Nqn6eE/FMqTaxREzMvJVanmTqea2fF/uY90J7qbn2uXuHVIytxTvYv3Ufmf3WqFolTbOkaAtaUaEZV5xcuuX4VdXPzU1WSDgk5hU8YT4l9rfx4Z1NrMl27eltXx190pmLV3i9yc7yqW7LBzvd2/gQHdcsh3qtXG9tFq0tYwSrW2c9NNLCLJlr0vsI9HvBouMa1cWPcvqcaI4VmCV+GcfcGNOuXCw==</latexit><latexit sha1_base64="QrucCBJJT+6UOj+9PBvbDcskOwQ=">AAAC33icjVHLSsNAFD3GV62vqjvdBFvBhYSkG10W3bisYFVopSRx1GCahGQilFJw507c+gNu9W/EP9C/8MwYwQeiEzJz5tx7zsyd6yVhkEnbfh4xRsfGJyZLU+Xpmdm5+crC4kEW56kvWn4cxumR52YiDCLRkoEMxVGSCrfnheLQu9hR8cNLkWZBHO3LfiKOe+5ZFJwGvitJdSvLtVpnYGZdx9zgXDcty+IadYa1WrdStS1bD/MncApQRTGaceUJHZwgho8cPQhEkMQhXGT82nBgIyF3jAG5lCjQcYEhytTmzBLMcMlecD7jrl2wEffKM9Nqn6eE/FMqTaxREzMvJVanmTqea2fF/uY90J7qbn2uXuHVIytxTvYv3Ufmf3WqFolTbOkaAtaUaEZV5xcuuX4VdXPzU1WSDgk5hU8YT4l9rfx4Z1NrMl27eltXx190pmLV3i9yc7yqW7LBzvd2/gQHdcsh3qtXG9tFq0tYwSrW2c9NNLCLJlr0vsI9HvBouMa1cWPcvqcaI4VmCV+GcfcGNOuXCw==</latexit><latexit sha1_base64="QrucCBJJT+6UOj+9PBvbDcskOwQ=">AAAC33icjVHLSsNAFD3GV62vqjvdBFvBhYSkG10W3bisYFVopSRx1GCahGQilFJw507c+gNu9W/EP9C/8MwYwQeiEzJz5tx7zsyd6yVhkEnbfh4xRsfGJyZLU+Xpmdm5+crC4kEW56kvWn4cxumR52YiDCLRkoEMxVGSCrfnheLQu9hR8cNLkWZBHO3LfiKOe+5ZFJwGvitJdSvLtVpnYGZdx9zgXDcty+IadYa1WrdStS1bD/MncApQRTGaceUJHZwgho8cPQhEkMQhXGT82nBgIyF3jAG5lCjQcYEhytTmzBLMcMlecD7jrl2wEffKM9Nqn6eE/FMqTaxREzMvJVanmTqea2fF/uY90J7qbn2uXuHVIytxTvYv3Ufmf3WqFolTbOkaAtaUaEZV5xcuuX4VdXPzU1WSDgk5hU8YT4l9rfx4Z1NrMl27eltXx190pmLV3i9yc7yqW7LBzvd2/gQHdcsh3qtXG9tFq0tYwSrW2c9NNLCLJlr0vsI9HvBouMa1cWPcvqcaI4VmCV+GcfcGNOuXCw==</latexit><latexit sha1_base64="QrucCBJJT+6UOj+9PBvbDcskOwQ=">AAAC33icjVHLSsNAFD3GV62vqjvdBFvBhYSkG10W3bisYFVopSRx1GCahGQilFJw507c+gNu9W/EP9C/8MwYwQeiEzJz5tx7zsyd6yVhkEnbfh4xRsfGJyZLU+Xpmdm5+crC4kEW56kvWn4cxumR52YiDCLRkoEMxVGSCrfnheLQu9hR8cNLkWZBHO3LfiKOe+5ZFJwGvitJdSvLtVpnYGZdx9zgXDcty+IadYa1WrdStS1bD/MncApQRTGaceUJHZwgho8cPQhEkMQhXGT82nBgIyF3jAG5lCjQcYEhytTmzBLMcMlecD7jrl2wEffKM9Nqn6eE/FMqTaxREzMvJVanmTqea2fF/uY90J7qbn2uXuHVIytxTvYv3Ufmf3WqFolTbOkaAtaUaEZV5xcuuX4VdXPzU1WSDgk5hU8YT4l9rfx4Z1NrMl27eltXx190pmLV3i9yc7yqW7LBzvd2/gQHdcsh3qtXG9tFq0tYwSrW2c9NNLCLJlr0vsI9HvBouMa1cWPcvqcaI4VmCV+GcfcGNOuXCw==</latexit>

Event-Tensor

[Zhe et. al., NIPS’18 spotlight]

 53

Mutually Excited Hawkes Processes

�(t) = �0 +
X

si<t

h(t� si)
<latexit sha1_base64="WjZyLOZYL3ssndS78hFmOKJP2tY=">AAAFNXiclVRNb9MwGM7WAiN8dXDkYlFFajSYkoEEEkyauguogAaiW1HTRY7rtKbOh2xnXRXyp7jwPzjBgQMIceUv4KQpcVs4YCnR4/d9n/fjcRwvpoQLy/qysVmrX7h4aeuyfuXqtes3Gts3j3mUMIS7KKIR63mQY0pC3BVEUNyLGYaBR/GJNznM/SdnmHEShW/ELMaDAI5C4hMEhTS527WO4QRQjD0/Pc+Aw8hoLCBj0RQszEmmGxUG+8BvVQwT6P/Dz0POq5jUz5bClMRueFdxuaEpk9BhJLiaTG2sxCxIUXSWOR4Z/cnmZ2rHucuUYyxM7ezUEVEM/kmfrtMrrpx/orZNqrbl7p1aKPcqpcoI3Zi6ZEnRfTBS9lU+T/JN0LKBQzEgxbtjVhK0FTl6+Tn1lTK2TFPIt9ReOCj60Y0QOIIEmIOObsSKbu8LaCoBw6rI2+w0bT03M7UFaZmolsPCsmOb8qA5CebFEaTpi5eVqpYy5LMlbK7mLjIpoy0qPgbrFQcV2cuUc5Cfk9Qwms8zV6XaVjGvdYfKezSELVGc4nzjWmBHjpIEbspd8kRkYNwS9yQ0dV13G01r1yoWWAd2CZpauY7cxidnGKEkwKFAFHLet61YDFLIBEEUZ7qTcBxDNIEj3JcwhLLHQVrc+gwY0jIEfsTkEwpQWFVGCgPOZ4Gc3cin4qu+3Pg3Xz8R/qNBSsI4EThE80J+QoGIQP4LAUPCMBJ0JgFEjMheARpDBpGQP5pcBHt15HVwvLdr39/de/WgedAu5djSbmt3tJZmaw+1A+2pdqR1NVT7UPtc+1b7Xv9Y/1r/Uf85D93cKDm3tKVV//Ubq5C/fw==</latexit>

rate function

background rate triggering-kernel, e.g.,

h(�) = � exp(��

⌧
)

<latexit sha1_base64="dqCmoXu7ZMxnb60Gs3PHrh0yXJ0=">AAAFYniclVRbb9MwFM7WFkaAbWWP8GAxRUo0ViUDCSSYNG08gAZoIHZBTRc5rtOaOhfZztYp+E/yxhMv/BCcpCPuCg9YSvT5nPOdy+fEYUYJF677Y2m51e7cur1yx7x77/7q2nr3wQlPc4bwMUppys5CyDElCT4WRFB8ljEM45Di03ByUPpPLzDjJE0+i6sMD2I4SkhEEBTKFHRbU8uPoRiHUTGVwGdkNBaQsfQSXJtzaVoNBrsgshuGA8z/4Zch0yamiORcmJY4SJ5oriBxVBI6TAXXk+mNzTCLC5ReSD8koz/ZIql3XLocNca1aV+e+yLNwD/pl4v0hqvmn+htk6ZttfuqFyq9WqlZhGldBmRO0V0w0vZNvlDxHWB7wKcYkOp96DQS7GtynJXn1NfKeCpNJd9ce8mg6se0EuALEmMODk0r03T7VkFHCxg2Rb7I88J+50i9BWWZ6JaDyrLlOeqgOYnr4gjS4v2HRlVXG/LtHHZu5q4yaaNdV3wJFisOGnIotXNQn5PSMK3nqVVptk3Mp/KLUz/SENqiOsZ6E7hgS82Sx0HBA/JKSDC2xbaCjjm2/deYClhFh1hAH08ze9uPGERF7ZKFL2Cu5jLNYH3T7bnVAovAm4FNY7aOgvXv/jBFeYwTgSjkvO+5mRgUkAmCKJamn3OcQTSBI9xXMIFqoEFRXRESWMoyBFHK1JMIUFl1RgFjzq9iJZRVSsBv+krj33z9XEQvBgVJslzgBNWFopwCkYLyvgFDwjAS9EoBiBhRvQI0hkoRoW6lUgTv5siL4GSn5z3t7Xx8trm3P5NjxXhoPDZswzOeG3vGG+PIODZQ62e7015tr7V/dcxOt7NRhy4vzTgbxtzqPPoNWSfJ5g==</latexit>

 54

Mutually Excited Hawkes Processes (HPs)

the smoothness between the time factors. For example, Xiong et al. (2010) assigned a conditional
Gaussian prior over each T(k, :), p

�
T(k, :)|T(k � 1, :)

�
= N

�
T(k, :)|T(k � 1, :),�2I

�
.

3 Model
Despite the success of existing approaches in exploiting temporal information, they entirely drop the
time stamps and hence are unable to capture the important, triggering or causal effects between the
interactions. The triggering effects are common in real-world applications. For example, the event
that user A purchased commodity B may excite A’s friend C to purchase B as well. The triggering
effects are usually local and decay fast with time; dropping the time stamps and considering the event
occurrences independently make us unable to model/capture these effects.

To address these issues, and hence to further capture the complex relationships and important
structures underlying the interaction events, we formulate a new data abstraction, event-tensor,
to preserve all the time stamps. We then propose a powerful Bayesian nonparametric model to
decompose the event-tensors, discussed as follows.

3.1 Event-Tensor Formulation

First, let us look at the definition of event-tensors. To preserve the complete temporal information in
decomposition, we relax the definition that tensors must be multidimensional arrays of numerical
values. Instead, we define that each entry is a sequence of events, i.e., mi = {s

1
i , . . . , s

ni
i } where each

s
k
i (1 k ni) is a time stamp when the interaction happened, and ni the count of the events. Note

that, different entries correspond to distinct types of interaction events, since the involved entities (or
latent factors) are different. We name this tensor as an event-tensor. Given the observed entries {mi},
we can flatten their event sequences to obtain a single sequence S = [(s1, i1), . . . (sN , iN)] where
s1 . . . sN are all the time stamps, and each ik is the entry index for the event sk(1 k N) .

3.2 Nonparametric Event-Tensor Decomposition

Now, we consider a probabilistic model for event-tensor decomposition. While Poisson processes
(PPs) have many nice properties and are often good choices of modeling events (Schein et al., 2015),
they assume event occurences are independent (i.e., independent increments), and hence are unable
to capture the influences of the events on each other. To overcome this limit, we use a much more
expressive point process, Hawkes process (Hawkes, 1971), for events modeling in tensor entries.
Given an event sequence {t1, . . . tn}, the Hawkes process defines the event rate � as a function of
time t, �(t) = �0 +

P
ti<t h(t� ti), where �0 is the base rate (or background rate), and h(�t) is the

triggering function, which describes the strength of a preceding event triggering a new event at time t.
Note that the strength usually decays with time. For example, a commonly used triggering function is
h(�t) = � exp(��t

⌧), which expresses an exponential decay over time. The joint probability of the
sequence {t1, . . . tn} is p({t1, . . . tn}) = e

�
R T
0 �(t)

Qn
j=1 �(tj), where T is the total time span.

In our model, for each observed entry i we use a Hawkes process to sample the interaction sequence
mi. As in section 3.1, we denote the flattened single event sequence over all the observed entries by
S = [(s1, i1), . . . , (sN , iN)]. For the process in entry i, we define the rate function as

�i(t) = �
0
i +

X

sn<t

hin!i(t� sn) (1)

where �
0
i is the base rate and hin!i(�t) is the triggering function.

Now, let us present the detailed design for the base rate and triggering function. First, to capture
the (complex) relationships between the entities underlying the events in entry i, we assume the
background rate �

0
i , is a (possible) nonlinear function of the corresponding latent factors, xi =

[U(1)(i1, :), . . . ,U(K)(iK , :)]. To ensure the positiveness of �0
i , we sample a latent function f(xi)

and take �
0
i = e

f(xi). We place a Gaussian process (GP) prior over f(·). Hence, the latent function
values f for all the observed entries follow a multivariate Gaussian distribution,

p(f |U) = N
�
f |0, c(X,X)

�
(2)

where each row of the input matrix X corresponds to one entry, and are the concatenation of the
corresponding latent factors; c(·, ·) is the covariance function, and can be some nonlinear or/and
periodical kernels.

3

Entry i:

A function of the factors with GP prior

Static nonlinear relationships

 55

Mutually Excited Hawkes Processes (HPs)

the smoothness between the time factors. For example, Xiong et al. (2010) assigned a conditional
Gaussian prior over each T(k, :), p

�
T(k, :)|T(k � 1, :)

�
= N

�
T(k, :)|T(k � 1, :),�2I

�
.

3 Model
Despite the success of existing approaches in exploiting temporal information, they entirely drop the
time stamps and hence are unable to capture the important, triggering or causal effects between the
interactions. The triggering effects are common in real-world applications. For example, the event
that user A purchased commodity B may excite A’s friend C to purchase B as well. The triggering
effects are usually local and decay fast with time; dropping the time stamps and considering the event
occurrences independently make us unable to model/capture these effects.

To address these issues, and hence to further capture the complex relationships and important
structures underlying the interaction events, we formulate a new data abstraction, event-tensor,
to preserve all the time stamps. We then propose a powerful Bayesian nonparametric model to
decompose the event-tensors, discussed as follows.

3.1 Event-Tensor Formulation

First, let us look at the definition of event-tensors. To preserve the complete temporal information in
decomposition, we relax the definition that tensors must be multidimensional arrays of numerical
values. Instead, we define that each entry is a sequence of events, i.e., mi = {s

1
i , . . . , s

ni
i } where each

s
k
i (1 k ni) is a time stamp when the interaction happened, and ni the count of the events. Note

that, different entries correspond to distinct types of interaction events, since the involved entities (or
latent factors) are different. We name this tensor as an event-tensor. Given the observed entries {mi},
we can flatten their event sequences to obtain a single sequence S = [(s1, i1), . . . (sN , iN)] where
s1 . . . sN are all the time stamps, and each ik is the entry index for the event sk(1 k N) .

3.2 Nonparametric Event-Tensor Decomposition

Now, we consider a probabilistic model for event-tensor decomposition. While Poisson processes
(PPs) have many nice properties and are often good choices of modeling events (Schein et al., 2015),
they assume event occurences are independent (i.e., independent increments), and hence are unable
to capture the influences of the events on each other. To overcome this limit, we use a much more
expressive point process, Hawkes process (Hawkes, 1971), for events modeling in tensor entries.
Given an event sequence {t1, . . . tn}, the Hawkes process defines the event rate � as a function of
time t, �(t) = �0 +

P
ti<t h(t� ti), where �0 is the base rate (or background rate), and h(�t) is the

triggering function, which describes the strength of a preceding event triggering a new event at time t.
Note that the strength usually decays with time. For example, a commonly used triggering function is
h(�t) = � exp(��t

⌧), which expresses an exponential decay over time. The joint probability of the
sequence {t1, . . . tn} is p({t1, . . . tn}) = e

�
R T
0 �(t)

Qn
j=1 �(tj), where T is the total time span.

In our model, for each observed entry i we use a Hawkes process to sample the interaction sequence
mi. As in section 3.1, we denote the flattened single event sequence over all the observed entries by
S = [(s1, i1), . . . , (sN , iN)]. For the process in entry i, we define the rate function as

�i(t) = �
0
i +

X

sn<t

hin!i(t� sn) (1)

where �
0
i is the base rate and hin!i(�t) is the triggering function.

Now, let us present the detailed design for the base rate and triggering function. First, to capture
the (complex) relationships between the entities underlying the events in entry i, we assume the
background rate �

0
i , is a (possible) nonlinear function of the corresponding latent factors, xi =

[U(1)(i1, :), . . . ,U(K)(iK , :)]. To ensure the positiveness of �0
i , we sample a latent function f(xi)

and take �
0
i = e

f(xi). We place a Gaussian process (GP) prior over f(·). Hence, the latent function
values f for all the observed entries follow a multivariate Gaussian distribution,

p(f |U) = N
�
f |0, c(X,X)

�
(2)

where each row of the input matrix X corresponds to one entry, and are the concatenation of the
corresponding latent factors; c(·, ·) is the covariance function, and can be some nonlinear or/and
periodical kernels.

3

Entry i:

Second, to capture various excitation effects and the underlying structures of the entities, we design
the triggering function as the following form:

hin!i(t� sn) = k(xin ,xi)h0(t� sn) (3)

where k(·, ·) is a kernel function, xin and xi are the concatenated latent factors for entries in and
i, respectively; h0(·) is the base triggering function which we will explain later. In our design,
the excitation strength between the two types of interactions, in and i, is determined by the close-
ness/similarity between the associated entities. The closeness is measured by the kernel function of
their latent factors. Such design enables our model to discover the grouping structures hidden in the
triggering effects — entities in the same group/community more strongly excite each other to interact
with other modes’ entities from the same group, e.g., “purchasing the same brand of products" and
“watching the same types of movies".

Next, we design a local base triggering function, to better capture the locality of the triggering effects,

h0(t� sn) = (sn 2 At)�e
�

1
⌧ (t�sn) (4)

where At is the set of possible triggering events to time t. By setting At, we can specify the appropriate
range of triggering effects through domain knowledge, or the best trade-off to the computational
efficiency. In our model, we define At as the collection of preceding events nearest to time t in the
time window �max, At = {sj |sj 2 Pt(Cmax), t � �max sj t} where Pt(Cmax) are Cmax

preceding events nearest to t.

Finally, given the observed entries {mi}, based on (1) and (2), the joint probability of our model is

p({mi, fi}|U) = N
�
f |0, c(X,X)

�Y
i
e
�

R T
0 �i(t)dt

Yni

j=1
�i(s

n
i) (5)

where mi = {s
1
i , . . . , s

ni
i } and fi is the latent function value for entry i, used in our definition of the

base rate, �0
i = e

fi .

4 Algorithm
4.1 Decomposable Variational Lower Bound
Exact inference of our model is computationally infeasible for large data, because the GP term in (5)
is required to compute the covariance matrix c(X,X) and its inverse, which intertwine all the latent
factors — when the number of observed entries is large, the computation is infeasible. Furthermore,
the log joint probability of our model involves many log-summation terms, {log(�i(sni))} — these
terms further couples the latent factors (see (3)) and the base triggering function parameters, � and ⌧

(see (4)), making the computation even less efficient.

To tackle these problems, we first consider the standard variational sparse GP framework (Titsias,
2009). We introduce Q pseudo inputs B and targets g. Note that Q is much smaller than the
number of tensor entries. We assume g and f are sampled from the same Gaussian process, and
hence they jointly follow a multivariate Gaussian distribution, p(f ,g) = N ([g; f]|0,C) where
C = [c(B,B), c(B,X); c(X,B), c(X,X)] and c(X,B) is the cross-covariance between X and B.
We then augment our model with the pseudo target g, p(f ,g, {mi}|U) = p(g)p(f |g)p({mi}|f ,U).
Following (Titsias, 2009), we introduce a variational distribution q(g) and apply Jensen’s inequity
to obtain log

�
p({mi}|U)

�
� Eq(g) log(

p(g)
q(g)) + Eq(g) log

�
Ep(f |g)p({mi}|f ,U)

�
. Next, we apply

Jensen’s inequality again for the second term to switch the order of logarithm and the expecta-
tion, so as to obtain a lower bound decomposed over tensor entries, log

�
Ep(f |g)p({mi}|f ,U)

�
�

Ep(f |g) log
�
p({mi}|f ,U)

�
=

P
i Ep(fi|g) log

�
p(mi|fi,U)

�
. Note that p(fi|g) is scalar conditional

Gaussian distribution. However, this step is infeasible, because the expectations are not analyti-
cal — each base rate e

fi is trapped in a set of the log-summation terms, i.e., log
�
p(mi|fi,U)

�
=

�e
fiT +

Pni

j=1 log(e
fi + aj) + a0 where a0, {aj} are the terms irrelevant to fi. This stems from

the additive form of the Hawkes process rate function (see (1)). The expectation w.r.t a Gaussian
distribution is not analytical.

To solve this problem, we exploit Poisson process super-position theorem (Cinlar and Agnew, 1968)
to further augment our model with event cause variables. Thereby the base rate can be decoupled
from the log-summation terms, and we can derive a tractable and decomposable bound.

Specifically, by the super-position theorem, each additive component in the rate function (1) can be
considered as an independent Poisson process. The Hawkes process is equivalent to the union of

4

associated factors
with the entry base triggering kernel

Stronger mutual excitations
within in the cluster

Help discover triggering clusters!

Second, to capture various excitation effects and the underlying structures of the entities, we design
the triggering function as the following form:

hin!i(t� sn) = k(xin ,xi)h0(t� sn) (3)

where k(·, ·) is a kernel function, xin and xi are the concatenated latent factors for entries in and
i, respectively; h0(·) is the base triggering function which we will explain later. In our design,
the excitation strength between the two types of interactions, in and i, is determined by the close-
ness/similarity between the associated entities. The closeness is measured by the kernel function of
their latent factors. Such design enables our model to discover the grouping structures hidden in the
triggering effects — entities in the same group/community more strongly excite each other to interact
with other modes’ entities from the same group, e.g., “purchasing the same brand of products" and
“watching the same types of movies".

Next, we design a local base triggering function, to better capture the locality of the triggering effects,

h0(t� sn) = (sn 2 At)�e
�

1
⌧ (t�sn) (4)

where At is the set of possible triggering events to time t. By setting At, we can specify the appropriate
range of triggering effects through domain knowledge, or the best trade-off to the computational
efficiency. In our model, we define At as the collection of preceding events nearest to time t in the
time window �max, At = {sj |sj 2 Pt(Cmax), t � �max sj t} where Pt(Cmax) are Cmax

preceding events nearest to t.

Finally, given the observed entries {mi}, based on (1) and (2), the joint probability of our model is

p({mi, fi}|U) = N
�
f |0, c(X,X)

�Y
i
e
�

R T
0 �i(t)dt

Yni

j=1
�i(s

n
i) (5)

where mi = {s
1
i , . . . , s

ni
i } and fi is the latent function value for entry i, used in our definition of the

base rate, �0
i = e

fi .

4 Algorithm
4.1 Decomposable Variational Lower Bound
Exact inference of our model is computationally infeasible for large data, because the GP term in (5)
is required to compute the covariance matrix c(X,X) and its inverse, which intertwine all the latent
factors — when the number of observed entries is large, the computation is infeasible. Furthermore,
the log joint probability of our model involves many log-summation terms, {log(�i(sni))} — these
terms further couples the latent factors (see (3)) and the base triggering function parameters, � and ⌧

(see (4)), making the computation even less efficient.

To tackle these problems, we first consider the standard variational sparse GP framework (Titsias,
2009). We introduce Q pseudo inputs B and targets g. Note that Q is much smaller than the
number of tensor entries. We assume g and f are sampled from the same Gaussian process, and
hence they jointly follow a multivariate Gaussian distribution, p(f ,g) = N ([g; f]|0,C) where
C = [c(B,B), c(B,X); c(X,B), c(X,X)] and c(X,B) is the cross-covariance between X and B.
We then augment our model with the pseudo target g, p(f ,g, {mi}|U) = p(g)p(f |g)p({mi}|f ,U).
Following (Titsias, 2009), we introduce a variational distribution q(g) and apply Jensen’s inequity
to obtain log

�
p({mi}|U)

�
� Eq(g) log(

p(g)
q(g)) + Eq(g) log

�
Ep(f |g)p({mi}|f ,U)

�
. Next, we apply

Jensen’s inequality again for the second term to switch the order of logarithm and the expecta-
tion, so as to obtain a lower bound decomposed over tensor entries, log

�
Ep(f |g)p({mi}|f ,U)

�
�

Ep(f |g) log
�
p({mi}|f ,U)

�
=

P
i Ep(fi|g) log

�
p(mi|fi,U)

�
. Note that p(fi|g) is scalar conditional

Gaussian distribution. However, this step is infeasible, because the expectations are not analyti-
cal — each base rate e

fi is trapped in a set of the log-summation terms, i.e., log
�
p(mi|fi,U)

�
=

�e
fiT +

Pni

j=1 log(e
fi + aj) + a0 where a0, {aj} are the terms irrelevant to fi. This stems from

the additive form of the Hawkes process rate function (see (1)). The expectation w.r.t a Gaussian
distribution is not analytical.

To solve this problem, we exploit Poisson process super-position theorem (Cinlar and Agnew, 1968)
to further augment our model with event cause variables. Thereby the base rate can be decoupled
from the log-summation terms, and we can derive a tractable and decomposable bound.

Specifically, by the super-position theorem, each additive component in the rate function (1) can be
considered as an independent Poisson process. The Hawkes process is equivalent to the union of

4

 56

Hybrid of GPs and HPs

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

p(W|X,B) = MN (W|0,Knn,KBB) = N
�
vec(W)|0, k2(B,B)⌦ k1(X,X)

�

bX(k+1)
= [X(k+1),W(k)

(Sk, :)]

W(k)

X(k+1)

W(k+1) ⇠ MN
�
0, k1(bX(k+1), bX(k+1)

), k2(B
(k+1),B(k+1)

)
�

q(W) =

YL

k=1
q(W(k)

) =

YL

k=1
MN (W(k)|M(k),⌃(k),⌦(k)

)

�i(t) = �0
i (xi) +

X

sn<t

k(xin ,xi)h0(t� sn)

8

static nonlinear relationships
temporal excitation effects

GP

HP

Latent factors

 57

Scalable Inference
Poisson process super-position theorem +
variational sparse GP framework

Develop a doubly stochastic optimization
algorithm to maximize the bound

into mini-batches, {Nk} and {Ml}, according to which we arrange our variational bound as

L = Eq(g)

�
log

p(g)

q(g)

�
+

X

k

|Nk|

N

X

j2Nk

�sj ,Āsj

N

|Nk|
+

X

k

X

l

|Nk|

N

|Ml|

M

X

j2Nk

X

i2Ml

 sj ,i,ij
N

|Nk|

M

|Ml|

where |·| is the size of the mini-batch, M is the number of observed entries, sj ,i,ij = �
R T
sj
hij!i(t�

sj)dt, and �sj ,Āsj
= Eq(g)Ep(fij |g)

�
Eq(zj)

�
(zj = 0)

�
fij �

T
nij

e
fij

�
+

P
n2Āsj

Eq(zj)

�
(zj =

n)) log
�
hij!i(sj � sn)

�
. Then, the bound can be considered as an expectation of a stochastic

objective, L = Ep(k),p(l)(L̃k,l), where p(k) = |Nk|

N , p(l) = |Ml|

M , and

L̃k,l = Eq(g)

�
log

p(g)

q(g)

�
+

X

j2Nk

�sj ,Āsj

N

|Nk|
+

X

j2Nk

X

i2Ml

 sj ,i,ij
N

|Nk|

M

|Ml|
.

We can therefore develop a doubly-stochastic EM algorithm to maximize L. Each time, we sample
two mini-batches, Nk and Ml, one for the events and the other for the tensor entries. We then optimize
the stochastic objective, L̃k,l, with one E-M iteration. In the E step, we optimize the variational
posteriors of the latent causes {q(zj)} associated with the events in Nk; in the M step, we update
all the other parameters ✓ with stochastic gradient accent, ✓ ✓ + ⌘

@L̃k,l

@✓ , where ⌘ is the step size.
Here ✓ include the latent factors U , the base triggering function parameters � and ⌧ , the pseudo inputs
B, the kernel parameters, and the mean and covariance of q(g). The detailed updating equations are
listed in the supplementary material. Note that we cannot update q(g) in the E-step because we do
not have an analytical updating formula. We repeat this process until convergence or the maximum
number of batches have been processed.

4.3 Algorithm Complexity

The time complexity of our algorithm is O(Q3
Eb + EbVb) where Eb and Vb are mini-batch sizes

for events and tensor entries, respectively. Since Q ⌧ N,M is constant, the time complexity is
proportional to the sizes of the mini-batches. The space complexity is O(

PK
k=1 dkrk +Q

2), which
is to store all the latent factors, and covariance of q(g) and all the other parameters.

5 Related Works
Many excellent works have been proposed for tensor decomposition (Shashua and Hazan, 2005;
Chu and Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Kang et al., 2012;
Yang and Dunson, 2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015a; Rai et al.,
2015). Most of them are based on the classical, multilinear Tucker (Tucker, 1966) or CP (Harshman,
1970) decompositions. Recently, several nonparametric decomposition methods (Xu et al., 2012;
Zhe et al., 2015, 2016a,b) were developed to capture nonlinear relationships in data, and have shown
excellent predictive performance. However, most methods ignore the temporal information, or simply
integrate them into count tensors (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b). The
latter approaches usually use Poisson processes to model events, and ignore the temporal influences
among those events. More elegant, temporal decomposition approaches (Xiong et al., 2010; Schein
et al., 2015, 2016) introduce extra time factors to capture refined temporal patterns. However, since
they discretize the time stamps into steps, they still lose information and are unable to capture fine-
grained, triggering effects within the events. To address these problems, we formulated event-tensors
to keep the complete temporal information, and proposed a powerful nonparametric event-tensor
decomposition model by hybridizing latent GPs and Hawkes processes. Our model can be further
extended for more general, temporal high-order relation data analysis (DuBois and Smyth, 2010;
DuBois et al., 2013).

Due to the great flexibility, Hawkes processes (HPs) have been an important tool for discovering
latent structures/relationships within general types of events, including reciprocal relationship on
graphs (Blundell et al., 2012), latent network structures (Linderman and Adams, 2014), temporal
clustering of documents (Du et al., 2015), network structures and topics in text-based cascades (He
et al., 2015), user activity levels (Wang et al., 2017), etc. Moreover, many works have been developed
for general HP modeling and inference (Zhou et al., 2013; Xu et al., 2016, 2017). Different from
these methods, our doubly stochastic variational EM inference is designed for a hybrid of latent GP
and HP model (on event-tensors).

6

into mini-batches, {Nk} and {Ml}, according to which we arrange our variational bound as

L = Eq(g)

�
log

p(g)

q(g)

�
+

X

k

|Nk|

N

X

j2Nk

�sj ,Āsj

N

|Nk|
+

X

k

X

l

|Nk|

N

|Ml|

M

X

j2Nk

X

i2Ml

 sj ,i,ij
N

|Nk|

M

|Ml|

where |·| is the size of the mini-batch, M is the number of observed entries, sj ,i,ij = �
R T
sj
hij!i(t�

sj)dt, and �sj ,Āsj
= Eq(g)Ep(fij |g)

�
Eq(zj)

�
(zj = 0)

�
fij �

T
nij

e
fij

�
+

P
n2Āsj

Eq(zj)

�
(zj =

n)) log
�
hij!i(sj � sn)

�
. Then, the bound can be considered as an expectation of a stochastic

objective, L = Ep(k),p(l)(L̃k,l), where p(k) = |Nk|

N , p(l) = |Ml|

M , and

L̃k,l = Eq(g)

�
log

p(g)

q(g)

�
+

X

j2Nk

�sj ,Āsj

N

|Nk|
+

X

j2Nk

X

i2Ml

 sj ,i,ij
N

|Nk|

M

|Ml|
.

We can therefore develop a doubly-stochastic EM algorithm to maximize L. Each time, we sample
two mini-batches, Nk and Ml, one for the events and the other for the tensor entries. We then optimize
the stochastic objective, L̃k,l, with one E-M iteration. In the E step, we optimize the variational
posteriors of the latent causes {q(zj)} associated with the events in Nk; in the M step, we update
all the other parameters ✓ with stochastic gradient accent, ✓ ✓ + ⌘

@L̃k,l

@✓ , where ⌘ is the step size.
Here ✓ include the latent factors U , the base triggering function parameters � and ⌧ , the pseudo inputs
B, the kernel parameters, and the mean and covariance of q(g). The detailed updating equations are
listed in the supplementary material. Note that we cannot update q(g) in the E-step because we do
not have an analytical updating formula. We repeat this process until convergence or the maximum
number of batches have been processed.

4.3 Algorithm Complexity

The time complexity of our algorithm is O(Q3
Eb + EbVb) where Eb and Vb are mini-batch sizes

for events and tensor entries, respectively. Since Q ⌧ N,M is constant, the time complexity is
proportional to the sizes of the mini-batches. The space complexity is O(

PK
k=1 dkrk +Q

2), which
is to store all the latent factors, and covariance of q(g) and all the other parameters.

5 Related Works
Many excellent works have been proposed for tensor decomposition (Shashua and Hazan, 2005;
Chu and Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Kang et al., 2012;
Yang and Dunson, 2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015a; Rai et al.,
2015). Most of them are based on the classical, multilinear Tucker (Tucker, 1966) or CP (Harshman,
1970) decompositions. Recently, several nonparametric decomposition methods (Xu et al., 2012;
Zhe et al., 2015, 2016a,b) were developed to capture nonlinear relationships in data, and have shown
excellent predictive performance. However, most methods ignore the temporal information, or simply
integrate them into count tensors (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b). The
latter approaches usually use Poisson processes to model events, and ignore the temporal influences
among those events. More elegant, temporal decomposition approaches (Xiong et al., 2010; Schein
et al., 2015, 2016) introduce extra time factors to capture refined temporal patterns. However, since
they discretize the time stamps into steps, they still lose information and are unable to capture fine-
grained, triggering effects within the events. To address these problems, we formulated event-tensors
to keep the complete temporal information, and proposed a powerful nonparametric event-tensor
decomposition model by hybridizing latent GPs and Hawkes processes. Our model can be further
extended for more general, temporal high-order relation data analysis (DuBois and Smyth, 2010;
DuBois et al., 2013).

Due to the great flexibility, Hawkes processes (HPs) have been an important tool for discovering
latent structures/relationships within general types of events, including reciprocal relationship on
graphs (Blundell et al., 2012), latent network structures (Linderman and Adams, 2014), temporal
clustering of documents (Du et al., 2015), network structures and topics in text-based cascades (He
et al., 2015), user activity levels (Wang et al., 2017), etc. Moreover, many works have been developed
for general HP modeling and inference (Zhou et al., 2013; Xu et al., 2016, 2017). Different from
these methods, our doubly stochastic variational EM inference is designed for a hybrid of latent GP
and HP model (on event-tensors).

6

������� ������

Predictive Performance

 58

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Stochastic Nonparametric Event-Tensor Decomposition

1 2 5 8
-4.2

-3.8

-3.4

104

T
e

st
 L

o
g

 L
ik

e
lih

o
o

d Ours-Win-1
Ours-Win-2
Ours-Win-3
GP-PTF

1 2 5 8

Number of Factors

-3

-2

-1
107 CPT-PTF-5

CPT-PTF-10
CPT-PTF-20
CPT-PTF-30
CP-PTF

(a) Article

1 2 5 8

Number of Factors

-2.5

-2.4

-2.3

-2.2

-2.1

T
e

st
 L

o
g

 L
ik

e
lih

o
o

d

104

(b) 911

1 2 5 8

Number of Factors

-10

-8

-4

T
e

st
 L

o
g

 L
ik

e
lih

o
o

d

104

(c) UFO

Figure 1. The prediction performance on the three datasets. CPT-PTF-{5, 10, 20, 30} correspond to CPT-PTF using {5, 10, 20, 30} time
steps. Ours-Win-{1, 2, 3} correspond to our method using three triggering time windows.

10 20 30 40 50 60 70 80 90 100

Number of Epochs

-2.2

-2

-1.8

-1.6

T
e
st

 L
o
g
 L

ik
e
lih

o
o
d

105

Ours-Win-1
Ours-Win-2
Ours-Win-3
GP-PTF

(a) Article

10 20 30 40 50 60 70 80 90 100

Number of Epochs

-1.3

-1.2

-1.1

-1.06

T
e
st

 L
o
g
 L

ik
e
lih

o
o
d

105

(b) 911

Figure 2. The predictive performance along with training epochs.
the remaining events for testing. The numbers of test events
are 22.3K, 19.3K, 30.4K respectively. For CPT-PTF, we
varied the number of time steps from {5, 10, 20, 30}. For
our approach, to examine different settings for triggering
range, we fixed the maximum number of triggering events
Cmax to 300 and varied the maximum triggering time win-
dow �max from {1, 2, 3} hours for Article and 911, and
{1, 3, 5} days for UFO. The mini-batch sizes of tensor en-
tries (for all the methods), and events (for our method only)
are both set to 100. We used AdaDelta (Zeiler, 2012) to ad-
just the step-size for the stochastic gradient descent in all the
methods. For each method, we ran 100 epochs. One epoch
means the number of processed entries/events has reached
the total number of training entries/events. To remove the
vibration of the prediction accuracy (due to the stochastic
updates) from evaluation, for each method we computed the
test log likelihood after each epoch, and then reported the
largest one as the prediction result. The results are reported
in Figure 1a-c. As we can see, our approach outperforms all
the competing methods, and in many cases improves them
by a large margin. Note that the second best approach is
always GP-PTF, implying complex, nonlinear relationships
within the events. Furthermore, our improvement over GP-
PTF demonstrates the advantage of using Hawkes processes
to capture the (local) triggering effects between the events.

In addition, to examine the dynamic behaviors of our doubly
stochastic variational EM algorithm, we reported the test
log likelihoods after each epoch in Article and 911 when
the latent factor number was set to 8. As shown in Figure 2,
the predictive performance of our algorithm kept improving
and tended to converge at last.

6.2. Latent Structure Discovery

Next, we examined the capability of our model in discover-
ing latent structures in data. To this end, we first simulated a
small synthetic event-tensor, of size 10⇥10⇥10. The latent
factors in each mode were sampled from a Gaussian mixture
model (GMM) with 2 components, where the centers are
{(�1,�1), (1, 1)}. Given the latent factors, we sampled
Hawkes process events for each tensor entry. The base rate
for each entry i was generated via a nonlinear function,

�
0
i = 1/(1 + x

2 + x) + e
� cos(x)

where x = kU(1)(i1, :) � U(2)(i2, :)k + kU(1)(i1, :) �
U(3)(i3, :)k+kU(2)(i2, :)�U(3)(i3, :)k. The rate function
is defined as

�i(t) = �
0
i +

X

sn<t

0.1e�50kxi�xink
2

(t� sn < 0.01)e
t�sn
10

where xi and xin are the vectors from concatenating the
latent factors associated with i and in, respectively; in is
the entry index for n-th event. We used Hawkes Process
Toolkit (Xu and Zha, 2017) to sample 1, 000 events in to-
tal. We then ran CP-PTF, GP-PTF and our approach for 50
epochs to estimate the latent factors. All the methods started
with the same random initialization of the latent factors. The
results of the second mode are reported in Figure 4. The
markers (and the colors) of the points (i.e., latent factors)
exhibit their ground-truth classes, namely, the GMM compo-
nent they were sampled from. In Figure 4a, the points from
different classes are mixed and the cluster structures are
not quite clear, implying that CP-PTF failed to capture the
relationships between the entities, which are reflected in the
nonlinear base rates {�0

i }. In Figure 4b, while GP-PTF ob-
tained latent factors with much clearer cluster structures, the
ground-truth classes are mistakenly grouped. That might be
because GP-TPF failed to capture the structure information
hidden in the triggering effects. From Figure 4c, we can see
our approach recovered both the clear cluster structures and
the correct latent factor groups. It shows that our method not
only successfully captured the nonlinear relationships, but

Structure Discovery
• 911 EMS dataset (EMS title, township)

12/10/2015 - 04/10/2017 in Montgomery
County, PA.

• UFO sightings (UFO shape, city) in last
century

 59

Structure Discovery

 60

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Stochastic Nonparametric Event-Tensor Decomposition

(a) EMS titles

(b) UFO shapes

-75.6 -75.4 -75.2 -75.1

40.4

40.3

40.2

40.1

40.0

(c) Townships
Figure 3. Structures reflected from the latent factors learned by our model on 911 on UFO. In (c), the clusters of townships are represented
by different colors, and axises are the longitudes/latitudes.

(a) CP-PTF (b) GP-PTF (c) Ours
Figure 4. The estimated latent factors in synthetic data.

also extracted the structure knowledge hidden in the events
and their excitations.

In addition, we also examined the structures discovered by
our model from real-world applications. To this end, we
used the k-means algorithm to cluster our estimated latent
factors for 911 and UFO datasets. For visualization, we
set the number of latent factors to 2. We chose the latent
factors that gave the best prediction performance among
the 100 epochs. We used BIC to identify the appropriate
cluster number from 2 to 15. Finally, we obtained 6 groups
of EMS titles and 10 groups of townships for 911, as shown
in Figure 3a and c. We obtained 4 groups of UFO shapes,
as shown in Figure 3b. Due to the space limit, we do not
report the clusters of UFO sighting cities (19K cities).

As we can see, the estimated latent factors for both 911

and UFO datasets reflect clear cluster structures, which may
imply interesting patterns. First, we found that the clusters
of EMS titles often contain accidents/events with strong
associations. For example, Cluster 1 in Fig. 3a consist of
{SHOOTING, AMPUTATION and S/B AT HELICOPTER
LANDING} — after SHOOTING or accidental AMPU-
TATION, the urgent rescue may require HELICOPTER
supports. For another example, Cluster 2 are about disease
symptoms, and include SEIZURES, CVA/STROKE, OVER-

DOSE, ABDOMINAL PAINS, etc. It is known that STOKE
is a common cause of SEIZURE (De Reuck, 2009) — in the
aftermath of a stroke, the seizure is often experienced. Like-
wise, it is common that after OVERDOSES, people may
feel ABDOMINAL PAINS. The detailed EMS titles in each
cluster are listed in Table 1 of the supplementary material.
Furthermore, from Figure 3c, we can see the cluster of town-
ships tend to neighbor each other. This is reasonable, since
one accident is more likely to cause subsequent accidents in
adjacent geolocations. For example, a severe road accident
may cause a traffic jam in a nearby town.

Second, we investigated the clusters of UFO shapes discov-
ered by our model on UFO data (Fig. 3b). We found these
clusters correspond to different appearance patterns. For
example, Cluster 1 contain more three-dimensional looks,
including cone, cylinder, egg, pyramid, etc, while Cluster
2 comprise thinner/flatter shapes, such as disk and cigar.
Cluster 3 are {fireball, flash} and Cluster 4 are more about
formation flying, such as cross, delta and round. The details
are listed Table 2 in the supplementary material. Generally,
it reflects that UFOs with similar looks are more likely to
be sighted together/successively in a short time.

7. Conclusion
In this paper, we proposed a nonparametric event-tensor
decomposition model, which is powerful to capture the com-
plex nonlinear relationships, important local excitations, and
hidden structures within interaction events. We developed
a doubly stochastic variational EM algorithm to scale our
model to both large numbers of tensor entries and events.

 61

Nonparametric Event-Tensor Decomposition

1. Hybrid of GP and HP

2. Superposition for
decomposable variational bound

Bayesian Learning

 62

• Intuitive model design
• Convenient prior knowledge incorporation
• Excellent interpretation
• Flexible uncertainty reasoning

As an elegant mathematical framework

Could be useful for numerous applications

Collaborative filtering, social activities analysis, anomaly detection,
community discovery, intelligent decision, disease diagnosis,
computational forensic tools, personalized medicine….

 63

Thanks!
Shandian Zhe

zhe@cs.utah.edu

University of Utah

